WO2018113739A1 - 资源配置方法、信息发送方法、基站及终端 - Google Patents

资源配置方法、信息发送方法、基站及终端 Download PDF

Info

Publication number
WO2018113739A1
WO2018113739A1 PCT/CN2017/117723 CN2017117723W WO2018113739A1 WO 2018113739 A1 WO2018113739 A1 WO 2018113739A1 CN 2017117723 W CN2017117723 W CN 2017117723W WO 2018113739 A1 WO2018113739 A1 WO 2018113739A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
sprach
resource
base station
domain resource
Prior art date
Application number
PCT/CN2017/117723
Other languages
English (en)
French (fr)
Inventor
孙立新
丁颖哲
周明宇
路杨
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Publication of WO2018113739A1 publication Critical patent/WO2018113739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a resource configuration method, an information sending method, a base station, and a terminal.
  • MulteFire is a new wireless access technology based on Long Term Evolution (LTE). This technique can operate independently in the unlicensed spectrum without the aid of a licensed band carrier.
  • LTE Long Term Evolution
  • the MulteFire physical layer introduces WiFi-like carrier sensing technology.
  • the DRS contains the main downlink common control signals, including system broadcast, Primary Sync Signal (PSS), Enhanced Primary Sync Signal (ePSS), and Enhanced Secondary Sync Signal (eSSS). , Cell Reference Signal (CRS), Master Information Block (MIB), and Enhanced System Information Block (SIB-MF, System Information Block Multefire).
  • PSS Primary Sync Signal
  • ePSS Enhanced Primary Sync Signal
  • eSSS Enhanced Secondary Sync Signal
  • CRS Cell Reference Signal
  • MIB Master Information Block
  • SIB-MF System Information Block Multefire
  • the DRS occupies 12 or 14 symbols (Symbols) in one downlink subframe.
  • the terminal may receive the DRS in the Discovery Signal Measurement Timing Configuration (DMTC) window for downlink synchronization, receiving MIB, and SIB-MF.
  • DMTC Discovery Signal Measurement Timing Configuration
  • the MF provides two basic access mode network architectures, namely, a Public Land Mobile Network (PLMN) access mode and a Neutral Host Network (NHN) access mode.
  • the NHN access model is a new unified planning and self-organizing neutral network introduced by MulteFire.
  • An NHN can be shared to multiple service providers at the same time.
  • the RN Radio Access Network
  • -ID Service Provider Identity
  • Switching between the MF network of the NHN access mode and the 3rd Generation Partnership Project (3GPP) network is currently not supported.
  • the PLMN access mode is a network mode in which the MF Radio Access Network (RAN) is connected to the mobile operator's 3GPP Core Network (CN).
  • a User Equipment also referred to as a terminal
  • the LTE base station may optimize the random access resources according to the physical random access channel resource configuration of the neighboring LTE cell or according to the random access information of the serving cell.
  • the physical random access channel resource configuration and random access information of the MF cell are different from the LTE cell, and the related technology cannot enable the base station to perform random access according to the physical random access channel resource configuration information of the MF cell or the random access information of the MF cell. Resources are optimized.
  • the MF cell has a common physical random access channel resource configuration, and the terminal may send a Preamble to initiate random access on the physical random access channel resource.
  • the Preamble signal sent by the terminal in the cell will interfere with the Preamble signal sent by the terminal in the adjacent MF cell. Reduce the preamble detection performance and affect the random access success rate.
  • the base station cannot perform random access resource optimization according to the random access information of the MF cell, which affects the random access success rate of the local cell.
  • the present disclosure provides a resource configuration method, an information transmission method, a base station, and a terminal.
  • an embodiment of the present disclosure provides a resource configuration method, where the resource configuration method is applied to a first base station to which a first cell belongs, and the resource configuration method includes: acquiring a physical random used to optimize configuration of a first cell.
  • Configuration parameter information of the access channel resource where the configuration parameter information includes at least one of resource configuration information of a MulteFire short physical random access channel MF-sPRACH of a neighboring cell of the first cell and a random access channel RACH information of the first cell And configuring a physical random access channel resource of the first cell according to the configuration parameter information.
  • an embodiment of the present disclosure provides a base station, where the base station is a first base station to which the first cell belongs, and includes: an acquiring module, configured to acquire, for optimizing, configuring a physical random access channel resource of the first cell.
  • Configuring parameter information the configuration parameter information including at least one of resource configuration information of a MulteFire short physical random access channel MF-sPRACH of a neighboring cell of the first cell and a random access channel RACH information of the first cell; and a configuration module And configured to configure a physical random access channel resource of the first cell according to the configuration parameter information.
  • an embodiment of the present disclosure provides a base station, where the base station is a first base station to which the first cell belongs, and the base station includes a processor, a memory, and a transceiver.
  • the memory is configured to store programs and data processed by the processor at runtime
  • the transceiver is configured to send and receive information
  • the processor is configured to read the program and data stored in the memory to The transceiver in combination with the method described in the first aspect above.
  • an embodiment of the present disclosure further provides an information sending method, which is applied to a second base station, where the method includes: a MulteFire short physical random access channel MF of a neighboring cell of a first cell under a first base station.
  • the resource configuration information of the sPRACH is sent to the first base station by using an interface message, where the resource configuration information includes: a MF-sPRACH frequency domain resource block location, a frequency domain resource block number occupied by the MF-sPRACH, and an MF-sPRACH
  • the interface message is an X2 interface message or an S1 interface message.
  • the embodiment of the present disclosure further provides a base station, where the base station is a second base station, and includes: a first sending module, configured to short MulteFire of a neighboring cell of the first cell under the first base station
  • the resource configuration information of the access channel MF-sPRACH is sent to the first base station by using an interface message, where the resource configuration information includes a MF-sPRACH frequency domain resource block location, a frequency domain resource block number occupied by the MF-sPRACH, and
  • the MF-sPRACH first listens to at least one of the LBT types, and the interface message is an X2 interface message or an S1 interface message.
  • an embodiment of the present disclosure further provides a base station, where the base station is a second base station, and includes: a processor, a memory, and a transmitter, where the memory is used to store the processor at runtime a program and data, the transmitter is configured to send information, the processor is configured to read the program and data stored in the memory to control the transmitter to send a neighboring cell of a first cell under the first base station
  • the resource configuration information of the MulteFire short physical random access channel MF-sPRACH is sent to the first base station by using an interface message, where the resource configuration information includes: a MF-sPRACH frequency domain resource block location, and a frequency occupied by the MF-sPRACH At least one of the number of domain resource blocks and the LBT type of the MF-sPRACH, the interface message is an X2 interface message or an S1 interface message.
  • an embodiment of the present disclosure provides an information sending method, where the information sending method is applied to a terminal, where the information sending method includes: sending a random access channel RACH information of a first cell to a first base station;
  • the first cell is a Multefire cell, and the RACH information includes a number of times that the terminal fails to listen to the LBT when the terminal randomly accesses the first cell, and the first cell is a cell served by the first base station.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes: a second sending module, configured to send a random access channel RACH information of a first cell to a first base station; wherein the first cell is a Multefire The cell, the RACH information includes the number of times the terminal first hears the LBT failure when the terminal randomly accesses the first cell, and the first cell is a cell served by the first base station.
  • an embodiment of the present disclosure provides a terminal, where the terminal includes: a processor, a memory, and a transmitter, where the memory is used to store programs and data processed by the processor at runtime, The transmitter is configured to send information, and the processor is configured to read the program and data stored in the memory to control the transmitter to send a random access channel RACH information of the first cell to the first base station, where The first cell is a Multefire cell, and the RACH information includes: the number of times the terminal first hears the LBT failure when the terminal randomly accesses the first cell; and the first cell is the cell served by the first base station.
  • FIG. 1 is a schematic flowchart diagram of a resource configuration method according to an embodiment of the present disclosure
  • 2A-2I are schematic flowcharts showing a resource configuration method according to an embodiment of the present disclosure
  • Figure 3 is a diagram showing a communication procedure between a first base station and a second base station when an X2 interface exists between the first base station and the second base station;
  • FIG. 4 is a schematic diagram showing a communication process between a first base station and a second base station when there is no X2 interface between the first base station and the second base station;
  • FIG. 5 is a schematic flowchart diagram of a resource configuration method according to an embodiment of the present disclosure.
  • 6A-6D are block diagrams showing a first base station of an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram showing the structure of a first base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart diagram of an information sending method according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram showing a second base station according to an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram showing the structure of a second base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart diagram of an information sending method according to an embodiment of the present disclosure.
  • FIG. 12 is a block diagram showing a terminal of an embodiment of the present disclosure.
  • Fig. 13 is a view showing the configuration of a terminal of an embodiment of the present disclosure.
  • Embodiments of the present disclosure provide a resource configuration method, an information transmission method, a base station, and a terminal.
  • Multefire MF
  • uplink and downlink resources are in interlace, one interlace is 10 resource blocks (RB, Resource Block), one MF physical downlink control channel (PDCCH, Physical Downlink Control Channel) or physical uplink shared channel ( The PUSCH (Physical Uplink Shared Channel) or the Physical Downlink Shared Channel (PDSCH) or the Physical Random Access Channel (PRACH) occupies at least one interlace.
  • Each MF-sPRACH (MF short physical random access channel) can occupy one or two interlaces in the frequency domain, and occupy the last 4 orthogonal frequency division multiplexing (OFDM) of the subframe in the time domain.
  • OFDM orthogonal frequency division multiplexing
  • the terminal uses the MF-sPRACH resource to send a preamble (Preamble) for random access.
  • the current MF Preamble format is only MF-Preamble format 0, and the MF-sPUCCH format 0 sequence is used.
  • the terminal may perform LBT (Listen Before Talk) before sending the preamble on the MF-sPRACH resource. It may be sent when the LBT is successful, or may be sent directly on the MF-sPRACH resource without LBT.
  • Different MF-sPRACH resources are distinguished by frequency domain location, time domain location, and code domain resources.
  • a system frame may have multiple MF-sPRACH subframes, and the base station provides the terminal with a PRACH Configuration Index (physical random access channel configuration index). ) is used to indicate the time domain location of MF-sPRACH, as shown in Table 1.
  • PRACH Configuration Index physical random access channel configuration index
  • MF-PRACH-Frequency Index MF-PRACH frequency domain index
  • mf-PRACH-Frequency_Index It is a bit string of length 10, where the Kth bit is 1, indicating that the starting interlace of one MF-sPRACH is the Kth interlace.
  • Each MF-sPRACH occupies 1 or 2 resource blocks (Interlace).
  • the same time-frequency resource may have multiple MF-sPRACH code domain resources, and the MF Preamble sequence is composed of the root Zadoff-Chu sequence q, the sequence group number u, the intra-group serial number v, and Base sequence generate.
  • the 64 Peamble sequences are cyclically shifted by an Orthogonal Convolutional Code (OCC) on the base sequence.
  • OOCC Orthogonal Convolutional Code
  • the zero correlation area length of MF-preamble format 0 is N CS -1.
  • the logical root sequence number RACH_ROOT_SEQUENCE and zero Correlation Zone Config configured by the base station to the terminal determine the code domain resource of the MF-sPRACH. Specifically, the logical root sequence number is used to determine the physical root sequence number q, zero Correlation Zone Config is used to determine Ncs.
  • the correspondence between RACH_ROOT_SEQUENCE and q is as shown in Table 2.
  • N CS value 0 1 1 2 2 3 3 4 4 6 5 12 6 N/A 7 N/A 8 N/A 9 N/A 10 N/A 11 N/A 12 N/A 13 N/A 14 N/A 15 N/A
  • Table 3 is a correspondence table between the group number u of the physical root sequence q and the sequence number v in the group, and Table 4 is a correspondence table between the zero-related area configuration and the Ncs.
  • the embodiment of the present disclosure shown in FIG. 1 provides a resource configuration method, where the resource configuration method is applied to a first base station to which a first cell belongs and includes steps 11 - 12.
  • Step 11 Acquire configuration parameter information used to optimize configuration of physical random access channel resources of the first cell.
  • the configuration parameter information includes resource configuration information of a MulteFire short physical random access channel (MF-sPRACH) of a neighboring cell of the first cell, and a random access channel (RACH, Random Access Channel) information of the first cell. at least one.
  • the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell may be obtained by the first base station from the second base station, or may be obtained by the first base station from the information reported by the terminal.
  • the RACH information of the first cell is statistical information related to random access when the terminal performs random access in the first cell.
  • Step 12 Configure a physical random access channel resource of the first cell according to the configuration parameter information.
  • the random access resource optimization is performed according to the physical random access channel resource configuration information or the random access channel information of the MF cell, the preamble detection performance of the neighboring cell is improved, and the success of the cell random access is improved. Probability.
  • the configuration parameter information includes the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell and the configuration parameter information includes the random access channel RACH information of the first cell.
  • the embodiment of the present disclosure shown in FIG. 2 provides a resource configuration method, where the resource configuration method is applied to a first base station to which a first cell belongs and includes steps 21 to 22.
  • Step 21 Acquire resource configuration information of the MF-sPRACH of the neighboring cell of the first cell, where the resource configuration information includes the MF-sPRACH frequency domain resource block location, the number of frequency domain resource blocks occupied by the MF-sPRACH, and the MF- sPRACH first listens to at least one of the LBT types.
  • the first cell generally refers to a cell served by the first base station
  • the neighboring cell of the first cell is generally a cell that does not belong to the first base station (that is, the neighboring cell of the first cell belongs to the first cell. a cell of another base station adjacent to a base station).
  • the MF-sPRACH frequency domain resource block location of the first cell neighboring cell, the number of frequency domain resource blocks occupied by the MF-sPRACH, and the LBT type of the MF-sPRACH are indicated by the neighboring cell of the first cell to the terminal by using a system broadcast message. .
  • Step 22 Configure physical random access channel resources of the first cell according to the resource configuration information.
  • configuring the physical random access channel resource of the first cell mainly refers to at least one of (i) and (ii): (i) according to the MF-sPRACH frequency domain resource block location in the resource configuration information.
  • the domain resources are different to avoid mutual interference caused by the same frequency domain resource of the physical random access channel of the first cell and the MF-sPRACH frequency domain resource of the neighboring cell; and (ii) according to the MF-sPRACH in the resource configuration information
  • the LBT type of the physical random access channel configuring the first cell is the same as the LBT type of the MF-sPRACH of the neighboring cell of the first cell.
  • the LBT type of the MF-sPRACH is used to indicate whether the terminal performs LBT on the MF-sPRACH resource.
  • the LBT type of the physical random access channel of the first cell is the same as the LBT type of the MF-sPRACH of the neighboring cell, so that the first cell has the same channel access priority as the neighboring cell of the first cell, and avoids the MF- A cell that does not perform LBT on sPRACH causes interference to a cell that performs LBT, and affects the fairness of random access between different cells.
  • the base station is configured to obtain the MF-sPRACH resource configuration information of the neighboring MF cell, so that the base station can optimize the random access resource of the local cell according to the MF-sPRACH resource configuration information of the neighboring MF cell.
  • the Preamble detection performance of the cell is improved, thereby improving the random access success rate of the terminal in the cell.
  • step 21 specifically includes step 211.
  • Step 211 Acquire an interface message sent by the second base station, and obtain resource configuration information of the MF-sPRACH of the neighboring cell of the first cell from the interface message.
  • the interface message may be an X2 interface message or an S1 interface message.
  • the neighboring cell of the first cell is a serving cell of the second base station, and may also be a neighboring cell of the second base station serving cell.
  • the first base station acquires resource configuration information of the MF-sPRACH of the neighboring cell of the first cell from the second base station.
  • the second base station is an MF base station (a base station serving the MulteFire cell), and the first base station may be an MF base station or an LTE base station (a base station serving the LTE cell), and the second base station will all the MF cells served by the second base station.
  • the resource configuration information of the MF-sPRACH and the MF-sPRACH resource configuration information of the neighboring MF cell of the served cell are sent to the first base station.
  • the first base station can clearly select the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell from the received resource configuration information.
  • the step 211 includes steps 2111 to 2112 in a specific implementation.
  • Step 2111 Acquire an X2 interface message sent by the second base station.
  • Step 2112 (i) the physical random access channel configuration information of the second base station serving cell and (ii) the physical random access channel of the neighboring cell of the second base station serving cell, where the X2 interface message is included In at least one of the configuration information, the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is acquired.
  • the X2 interface message includes an X2 setup request message, an X2 setup response message, an evolved Node B (eNB) configuration update message, or an eNB configuration update response message.
  • eNB evolved Node B
  • the first base station may receive the X2 interface message sent by the second base station, so as to obtain the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell.
  • the first base station requests to establish an X2 interface with the second base station
  • the first base station sends an X2 setup request message to the second base station, and then the second base station sends the X2 setup request in response to the X2 setup request message.
  • the response (X2 Setup Response) message is sent to the first base station.
  • the communication process is as shown in FIG. 3. It should be noted that the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is included in the service of the X2 setup response message.
  • the physical random access channel configuration information included in the cell information is included in the physical random access channel configuration information included in the neighbor cell information of the serving cell.
  • the second base station requests to establish an X2 interface with the first base station, the second base station sends an X2 setup request message to the first base station, and then the first base station sends an X2 setup response message to the second base station in response to the X2 setup request message.
  • the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is included in the physical random access channel configuration information included in the serving cell information of the X2 setup request message, or includes The physical random access channel configuration information included in the neighbor cell information of the serving cell.
  • the first base station may receive the X2 interface message sent by the second base station, so as to obtain the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell.
  • the first base station sends an eNB configuration update (ENB CONFIGURATION UPDATE) message to the second base station, and the second base station sends an eNB configuration update response in response to the eNB configuration update message.
  • the (eNB configuration update acknowledge) message is sent to the first base station.
  • the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is included in the physical random access channel configuration information included in the serving cell information of the eNB configuration update response, or is included in the neighboring cell of the serving cell.
  • the second base station may also receive the X2 interface message sent by the first base station, so as to deliver the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell. Specifically, after the first base station and the second base station establish an X2 interface, the second base station sends an eNB configuration update message to the first base station, where the first base station sends an eNB configuration update response message to the second base station in response to the eNB configuration update message.
  • the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is included in the physical random access channel configuration information included in the serving cell information of the eNB configuration update message, or includes The physical random access channel configuration information included in the neighbor cell information of the serving cell.
  • the neighboring cell of the first cell is an MF cell of a Neutral Host Network (NHN) access mode
  • at least one of the X2 setup response message and the X2 setup request message and the base station configuration update are performed.
  • At least one of the response message and the base station configuration update message needs to carry the NHN-ID of the neighboring cell of the first cell and the evolved Unified Terrestrial Radio Access Network Global Identifier (ECGI).
  • ECGI evolved Unified Terrestrial Radio Access Network Global Identifier
  • Manner 1 The MF-sPRACH frequency domain resource block location and the MF- directly obtained by the MF-sPRACH frequency domain resource block location field and the MF-sPRACH occupied frequency domain resource block number field in the physical random access channel configuration information The number of frequency domain resource blocks occupied by sPRACH.
  • the new MF-sPRACH frequency domain resource block location field in the physical random access channel configuration information indicates the frequency domain location of the MF-sPRACH indicated by the neighboring cell of the first cell by the system broadcast message to the terminal, where the field is A bit string of length 10, when the Kth bit is set to 1, indicates that the starting position of the MF-sPRACH frequency domain resource block is the Kth resource block, and other bits are set to 0; the physical random access channel configuration information
  • the number of the frequency domain resource block occupied by the MF-sPRACH indicates the number of MF-sPRACH resource blocks that the neighboring cell of the first cell indicates to the terminal through the system broadcast message.
  • the value of the field is 1 or 2.
  • Manner 2 The MF-sPRACH frequency domain resource block location and the number of frequency domain resource blocks occupied by the MF-sPRACH are obtained by using the original physical random access channel frequency offset field in the physical random access channel configuration information.
  • PRACH-NumInterlaces 1+(floor((PRACH-FrequencyOffset mod 20)/10) mod 2), the number of frequency domain resource blocks occupied by the MF-sPRACH is obtained.
  • K is the MF-sPRACH frequency domain resource block location
  • PRACH-NumInterlaces is the number of frequency domain resource blocks occupied by MF-sPRACH
  • floor(*) is the downward rounding function
  • PRACH-FrequencyOffset is the physical random access channel configuration.
  • the physical random access channel frequency offset field value in the information, mod represents the remainder divided by two numbers.
  • the second base station calculates a physical random access channel frequency offset and calculates the physical frequency according to the frequency domain resource block position of the MF-sPRACH of the neighboring cell of the first cell and the frequency domain resource block occupied by the MF-sPRACH.
  • the random access channel frequency offset is sent to the first base station through a physical random access channel frequency offset field in the physical random access channel configuration information.
  • the first base station determines, by the E-UTRA Absolute Radio Frequency Channel Number (EARFCN) parameter, whether the physical random access channel configuration information is the resource configuration information of the MF-sPRACH, if The EARFCN in the serving cell information is the dedicated EARFCN of the MF, and the first base station determines that the physical random access channel configuration information includes the resource configuration information of the MF-sPRACH, and the physical random access channel frequency offset field according to the above formula The value calculates the MF-sPRACH frequency domain resource block location and the number of frequency domain resource blocks occupied by the MF-sPRACH.
  • E-UTRA Absolute Radio Frequency Channel Number EARFCN
  • the second method does not add a new field in the original physical random access channel configuration information element (IE, Information Element), and can only indicate the frequency domain of one MF-sPRACH.
  • IE Physical Random access channel configuration information element
  • Position if there is only one MF-sPRACH in the frequency domain and the first base station is an LTE base station (the first base station may not be able to parse the new field MF-sPRACH frequency domain resource block position and the number of frequency domain resource blocks occupied by the MF-sPRACH)
  • the second base station may adopt the foregoing manner 2, that is, the original physical random access channel frequency offset field in the physical random access channel configuration information is used to simultaneously indicate the MF-sPRACH frequency domain resource block location and the frequency domain occupied by the MF-sPRACH. The number of resource blocks.
  • the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell further includes one of a zero-correlation region configuration of the MF-sPRACH, a leading root sequence of the MF-sPRACH, and a time domain resource location of the MF-sPRACH, or
  • the MM-sPRACH zero-correlation region configuration, the MF-sPRACH preamble root sequence, and the MF-sPRACH time domain resource location are obtained by: respectively, the original zero correlation in the physical random access channel configuration information
  • the area configuration field, the root sequence index field, and the physical random access channel time domain resource location field acquire at least one of a zero correlation region configuration of the MF-sPRACH, a leading root sequence of the MF-sPRACH, and a time domain resource location of the MF-sPRACH.
  • the zero-correlation region configuration field, the root sequence index field, and the physical random access channel time domain resource location field respectively indicate zero correlation of the cell MF-sPRACH indicated by the system broadcast message to the terminal by the neighboring cell of the first cell Area configuration, the leading root sequence of MF-sPRACH, and the time domain resource location of MF-sPRACH.
  • the format of the physical random access channel configuration information is as shown in Table 5, where the PRACH-Frequency Index and the PRACH-NumInterlaces are the MF-sPRACH frequency domain resource block location field and the frequency domain resource block occupied by the MF-sPRACH, respectively.
  • the number field is the root sequence index field
  • the Zero Correlation Zone Configuration is the zero-related area configuration field
  • the PRACH-FrequencyOffset is the physical random access channel frequency offset field
  • the PRACH-Configuration Index is the physical random access channel time domain. Resource location field.
  • step 211 When there is no X2 interface between the first base station and the second base station, the implementation of step 211 includes steps 2113 to 2114.
  • Step 2113 Acquire an S1 interface message sent by the second base station.
  • Step 2114 (i) physical random access channel configuration information of the second base station serving cell and (ii) physical random access channel configuration of the neighboring cell of the second base station serving cell, included in the S1 interface message In at least one of the information, resource configuration information of the MF-sPRACH of the neighboring cell of the first cell is acquired.
  • the first base station may receive the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell that is sent by the second base station by using the S1 interface message.
  • the first base station may be an MF base station, an LTE base station, a Wideband Code Division Multiple Access (WCDMA) base station, a Time Division Synchronous Code Division Multiple Access (TD-SCDMA) base station, or a Global System for Mobile Communications (GSM) base station.
  • the second base station is an MF base station.
  • the first base station and the second base station are LTE base stations or MF base stations.
  • the first base station sends an eNB configuration transfer to the mobility management entity (MME) (eNB)
  • MME mobility management entity
  • the configuration transfer message is used to request the resource configuration information of the MF-sPRACH sent by the second base station, and then receives the neighboring cell of the first cell of the first base station that is sent by the second base station and forwarded by the MME through the MME Configuration Transfer message.
  • Resource configuration information of the MF-sPRACH wherein the resource configuration information is included in the self-organized network information response (SON Information Response field) field of the self-organizing network information (SON Information) field, the new field Serving Cell Information (PRC configuration) in the PRACH configuration.
  • the eNB configured to transmit the MME to the MME by the first base station or the ad hoc network configuration transition in the MME configuration transfer message sent by the MME to the second base station (
  • the request parameter (request type (enumeration value)) of the resource configuration information of the MF-sPRACH is added to the SON Information Request field of the Son Information field in the SON Configure Transfer field.
  • the resource configuration information used by the first base station to request the second base station to send the MF-sPRACH is as shown in FIG. 4 .
  • the first base station directly receives the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell that is sent by the second base station that is forwarded by the MME by using the MME CONFIGURATION TRANSFER message.
  • the resource configuration information of the MF-sPRACH is included in the PRACH configuration of the new field Serving Cell Information in the Son Configuration Transfer field.
  • the format of the Son Configuration Transfer field is shown in Table 8:
  • Table 9 is a composition format table of Serving Cell Information.
  • the manner of acquiring the MF-sPRACH frequency domain resource block location and the number of resource blocks occupied by the MF-sPRACH is the same as that between the first base station and the second base station. Similar to the case of the X2 interface, the manner in which the zero-correlation region configuration of the MF-sPRACH, the preamble root sequence of the MF-sPRACH, and the time domain resource location of the MF-sPRACH are obtained is similar to the existence of the X2 interface between the first base station and the second base station. This will not be repeated here. In this case, the format of the physical random access channel configuration information is the same as that of Table 5 above.
  • step 21 may include step 212.
  • Step 212 Acquire, in the radio resource control RRC measurement report message of the neighboring cell of the first cell, the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell.
  • the implementation manner is that the terminal reads the resource configuration information of the MF-sPRACH included in the broadcast message of the neighboring cell system of the first cell, and sends the information to the first base station by using the RRC measurement report message.
  • the first base station may instruct the terminal to report the resource configuration information of the MF-sPRACH of the target cell by sending an RRC measurement configuration message to the terminal.
  • the first base station sets the measurement destination field in the RRC measurement configuration message to report a global cell identifier (report CGI), to indicate that the terminal simultaneously reports the resource configuration information of the MF-sPRACH of the target cell when reporting the CGI.
  • report CGI global cell identifier
  • the target cell is indicated by a physical layer identifier (PCI) in the RRC measurement configuration message; or the first base station sets the measurement destination field in the RRC measurement configuration message to report the resource configuration information of the MF-sPRACH to indicate that the terminal reports the target.
  • Configuration information of the MF-sPRACH (MulteFire short physical random access channel) of the cell.
  • the first base station may further indicate, by using the system broadcast read time indication information, that the terminal determines, in the presence of the service, the measurement time gap (Gap) of the system broadcast message of the read target cell, that is, the terminal stops during the measurement of the Gap.
  • the service performed reads the system broadcast message of the target cell (including the resource configuration information of the MF-sPRACH).
  • step 21 may further include step 213.
  • Step 213 Obtain resource configuration information of the MF-sPRACH of the neighboring cell of the first cell from the received system broadcast message of the neighboring cell of the first cell.
  • the implementation manner is: the first base station directly receives the downlink signal of the neighboring cell of the first cell, and reads the system broadcast message of the neighboring cell to obtain the resource configuration information of the MF-sPRACH of the neighboring cell.
  • step 22 includes at least one of step 221 and step 222.
  • Step 221 Configure a frequency of the physical random access channel resource occupied by the first cell according to at least one of the MF-sPRACH frequency domain resource block location and the MF-sPRACH occupied frequency domain resource block number in the resource configuration information.
  • the domain resource is different from the frequency domain resource occupied by the neighboring cell of the first cell.
  • Step 222 Configure the LBT type of the physical random access channel of the first cell to be the same as the LBT type of the MF-sPRACH of the neighboring cell of the first cell according to the LBT type of the MF-sPRACH in the resource configuration information.
  • the MF-sPRACH frequency domain resource block of the first cell and the neighboring cell is used. The location is different and it is guaranteed to occupy different resource blocks.
  • the resource configuration information includes the MF-sPRACH frequency domain.
  • the resource block location, the number of frequency domain resource blocks occupied by the MF-sPRACH, the zero-correlation region configuration of the MF-sPRACH, the leading root sequence of the MF-sPRACH, and the MF-sPRACH time domain resource location are configured according to the configuration parameter information.
  • Step 22 of the physical random access channel resource of the first cell includes step 223.
  • Step 223 According to the MF-sPRACH frequency domain resource block location in the resource configuration information, the number of frequency domain resource blocks occupied by the MF-sPRACH, the zero correlation area configuration of the MF-sPRACH, the leading root sequence of the MF-sPRACH, and the MF -sPRACH time domain resource location, configuring frequency domain resources occupied by at least one of frequency domain resources, time domain resources, and code domain resources occupied by physical random access channel resources of the first cell and resources occupied by neighboring cells of the first cell , time domain resources and code domain resources are different.
  • the first base station may preferentially configure the time domain resource location occupied by the physical random access channel resource of the first cell to be different from the time domain resource location occupied by the neighboring cell of the first cell, so as to avoid the random access success rate brought by the LBT. decline.
  • the step 22 of configuring the physical random access channel resource of the first cell according to the configuration parameter information includes step 224 or step 225.
  • Step 224 According to the MF-sPRACH time domain resource location in the resource configuration information, the time domain resource occupied by the physical random access channel resource of the first cell is different from the time domain resource occupied by the neighboring cell of the first cell.
  • Step 225 The time domain resource occupied by the physical random access channel resource of the first cell is configured to be the same as the time domain resource occupied by the neighboring cell of the first cell, according to the MF-sPRACH time domain resource location in the resource configuration information, and Configuring the first cell according to the MF-sPRACH frequency domain resource block location in the resource configuration information, the number of frequency domain resource blocks occupied by the MF-sPRACH, the zero correlation area configuration of the MF-sPRACH, and the leading root sequence of the MF-sPRACH At least one of the frequency domain resource and the code domain resource occupied by the physical random access channel resource is different from the frequency domain resource and the code domain resource occupied by the neighboring cell of the first cell.
  • the zero-correlation area configuration and the root sequence index are mainly used to set the code domain resources of the physical random access channel resources.
  • the first base station may configure the LBT of the physical random access channel of the first cell when the time domain resource occupied by the physical random access channel resource of the first cell is the same as the time domain resource occupied by the neighboring cell of the first cell.
  • the type is the same as the LBT type of the MF-sPRACH of the neighboring cell of the first cell.
  • the base station can obtain the physical random access channel resource configuration of the neighboring MF cell, so that the base station can configure physical random access to the serving cell according to the physical random access channel resource of the neighboring MF cell.
  • the channel resources are optimized to improve the Preamble detection performance of the cell, thereby improving the cell random access success rate.
  • the embodiment of the present disclosure shown in FIG. 5 provides a resource configuration method, where the resource configuration method is applied to a first base station to which a first cell belongs.
  • the first base station in this embodiment specifically refers to the MF base station, that is, the first cell is an MF cell.
  • the resource configuration method includes step 51 and step 52.
  • Step 51 Receive random access channel information of the first cell reported by the terminal, where the random access channel information includes the number of times the terminal first hears (LBT) fails when the terminal randomly accesses in the first cell.
  • LBT number of times the terminal first hears
  • the first cell refers to a cell currently accessed by the terminal, and the first base station may send a random access channel information request message to the terminal.
  • the terminal receives the random access channel information request message, the terminal sends the random access channel information recorded in the terminal to the first base station.
  • the first base station sends a terminal information request (UE Information Request) message carrying the random access channel information request identifier to the terminal, and the terminal sends the random access channel information in the terminal information response (UE Information Response) message to the first A base station.
  • UE Information Request terminal information request
  • UE Information Response UE Information Response
  • the number of times the terminal fails to listen first after random access in the first cell is the number of times the terminal fails to listen first after the first cell randomly accesses, or the terminal is in the specific time.
  • the number of failures after the first listening is said to be at least one of the number of times the terminal sends a random access preamble after the first cell randomly fails, and the number of times the first uplink of the uplink data is sent and the number of failures of the uplink data is transmitted. .
  • the random access channel (RACH) information in this embodiment may further include: the number of preambles sent by the terminal when the terminal is randomly accessed in the first cell, and whether the terminal competes when the terminal randomly accesses in the first cell. Resolve at least one of the failed instructions.
  • Step 52 Configure a physical random access channel resource of the first cell according to the random access channel information.
  • the first base station when the first base station receives the random access channel information of the first cell sent by the terminal, the first base station optimizes the physical random access channel resource of the first cell according to the random access channel information to reduce Number of LBT failures when the terminal is randomly accessed.
  • the specific implementation of the step 52 may include: (i) increasing the number of subframes occupied by the physical random access channel resource when the number of times the LBT failure exceeds the first threshold when the terminal randomly accesses the first cell. (ii) increasing at least one of the backoff parameter values in the random access response sent to the terminal. That is, when the number of LBT failures when the terminal randomly accesses in the first cell exceeds a specified threshold, the time domain resource configuration of the physical random access channel resource is optimized, and the configuration of the MF-sPRACH time domain resource location is modified. The physical random access channel occupies more subframes in the time domain.
  • the first base station may further increase a backoff parameter value in the random access response, where the random access response is response information sent by the base station after receiving the preamble sent by the terminal.
  • the terminal obtains a backoff time according to the backoff parameter in the latest random access response and sets a backoff time for transmitting the preamble. Specifically, the terminal sets the preamble backoff time to a random number generated by a uniform distribution of 0 to backoff time, and Table 11 shows the correspondence between the backoff parameter and the banoff time in the random access response.
  • the downlink signal of the cell may cause the LBT to fail when the terminal performs uplink random access in the cell. Therefore, the LBT failure of the terminal during random access may be due to Interference of downlink signals of the cell or interference of other cells or terminals.
  • the terminal can obtain the downlink subframe of the cell by receiving the Common Physical Downlink Control Channel (CPDCCH) of the accessed cell, and determine whether the subframe in which the LBT fails during the random access is a downlink subframe.
  • CPDCCH Common Physical Downlink Control Channel
  • the number of LBT failures may further include the number of times that the LBT failed to be the downlink subframe of the first cell when the terminal randomly accesses in the first cell.
  • the resource configuration method of the embodiment of the present disclosure further includes step 53.
  • Step 53 Decrease the first base station to the downlink subframe when the number of the downlink subframes in which the first cell fails to exceed the second threshold when the terminal is randomly accessed in the first cell. The number of schedules.
  • the first base station may also reduce the number of times the LBT fails when the terminal randomly accesses the first cell by reducing the scheduling of the downlink subframe.
  • the first A base station can also adjust the random access related configuration according to the above information.
  • the first base station may adjust an uplink power control parameter of the MF-sPRACH according to the number of random access preambles sent by the terminal, where the uplink power control parameter of the MF-sPRACH includes an initial target received power of the preamble and a rising step of the preamble power.
  • the first base station adjusts the resource configuration of the MF-sPRACH, the public and dedicated preamble configuration, or the backoff parameter value in the random access response according to the indication information of whether the contention resolution is failed by the terminal.
  • the first base station may increase the time domain, frequency domain or code domain resource of the MF-sPRACH, or increase the number of common preambles, or increase the value of the backoff parameter in the random access response to reduce The probability of a failure to resolve a competition in random access.
  • the embodiment of the present disclosure improves the probability of random access of the terminal in the cell by optimizing the random access resource according to the random access information reported by the terminal.
  • the embodiment of the present disclosure shown in FIG. 6 provides a first base station, where the first base station includes: an obtaining module 61, configured to acquire a configuration for optimizing configuration of a physical random access channel resource of a first cell.
  • Parameter information the configuration parameter information including at least one of resource configuration information of a MulteFire short physical random access channel MF-sPRACH of a neighboring cell of the first cell and random access channel RACH information of the first cell; and a configuration module 62 And configured to configure a physical random access channel resource of the first cell according to the configuration parameter information.
  • the acquiring module 61 includes an obtaining submodule 611, and the acquiring submodule 611 is configured to acquire the neighboring cell of the first cell.
  • Resource configuration information of the MF-sPRACH of the cell where the resource configuration information includes the MF-sPRACH frequency domain resource block location, the number of frequency domain resource blocks occupied by the MF-sPRACH, and the MF-sPRACH first listened to the LBT type
  • At least one of the LBT types of the MF-sPRACH is used to indicate whether the terminal performs LBT on the MF-sPRACH resource.
  • the resource configuration information further includes at least one of a zero correlation area configuration of the MF-sPRACH, a leading root sequence of the MF-sPRACH, and a time domain resource location of the MF-sPRACH.
  • the obtaining sub-module 611 includes a first acquiring unit 6111, where the first acquiring unit 6111 is configured to acquire an interface message sent by the second base station, and obtain, by using the interface message, the MF-sPRACH of the neighboring cell of the first cell. Resource configuration information, where the interface message is an X2 interface message or an S1 interface message.
  • the first obtaining unit 6111 includes a first acquiring subunit 61111, and the first obtaining unit 6111 further includes at least one of a second obtaining subunit 61112 and a third obtaining subunit 61113.
  • the first obtaining sub-unit 61111 is configured to acquire an interface message sent by the second base station, where the second obtaining sub-unit 61112 is configured to use the physical random access channel configuration information of the second base station serving cell that is included in the interface message.
  • the third acquiring subunit 61113 is configured to use physical random access channel configuration information of the neighboring cell of the second base station serving cell included in the interface message Obtaining resource configuration information of the MF-sPRACH of the neighboring cell of the first cell.
  • the interface message is an X2 interface message
  • the X2 interface message includes an X2 setup request message, an X2 setup response message, an eNB configuration update message, or an eNB configuration update response message.
  • K represents a MF-sPRACH frequency domain resource block location
  • PRACH-FrequencyOffset is a physical random access channel frequency offset field value in the physical random access channel configuration information, and mod represents a remainder divided by two numbers; Or obtaining a MF-sPRACH frequency domain resource block location by using a field indicating a location of the MF-sPRACH frequency domain resource block in the physical random access channel configuration information.
  • the field indicating the number of frequency domain resource blocks occupied by the MF-sPRACH in the channel configuration information acquires the number of frequency domain resource blocks occupied by the MF-sPRACH.
  • the zero-correlation region configuration of the MF-sPRACH, the preamble root sequence of the MF-sPRACH, and the time domain resource location of the MF-sPRACH in the resource configuration information of the MF-sPRACH of the neighboring cell of the first cell are obtained.
  • the method includes: acquiring, by the zero-correlation area configuration field, the root sequence index field, and the physical random access channel time domain resource location field in the physical random access channel configuration information, respectively, the zero correlation area configuration, the MF of the MF-sPRACH The leading root sequence of -sPRACH and the time domain resource location of MF-sPRACH.
  • the obtaining submodule 611 includes at least one of a first receiving unit 6112 and a second receiving unit 6113, and the first receiving unit 6112 is configured to perform radio resource control RRC measurement of a neighboring cell of the first cell sent by the terminal.
  • the resource information of the MF-sPRACH of the neighboring cell of the first cell is obtained in the report message, and the second receiving unit 6113 is configured to obtain the MF of the neighboring cell of the first cell from the system broadcast message of the neighboring cell of the received first cell.
  • Resource configuration information of sPRACH is provided.
  • the configuration module 62 is configured to configure physical randomness of the first cell according to at least one of the MF-sPRACH frequency domain resource block location and the MF-sPRACH occupied frequency domain resource block number in the resource configuration information.
  • the frequency domain resource occupied by the access channel resource is different from the frequency domain resource occupied by the neighboring cell of the first cell; and/or the physical random connection of the first cell is configured according to the LBT type of the MF-sPRACH in the resource configuration information.
  • the LBT type of the incoming channel is the same as the LBT type of the MF-sPRACH of the neighboring cell of the first cell.
  • the resource configuration information includes an MF-sPRACH frequency domain resource block location, a frequency domain resource block occupied by the MF-sPRACH, a zero correlation region configuration of the MF-sPRACH, a leading root sequence of the MF-sPRACH, and an MF.
  • the configuration module 62 is configured to: according to the MF-sPRACH frequency domain resource block location in the resource configuration information, the number of frequency domain resource blocks occupied by the MF-sPRACH, and the zero correlation of the MF-sPRACH The area configuration, the preamble root sequence of the MF-sPRACH, and the MF-sPRACH time domain resource location, configuring at least one of the frequency domain resource, the time domain resource, and the code domain resource occupied by the physical random access channel resource of the first cell, and the first The frequency domain resource, time domain resource, and code domain resource occupied by the neighboring cell of the cell are different.
  • the resource configuration information includes an MF-sPRACH time domain resource location, an MF-sPRACH frequency domain resource block location, a frequency domain resource block occupied by the MF-sPRACH, a zero correlation area configuration of the MF-sPRACH, and an MF.
  • the configuration module 62 is configured to: configure a time domain resource occupied by the physical random access channel resource of the first cell according to the MF-sPRACH time domain resource location in the resource configuration information.
  • the time domain resources occupied by the neighboring cells of the first cell are different; or the time domain resources occupied by the physical random access channel resources of the first cell and the first cell are configured according to the MF-sPRACH time domain resource location in the resource configuration information.
  • the neighboring cell occupies the same time domain resource, and according to the MF-sPRACH frequency domain resource block location in the resource configuration information, the number of frequency domain resource blocks occupied by the MF-sPRACH, the zero correlation area configuration of the MF-sPRACH, and the MF a preamble root sequence of the -sPRACH, configured to configure at least one of the frequency domain resource and the code domain resource occupied by the physical random access channel resource of the first cell and the frequency domain resource and the code domain resource occupied by the neighboring cell of the first cell With.
  • the acquiring module 61 includes: a receiving sub-module 612, configured to receive the first cell reported by the terminal when the first cell is a Multefire cell
  • the RACH information includes the number of times the terminal fails to hear the LBT after the terminal randomly accesses the first cell.
  • the number of times the LBT fails when the terminal randomly accesses in the first cell is the number of times the terminal fails to listen first after the first cell randomly accesses, or the terminal randomly accesses the first cell in a specific time. The average number of times the failure is heard first.
  • the number of failures after the first listening is said to be at least one of the number of times the terminal sends a random access preamble after the first cell randomly fails, and the number of times the first uplink of the uplink data is sent and the number of failures of the uplink data is transmitted. .
  • the configuration module 62 is configured to perform (i) increase the number of subframes occupied by the physical random access channel resources when the number of times the LBT fails when the terminal randomly accesses in the first cell exceeds the first threshold. (ii) increasing at least one of the backoff parameter values in the random access response sent to the terminal.
  • the number of times the LBT fails when the terminal randomly accesses in the first cell further includes: when the terminal randomly accesses in the first cell, the subframe that is first heard and fails is the downlink of the first cell. The number of frames.
  • the first base station further includes an adjustment module 63, where the adjustment module 63 is configured to: when the terminal randomly accesses in the first cell, the LBT fails, the number of downlink subframes of the first cell exceeds a second threshold. The number of times the first base station schedules the downlink subframe is reduced.
  • the RACH information further includes: at least one of a number of preambles sent by the terminal when the terminal is randomly accessed in the first cell, and an indication information indicating whether the contention fails to be resolved when the terminal randomly accesses in the first cell.
  • the first base station in this embodiment of the present disclosure is the first base station corresponding to the foregoing embodiment of the resource configuration method, and all implementation manners in the foregoing resource configuration method embodiment are applicable to the first embodiment. In the base station, the same technical effect can also be achieved.
  • the embodiment of the present disclosure shown in FIG. 7 provides a first base station including a transceiver 71, a memory 72, and a processor 73.
  • the transceiver 71 is for transmitting and receiving information under the control of the processor 73.
  • Memory 72 is used to store programs and data that processor 73 processes at runtime.
  • the processor 73 is configured to read programs and data stored in the memory 72 to control the transceiver 71 to acquire configuration parameter information for optimizing configuration of physical random access channel resources of the first cell, and the processor 73 is configured according to the configuration parameters. And configuring the physical random access channel resource of the first cell.
  • the configuration parameter information includes at least one of resource configuration information of a MulteFire short physical random access channel MF-sPRACH of a neighboring cell of the first cell and a random access channel RACH information of the first cell.
  • the processor 73 can also be configured and implement the functions implemented by all the modules in the first base station embodiment shown in FIG. 6, and can also achieve the same technical effects as the first base station embodiment shown in FIG. .
  • An embodiment of the present disclosure provides an information transmitting method applied to a second base station and including step 81.
  • Step 81 The resource configuration information of the MulteFire short physical random access channel MF-sPRACH of the neighboring cell of the first cell in the first base station is sent to the first base station by using an interface message, where the resource configuration information includes MF- The at least one of the sPRACH frequency domain resource block location, the number of frequency domain resource blocks occupied by the MF-sPRACH, and the LBT type of the MF-sPRACH, the interface message being an X2 interface message or an S1 interface message.
  • the embodiment of the present disclosure provides a second base station 9 that includes: a first sending module 91, configured to use a MulteFire short physical random access channel MF-sPRACH of a neighboring cell of a first cell under the first base station.
  • the resource configuration information is sent to the first base station by using an interface message, where the resource configuration information includes a MF-sPRACH frequency domain resource block location, a frequency domain resource block number occupied by the MF-sPRACH, and a MF-sPRACH first listener
  • the interface message is an X2 interface message or an S1 interface message.
  • the second base station embodiment of the present disclosure is a second base station corresponding to the embodiment of the information sending method, and all the implementation methods in the foregoing information sending method are applicable to the second base station embodiment, and can also be achieved. The same technical effect.
  • Embodiments of the present disclosure also provide a second base station 10 that includes a transmitter 101, a memory 102, and a processor 103.
  • the transmitter 101 is for transmitting information under the control of the processor 103.
  • the memory 102 is used to store programs and data that the processor 103 processes at runtime.
  • the processor 103 is configured to read the program and data stored in the memory 102 to control the transmitter 101 to pass the resource configuration information of the MulteFire short physical random access channel MF-sPRACH of the neighboring cell of the first cell under the first base station through the interface.
  • the interface message is an X2 interface message or an S1 interface message.
  • the transmitter can also be configured and implement the functions implemented by all the modules in the foregoing second base station embodiment, and can achieve the same technical effects as the second base station embodiment.
  • An embodiment of the present disclosure provides an information transmitting method applied to a terminal and including step 111.
  • Step 111 Send the random access channel RACH information of the first cell to the first base station, where the first cell is an MF cell, and the RACH information includes that the terminal fails to listen to the LBT when the terminal randomly accesses the first cell. The number of times, the first cell is a cell served by the first base station.
  • the embodiment of the present disclosure provides a terminal 12, where the terminal includes a second sending module 121, where the second sending module 121 is configured to send a random access channel RACH information of the first cell to the first base station, where the first cell is The MF cell, the RACH information includes the number of times the terminal first hears the LBT failure when the terminal randomly accesses the first cell, and the first cell is the cell served by the first base station.
  • the terminal embodiment of the present disclosure is a terminal corresponding to the foregoing embodiment of the information transmission method applied to the terminal, and all the implementation methods in the foregoing embodiment of the information transmission method applied to the terminal are applicable to the embodiment of the terminal, Can achieve the same technical effect.
  • Embodiments of the present disclosure also provide a terminal 13 that includes a transmitter 131, a memory 132, and a processor 133.
  • the transmitter 131 is for transmitting information under the control of the processor 133.
  • Memory 132 is used to store programs and data that processor 133 processes at runtime.
  • the processor 133 is configured to read the program and data stored in the memory 132 to control the transmitter 131 to send the random access channel RACH information of the first cell to the first base station, where the first cell is an MF cell, and the RACH
  • the information includes the number of times the terminal first hears the LBT failure when the terminal randomly accesses the first cell, and the first cell is the cell served by the first base station.
  • the transmitter can also be configured and implement the functions implemented by all the modules in the foregoing terminal embodiment, and can achieve the same technical effects as those of the above terminal embodiment.
  • the terminal in the embodiment of the present disclosure may be a mobile phone (or a mobile phone), or other device capable of transmitting or receiving a wireless signal, including a user equipment (terminal), a personal digital assistant (PDA), and a wireless device.
  • a wireless signal including a user equipment (terminal), a personal digital assistant (PDA), and a wireless device.
  • PDA personal digital assistant
  • WLL wireless local loop
  • CPE wireless local loop
  • the objects of the present disclosure can also be realized by running a program or a group of programs on any computing device.
  • the computing device can be a well-known general purpose device.
  • the objects of the present disclosure may also be realized by merely providing a program product including program code for implementing the method or apparatus. That is to say, such a program product also constitutes the present disclosure, and a storage medium storing such a program product also constitutes the present disclosure.
  • the storage medium may be any known storage medium or any storage medium developed in the future.
  • various components or steps may be decomposed and/or recombined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了资源配置方法、信息发送方法、基站及终端。该资源配置方法应用于第一小区所属的第一基站并且包括:获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,该配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及根据该配置参数信息,配置第一小区的物理随机接入信道资源。

Description

资源配置方法、信息发送方法、基站及终端
相关申请的交叉引用
本申请主张在2016年12月23日在中国提交的中国专利申请号No.201611206676.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,具体涉及资源配置方法、信息发送方法、基站及终端。
背景技术
MulteFire(简称MF)是一种新的基于长期演进(LTE,Long Term Evolution)的无线接入技术。该技术可以不借助授权频段载波而独立运行于非授权频谱中。为了与其他非授权频段设备(如无线保真(Wireless Fidelity(WiFi)设备)公平占用非授权频段信道,即为了避免非授权频段设备之间相互干扰,MulteFire物理层引入类似WiFi的载波监听技术的先听后说(LBT,Listen Before Talk)机制。在基站或终端监听到非授权频段信道被占用时,即LBT失败时,停止发送信号;当监听到信道空闲时,即LBT成功时才发送信号。
为了提高LBT机制下基站的下行公共控制信号的传输效率,MulteFire引入了发现参考信号(DRS,Discovery Reference Signal)。DRS包含了主要的下行公共控制信号,包括系统广播、主同步信号(PSS,Primary Sync Signal)、增强主同步信号(ePSS,enhanced Primary Sync Signal)、增强辅同步信号(eSSS,enhanced Secondary Sync Signal)、小区参考信号(CRS,Cell Reference Signal)、主信息块(MIB,Master Information Block)和增强的系统信息块(SIB-MF,System Information Block Multefire)。DRS占用一个下行子帧中的12个或14个符号(Symbol)。终端可以在发现信号测量时间配置(DMTC,Discovery Signal Measurement Timing Configuration)窗口内接收DRS以进行下行同步、接收MIB和SIB-MF。
MF提供两种基本接入模式的网络架构,即公共陆地移动网络(PLMN,Public Land Mobile Network)接入模式和中立主机网络(NHN,Neutral Host Network)接入模式。NHN接入模式为MulteFire新引入的统一规划和自组织的中立网络。一个NHN可同时共享给多个服务提供商,MF无线接入网(RAN,Radio Access Network)连接到NHN的核心网(CN,Core Network),在MF小区的广播消息中发送NHN的ID(NHN-ID)和服务提供商标识(PSP-ID,Participating Service Provider Identity)。当前不支持终端在NHN接入模式的MF网络与第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)网络之间进行切换。PLMN接入模式为MF无线接入网(RAN)连接到移动运营商的3GPP核心网(CN)的网络模式。用户设备(User Equipment,也可称之为终端)可以在PLMN接入模式的MF RAN和3GPP RAN之间进行S1或X2切换,在MF小区的广播消息中发送PLMN ID列表。另外,还存在一种混合接入模式,即MF RAN同时连接到NHN CN和3GPP CN,在MF小区的广播消息中同时广播NHN-ID、PSP-ID和PLMN ID列表。
在相关技术中,LTE基站可根据相邻LTE小区的物理随机接入信道资源配置或者根据服务小区的随机接入信息对随机接入资源进行优化。但MF小区的物理随机接入信道资源配置及随机接入信息与LTE小区不同,相关技术不能使基站根据MF小区的物理随机接入信道资源配置信息或MF小区的随机接入信息对随机接入资源进行优化。MF小区有公共的物理随机接入信道资源配置,终端可以在物理随机接入信道资源上发送Preamble发起随机接入。如果一个小区与MF小区相邻并且有相同的物理随机接入信道资源配置,则该小区中的终端发送的Preamble信号将与相邻的MF小区中终端发送的Preamble信号相互干扰,严重时将大大降低preamble检测性能,影响随机接入成功率。当本小区为MF小区时,基站也不能根据MF小区的随机接入信息进行随机接入资源优化,影响本小区随机接入成功率。
发明内容
本公开提供一种资源配置方法、信息发送方法、基站及终端。
在第一方面,本公开实施例提供一种资源配置方法,所述资源配置方法 应用于第一小区所属的第一基站,所述资源配置方法包括:获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
在第二方面,本公开实施例提供一种基站,所述基站是第一小区所属的第一基站,包括:获取模块,用于获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及配置模块,用于根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
在第三方面,本公开实施例提供一种基站,所述基站是第一小区所属的第一基站,所述基站包括处理器、存储器和收发器。所述存储器用于存储所述处理器在运行时所处理的程序和数据,所述收发器用于发送和接收信息,所述处理器用于读取所述存储器中存储的所述程序和数据以与所述收发器结合执行上面第一方面所述的方法。
在第四方面,本公开实施例还提供一种信息发送方法,应用于第二基站,所述方法包括:将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站;其中,所述资源配置信息包括:MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
在第五方面,本公开实施例还提供一种基站,所述基站是第二基站,并且包括:第一发送模块,用于将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中,所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
在第六方面,本公开实施例还提供一种基站,所述基站是第二基站,并 且包括:处理器、存储器和发送器,其中,所述存储器用于存储所述处理器在运行时所处理的程序和数据,所述发送器用于发送信息,所述处理器用于读取所述存储器中存储的所述程序和数据以控制所述发送器将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中,所述资源配置信息包括:MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
在第七方面,本公开实施例提供一种信息发送方法,所述信息发送方法应用于终端,所述信息发送方法包括:发送第一小区的随机接入信道RACH信息给第一基站;其中,所述第一小区为Multefire小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
在第八方面,本公开实施例提供一种终端,该终端包括:第二发送模块,用于发送第一小区的随机接入信道RACH信息给第一基站;其中,所述第一小区为Multefire小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
在第九方面,本公开实施例提供一种终端,该终端包括:处理器、存储器和发送器,其中,所述存储器用于存储所述处理器在运行时所处理的程序和数据,所述发送器用于发送信息,所述处理器用于读取所述存储器中存储的所述程序和数据以控制所述发送器发送第一小区的随机接入信道RACH信息给第一基站,其中,所述第一小区为Multefire小区,所述RACH信息包括:终端在第一小区中随机接入时先听后说LBT失败的次数;所述第一小区为所述第一基站所服务的小区。
附图说明
图1表示本公开实施例的资源配置方法的流程示意图;
图2A-2I表示本公开实施例的资源配置方法的流程示意图;
图3表示当第一基站和第二基站之间存在X2接口时第一基站与第二基 站间的通信过程的示意图;
图4表示当第一基站和第二基站之间不存在X2接口时,第一基站与第二基站间的通信过程的示意图;
图5表示本公开实施例的资源配置方法的流程示意图;
图6A-6D表示本公开实施例的第一基站的模块示意图;
图7表示本公开实施例的第一基站的组成结构图;
图8表示本公开实施例的信息发送方法的流程示意图;
图9表示本公开实施例的第二基站的模块示意图;
图10表示本公开实施例的第二基站的组成结构图;
图11表示本公开实施例的信息发送方法的流程示意图;
图12表示本公开实施例的终端的模块示意图;以及
图13表示本公开实施例的终端的组成结构图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
本公开的实施例提供一种资源配置方法、信息发送方法、基站及终端。在Multefire(MF)中,上下行资源以interlace为单位,一个interlace是10个资源块(RB,Resource Block),一个MF的物理下行控制信道(PDCCH,Physical Downlink Control Channel)或物理上行共享信道(PUSCH,Physical Uplink Shared Channel)或物理下行共享信道(PDSCH,Physical Downlink Shared Channel)或物理随机接入信道(PRACH,Physical Random Access Channel)至少占用一个interlace。每个Multefire短物理随机接入信道(MF-sPRACH,MF short Physical Random Access Channel)频域上可以占用一个或两个interlace,时域上占用子帧的后4个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号。在MF-sPRACH子帧上可以有多个MF-sPRACH。终端使用MF-sPRACH资源发送前导(Preamble)做随机接入。当前MF的Preamble格式只有MF-Preamble format 0,使用MF-sPUCCH format 0序列。终端在MF-sPRACH资源上发送preamble之前可 能进行先听后说(LBT,Listen Before Talk),当LBT成功时才发送,也可以不做LBT直接在MF-sPRACH资源上发送preamble。
不同的MF-sPRACH资源通过频域位置、时域位置和码域资源来区分,一个系统帧可能有多个MF-sPRACH子帧,基站给终端配置的PRACH Configuration Index(物理随机接入信道配置索引)用于指示MF-sPRACH的时域位置,如表1所示。
Figure PCTCN2017117723-appb-000001
表1 MF-sPRACH的时域资源位置
在同一个时域位置上可能有多个MF-sPRACH,基站给终端配置的MF-PRACH频域索引(mf-PRACH-Frequency Index)用于指示MF-sPRACH的频域位置,mf-PRACH-Frequency_Index是长度为10的比特串,其中第K 个比特为1时指示一个MF-sPRACH的起始interlace为第K个interlace。每个MF-sPRACH占用1或2个资源块(Interlace)。
相同的时频资源可能有多个MF-sPRACH码域资源,MF Preamble序列由根Zadoff-Chu序列q,序列组号u、组内序列号v以及
Figure PCTCN2017117723-appb-000002
的基序列
Figure PCTCN2017117723-appb-000003
生成。64个Peamble序列在基序列上进行正交卷积码(OCC,Orthogonal Convolutional Code)循环移位生成。MF-preamble format 0的零相关区域长度为N CS-1。基站给终端配置的逻辑根序列号RACH_ROOT_SEQUENCE和零相关区域配置(zero Correlation Zone Config)确定了MF-sPRACH的码域资源,具体来说,逻辑根序列号用来确定物理根序列号q,zero Correlation Zone Config用于确定Ncs。RACH_ROOT_SEQUENCE和q的对应关系如表2所示。
Figure PCTCN2017117723-appb-000004
表2 RACH_ROOT_SEQUENCE和q的对应关系表
q 3 4 7 8 10 11 14 15 18 19 21 22 25 26 29 30 32 33 36 37
u 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9
v 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1
q 40 41 43 44 47 48 51 52 54 55 58 59 61 62 65 66 69 70 72 73
u 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 19 19
v 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
q 76 77 80 81 83 84 87 88 91 92 94 95 98 99 102 103 105 106 109 110
u 20 20 21 21 22 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29
v 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1 1 0 0 1
表3物理根序列号q的组序号u和组内序号v的对应关系表
Zero Correlation Zone Config N CS value(N CS值)
0 1
1 2
2 3
3 4
4 6
5 12
6 N/A
7 N/A
8 N/A
9 N/A
10 N/A
11 N/A
12 N/A
13 N/A
14 N/A
15 N/A
表4零相关区域配置和Ncs的对应关系
其中,表3为物理根序列q的组序号u和组内序号v的对应关系表,表4为零相关区域配置和Ncs的对应关系表。
如图1所示,图1所示的本公开的实施例提供一种资源配置方法,该资源配置方法应用于第一小区所属的第一基站并且包括步骤11-步骤12。
步骤11:获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息。
其中,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道(MF-sPRACH)的资源配置信息和第一小区的随机接入信道(RACH,Random Access Channel)信息中的至少一个。其中,第一小区的邻小区的MF-sPRACH的资源配置信息可以是第一基站从第二基站中获取的,也可以是第一基站从终端上报的信息中获取的。该第一小区的RACH信息为终端在第一小区中进行随机接入时与随机接入相关的统计信息。
步骤12:根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
本公开实施例中,通过根据MF小区的物理随机接入信道资源配置信息或随机接入信道信息进行随机接入资源优化,提高了相邻小区的preamble检测性能,提高了小区随机接入的成功概率。
下面分别从配置参数信息包括第一小区的邻小区的MF-sPRACH的资源配置信息以及配置参数信息包括第一小区的随机接入信道RACH信息的方面,对本公开实施例的资源配置方法进行详细说明。
如图2所示,图2所示的本公开的实施例提供一种资源配置方法,该资源配置方法应用于第一小区所属的第一基站并且包括步骤21-步骤22。
步骤21:获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中,所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个。
需要说明的是,该第一小区通常指的是第一基站所服务的小区,且第一小区的邻小区一般为不属于第一基站的小区(即该第一小区的邻小区为属于与第一基站相邻的其他基站的小区)。该第一小区邻小区的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的LBT类型是该第一小区的邻小区通过系统广播消息指示给终端的。
步骤22:根据所述资源配置信息,配置所述第一小区的物理随机接入信 道资源。
需要说明的是,配置所述第一小区的物理随机接入信道资源主要指以下(i)和(ii)中的至少一个:(i)依据资源配置信息中的MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个,配置第一小区的物理随机接入信道资源占用的频域资源与第一小区的邻小区的物理随机接入信道资源占用的频域资源不同,以避免第一小区的物理随机接入信道的频域资源与其相邻小区的MF-sPRACH频域资源相同导致的相互干扰;以及(ii)根据资源配置信息中的MF-sPRACH的LBT类型,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
其中,MF-sPRACH的LBT类型用于指示终端在MF-sPRACH资源上是否做LBT。配置第一小区的物理随机接入信道的LBT类型与其邻小区的MF-sPRACH的LBT类型相同是为了让第一小区与该第一小区的邻小区有同样的信道接入优先级,避免MF-sPRACH上不做LBT的小区对做LBT的小区造成干扰,影响不同小区之间的随机接入公平性。
本实施例中,通过使基站的服务小区获取相邻MF小区的MF-sPRACH的资源配置信息,使基站能够根据相邻MF小区的MF-sPRACH资源配置信息对本小区的随机接入资源进行优化,提高了小区的Preamble检测性能,从而提高了终端在小区中的随机接入成功率。
可选地,步骤21具体包括步骤211。
步骤211:获取第二基站发送的接口消息,从所述接口消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息。
需要说明的是,该接口消息可以为X2接口消息或S1接口消息。还需要说明的是,该第一小区的邻小区是第二基站的服务小区,也可以是第二基站服务小区的相邻小区。
在该实现方式中,第一基站从第二基站中获取第一小区的邻小区的MF-sPRACH的资源配置信息。通常情况下,第二基站为MF基站(服务于MulteFire小区的基站),第一基站可以为MF基站或者LTE基站(服务于LTE小区的基站),第二基站会将自己所服务的所有MF小区的MF-sPRACH的资 源配置信息以及所服务小区的邻MF小区的MF-sPRACH资源配置信息发送给第一基站。因第一基站能清楚得到第一小区的邻小区有哪些,所以第一基站能从所接收到的资源配置信息中选择出第一小区的邻小区的MF-sPRACH的资源配置信息。
当第一基站和第二基站之间存在X2接口时,该步骤211在具体实现时包括步骤2111至步骤2112。
步骤2111:获取所述第二基站发送的X2接口消息。
步骤2112:从所述X2接口消息包含的(i)所述第二基站服务小区的物理随机接入信道配置信息中和(ii)所述第二基站服务小区的邻小区的物理随机接入信道配置信息中的至少一个中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
其中,所述X2接口消息包括X2建立请求消息、X2建立响应消息、演进的节点B(eNB)配置更新消息或eNB配置更新响应消息。
具体地,第一基站可以接收第二基站发送的X2接口消息,从而进行第一小区的邻小区的MF-sPRACH的资源配置信息的获取。具体地,可以在第一基站请求与第二基站建立X2接口时,第一基站向第二基站发送X2建立请求(X2 setup Request)消息,然后第二基站响应该X2建立请求消息,发送X2建立响应(X2 Setup Response)消息给第一基站,具体地通信过程如图3所示,需要说明的是,第一小区的邻小区的MF-sPRACH的资源配置信息包含在该X2建立响应消息的服务小区信息中包含的物理随机接入信道配置信息中,或者包含在服务小区的邻小区信息中包含的物理随机接入信道配置信息中。也可以在第二基站请求与第一基站建立X2接口时,第二基站向第一基站发送X2建立请求消息,然后第一基站响应该X2建立请求消息,发送X2建立响应消息给第二基站,需要说明的是,在此种情况下,第一小区的邻小区的MF-sPRACH的资源配置信息包含在该X2建立请求消息的服务小区信息中包含的物理随机接入信道配置信息中,或者包含在服务小区的邻小区信息中包含的物理随机接入信道配置信息中。
当第一基站和第二基站之间建立X2接口之后,第一基站可以接收第二基站发送的X2接口消息,从而获取第一小区的邻小区的MF-sPRACH的资 源配置信息。具体地,可以在第一基站和第二基站建立X2接口之后,第一基站向第二基站发送eNB配置更新(ENB CONFIGURATION UPDATE)消息,第二基站响应该eNB配置更新消息,发送eNB配置更新应答(eNB configuration update acknowledge)消息给第一基站。需要说明的是,第一小区的邻小区的MF-sPRACH的资源配置信息包含在该eNB配置更新应答的服务小区信息中包含的物理随机接入信道配置信息中,或者包含在服务小区的邻小区信息中包含的物理随机接入信道配置信息中。也可以是第二基站接收第一基站发送的X2接口消息,从而传递第一小区的邻小区的MF-sPRACH的资源配置信息。具体地,可以在第一基站和第二基站建立X2接口之后,第二基站向第一基站发送eNB配置更新消息,第一基站响应该eNB配置更新消息,发送eNB配置更新应答消息给第二基站,需要说明的是,此种情况下,第一小区的邻小区的MF-sPRACH的资源配置信息包含在该eNB配置更新消息的服务小区信息中包含的物理随机接入信道配置信息中,或者包含在服务小区的邻小区信息中包含的物理随机接入信道配置信息中。
还需要说明的是,当第一小区的邻小区为中立主机网络(NHN,Neutral Host Network)接入模式的MF小区时,则X2建立响应消息和X2建立请求消息中的至少一个和基站配置更新应答消息和基站配置更新消息中的至少一个需要携带第一小区的邻小区的NHN-ID和演进的统一陆地无线接入网络小区全局标识符(ECGI,E-UTRAN Cell Global Identifier)。
本实施例中给出了两种获取MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数的方式。
方式一、通过物理随机接入信道配置信息中新增的MF-sPRACH频域资源块位置字段和MF-sPRACH占用的频域资源块个数字段直接获取MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数。
其中,物理随机接入信道配置信息中新增的MF-sPRACH频域资源块位置字段指示的是第一小区的邻小区通过系统广播消息指示给终端的MF-sPRACH的频域位置,该字段是长度为10的比特串,第K个比特置为1时表示MF-sPRACH频域资源块的起始位置是第K个资源块,同时将其他比特置为0;物理随机接入信道配置信息中新增的MF-sPRACH占用的频域资 源块个数字段指示的是第一小区的邻小区通过系统广播消息指示给终端的MF-sPRACH资源块个数,该字段取值为1或2。
方式二、通过物理随机接入信道配置信息中原有的物理随机接入信道频率偏移字段获取MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数。
根据公式:K=PRACH-FrequencyOffset mod 10,得到MF-sPRACH频域资源块位置;以及
根据公式:PRACH-NumInterlaces=1+(floor((PRACH-FrequencyOffset mod 20)/10)mod 2),得到MF-sPRACH占用的频域资源块个数。
其中,K表示MF-sPRACH频域资源块位置,PRACH-NumInterlaces表示MF-sPRACH占用的频域资源块个数,floor(*)为向下取整函数,PRACH-FrequencyOffset为物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数。
其中,第二基站根据第一小区的邻小区的MF-sPRACH的频域资源块位置和MF-sPRACH占用的频域资源块个数通过以上公式计算物理随机接入信道频率偏移并将该物理随机接入信道频率偏移通过物理随机接入信道配置信息中的物理随机接入信道频率偏移字段发送给第一基站。
值得注意,第一基站通过E-UTRA绝对无线频率信道号(EARFCN,E-UTRA Absolute Radio Frequency Channel Number)参数判断物理随机接入信道配置信息中包含的是否为MF-sPRACH的资源配置信息,若服务小区信息中的EARFCN为MF的专用EARFCN,则第一基站判断物理随机接入信道配置信息中包含的是MF-sPRACH的资源配置信息,并且根据以上公式由物理随机接入信道频率偏移字段值计算MF-sPRACH频域资源块位置以及MF-sPRACH占用的频域资源块个数。
在一种可行的实施方式中,由于以上第二种方式不在原有的物理随机接入信道配置信息单元(IE,Information Element)中增加新的字段,并且只能指示一个MF-sPRACH的频域位置,如果在频域上仅有一个MF-sPRACH并且第一基站为LTE基站(第一基站可能不能解析新增字段MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数),第二基站可以采用上述 方式二,即使用物理随机接入信道配置信息中原有的物理随机接入信道频率偏移字段同时指示MF-sPRACH频域资源块位置以及MF-sPRACH占用的频域资源块个数。
进一步的,若第一小区的邻小区的MF-sPRACH的资源配置信息还包括MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的一种或多种,则MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置的获取方式为:分别通过所述物理随机接入信道配置信息中原有的零相关区域配置字段、根序列索引字段和物理随机接入信道时域资源位置字段,获取MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一个;其中,零相关区域配置字段、根序列索引字段和物理随机接入信道时域资源位置字段分别指示的是第一小区的邻小区通过系统广播消息指示给终端的该小区MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置。
可选地,物理随机接入信道配置信息的格式如表5所示,其中,PRACH-Frequency Index和PRACH-NumInterlaces分别为MF-sPRACH频域资源块位置字段和MF-sPRACH占用的频域资源块个数字段,Root Sequence Index为根序列索引字段,Zero Correlation Zone Configuration为零相关区域配置字段,PRACH-FrequencyOffset为物理随机接入信道频率偏移字段,PRACH-Configuration Index为物理随机接入信道时域资源位置字段。
Figure PCTCN2017117723-appb-000005
表5物理随机接入信道配置信息的格式
当第一基站和第二基站之间不存在X2接口时,步骤211的实现方式包括步骤2113-步骤2114。
步骤2113:获取所述第二基站发送的S1接口消息。
步骤2114:从所述S1接口消息包含的(i)所述第二基站服务小区的物理随机接入信道配置信息和(ii)所述第二基站服务小区的邻小区的物理随机接入信道配置信息中的至少一个中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
具体地,当第一基站和第二基站之间不存在X2接口时,第一基站可以通过S1接口消息接收第二基站发送的第一小区的邻小区的MF-sPRACH的资源配置信息。需要说明的是,该第一基站可以为MF基站、LTE基站、宽带码分多址(WCDMA)基站、时分同步码分多址(TD-SCDMA)基站或全球移动通信系统(GSM)基站等,第二基站是MF基站。
例如,第一基站、第二基站为LTE基站或MF基站。当第一基站与第二基站之间不存在X2接口时,为了获取第一小区的邻小区的MF-sPRACH的资源配置信息,第一基站向移动性管理实体(MME)发送eNB配置转移(eNB Configuration Transfer)消息以请求第二基站发送的MF-sPRACH的资源配置信息,然后通过MME配置转移(MME Configuration Transfer)消息接收由MME转发的第二基站发送的第一基站的第一小区的邻小区的MF-sPRACH的资源配置信息,其中,该资源配置信息包含在自组织网络信息(Self Organized Network Information,SON Information)字段的自组织网络信息响应(SON Information Response)字段的新增字段Serving Cell Information(服务小区信息)的PRACH configuration中。需要说明的是,为了顺利进行MF-sPRACH的资源配置信息的获取,在第一基站发送给MME的eNB配置转移消息或MME发送给第二基站的MME配置转移消息中的自组织网络配置转移(SON Configure Transfer)字段中的自组织网络信息(Son Information)字段的自组织网络信息请求(SON Information Request)字段中增加MF-sPRACH的资源配置信息的请求参数(请求类型(枚举值)),以用于第一基站请求第二基站发送MF-sPRACH的资源配置信息,具体的通信过程如 图4所示。
其中,SON Configuration Transfer中的SON Information字段的格式如表6所示:
Figure PCTCN2017117723-appb-000006
表6 SON Configuration Transfer中的SON Information字段的格式
其中,SON Information Reply的编码格式如表7所示:
Figure PCTCN2017117723-appb-000007
表7 SON Information Reply的编码格式
或者,第一基站通过MME CONFIGURATION TRANSFER消息直接接收由MME转发的第二基站发送的第一小区的邻小区的MF-sPRACH的资源配置信息。MF-sPRACH的资源配置信息包含在Son Configuration Transfer字段的新增字段Serving Cell Information的PRACH configuration中。Son Configuration Transfer字段的格式如表8所示:
Figure PCTCN2017117723-appb-000008
表8 Son Configuration Transfer字段
Figure PCTCN2017117723-appb-000009
Figure PCTCN2017117723-appb-000010
表9 Serving Cell Information的格式
其中,表9为Serving Cell Information的构成格式表。
在第一基站和第二基站之间不存在X2接口的情况下,获取MF-sPRACH频域资源块位置和MF-sPRACH占用的资源块个数的方式同第一基站和第二基站之间存在X2接口的情况类似,获取MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置的方式同第一基站和第二基站之间存在X2接口类似,在此不再赘述。在该种情况下,物理随机接入信道配置信息的格式与上述表5相同。
可选地,步骤21的实现方式可以包括步骤212。
步骤212:从终端发送的第一小区的邻小区的无线资源控制RRC测量报告消息中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
该实现方式为:终端读取第一小区的邻小区系统广播消息中包含的MF-sPRACH的资源配置信息,通过RRC测量报告消息发送给第一基站。第一基站可以通过向终端发送RRC测量配置消息来指示终端上报目标小区的MF-sPRACH的资源配置信息。例如,第一基站在RRC测量配置消息中设置测量目的字段为报告全球小区识别码(report CGI),以指示终端在上报CGI时同时上报目标小区的MF-sPRACH的资源配置信息。目标小区由RRC测量配置消息中的物理层小区标识(PCI,Physical Cell Identity)指示;或者第一基站在RRC测量配置消息中设置测量目的字段为上报MF-sPRACH的资源配置信息以指示终端上报目标小区的MF-sPRACH(MulteFire短物理随机接入信道)的配置信息。进一步地,第一基站还可以通过系统广播读取时间指示信息指示终端在有业务的情况下自主确定读取目标小区的系统广播消息的测量时间间隙(Gap),即终端在测量Gap期间停止正在进行的业务,读取目标小区的系统广播消息(包括MF-sPRACH的资源配置信息)。
可选地,步骤21还可以包括步骤213。
步骤213:从接收的第一小区的邻小区的系统广播消息中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
该实现方式为:第一基站直接接收第一小区的邻小区的下行信号,读取邻小区的系统广播消息以获取邻小区的MF-sPRACH的资源配置信息。
具体地,本公开实施例中,步骤22的具体实现方式包括步骤221和步骤222中的至少一个。
步骤221:根据所述资源配置信息中的MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个,配置第一小区的物理随机接入信道资源占用的频域资源与第一小区的邻小区占用的频域资源不同。
步骤222:根据所述资源配置信息中的MF-sPRACH的LBT类型,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
需要说明的是,当第一基站设置第一小区的物理随机接入信道与邻小区的物理随机接入信道占用不同频域资源时,使第一小区与邻小区的MF-sPRACH频域资源块位置不同,并且保证占用不同的资源块。
需要说明的是,为了避免第一小区与其邻小区的物理随机接入信道的资源配置完全相同而导致不同小区之间的随机接入信道干扰,当所述资源配置信息中包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置时,根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源的步骤22包括步骤223。
步骤223:根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的频域资源、时域资源和码域资源中的至少一个与第一小区的邻小区占用的资源占用的频域资源、时域资源和码域资源不同。
需要说明的是,如果第一小区的物理随机接入信道占用的时域资源位置与其邻小区占用的时域资源位置相同,即使占用的频域和码域资源不同,也可能因为不同小区中的终端要在相同的时间进行随机接入而导致有的终端进行随机接入时LBT失败,降低了随机接入成功率。因此,第一基站可优先配置第一小区的物理随机接入信道资源占用的时域资源位置与第一小区的邻小 区占用的时域资源位置不同,以避免LBT带来的随机接入成功率下降。
当所述资源配置信息包括MF-sPRACH时域资源位置、MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置和MF-sPRACH的前导根序列时,所述根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源的步骤22包括步骤224或者步骤225。
步骤224:根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源不同。
步骤225:根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源相同,并根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列,配置第一小区的物理随机接入信道资源占用的频域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源和码域资源不同。
其中,该零相关区域配置和根序列索引主要用于进行物理随机接入信道资源的码域资源的设置。
进一步的,为了让第一小区与其相邻小区有同样的信道接入优先级,避免MF-sPRACH上不做LBT的小区对做LBT的小区造成干扰,影响不同小区之间的随机接入的公平性,第一基站可以在配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源相同时,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
本公开实施例,通过使基站的服务小区获取相邻的MF小区的物理随机接入信道资源配置,使基站能够根据相邻MF小区的物理随机接入信道资源配置对服务小区的物理随机接入信道资源进行优化,提高了小区的Preamble检测性能,从而提高了小区随机接入成功率。
如图5所示,图5所示的本公开的实施例提供一种资源配置方法,该资 源配置方法应用于第一小区所属的第一基站。需要说明的是,本实施例中的第一基站特指MF基站,即第一小区为MF小区。
所述资源配置方法包括步骤51和步骤52。
步骤51;接收终端上报的第一小区的随机接入信道信息,所述随机接入信道信息包括终端在第一小区中随机接入时先听后说(LBT)失败的次数。
需要说明的是,第一小区指的是终端当前所接入的小区,第一基站可以向终端发送随机接入信道信息请求消息。当终端收到随机接入信道信息请求消息时,终端将终端中记录的随机接入信道信息发送给第一基站。例如,第一基站向终端发送携带有随机接入信道信息请求标识的终端信息请求(UE Information Request)消息,终端将随机接入信道信息包含在终端信息响应(UE Information Response)消息中发送给第一基站。
还需要说明的是,该终端在第一小区中随机接入时先听后说失败的次数为终端最后一次在第一小区随机接入时先听后说失败的次数或终端在特定时间内在第一小区随机接入时先听后说失败的次数的平均值。其中,所述先听后说失败的次数为终端在第一小区随机接入时发送随机接入前导的先听后说失败的次数和发送上行数据的先听后说失败的次数中的至少一个。
进一步的,本实施例中的所述随机接入信道(RACH)信息还可以包括:终端在第一小区中随机接入时发送的前导码次数和终端在第一小区中随机接入时是否竞争解决失败的指示信息中的至少一个。
步骤52:根据所述随机接入信道信息,配置所述第一小区的物理随机接入信道资源。
需要说明的是,当第一基站收到终端发送的第一小区的随机接入信道信息时,第一基站根据该随机接入信道信息对第一小区的物理随机接入信道资源进行优化以减少终端随机接入时LBT失败次数。
步骤52的具体实现方式可以包括:当终端在第一小区中随机接入时LBT失败的次数超过第一阈值时,执行(i)增大物理随机接入信道资源所占子帧的个数和(ii)增加发送给终端的随机接入响应中的退避参数值中的至少一个。也就是说,当终端在第一小区中随机接入时LBT失败的次数超过指定阈值时,则优化物理随机接入信道资源的时域资源配置,修改MF-sPRACH时域资源 位置的配置,使物理随机接入信道在时域上占用更多的子帧。例如,将MF-PRACH Configuration Index从2改为6,将物理随机接入信道的时域资源从原有仅奇数系统帧的第7子帧增加为每个系统帧的第1子帧和第6子帧,具体的设置情况如表10所示:
Figure PCTCN2017117723-appb-000011
表10 MF-sPRACH配置索引占用子帧的示意图
第一基站还可以增加随机接入响应中的退避(backoff)参数值,其中,随机接入响应是基站收到终端发送的preamble后发送的响应信息。终端根据最新的随机接入响应中的backoff参数获得backoff时间并设置发送preamble的退避时间。具体的,终端将preamble退避时间设置为由0至backoff时间的均匀分布产生的随机数,表11所示为随机接入响应中的backoff参数与banoff时间的对应关系。
Figure PCTCN2017117723-appb-000012
表11退避参数与退避时间的对应关系表
还需要说明的是,因为在MF系统中没有固定的上下行子帧配置,小区的下行信号会导致终端在小区中做上行随机接入时LBT失败,因此终端随机接入时LBT失败可能是因为该小区的下行信号的干扰或其他小区或终端的干扰。终端可以通过接收所接入小区的公共物理下行控制信道(CPDCCH,Common Physical Downlink Control Channel)获知该小区下行子帧的位置从而判断在随机接入时LBT失败的子帧是否是下行子帧。
可选地,上述LBT失败次数还可包括终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数。在此种情况下,本公开实施例的资源配置方法还包括步骤53。
步骤53:当所述终端在第一小区中随机接入时先听后说失败的子帧为所 述第一小区的下行子帧的次数超过第二阈值时,减少第一基站对下行子帧的调度次数。
也就是说,若终端上报的随机接入信道信息还包括终端在第一小区中随机接入时LBT失败的子帧为该第一小区的下行子帧的次数,则当该LBT失败次数超过指定阈值时,第一基站还可以通过减少对下行子帧的调度来降低终端在第一小区中随机接入时LBT失败的次数。
还需要说明的是,当RACH信息包括终端在第一小区中随机接入时发送的前导码次数和终端在第一小区中随机接入时是否竞争解决失败的指示信息中的至少一个时,第一基站还可根据上述信息对随机接入相关配置进行调整。
具体的,第一基站可以根据终端发送的随机接入前导码次数调整MF-sPRACH的上行功率控制参数,MF-sPRACH的上行功率控制参数包括前导码的初始目标接收功率和前导码功率的攀升步长;或者,第一基站根据终端发送的是否竞争解决失败的指示信息调整MF-sPRACH的资源配置、公共和专用前导码配置或者随机接入响应中的退避参数值。例如,当终端指示竞争解决失败时,第一基站可以增加MF-sPRACH的时域、频域或码域资源,或者增加公共前导码数目,或者增加随机接入响应中的退避参数值,以降低随机接入中发生竞争解决失败的概率。
本公开实施例通过根据终端上报的随机接入信息优化随机接入资源,提高了终端在小区中随机接入的成功概率。
如图6所示,图6所示的本公开的实施例提供第一基站,该第一基站包括:获取模块61,用于获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及配置模块62,用于根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
可选地,当所述配置参数信息包括第一小区的邻小区的MF-sPRACH的资源配置信息时,所述获取模块61包括获取子模块611,获取子模块611用于获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块 个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述MF-sPRACH的LBT类型用于指示终端在MF-sPRACH资源上是否做LBT。
进一步地,所述资源配置信息还包括MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一种。
可选地,所述获取子模块611包括第一获取单元6111,第一获取单元6111用于获取第二基站发送的接口消息,从所述接口消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中,所述接口消息为X2接口消息或S1接口消息。
可选地,所述第一获取单元6111包括第一获取子单元61111,第一获取单元6111进一步包括第二获取子单元61112和第三获取子单元61113中的至少一个。第一获取子单元61111用于获取所述第二基站发送的接口消息,第二获取子单元61112用于从所述接口消息包含的所述第二基站服务小区的物理随机接入信道配置信息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,并且第三获取子单元61113用于从所述接口消息包含的所述第二基站服务小区的邻小区的物理随机接入信道配置信息中获取第一小区的邻小区的MF-sPRACH的资源配置信息。
进一步地,当所述接口消息为X2接口消息时,所述X2接口消息包括X2建立请求消息、X2建立响应消息、eNB配置更新消息或eNB配置更新响应消息。
具体地,获取所述第一小区的邻小区的MF-sPRACH的资源配置信息中的所述MF-sPRACH频域资源块位置具体包括:根据公式K=PRACH-FrequencyOffset mod 10,得到MF-sPRACH频域资源块位置。
其中,K表示MF-sPRACH频域资源块位置,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数;或者,通过所述物理随机接入信道配置信息中指示MF-sPRACH频域资源块位置的字段获取MF-sPRACH频域资源块位置。
具体地,获取所述第一小区的邻小区的MF-sPRACH的资源配置信息中的所述MF-sPRACH占用的频域资源块个数具体包括:根据公式 PRACH-NumInterlaces=1+(floor((PRACH-FrequencyOffset mod 20)/10)mod 2),得到MF-sPRACH占用的频域资源块个数,其中,PRACH-NumInterlaces表示MF-sPRACH占用的频域资源块个数,floor(*)为向下取整函数,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数;或者,通过所述物理随机接入信道配置信息中指示MF-sPRACH占用的频域资源块个数的字段获取MF-sPRACH占用的频域资源块个数。
具体地,获取所述第一小区的邻小区的MF-sPRACH的资源配置信息中的所述MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置具体包括:通过所述物理随机接入信道配置信息中的零相关区域配置字段、根序列索引字段和物理随机接入信道时域资源位置字段,分别获取所述MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置。
可选地,所述获取子模块611包括第一接收单元6112和第二接收单元6113中的至少一个,第一接收单元6112用于从终端发送的第一小区的邻小区的无线资源控制RRC测量报告消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,第二接收单元6113用于从接收的第一小区的邻小区的系统广播消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息。
具体地,所述配置模块62用于根据所述资源配置信息中的MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个,配置第一小区的物理随机接入信道资源占用的频域资源与第一小区的邻小区占用的频域资源不同;和/或,根据所述资源配置信息中的MF-sPRACH的LBT类型,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
具体地,当所述资源配置信息中包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置时,所述配置模块62用于根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、 MF-sPRACH的前导根序列和MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的频域资源、时域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源、时域资源和码域资源不同。
具体地,当所述资源配置信息中包括MF-sPRACH时域资源位置、MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置和MF-sPRACH的前导根序列时,所述配置模块62用于:根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源不同;或者,根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源相同,并根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列,配置第一小区的物理随机接入信道资源占用的频域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源和码域资源不同。
可选地,当所述配置参数信息包括第一小区的RACH信息时,所述获取模块61包括:接收子模块612,用于在所述第一小区为Multefire小区时接收终端上报的第一小区的RACH信息,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数。
具体地,所述终端在第一小区中随机接入时LBT失败的次数为终端最后一次在第一小区随机接入时先听后说失败的次数或终端在特定时间内在第一小区随机接入时先听后说失败的次数的平均值。
其中,所述先听后说失败的次数为终端在第一小区随机接入时发送随机接入前导的先听后说失败的次数和发送上行数据的先听后说失败的次数中的至少一个。
具体地,所述配置模块62用于在终端在第一小区中随机接入时LBT失败的次数超过第一阈值时执行(i)增大物理随机接入信道资源所占子帧的个数和(ii)增加发送给终端的随机接入响应中的退避参数值中的至少一个。
可选地,所述终端在第一小区中随机接入时LBT失败的次数还包括:终 端在第一小区中随机接入时先听后说失败的子帧为所述第一小区的下行子帧的次数。
所述第一基站还包括调整模块63,调整模块63用于在所述终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数超过第二阈值时,减少第一基站对下行子帧的调度次数。
可选地,所述RACH信息还包括:终端在第一小区中随机接入时发送的前导码次数和终端在第一小区中随机接入时是否竞争解决失败的指示信息中的至少一个。
需要说明的是,本公开的该实施例的第一基站是与上述资源配置方法的实施例对应的第一基站,上述资源配置方法实施例中的所有实现手段均适用于该实施例的第一基站中,也能达到相同的技术效果。
如图7所示,图7所示的本公开的实施例提供第一基站,该第一基站包括收发器71、存储器72和处理器73。收发器71用于在处理器73的控制下发送和接收信息。存储器72用于存储处理器73在运行时所处理的程序和数据。处理器73用于读取存储器72中存储的程序和数据,以控制收发器71获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,并且处理器73根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个。
所述处理器73还可以被配置并实现图6所示的第一基站实施例中所有模块实现的功能,也能达到和图6所示的第一基站实施例所能达到的相同的技术效果。
本公开的实施例提供一种信息发送方法,该信息发送方法应用于第二基站并且包括步骤81。
步骤81:将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述 接口消息为X2接口消息或S1接口消息。
在上述实施例中所有关于第二基站的描述均适用于应用该信息发送方法的第二基站的实施例中,也能达到与其相同的技术效果。
本公开的实施例提供第二基站9,该第二基站9包括:第一发送模块91,用于将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
本公开的该第二基站实施例是与上述信息发送方法的实施例对应的第二基站,上述信息发送方法实施例中的所有实现手段均适用于该第二基站的实施例中,也能达到相同的技术效果。
本公开的实施例还提供第二基站10,该第二基站包括发送器101、存储器102和处理器103。发送器101用于在处理器103的控制下发送信息。存储器102用于存储处理器103在运行时所处理的程序和数据。处理器103用于读取存储器102中存储的程序和数据,以控制发送器101将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
所述发送器还可以被配置并实现上述第二基站实施例中所有模块实现的功能,也能达到和上述第二基站实施例所能达到的相同的技术效果。
本公开的实施例提供一种信息发送方法,该信息发送方法应用于终端并且包括步骤111。
步骤111:发送第一小区的随机接入信道RACH信息给第一基站,其中所述第一小区为MF小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
其中,上述实施例中所有关于终端的描述,均适用于应用该信息发送方 法的终端的实施例中,也能达到与其相同的技术效果。
本公开的实施例提供一种终端12,该终端包括第二发送模块121,第二发送模块121用于发送第一小区的随机接入信道RACH信息给第一基站,其中所述第一小区为MF小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
本公开的该终端实施例是与上述应用于终端的信息发送方法的实施例对应的终端,上述应用于终端的信息发送方法实施例中的所有实现手段均适用于该终端的实施例中,也能达到相同的技术效果。
本公开的实施例还提供一种终端13,该终端13包括发送器131、存储器132和处理器133。发送器131用于在处理器133的控制下发送信息。存储器132用于存储处理器133在运行时所处理的程序和数据。处理器133用于读取存储器132中存储的程序和数据,以控制发送器131发送第一小区的随机接入信道RACH信息给第一基站,其中所述第一小区为MF小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,第一小区为所述第一基站所服务的小区。
所述发送器还可以被配置并实现上述终端实施例中所有模块实现的功能,也能达到和上述终端实施例所能达到的相同的技术效果。
需要说明的是,本公开实施例中所述的终端可以是移动电话机(或手机),或者其它能够发送或接收无线信号的设备,包括用户设备(终端)、个人数字助理(PDA)、无线调制调解器、无线通信装置、手持装置、膝上型计算机、无绳电话、无线本地回路(WLL)站、能够将移动信号转换为wifi信号的CPE或Mifi、智能家电、或其它不通过人的操作就能自发与移动通信网络通信的设备等。
以上结合具体实施例描述了本公开的基本原理。但是,本领域的普通技术人员能够理解本公开的方法和装置的全部或者任何步骤或者部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者它们的组合加以实现。这是本领域普通技术人员在阅读了本公开的说明的情况下运用他们的基本编程技能就能实现的。
因此,本公开的目的还可以通过在任何计算装置上运行一个程序或者一 组程序来实现。所述计算装置可以是公知的通用装置。因此,本公开的目的也可以仅仅通过提供包含实现所述方法或者装置的程序代码的程序产品来实现。也就是说,这样的程序产品也构成本公开,并且存储有这样的程序产品的存储介质也构成本公开。显然,所述存储介质可以是任何公知的存储介质或者将来所开发出来的任何存储介质。还需要指出的是,在本公开的装置和方法中,显然,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本公开的等效方案。并且,执行上述系列处理的步骤可以自然地按照说明的顺序按时间顺序执行,但是并不需要一定按照时间顺序执行。一些步骤可以并行或彼此独立地执行。
以上所述的是本公开的可选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (43)

  1. 一种资源配置方法,所述资源配置方法应用于第一小区所属的第一基站,所述资源配置方法包括:
    获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及
    根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
  2. 根据权利要求1所述的资源配置方法,其中,当所述配置参数信息包括第一小区的邻小区的MF-sPRACH的资源配置信息时,所述获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,包括:
    获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中,所述MF-sPRACH的资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述MF-sPRACH的LBT类型用于指示终端在MF-sPRACH资源上是否做LBT。
  3. 根据权利要求2所述的资源配置方法,其中,所述MF-sPRACH的资源配置信息还包括:MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一种。
  4. 根据权利要求2所述的资源配置方法,其中,所述获取第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    获取第二基站发送的接口消息,从所述接口消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中所述接口消息是X2接口消息或S1接口消息。
  5. 根据权利要求4所述的资源配置方法,其中,所述获取第二基站发送的接口消息,从所述接口消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    获取所述第二基站发送的接口消息;以及
    从(i)所述接口消息包含的所述第二基站服务小区的物理随机接入信道配置信息和(ii)所述接口消息包含的所述第二基站服务小区的邻小区的物理随机接入信道配置信息中的至少一个中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
  6. 根据权利要求4或5所述的资源配置方法,其中,当所述接口消息为X2接口消息时,所述X2接口消息包括X2建立请求消息、X2建立响应消息、演进的节点B eNB配置更新消息或eNB配置更新响应消息。
  7. 根据权利要求2-6中任一项所述的资源配置方法,其中,当所述MF-sPRACH的资源配置信息包括MF-sPRACH频域资源块位置和MF-sPRACH频域资源块个数中的至少一个时,获取第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    根据公式:K=PRACH-FrequencyOffset mod 10,得到MF-sPRACH频域资源块位置,其中,K表示MF-sPRACH频域资源块位置,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数;以及
    根据公式:PRACH-NumInterlaces=1+(floor((PRACH-FrequencyOffset mod 20)/10)mod 2),得到MF-sPRACH占用的频域资源块个数,其中,PRACH-NumInterlaces为MF-sPRACH占用的频域资源块个数,floor(*)为向下取整函数,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数。
  8. 根据权利要求2所述的资源配置方法,其中,当所述MF-sPRACH的资源配置信息包括MF-sPRACH频域资源块位置和频域资源块个数中的至少一个时,获取所述第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    通过所述物理随机接入信道配置信息中指示MF-sPRACH频域资源块位置的字段和指示MF-sPRACH占用的频域资源块个数的字段中的至少一个,获取MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个。
  9. 根据权利要求5所述的资源配置方法,其中,当所述MF-sPRACH的资源配置信息包括MF-sPRACH的零相关区域配置、MF-sPRACH的前导根 序列和MF-sPRACH的时域资源位置中的至少一种时,获取所述第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    分别通过所述物理随机接入信道配置信息中的零相关区域配置字段、根序列索引字段和物理随机接入信道时域资源位置字段,获取所述MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一个。
  10. 根据权利要求2或3所述的资源配置方法,其中,所述获取第一小区的邻小区的MF-sPRACH的资源配置信息,包括:
    从(i)终端发送的第一小区的邻小区的无线资源控制RRC测量报告消息和(ii)接收的第一小区的邻小区的系统广播消息中的至少一个中,获取第一小区的邻小区的MF-sPRACH的资源配置信息。
  11. 根据权利要求2-10中任一项所述的资源配置方法,其中,所述根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源,包括以下(i)和(ii)中的至少一个:
    (i)根据所述资源配置信息中的MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个,配置第一小区的物理随机接入信道资源占用的频域资源与第一小区的邻小区占用的频域资源不同;以及
    (ii)根据所述资源配置信息中的MF-sPRACH的LBT类型,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
  12. 根据权利要求3所述的资源配置方法,其中,当所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置时,根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源,包括:
    根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道 资源占用的频域资源、时域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源、时域资源和码域资源不同。
  13. 根据权利要求3所述的资源配置方法,其中,当所述资源配置信息包括MF-sPRACH时域资源位置、MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置和MF-sPRACH的前导根序列时,根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源,包括:
    根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源不同;或者,
    根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源相同,并根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列,配置第一小区的物理随机接入信道资源占用的频域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源和码域资源不同。
  14. 根据权利要求1所述的资源配置方法,其中,当所述配置参数信息包括第一小区的RACH信息时,所获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,包括:
    当所述第一小区为Multefire小区时,接收终端上报的第一小区的RACH信息,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数。
  15. 根据权利要求14所述的资源配置方法,其中,所述终端在第一小区中随机接入时LBT失败的次数为终端最后一次在第一小区随机接入时LBT失败的次数或终端在特定时间内在第一小区随机接入时LBT失败的次数的平均值;
    其中,所述LBT失败的次数为终端在第一小区随机接入时发送随机接入前导的LBT失败的次数和发送上行数据的LBT失败的次数中的至少一个。
  16. 根据权利要求14或15所述的资源配置方法,其中,根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源,包括:
    当终端在第一小区中随机接入时LBT失败的次数超过第一阈值时,执行以下(i)和(ii)中的至少一个:
    (i)增大物理随机接入信道资源所占子帧的个数;以及
    (ii)增加发送给终端的随机接入响应中的退避参数值。
  17. 根据权利要求14至16中任一项所述的资源配置方法,其中,所述终端在第一小区中随机接入时LBT失败的次数还包括终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数;
    所述资源配置方法还包括:当所述终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数超过第二阈值时,减少第一基站对下行子帧的调度次数。
  18. 根据权利要求14所述的资源配置方法,其中,所述RACH信息还包括终端在第一小区中随机接入时发送的前导码次数和终端在第一小区中随机接入时是否竞争解决失败的指示信息中的至少一个;
    所述根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源,包括以下(i)和(ii)中的至少一个:
    根据终端发送的随机接入前导码次数,调整MF-sPRACH的上行功率控制参数,其中MF-sPRACH的上行功率控制参数包括前导码的初始目标接收功率和前导码功率的攀升步长;以及
    根据终端发送的是否竞争解决失败的指示信息,调整MF-sPRACH的资源配置、公共和专用前导码配置或者随机接入响应中的退避参数值。
  19. 一种基站,所述基站是第一小区所属的第一基站,包括:
    获取模块,用于获取用于优化配置第一小区的物理随机接入信道资源的配置参数信息,所述配置参数信息包括第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息和第一小区的随机接入信道RACH信息中的至少一个;以及
    配置模块,用于根据所述配置参数信息,配置所述第一小区的物理随机接入信道资源。
  20. 根据权利要求19所述的基站,其中,所述获取模块包括获取子模块,所述获取子模块用于在所述配置参数信息包括第一小区的邻小区的MF-sPRACH的资源配置信息时,获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中,所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述MF-sPRACH的LBT类型用于指示终端在MF-sPRACH资源上是否做LBT。
  21. 根据权利要求20所述的基站,其中,所述资源配置信息还包括MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一种。
  22. 根据权利要求2所述的基站,其中,所述获取子模块包括第一获取单元,
    所述第一获取单元用于获取第二基站发送的接口消息,从所述接口消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息,其中所述接口消息为X2接口消息或S1接口消息。
  23. 根据权利要求22所述的基站,其中,所述第一获取单元包括第一获取子单元,并且包括第二获取子单元和第三获取子单元中的至少一个,其中
    所述第一获取子单元用于获取所述第二基站发送的接口消息,
    所述第二获取子单元用于从所述接口消息包含的第二基站服务小区的物理随机接入信道配置信息中获取所述第一小区的邻小区的MF-sPRACH的资源配置信息,并且
    所述第三获取子单元用于从所述接口消息包含的所述第二基站服务小区的邻小区的物理随机接入信道配置信息中获取第一小区的邻小区的MF-sPRACH的资源配置信息。
  24. 根据权利要求22或24所述的基站,其中,当所述接口消息为X2消息时,所述X2接口消息包括X2建立请求消息、X2建立响应消息、演进的节点B eNB配置更新消息或eNB配置更新响应消息。
  25. 根据权利要求20-24中任一项所述的基站,其中,所述获取子模块进一步被配置为:当所述MF-sPRACH的资源配置信息包括MF-sPRACH频 域资源块位置和MF-sPRACH频域资源块个数中的至少一个时,
    根据公式:K=PRACH-FrequencyOffset mod 10,得到MF-sPRACH频域资源块位置,其中,K表示MF-sPRACH频域资源块位置,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数,以及
    根据公式:PRACH-NumInterlaces=1+(floor((PRACH-FrequencyOffset mod 20)/10)mod 2),得到MF-sPRACH占用的频域资源块个数,其中,PRACH-NumInterlaces为MF-sPRACH占用的频域资源块个数,floor(*)为向下取整函数,PRACH-FrequencyOffset为所述物理随机接入信道配置信息中的物理随机接入信道频率偏移字段值,mod表示取两个数相除的余数。
  26. 根据权利要求23所述的基站,其中,所述获取子模块进一步被配置为:
    当所述MF-sPRACH的资源配置信息包括MF-sPRACH频域资源块位置和频域资源块个数中的至少一个时,通过所述物理随机接入信道配置信息中指示MF-sPRACH频域资源块位置的字段和指示MF-sPRACH占用的频域资源块个数的字段中的至少一个,获取MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个。
  27. 根据权利要求21所述的基站,其中,所述获取子模块进一步被配置为:
    当所述MF-sPRACH的资源配置信息包括MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一种时,分别通过所述物理随机接入信道配置信息中的零相关区域配置字段、根序列索引字段和物理随机接入信道时域资源位置字段,获取所述MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH的时域资源位置中的至少一个。
  28. 根据权利要求20或21所述的基站,其中,所述获取子模块包括第一接收单元和第二接收单元中的至少一个,
    所述第一接收单元用于从终端发送的第一小区的邻小区的无线资源控制RRC测量报告消息中获取第一小区的邻小区的MF-sPRACH的资源配置信 息,
    所述第二接收单元用于从接收的第一小区的邻小区的系统广播消息中获取第一小区的邻小区的MF-sPRACH的资源配置信息。
  29. 根据权利要求20-28中任一项所述的基站,其中,所述配置模块进一步被配置为执行以下(i)和(ii)中的至少一个:
    (i)根据所述资源配置信息中的MF-sPRACH频域资源块位置和MF-sPRACH占用的频域资源块个数中的至少一个,配置第一小区的物理随机接入信道资源占用的频域资源与第一小区的邻小区占用的频域资源不同;以及
    (ii)根据所述资源配置信息中的MF-sPRACH的LBT类型,配置第一小区的物理随机接入信道的LBT类型与第一小区的邻小区的MF-sPRACH的LBT类型相同。
  30. 根据权利要求21所述的基站,其中,所述配置模块进一步被配置为:
    当所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置时,根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列和MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的频域资源、时域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源、时域资源和码域资源不同。
  31. 根据权利要求21所述的基站,其中,所述配置模块进一步被配置为在当所述资源配置信息包括MF-sPRACH时域资源位置、MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置和MF-sPRACH的前导根序列时:
    根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源不同,或者
    根据所述资源配置信息中的MF-sPRACH时域资源位置,配置第一小区 的物理随机接入信道资源占用的时域资源与第一小区的邻小区占用的时域资源相同,并根据所述资源配置信息中的MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数、MF-sPRACH的零相关区域配置、MF-sPRACH的前导根序列,配置第一小区的物理随机接入信道资源占用的频域资源和码域资源中的至少一个与第一小区的邻小区占用的频域资源和码域资源不同。
  32. 根据权利要求19所述的基站,其中,所述获取模块进一步包括:
    接收子模块,被配置为在所述配置参数信息包括第一小区的RACH信息时并且当所述第一小区为Multefire小区时,接收终端上报的第一小区的RACH信息,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数。
  33. 根据权利要求32所述的基站,其中,所述终端在第一小区中随机接入时LBT失败的次数为终端最后一次在第一小区随机接入时LBT失败的次数或终端在特定时间内每次在第一小区随机接入时LBT失败的次数的平均值;
    其中,所述LBT失败的次数为终端在第一小区随机接入时发送随机接入前导的LBT失败的次数和发送上行数据的LBT失败的次数中的至少一个。
  34. 根据权利要求32或33所述的基站,其中,所述配置模块进一步被配置为:
    当终端在第一小区中随机接入时LBT失败的次数超过第一阈值时,执行以下(i)和(ii)中的至少一个:
    (i)增大物理随机接入信道资源所占子帧的个数;以及
    (ii)增加发送给终端的随机接入响应中的退避参数值。
  35. 根据权利要求32-34中任一项所述的基站,其中,所述终端在第一小区中随机接入时LBT失败的次数还包括终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数;
    所述基站还包括调整模块,所述调整模块被配置为当所述终端在第一小区中随机接入时LBT失败的子帧为所述第一小区的下行子帧的次数超过第二阈值时,减少第一基站对下行子帧的调度次数。
  36. 根据权利要求32-34中任一项所述的基站,其中,所述RACH信息还包括终端在第一小区中随机接入时发送的前导码次数和终端在第一小区中随机接入时是否竞争解决失败的指示信息中的至少一个;
    所述配置模块进一步被配置为执行以下(i)和(ii)中的至少一个:
    (i)根据终端发送的随机接入前导码次数调整MF-sPRACH的上行功率控制参数,其中MF-sPRACH的上行功率控制参数包括前导码的初始目标接收功率和前导码功率的攀升步长;以及
    (ii)根据终端发送的是否竞争解决失败的指示信息调整MF-sPRACH的资源配置、公共和专用前导码配置或者随机接入响应中的退避参数值。
  37. 一种基站,所述基站是第一小区所属的第一基站,所述基站包括:处理器、存储器和收发器,
    其中,所述存储器用于存储所述处理器在运行时所处理的程序和数据,所述收发器用于发送和接收信息,所述处理器用于读取所述存储器中存储的所述程序和数据以与所述收发器结合执行根据权利要求1-18中任一项所述的方法。
  38. 一种信息发送方法,应用于第二基站,所述方法包括:
    将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站;
    其中,所述资源配置信息包括:MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
  39. 一种基站,所述基站是第二基站,并且包括:
    第一发送模块,用于将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,
    其中,所述资源配置信息包括MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
  40. 一种基站,所述基站是第二基站,并且包括:
    处理器、存储器和发送器,
    其中,所述存储器用于存储所述处理器在运行时所处理的程序和数据,
    所述发送器用于发送信息,
    所述处理器用于读取所述存储器中存储的所述程序和数据以控制所述发送器将第一基站下的第一小区的邻小区的MulteFire短物理随机接入信道MF-sPRACH的资源配置信息通过接口消息发送给所述第一基站,其中,所述资源配置信息包括:MF-sPRACH频域资源块位置、MF-sPRACH占用的频域资源块个数和MF-sPRACH的先听后说LBT类型中的至少一个,所述接口消息为X2接口消息或S1接口消息。
  41. 一种信息发送方法,所述信息发送方法应用于终端,所述信息发送方法包括:
    发送第一小区的随机接入信道RACH信息给第一基站;
    其中,所述第一小区为Multefire小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
  42. 一种终端,包括:
    第二发送模块,用于发送第一小区的随机接入信道RACH信息给第一基站;
    其中,所述第一小区为Multefire小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
  43. 一种终端,包括:
    处理器、存储器和发送器,
    其中,所述存储器用于存储所述处理器在运行时所处理的程序和数据,
    所述发送器用于发送信息,
    所述处理器用于读取所述存储器中存储的所述程序和数据以控制所述发送器发送第一小区的随机接入信道RACH信息给第一基站,其中,所述第一小区为Multefire小区,所述RACH信息包括终端在第一小区中随机接入时先听后说LBT失败的次数,所述第一小区为所述第一基站所服务的小区。
PCT/CN2017/117723 2016-12-23 2017-12-21 资源配置方法、信息发送方法、基站及终端 WO2018113739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611206676.1A CN108243508A (zh) 2016-12-23 2016-12-23 一种资源配置方法、信息发送方法、基站及终端
CN201611206676.1 2016-12-23

Publications (1)

Publication Number Publication Date
WO2018113739A1 true WO2018113739A1 (zh) 2018-06-28

Family

ID=62624541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117723 WO2018113739A1 (zh) 2016-12-23 2017-12-21 资源配置方法、信息发送方法、基站及终端

Country Status (2)

Country Link
CN (1) CN108243508A (zh)
WO (1) WO2018113739A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110831226A (zh) * 2018-08-08 2020-02-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN111213426A (zh) * 2019-10-15 2020-05-29 北京小米移动软件有限公司 物理随机接入信道的配置方法、装置、终端及存储介质
WO2021031016A1 (zh) * 2019-08-16 2021-02-25 Oppo广东移动通信有限公司 信息指示方法、装置、设备及存储介质
US11172511B2 (en) 2017-09-27 2021-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information indication method and apparatus, network device and terminal device
WO2024026630A1 (zh) * 2022-08-01 2024-02-08 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913497B (zh) * 2018-09-14 2022-05-24 大唐移动通信设备有限公司 一种信息上报方法、信息获取方法、终端及网络设备
CN111277382B (zh) * 2019-01-18 2021-10-22 维沃移动通信有限公司 一种随机接入过程的信息传输方法及终端
CN111629447B (zh) * 2019-02-28 2022-09-27 中国移动通信有限公司研究院 一种配置方法、信道接入方法、网络设备及终端
CN111757529B (zh) * 2019-03-29 2022-07-22 华为技术有限公司 通信方法、装置及设备
CN111866942B (zh) * 2019-04-30 2022-09-02 华为技术有限公司 一种通信方法及通信装置
CN112118637B (zh) * 2019-06-19 2022-12-30 中国电信股份有限公司 配置rach参数的方法、基站及通信系统
CN112770350A (zh) * 2019-11-06 2021-05-07 维沃移动通信有限公司 一种失败报告的上报方法及相关设备
WO2021128224A1 (zh) * 2019-12-26 2021-07-01 华为技术有限公司 通信方法、设备及系统
CN116998195A (zh) * 2021-03-30 2023-11-03 苹果公司 物理下行链路控制信道(pdcch)命令的相邻小区物理随机接入信道(prach)和基于波束组的定时
CN115066011B (zh) * 2022-08-18 2022-11-22 广州世炬网络科技有限公司 小区管理终端的方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107257A2 (en) * 2009-03-20 2010-09-23 Samsung Electronics Co., Ltd. Rach-related system resource optimization method and apparatus for wireless communication system
US20100278131A1 (en) * 2009-04-29 2010-11-04 Samsung Electronics Co., Ltd. Apparatus and method for managing a random access channel in a mobile communication system
CN102273310A (zh) * 2011-06-24 2011-12-07 华为技术有限公司 随机接入方法、基站控制设备和基站
CN105208593A (zh) * 2015-08-14 2015-12-30 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的辅服务小区的管理方法、系统及基站
CN107079496A (zh) * 2014-09-29 2017-08-18 高通股份有限公司 使用非授权射频谱带接入小区的技术

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299873A (zh) * 2007-04-30 2008-11-05 北京三星通信技术研究有限公司 配置随机接入信道的方法
CN101784122B (zh) * 2009-01-16 2014-03-12 中兴通讯股份有限公司 物理随机接入信道配置信息的处理方法
CN101873712B (zh) * 2009-04-27 2013-03-20 电信科学技术研究院 一种调整prach配置信息的方法、装置及系统
CN102149200A (zh) * 2010-02-04 2011-08-10 电信科学技术研究院 一种配置prach信息的方法和基站
CN103634803B (zh) * 2012-08-21 2017-04-05 普天信息技术研究院有限公司 一种降低同频干扰的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107257A2 (en) * 2009-03-20 2010-09-23 Samsung Electronics Co., Ltd. Rach-related system resource optimization method and apparatus for wireless communication system
US20100278131A1 (en) * 2009-04-29 2010-11-04 Samsung Electronics Co., Ltd. Apparatus and method for managing a random access channel in a mobile communication system
CN102273310A (zh) * 2011-06-24 2011-12-07 华为技术有限公司 随机接入方法、基站控制设备和基站
CN107079496A (zh) * 2014-09-29 2017-08-18 高通股份有限公司 使用非授权射频谱带接入小区的技术
CN105208593A (zh) * 2015-08-14 2015-12-30 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的辅服务小区的管理方法、系统及基站

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172511B2 (en) 2017-09-27 2021-11-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Information indication method and apparatus, network device and terminal device
CN110831226A (zh) * 2018-08-08 2020-02-21 夏普株式会社 由用户设备执行的方法以及用户设备
CN110831226B (zh) * 2018-08-08 2023-11-21 夏普株式会社 由用户设备执行的方法以及用户设备
WO2021031016A1 (zh) * 2019-08-16 2021-02-25 Oppo广东移动通信有限公司 信息指示方法、装置、设备及存储介质
CN111213426A (zh) * 2019-10-15 2020-05-29 北京小米移动软件有限公司 物理随机接入信道的配置方法、装置、终端及存储介质
CN111213426B (zh) * 2019-10-15 2022-12-20 北京小米移动软件有限公司 物理随机接入信道的配置方法、装置、终端及存储介质
WO2024026630A1 (zh) * 2022-08-01 2024-02-08 Oppo广东移动通信有限公司 通信方法、装置、设备、存储介质、芯片、产品及程序

Also Published As

Publication number Publication date
CN108243508A (zh) 2018-07-03

Similar Documents

Publication Publication Date Title
WO2018113739A1 (zh) 资源配置方法、信息发送方法、基站及终端
US11330503B2 (en) Wireless communications over unlicensed radio frequency spectrum
US11540320B2 (en) User terminal, radio base station and radio communication method
EP3723432A1 (en) Random access method and device
WO2016019734A1 (zh) D2d的通信方法及装置
US10271363B2 (en) Device discovery method and user equipment, and network-side device
US11812432B2 (en) Method and apparatus for using indication information of time domain resource allocation
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
CN109891965B (zh) 上行传输控制方法及其装置、通信系统
CN114073163B (zh) 用于随机接入过程的方法和装置
JP6451969B2 (ja) 通信システム
US20160219636A1 (en) User terminal and mobile communication system
WO2022028374A1 (en) Method and apparatus for pusch repetition in a random access procedure
JP2020506626A (ja) 無線通信システムにおいて、端末がcrを測定して送信を行う方法及び装置
CN105282846A (zh) 设备到设备通信方法及装置、设备到设备通信控制装置
EP4011025A1 (en) Pusch dmrs design in 2-step random access
WO2020024202A1 (en) Dynamic adjustment of pdcch monitoring occasions
US12003455B2 (en) Intra-symbol OCC mapping for transmissions such as NR-U PUCCH transmissions
JP2022550411A (ja) 繰返しを伴う設定済みul
US10097407B2 (en) Method, equipment, device and system for sending device detection signal
US20220104265A1 (en) Method and apparatus for performing random access in wireless communication system
EP3876459B1 (en) Method and device for transmitting downlink control information
WO2020225142A1 (en) Method for accessing a cellular communications network in unlicensed spectrum
US20220247537A1 (en) Method for selecting physical uplink control channel (pucch) orthogonal cover codes (occ) repetition sequence
US20220321263A1 (en) Method and apparatus for random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 09/09/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 17884734

Country of ref document: EP

Kind code of ref document: A1