WO2021128224A1 - 通信方法、设备及系统 - Google Patents

通信方法、设备及系统 Download PDF

Info

Publication number
WO2021128224A1
WO2021128224A1 PCT/CN2019/128909 CN2019128909W WO2021128224A1 WO 2021128224 A1 WO2021128224 A1 WO 2021128224A1 CN 2019128909 W CN2019128909 W CN 2019128909W WO 2021128224 A1 WO2021128224 A1 WO 2021128224A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
bwp
terminal device
information
configuration
Prior art date
Application number
PCT/CN2019/128909
Other languages
English (en)
French (fr)
Inventor
酉春华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/128909 priority Critical patent/WO2021128224A1/zh
Priority to EP19957080.5A priority patent/EP4072231A4/en
Publication of WO2021128224A1 publication Critical patent/WO2021128224A1/zh
Priority to US17/849,166 priority patent/US20220322452A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network

Definitions

  • This application relates to the field of communication technology, in particular to communication methods, equipment and systems.
  • Listen before talk refers to a channel access process that the device needs to perform before data transmission. If the channel access process is completed, it is determined that the LBT is successful and the data transmission can be performed; if the channel access process is not completed, it is determined that the LBT has failed and the data transmission cannot be performed.
  • a consistent (uplink, UL) LBT failure (failure) detection mechanism is currently supported, or a continuous (consistent) UL LBT failure (failure) detection mechanism.
  • Terminal equipment A timer and counter are used to detect whether a consistent UL LBT failure occurs. Among them, every time a UL LBT failure is determined to occur, the counter is incremented by 1, and the timer is restarted. If the counter reaches the maximum preset number of times, it is determined that a consistent UL LBT failure has occurred. When the timer times out, the counter needs to be reset.
  • the terminal device when the primary cell (primary cell, PCell) has a consistent UL LBT failure, the terminal device performs the bandwidth part (BWP) handover process to activate the BWP to switch from the current BWP to other BWPs for random access to restore the consistent UL LBT failure. If all BWPs with physical random access channel (PRACH) resources have tried random access, and none of the random access is successful, a re-establishment process (that is, access to another cell) is required. .
  • PRACH physical random access channel
  • the embodiments of the present application provide communication methods, devices, and systems, which can improve data transmission efficiency by optimizing random access configuration, BWP configuration, or LBT failure configuration.
  • a communication method is provided.
  • the communication device for executing the method may be a terminal device or a module applied to the terminal device, such as a chip or a chip system.
  • the execution subject is the terminal device as an example for description.
  • the terminal device obtains first information, which is the random access failure information that occurs when the terminal device performs random access; the terminal device sends the first information to the network device, and the first information is used to update or optimize the following One or more items: random access configuration, uplink LBT failure configuration or bandwidth part BWP configuration.
  • the terminal device can report the random access failure information that occurs when the terminal device performs random access to the network device, so that the network device can report the random access failure information that occurs when the terminal device performs random access.
  • the entry failure information updates one or more of the random access configuration, the uplink LBT failure configuration, or the BWP configuration, so that the random access configuration, the uplink LBT failure configuration, or the BWP configuration can be optimized.
  • Optimizing random access configuration or BWP configuration can reduce the time delay for consistent UL LBT failure recovery; optimizing uplink LBT failure configuration can delay the occurrence of consistent UL LBT failure or prevent consistent UL LBT failure from occurring.
  • Reducing the time delay of consistent UL LBT failure recovery or delaying the occurrence of consistent UL LBT failure or avoiding consistent UL LBT failure can improve data transmission efficiency. Therefore, based on the communication method provided by the embodiment of the present application, the data transmission efficiency can be improved.
  • a communication method is provided.
  • the communication device that executes the method may be a network device or a module applied to the network device, such as a chip or a chip system.
  • the execution subject is a network device as an example for description.
  • the network device receives first information from the terminal device, where the first information is random access failure information that occurs when the terminal device performs random access; the network device updates or optimizes one or more of the following according to the first information : Random access configuration, uplink LBT failure configuration or bandwidth part BWP configuration.
  • the technical effect of the second aspect can be referred to the above-mentioned first aspect, which will not be repeated here.
  • the first information includes one or more of the following: BWP switching times information, at least one BWP identification information, or at least one BWP random access Statistics information, where the BWP switching times information is used to indicate the number of BWP switching times that the terminal device has performed before the consistent uplink LBT failure recovery is completed; the at least one BWP identification information is used to indicate that the terminal device fails in a consistent uplink LBT Before the restoration is completed, the BWP that has undergone consistent uplink LBT failure recovery; the random access statistics information of the at least one BWP is used to indicate that the terminal device has performed the consistent uplink LBT failure recovery BWP before the consistent uplink LBT failure recovery is completed Random access statistics on the Internet.
  • BWP switching times information is used to indicate the number of BWP switching times that the terminal device has performed before the consistent uplink LBT failure recovery is completed
  • the at least one BWP identification information is used to indicate that the terminal device fails in a consistent uplink LBT Before the restoration is completed, the BWP that has
  • BWP switching times information, at least one BWP identification information, or at least one BWP random access statistics information these parameters can feed back the rationality of random access configuration, uplink LBT failure configuration, or bandwidth part BWP configuration, so the network device can be based on One or more of BWP switching times information, at least one BWP identification information, or at least one BWP random access statistics information is optimized random access configuration, uplink LBT failure configuration, or bandwidth part BWP configuration.
  • the random access statistics information of each BWP in the at least one BWP includes one or more of the following: the terminal device tries on the corresponding BWP The identification information of the used synchronization signal block SSB and/or the channel state information reference signal CSI-RS, the frequency information of the SSB and/or CSI-RS that the terminal device has tried on the corresponding BWP, and the terminal device’s frequency information on the corresponding BWP The number of preambles tried, the number of preambles under the SSB and/or CSI-RS that the terminal device has tried on the corresponding BWP, the number of SSB and/or CSI-RS that the terminal device has tried on the corresponding BWP The signal quality, whether there is competition for the preamble of 2-step random access or the preamble of 4-step random access on the corresponding BWP, the number of preambles used by the terminal device in the 2-step random access that the terminal device has
  • the random access statistics information of the BWP is the random access statistics information of the terminal equipment on the BWP that has performed the consistent uplink LBT failure recovery before the consistent uplink LBT failure recovery is completed, the random access configuration and the uplink LBT can be fed back.
  • the failure configuration or the bandwidth part BWP configuration is reasonable, so the network device can optimize the random access configuration, the uplink LBT failure configuration, or the bandwidth part BWP configuration according to the random access statistics information of the above BWP.
  • the random access configuration includes one or more of the following: the physical random access channel PRACH configuration of the preamble in the 2-step random access, and the 2-step random access Time-frequency resource configuration of the payload in random access, indication information used to indicate whether it is possible to fall back from 2-step random access to 4-step random access, PRACH configuration of the preamble in 4-step random access, 2-step random access Incoming preamble grouping, 4-step random access preamble grouping, 2-step random access back-off parameter value, 4-step random access back-off parameter value, 2-step random access transmission power control Parameters, or transmission power control parameters in 4-step random access.
  • the time delay of consistent UL LBT failure recovery can be reduced, and data transmission efficiency can be improved.
  • the PRACH configuration includes one or more of the following: root sequence index, zero correlation area configuration, whether it is in a high-speed state, frequency offset, configuration index , Or the correspondence between SSB and/or CSI-RS and random access resources; where the root sequence index is used to configure the logical sequence number of the starting root sequence of the root sequence used by the cell or SSB or CSI-RS; the zero correlation
  • the area configuration is used to indicate the index value of the cyclic shift configuration used when the PRACH preamble is generated; whether the high-speed state is used to determine whether the cell is a high-speed cell or whether the SSB is a high-speed SSB or a CSI-RS is a high-speed CSI-RS;
  • the frequency offset is used to indicate the index of the first resource block RB in which the terminal device sends the preamble;
  • the configuration index is used to indicate the time domain resource and the preamble format of the terminal device to send the preamble; the correspondence
  • the BWP configuration includes: whether to configure random access resources for the terminal device in the BWP.
  • the uplink LBT failure configuration includes one or more of the following: an uplink LBT failure timer, an uplink LBT failure counter, or an energy detection threshold.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware execution of corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor to the communication device.
  • the processor is used to implement any of the foregoing methods through logic circuits or execution code instructions.
  • the communication device further includes a memory.
  • the memory is used to store computer instructions.
  • the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any one of the foregoing aspects according to the instruction.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a computer-readable storage medium stores an instruction, and when the instruction is executed by a communication device, the communication device realizes the method described in any one of the foregoing aspects.
  • a computer program product containing instructions is provided.
  • the instructions are executed by a communication device, the communication device realizes the method described in any of the foregoing aspects.
  • the technical effects brought about by any one of the design methods of the third aspect to the seventh aspect can be referred to the technical effects brought about by the different design methods of the first aspect or the second aspect, which will not be repeated here.
  • a communication system in an eighth aspect, includes a communication device for implementing the method described in the first aspect and a communication device for implementing the method described in the second aspect.
  • Figure 1 is a schematic diagram of the 4-step RACH process provided by an embodiment of the application.
  • Fig. 2 is a schematic diagram of a 2-step RACH process provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of the architecture of a communication system provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another structure of a terminal device provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • Fig. 7 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • spectrum resources can be divided into two types according to their types, namely, licensed spectrum (also called unshared spectrum) and unlicensed spectrum (also called shared spectrum).
  • licensed spectrum also called unshared spectrum
  • unlicensed spectrum also called shared spectrum.
  • Licensed spectrum can only be used by a specific operator in a certain place, while unlicensed spectrum can be used by any operator and is a shared spectrum resource.
  • the embodiments of this application mainly focus on unlicensed spectrum.
  • LBT refers to a channel access process to be performed by the device before data transmission. If the channel access process is completed, it is determined that the LBT is successful and the data transmission can be performed; if the channel access process is not completed, it is determined that the LBT has failed and the data transmission cannot be performed.
  • the channel access process includes two types: The first type of channel access process is a channel access process based on energy detection of a fixed duration. Within a fixed duration, the device detects the signal strength on unlicensed spectrum resources. If it is greater than the preset Threshold, the channel is considered busy, otherwise the channel is considered idle.
  • the second type of channel access process is a channel access process based on the fallback mechanism. The device randomly selects a value A from the contention window [minimum, maximum] and performs energy detection. Only when at least A detection time slots are detected The channel is considered to be idle only after the reference signal receiving strength of is less than or equal to the preset threshold, otherwise the channel is considered to be busy. The device determines that the channel access process is completed only when the channel is free before data transmission, or the LBT is successful, and data transmission can be performed; otherwise, it determines that the channel access process is not completed or the LBT has failed.
  • the device For energy detection in the access process of the above two types of channels, the device needs to receive signals in all directions, and then measure these signals to obtain signal strength. This detection based on all directions can also be called an omnidirectional channel access process. In the other way, the device only receives signals in partial directions, and then measures the signals in these partial directions to obtain signal strength in partial directions. This partial-direction detection can also be called a partial-direction-based channel access process.
  • the channel access process based on omnidirectional is generally mainly used in low frequency, and the channel access process based on partial directions is generally used in high frequency, because the path loss of high frequency is large, in order to compensate the path loss , Will use directional transmission (beam-based transmission), and the different directions are independent of each other, and there is basically no interference.
  • the terminal device can initiate random access in a variety of possible scenarios.
  • the multiple possible scenarios can include at least one of the following scenarios: (1) The state of the terminal device is controlled from the radio resource ( radio resource control (RRC) initial access initiated in idle state. (2) After the wireless link between the terminal device and the network device fails, the terminal device and the network device initiate random access when the RRC connection is re-established. (3) When a terminal device needs to establish uplink synchronization with a new cell, it initiates random access. (4) When the terminal device is in the RRC connected state and the uplink is not synchronized, if uplink or downlink data arrives, random access is initiated.
  • RRC radio resource control
  • Random access is initiated when the terminal device is in the RRC connected state but has not yet been configured with dedicated resources for sending scheduling requests on the physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • Random access is initiated when the scheduling request fails.
  • Random access is initiated when RRC requests during synchronous reconfiguration.
  • Random access is initiated when the state of the terminal device switches from the RRC inactive state to the RRC connected state.
  • Random access is initiated when time alignment is established when adding a second cell.
  • Random access is initiated when requesting other system information except for the master information block (MIB) and system information block (SIB).
  • MIB master information block
  • SIB system information block
  • Random access is initiated when the beam fails to recover.
  • (4) Random access is initiated when the consistent uplink LBT fails.
  • the random access involved in this application may include four-step random access (or four-step random access channel, hereinafter referred to as 4-step random access channel (random access channel, RACH) or two-step random access channel). Random access (or two-step random access channel, hereinafter referred to as 2-step RACH).
  • RACH random access channel
  • 2-step RACH two-step random access channel
  • FIG. 1 is a schematic diagram of a 4-step RACH process provided by an embodiment of the application.
  • the 4-step RACH has been defined in detail in the existing technical specification (TS) 38.300, which is only briefly described in this application. Please refer to Figure 1.
  • the method may include the following steps:
  • the terminal device sends MSG1 (or called Msg1, or called msg1) to the network device.
  • Msg1, or called msg1 the network device receives MSG1 from the terminal device.
  • MSG1 is used to transmit a random access preamble (or called a random access preamble sequence or called a preamble, hereinafter referred to as a preamble for short, and may also be called a preamble sequence).
  • a preamble for short, and may also be called a preamble sequence.
  • PRACH resources the preamble and the time-frequency resources occupied by the transmission of the preamble.
  • the network device can broadcast the available PRACH resources, and the terminal device can select a preamble and send the preamble on the corresponding time-frequency resource.
  • a network device can broadcast available PRACH resources through system information.
  • the network device sends MSG2 (or called Msg2, or called msg2) to the terminal device.
  • Msg2 or called Msg2
  • msg2 or called Msg2
  • MSG2 contains the time-frequency resource that the network device determines to the terminal device to send the payload (payload).
  • the terminal device sends MSG3 (or called Msg3, or called msg3) to the network device.
  • Msg3, or called msg3 the network device receives MSG3 from the terminal device.
  • MSG3 is the first scheduled transmission in the random access process, and is used to send a payload.
  • MSG3 may include an RRC connection request message, a tracking area update message, and so on.
  • the network device sends MSG4 (or called Msg4, or called msg4) to the terminal device.
  • Msg4 or called Msg4
  • the terminal device receives MSG4 from the network device.
  • MSG4 is used to indicate whether the terminal device successfully accesses the network device. If the terminal device does not receive the MSG4 for itself during the running of the contention resolution timer, the step S101 is executed.
  • the terminal device and the network device need to perform signaling interactions four times, resulting in high signaling overhead and high communication delay.
  • Fig. 2 is a schematic diagram of a 2-step RACH process provided by an embodiment of the application. Please refer to Figure 2.
  • the method may include the following steps:
  • the terminal device sends msgA (or called MsgA, or called MSGA) to the network device.
  • the network device receives the msgA from the terminal device.
  • msgA includes preamble and payload (for example, RRC connection request message, tracking area update message, etc.).
  • the network device sends msgB (or called MsgB, or called MSGB) to the terminal device.
  • the terminal device receives the msgB from the network device.
  • msgB is used to indicate whether the terminal device has successfully accessed the network device.
  • msgB includes a fallback random access response (RAR) and a success RAR.
  • the fallback RAR is sent when the network device successfully decodes the preamble but fails to decode the payload.
  • Success RAR is sent when the network device successfully decodes the preamble and payload.
  • the terminal device When the terminal device receives the success RAR, it is considered that the random access is complete; when the terminal device receives the fallback RAR, it transmits the payload again (similar to msg3). If the network device successfully decodes the payload, it will send a contention resolution message to the terminal device ( Similar to msg4), if the terminal device does not receive the contention resolution message, then execute S201.
  • the step of S201 is executed.
  • the terminal device and the network device need to perform two signaling interactions.
  • the signaling overhead is reduced and the communication delay is reduced.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect.
  • words such as “first” and “second” do not limit the quantity and order of execution, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiment of the application may be applicable to an LTE system or a new radio (NR) system, and may also be applicable to other new future-oriented systems, etc., which is not specifically limited in the embodiment of the application.
  • NR new radio
  • system can be replaced with "network”.
  • the communication system 30 includes a network device 40 and one or more terminal devices 50 connected to the network device 40.
  • the terminal device 50 is connected to the network device 40 in a wireless manner.
  • different terminal devices 50 can communicate with each other.
  • the terminal device 50 may be a fixed location, or it may be movable.
  • FIG. 3 is only a schematic diagram.
  • the communication system 30 may also include other network equipment.
  • the communication system 30 may also include core network equipment, wireless relay equipment, and wireless backhaul equipment.
  • the network device can be connected to the core network device in a wireless or wired manner.
  • the core network device and the network device 40 can be separate and different physical devices, or they can integrate the functions of the core network device and the logical functions of the network device 40 on the same physical device, or they can integrate parts on one physical device.
  • the functions of the core network equipment and the functions of part of the network equipment 40 are not specifically limited in the embodiment of the present application.
  • the terminal device 50 obtains the first information and sends the first information to the network device 40.
  • the first information is the terminal device. 50 Random access failure information that occurs during random access.
  • the first information is used to update or optimize one or more of the following: random access configuration, uplink LBT failure configuration, or bandwidth part (BWP) configuration.
  • the network device 40 receives the first information from the terminal device, and according to the first information, updates or optimizes one or more of the following: random access configuration, uplink LBT failure configuration, or BWP configuration.
  • the specific implementation of this solution will be described in detail in the subsequent method embodiments, and will not be repeated here.
  • the terminal device can report the random access failure information that occurs when the terminal device performs random access to the network device, so that the network device can report the random access failure information that occurs when the terminal device performs random access.
  • the entry failure information updates one or more of the random access configuration, the uplink LBT failure configuration, or the BWP configuration, so that the random access configuration, the uplink LBT failure configuration, or the BWP configuration can be optimized.
  • Optimizing random access configuration or BWP configuration can reduce the delay of consistent UL LBT failure recovery; optimizing uplink LBT failure configuration can delay the occurrence of consistent UL LBT failure or avoid consistent UL LBT failure.
  • Reducing the time delay of consistent UL LBT failure recovery or delaying the occurrence of consistent UL LBT failure or avoiding consistent UL LBT failure can improve data transmission efficiency. Therefore, based on the communication system provided by the embodiments of the present application, data transmission efficiency can be improved.
  • the network device 40 in the embodiment of the present application is a device that connects the terminal device 50 to the wireless network, and may be a base station (base station), an evolved base station (evolved NodeB, eNodeB), and a transmitting and receiving point. (transmission reception point, TRP), the next generation NodeB (gNB) in the 5G mobile communication system, the base station in the future mobile communication system, or the access in the wireless-fidelity (Wi-Fi) system Node, etc.; it may also be a module or unit that completes part of the functions of the base station, for example, it may be a centralized unit (CU) or a distributed unit (DU).
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • network equipment refers to wireless access network equipment.
  • the terminal device 50 in the embodiment of the present application may be a device used to implement wireless communication functions, such as a terminal or a chip that can be used in a terminal.
  • the terminal may also be called user equipment (UE), mobile station, mobile terminal, and so on.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the world, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 40 and the terminal device 50 in the embodiments of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons, and man-made aircraft. On the satellite.
  • the embodiment of the present application does not limit the application scenarios of the network device 40 and the terminal device 50.
  • the network device 40 and the terminal device 50 in the embodiment of the present application may communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the network equipment 40 and the terminal equipment 50 can communicate through the frequency spectrum below 6 gigahertz (gigahertz, GHz), communicate through the frequency spectrum above 6 GHz, and communicate using the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the network device 40 and the terminal device 50.
  • the network device 40 and the terminal device 50 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 4 it is a schematic structural diagram of the network device 40 and the terminal device 50 provided in the embodiment of this application.
  • the terminal device 50 includes at least one processor 501 and at least one transceiver 503.
  • the terminal device 50 may further include at least one memory 502, at least one output device 504, or at least one input device 505.
  • the processor 501, the memory 502, and the transceiver 503 are connected through a communication line.
  • the communication line may include a path to transmit information between the above-mentioned components.
  • the processor 501 may be a general-purpose central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), on-site Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the general-purpose processor may be a microprocessor or any conventional processor.
  • the processor 501 may also include multiple CPUs, and the processor 501 may be a single-core processor or a multi-core processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data.
  • the memory 502 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions.
  • the dynamic storage device can also be programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory) , EEPROM), compact disc (read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other Magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 502 may exist independently, and is connected
  • the memory 502 is used to store computer-executable instructions for executing the solution of the present application, and the processor 501 controls the execution.
  • the processor 501 is configured to execute computer-executable instructions stored in the memory 502, so as to implement the communication method described in the embodiment of the present application.
  • the processor 501 may also perform processing-related functions in the communication method provided in the following embodiments of the present application, and the transceiver 503 is responsible for communicating with other devices or communication networks.
  • the embodiment does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 503 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 503 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 504 communicates with the processor 501 and can display information in a variety of ways.
  • the output device 504 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 505 communicates with the processor 501 and can accept user input in a variety of ways.
  • the input device 505 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • the network device 40 includes at least one processor 401, at least one transceiver 403, and at least one network interface 404.
  • the network device 40 may further include at least one memory 402.
  • the processor 401, the memory 402, the transceiver 403, and the network interface 404 are connected through a communication line.
  • the network interface 404 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 4) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • the relevant description of the processor 401, the memory 402, and the transceiver 403 reference may be made to the description of the processor 501, the memory 502, and the transceiver 503 in the terminal device 50, which will not be repeated here.
  • FIG. 5 is a specific structural form of the terminal device 50 provided in an embodiment of the application.
  • the functions of the processor 501 in FIG. 4 may be implemented by the processor 110 in FIG. 5.
  • the function of the transceiver 503 in FIG. 4 may be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 5.
  • the mobile communication module 150 may provide solutions for wireless communication technologies such as LTE, NR, or future mobile communication that are applied to the terminal device 50.
  • the wireless communication module 160 can provide applications on the terminal device 50 including WLAN (such as WiFi network), Bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), Solutions for wireless communication technologies such as near field communication (NFC) and infrared.
  • WLAN such as WiFi network
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • Solutions for wireless communication technologies such as near field communication (NFC) and infrared.
  • the antenna 1 of the terminal device 50 is coupled with the mobile communication module 150
  • the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 50 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 502 in FIG. 4 may be implemented by an external memory connected to the internal memory 121 or the external memory interface 120 in FIG. 5.
  • the function of the output device 504 in FIG. 4 may be implemented by the display screen 194 in FIG. 5.
  • the function of the input device 505 in FIG. 4 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 5.
  • the terminal device 50 may also include an audio module 170, a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141, and a battery 142.
  • an audio module 170 may also include a microphone 192, a microphone 192, a microphone 192, a speaker 192, a microphone 192, a microphone 192, a speaker 192, the terminal device 50 may also include an audio module 170, a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141, and a battery 142.
  • an audio module 170 a camera 193, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, a power management module 141, and a battery 142.
  • the structure shown in FIG. 5 does not constitute a specific limitation on the terminal device 50.
  • the terminal device 50 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the communication method includes steps S601 to S603.
  • the terminal device obtains first information, where the first information is random access failure information that occurs when the terminal device performs random access.
  • the terminal device sends the first information to the network device.
  • the network device receives the first information from the terminal device.
  • the network device updates one or more of the following according to the first information: random access configuration, uplink LBT failure configuration, or BWP configuration.
  • the random access configuration includes one or more of the following:
  • PRACH configuration of the preamble in the 2-step random access (PRACH configuration).
  • the PRACH configuration of the preamble in the 2-step random access includes the time-frequency resources used by the preamble and/or transmission of the preamble in the 2-step random access.
  • the PRACH configuration of the preamble in the 4-step random access includes the time-frequency resources used for the preamble and/or transmission of the preamble in the 4-step random access.
  • the PRACH configuration in 1) and 2) above includes one or more of the following:
  • the root sequence index is used to configure the starting root sequence of the root sequence used by the cell or synchronization signal block (synchronization signal and physical paging channel block, SSB) or channel state information reference signal (channel-state information-reference signal, CSI-RS)
  • the logical sequence number is used to configure the starting root sequence of the root sequence used by the cell or synchronization signal block (synchronization signal and physical paging channel block, SSB) or channel state information reference signal (channel-state information-reference signal, CSI-RS)
  • the logical sequence number is generated by the cyclic shift of one or more root Zadoff-Chu sequences (ZC sequences), and the root sequence used by the cell or SSB or CSI-RS
  • the logical sequence number of the initial root sequence is configured by the parameter of root sequence index. When the value of the parameter of the root sequence index is determined, the root sequence used by the cell or SSB or CSI-RS is determined.
  • the root sequence index of two cells or SSB or CSI-RS When the value of the root sequence index of two cells or SSB or CSI-RS is different, the root sequences used by the two cells or SSB or CSI-RS are different, and then the two cells or SSB or CSI-RS are available
  • the preamble is different.
  • the value of the parameter of the root sequence index of cell 1 or SSB1 or CSI-RS1 is 1
  • the value of the parameter of the root sequence index of cell 2 or SSB2 or CSI-RS2 is 2.
  • the ZC sequence used in RS1 to generate the preamble is the ZC sequence corresponding to the root sequence index of the root sequence index in the root sequence index comparison table, and the ZC sequence corresponding to the root sequence index in cell 2 or SSB2 or CSI-RS2
  • the ZC sequence used to generate the preamble is the ZC sequence corresponding to the root sequence index whose parameter value is 2 in the root sequence index comparison table.
  • the zero correlation area configuration is used to indicate the index value of the cyclic shift configuration used when the PRACH preamble is generated. Among them, when the value of the zero correlation area configuration is determined, the cyclic shift used when generating the preamble is determined, and then the preamble available for the cell or SSB or CSI-RS is determined. When two cells or SSB or CSI-RS use the same root sequence to generate the preamble, if different zero correlation area configurations are used, the available preambles for the two small cells or SSB or CSI-RS are different.
  • the high-speed status is used to determine whether the cell is a high-speed cell or whether the SSB is a high-speed SSB or whether the CSI-RS is a high-speed CSI-RS.
  • the root sequence used to generate the preamble is different between the high-speed cell or SSB or CSI-RS and the non-high-speed cell or SSB or CSI-RS. For example, if cell 1 is a high-speed cell and cell 2 is a non-high-speed cell, the root sequences used when generating the preamble are different in the two cells, and the preambles available to the two cells are different. Or, if SSB1 is a high-speed SSB and SSB2 is a non-high-speed SSB, the root sequences used when the two SSBs generate the preamble are different, and the preambles available for the two SSBs are different.
  • CSI-RS1 is a high-speed CSI-RS
  • CSI-RS2 is a non-high-speed CSI-RS
  • the two CSI-RSs use different root sequences when generating the preamble, and the preambles available for the two CSI-RS are different.
  • the frequency offset is used to indicate the index of the first resource block (resource block, RB) in which the terminal device sends the preamble. For example, if the frequency offset of cell 1 or SSB1 or CSI-RS1 is 1, and the frequency offset of cell 2 or SSB2 or CSI-RS2 is 2, then the start RB used to transmit the preamble in cell 1 or SSB1 or CSI-RS1 It is the first RB, and the RB used to transmit the preamble in cell 2 or SSB2 or CSI-RS2 is the second RB.
  • the configuration index is used to indicate the time domain resource and the preamble format for the terminal device to send the preamble. For example, if the configuration index of cell 1 or SSB1 or CSI-RS1 is 1, and the configuration index of cell 2 or SSB2 is 2, then the time-frequency resource used to transmit the preamble in cell 1 or SSB1 is the one in the random access configuration index comparison table.
  • the configuration index is the time-frequency resource corresponding to the configuration index whose value is 1, and the time-domain resource used to transmit the preamble in cell 2 or SSB2 corresponds to the configuration index whose configuration index value is 2 in the random access configuration index comparison table Time-frequency resources. When two cells or SSBs use different configuration indexes, the time domain resources used by the two cells or SSBs to transmit the preamble are different.
  • the correspondence between the SSB and the random access resource is used to indicate the number of SSBs corresponding to a random access resource.
  • the correspondence between CSI-RS and random access resource is used to indicate the number of CSI-RS corresponding to one random access resource.
  • Indication information used to indicate whether it is possible to fall back from 2-step random access to 4-step random access.
  • Transmission power control parameters (RA transmission power control parameters) in 2-step random access.
  • the BWP configuration includes: whether to configure random access resources for the terminal device on the BWP.
  • the uplink LBT failure configuration is used to monitor consistent UL LBT failure, and includes one or more of the following parameters: uplink LBT failure timer, uplink LBT failure counter, and energy detection threshold.
  • the terminal device detects whether a consistent UL LBT failure occurs through a timer (such as an uplink LBT failure timer) and a counter (such as an uplink LBT failure counter). Among them, every time a UL LBT failure is determined to occur, the counter is incremented by 1, and the timer is restarted. If the counter reaches the maximum preset number of times, it is determined that a consistent UL LBT failure has occurred. When the timer times out, it means that there is no data scheduling or the UL LBT has succeeded one or more times, so the counter needs to be reset, because the counter is used to count the number of consistent UL LBT failures.
  • the first information includes one or more of the following: BWP switching times information, at least one BWP identification information, or at least one BWP random access statistics information.
  • the terminal device may switch the BWP during the recovery of the consistent uplink LBT failure to recover from the consistent uplink LBT failure.
  • the BWP switching times information is used to indicate the number of BWP switching times that the terminal device has performed before the consistent uplink LBT recovery is completed.
  • the terminal equipment consistent uplink LBT failure recovery is completed. For example, assuming that the currently activated BWP is BWP1, the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful, then the BWP switching times information can be regarded as 3 at this time, that is, the terminal device is in the same Before the uplink LBT failure recovery is completed, 3 BWP handovers have been performed.
  • the terminal device performs BWP switching too many times, it means that the random access configuration may not be reasonable.
  • Some BWPs may not need to configure random access resources or the random access configuration on some BWPs needs to be optimized. .
  • At least one BWP identification information is used to indicate the BWP that the terminal device has performed consistent uplink LBT failure recovery before the consistent uplink LBT failure recovery is completed. For example, assuming that the currently activated BWP is BWP1, the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful, then at least one BWP identification information includes identification information of BWP2 and identification information of BWP3 And the identification information of the BWP4, that is, the BWPs that have performed the consistent uplink LBT failure recovery before the terminal device completes the consistent uplink LBT failure recovery include BWP2, BWP3, and BWP4.
  • the consistent uplink LBT failure recovery in the embodiment of the present application may be a four-step random access process or a two-step random access process or a scheduling request process, which is not specifically limited in the embodiment of the present application. If too much BWP identification information is carried, it means that the random access configuration or scheduling request configuration may not be reasonable. Some BWPs may not need to configure random access resources (or scheduling request resources) or random access configuration on some BWPs. (Or scheduling request configuration) needs to be optimized.
  • the random access statistics information of at least one BWP is used to indicate the random access statistics information of the terminal device on the BWP that has undergone consistent uplink LBT failure recovery before the consistent uplink LBT failure recovery is completed.
  • at least one BWP here is a BWP that the terminal device has already performed consistent uplink LBT failure recovery before the consistent uplink LBT failure recovery is completed.
  • the random access statistics information of each BWP in at least one BWP includes one or more of the following:
  • the SSB that the terminal device has tried on the corresponding BWP refers to that the terminal device has used the SSB for random access on the corresponding BWP before the consistent uplink LBT recovery is completed. Specifically, the SSB has been used.
  • the corresponding random access resource sends the preamble to the network device.
  • the CSI-RS that the terminal device has tried on the corresponding BWP means that the terminal device has used the CSI-RS for random access on the corresponding BWP before the consistent uplink LBT failure recovery is completed. Specifically, the CSI-RS has been used
  • the corresponding random access resource sends the preamble to the network device.
  • the identification information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP may be one or more, which is not specifically limited in the embodiment of the present application.
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the identification information of the SSB that the device has tried on the corresponding BWP includes: identification information of BWP2: identification information of SSB1 and identification information of SSB2; identification information of BWP3: identification information of SSB1; identification information of BWP4: identification information of SSB1. It should be noted that the number of the identification information of the SSB is independently numbered for each BWP, and all BWPs will have SSB1. The network equipment can only distinguish which BWP a SSB1 corresponds to based on the reported identification information of the BWP, which is explained here. I won't repeat them below.
  • the uplink transmission can only be performed on the activated BWP, and the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is restored from BWP1 is switched to BWP2, and random access is performed on BWP2, but the random access on BWP2 fails, and the activation of the BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but random access on BWP3 If the access fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the identification information of the CSI-RS that the terminal device has tried on the corresponding BWP includes: identification information of BWP2: identification information of CSI-RS1 and identification information of CSI-RS2; identification information of BWP3: CSI-RS1 identification information; BWP4 identification information: CSI-RS1 identification information.
  • the number of the CSI-RS identification information is independently numbered for each BWP, and all BWPs will have CSI-RS1, and the network device can only distinguish which BWP a CSI-RS1 corresponds to based on the reported BWP identification information ,
  • I won’t repeat it in the following.
  • the network device may optimize the selection threshold of SSB or CSI-RS in the random access configuration according to the identification information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP
  • the network device can determine whether to configure random access resources on the BWP according to the identification information of the SSB and/or CSI-RS tried on a certain BWP, which is not specifically limited in this embodiment of the application.
  • the frequency point information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP may be one or more, which is not specifically limited in the embodiment of the present application.
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the frequency point information of SSB1 is frequency point 1
  • the frequency point information of SSB2 is frequency point 2.
  • the terminal equipment uses SSB1 for random access on BWP3, and the frequency point information of SSB1 is frequency point 3.
  • the terminal device fails to use SSB1 for random access on BWP4, and uses SSB2 for random access successfully.
  • the frequency information of SSB1 is frequency 4, and the frequency information of SSB2 is frequency 5.
  • the frequency information of the SSB that the terminal device has tried on the corresponding BWP includes: identification information of BWP2: identification information of SSB1-frequency 1, identification information of SSB2-frequency 2; identification information of BWP3: identification information of SSB1- Frequency point 3; identification information of BWP4: identification information of SSB1-frequency point 4.
  • identification information of BWP2 identification information of SSB1-frequency 1, identification information of SSB2-frequency 2
  • identification information of BWP3 identification information of SSB1- Frequency point 3
  • identification information of BWP4 identification information of SSB1-frequency point 4.
  • the number of the identification information of the SSB is independently numbered for each BWP, and all BWPs will have SSB1.
  • the network equipment can only distinguish which BWP a SSB1 corresponds to based on the reported identification information of the BWP, which is explained here. I won't repeat them below.
  • the uplink transmission can only be performed on the activated BWP, and the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is restored from BWP1 is switched to BWP2, and random access is performed on BWP2, but the random access on BWP2 fails, and the activation of the BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but random access on BWP3 If the access fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the frequency point information of CSI-RS1 is frequency point 1
  • the frequency point information of CSI-RS2 is frequency point 2.
  • the terminal equipment uses CSI-RS1 for random access on BWP3, and the frequency point information of CSI-RS1 is frequency point 3.
  • the terminal device fails to perform random access using CSI-RS1 on BWP4, and uses CSI-RS2 to perform random access successfully.
  • the frequency information of CSI-RS1 is frequency 4, and the frequency information of CSI-RS2 is frequency 5.
  • the frequency information of the CSI-RS that the terminal device has tried on the corresponding BWP includes: identification information of BWP2: identification information of CSI-RS1-frequency 1, identification information of CSI-RS2-frequency 2; identification information of BWP3 : CSI-RS1 identification information-frequency 3; BWP4 identification information: CSI-RS1 identification information-frequency 4.
  • identification information of BWP2 identification information of CSI-RS1-frequency 1, identification information of CSI-RS2-frequency 2
  • identification information of BWP3 CSI-RS1 identification information-frequency 3
  • BWP4 identification information CSI-RS1 identification information-frequency 4.
  • the number of the CSI-RS identification information is independently numbered for each BWP, and all BWPs will have CSI-RS1, and the network device can only distinguish which BWP a CSI-RS1 corresponds to based on the reported BWP identification information ,
  • I won’t repeat it in the following.
  • the network device can optimize the selection of SSB or CSI-RS in the random access configuration according to the frequency information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP. Threshold; or, the network device can determine whether to configure random access resources on the BWP according to the frequency information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP.
  • Threshold the network device can determine whether to configure random access resources on the BWP according to the frequency information of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP.
  • the preamble that the terminal device has tried on the corresponding BWP refers to that the terminal device has used the preamble to perform random access on the corresponding BWP before the consistent uplink LBT recovery is completed.
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device switches from BWP1 to BWP2 , And perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device switches from BWP2 to BWP3, and performs random access on BWP3, but the random access on BWP3 fails, The activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the terminal device uses preamble 1 and preamble 2 on BWP2 for random access; terminal device uses preamble 3 on BWP3 for random access; terminal device uses preamble 4 on BWP4 for random access failure, and uses preamble 5 for random access
  • the number of preambles that the terminal device has tried on the corresponding BWP includes: identification information of BWP2: 2; identification information of BWP3: 1; identification information of BWP4: 1.
  • a 2-step random access process or a 4-step random access may be adopted, which is not specifically limited in the embodiment of the application.
  • the preamble used by the terminal device on the BWP may be associated with a different SSB or CSI-RS.
  • the preamble 1 used by the terminal device on BWP2 may be associated with SSB1 or CSI-RS1
  • the preamble 2 used by the terminal device on BWP2 may be associated with SSB2 or CSI-RS2, which is not specifically limited in the embodiment of the application.
  • the network device can optimize the resource configuration in the random access configuration according to the number of preambles that the terminal device has tried on a certain BWP; or, the network device can optimize the resource configuration in the random access configuration according to the terminal device
  • the number of preambles tried on the BWP determines whether to configure random access resources on the BWP, which is not specifically limited in the embodiment of the application.
  • the terminal device has tried on the corresponding BWP
  • the preamble 1 used by the terminal device on BWP2 may be associated with SSB1
  • the preamble 2 used by the terminal device on BWP2 may be associated with SSB2
  • the terminal device The number of preambles under SSB1 tried on BWP1 is 1, and the number of preambles under SSB2 tried on BWP1 is one.
  • the terminal device on BWP2 may be associated with CSI-RS1
  • the preamble 2 used by the terminal device on BWP2 may be associated with CSI-RS2
  • the number of preambles under CSI-RS2 that the terminal device has tried on BWP1 is 1.
  • the network device may optimize the resource configuration in the random access configuration according to the number of preambles under the SSB and/or CSI-RS that the terminal device has tried on a certain BWP; or, The network device may determine whether to configure random access resources on a BWP according to the number of preambles under the SSB and/or CSI-RS that the terminal device has tried on a certain BWP, which is not specifically limited in the embodiment of the present application.
  • the signal quality in the embodiment of the present application may include, for example, reference signal receiving power (RSRP) or reference signal receiving quality (RSRQ), which is not specifically limited in the embodiment of the present application.
  • RSRP reference signal receiving power
  • RSRQ reference signal receiving quality
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the terminal device uses SSB1 and SSB2 for random access on BWP2, the signal quality on SSB1 is RSRP1, and the signal quality on SSB2 is RSRP2.
  • the terminal equipment uses SSB1 for random access on BWP3, and the signal quality on SSB1 is RSRP3.
  • the terminal device fails to use SSB1 for random access on BWP4, and uses SSB2 for random access successfully.
  • the signal quality on SSB1 is RSRP 4
  • the signal quality on SSB2 is RSRP5.
  • the signal quality of the SSB that the terminal device has tried on the corresponding BWP includes: identification information of BWP2: identification information of SSB1-RSRP1, identification information of SSB2-RSRP2; identification information of BWP3: identification information of SSB1-RSRP3; identification of BWP4 Information: Identification information of SSB1-RSRP4. It should be noted that the number of the identification information of the SSB is independently numbered for each BWP, and all BWPs will have SSB1. The network equipment can only distinguish which BWP a SSB1 corresponds to based on the reported identification information of the BWP, which is explained here. I won't repeat them below.
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • the signal quality on CSI-RS1 is RSRP1
  • the signal quality on CSI-RS2 is RSRP2.
  • the terminal equipment uses CSI-RS1 for random access on BWP3, and the signal quality on CSI-RS1 is RSRP3.
  • the terminal device fails to use CSI-RS1 for random access on BWP4, and uses CSI-RS2 for random access successfully.
  • the signal quality on CSI-RS1 is RSRP 4, and the signal quality on CSI-RS2 is RSRP5.
  • the signal quality of the CSI-RS that the terminal device has tried on the corresponding BWP includes: BWP2 identification information: CSI-RS1 identification information-RSRP1, CSI-RS2 identification information-RSRP2; BWP3 identification information: CSI-RS1 Identification information-RSRP3; BWP4 identification information: CSI-RS1 identification information-RSRP4.
  • BWP2 identification information CSI-RS1 identification information-RSRP1, CSI-RS2 identification information-RSRP2
  • BWP3 identification information CSI-RS1 Identification information-RSRP3
  • BWP4 identification information CSI-RS1 identification information-RSRP4.
  • the number of the CSI-RS identification information is independently numbered for each BWP, and all BWPs will have CSI-RS1, and the network device can only distinguish which BWP a CSI-RS1 corresponds to based on the reported BWP identification information ,
  • I won’t repeat it in the following.
  • the network device may optimize the SSB or CSI-RS selection threshold in the random access configuration according to the signal quality of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP
  • the network device may determine whether to configure random access resources on the BWP according to the signal quality of the SSB and/or CSI-RS that the terminal device has tried on a certain BWP, which is not specifically limited in this embodiment of the application.
  • the uplink transmission can only be performed on the activated BWP.
  • the terminal device determines that the consistent uplink LBT of BWP1 has failed, and in the process of recovering from the consistent uplink LBT failure, if the activated BWP of the terminal device is switched from BWP1 Go to BWP2 and perform random access on BWP2, but the random access on BWP2 fails, the activated BWP of the terminal device is switched from BWP2 to BWP3, and random access is performed on BWP3, but the random access on BWP3 If it fails, the activated BWP of the terminal device is switched from BWP3 to BWP4, and random access is performed on BWP4, and the random access on BWP4 is successful.
  • one random access is 2-step random access
  • the other random access is 4-step random access.
  • the reason for the failure of 2-step random access may be due to 2-step random access.
  • Random access preamble is generated.
  • the reason for the 4-step random access failure is not due to the 4-step random access preamble. It can be learned that there is a 2-step random access preamble competition on BWP2. There is preamble competition for 4-step random access.
  • the network equipment may optimize the resource configuration in the random access configuration according to whether there is a preamble of 2-step random access or the preamble of 4-step random access on a certain BWP; or, The network device can determine whether to configure random access resources on the BWP according to whether there is a preamble of 2-step random access or the preamble of 4-step random access on a certain BWP, which is not specifically limited in this embodiment of the application.
  • the description of the number of preambles used by the terminal device in the 2-step random access that the terminal device has tried on the corresponding BWP can refer to the description of the number of preambles that the terminal device has tried on the corresponding BWP.
  • the difference is, for example, the above terminal.
  • the preamble that the device has tried on the corresponding BWP may be used for 2-step random access or 4-step random access.
  • only the number of preambles used by the terminal device for 2-step random access tried on the corresponding BWP is counted. That's it, I won't repeat it here.
  • the network device may optimize the resource configuration in the random access configuration according to the number of preambles used by the terminal device in the 2-step random access that the terminal device has tried on a certain BWP; or The device can determine whether to configure random access resources on the BWP according to the number of preambles used by the 2-step random access that the terminal device has tried on a certain BWP, which is not specifically limited in this embodiment of the application.
  • the description of the number of preambles used by the terminal device in the 4-step random access that the terminal device has tried on the corresponding BWP can refer to the description of the number of preambles that the terminal device has tried on the corresponding BWP.
  • the difference is, for example, the above terminal.
  • the preamble that the device has tried on the corresponding BWP may be used for 2-step random access or 4-step random access, here only the number of preambles used by the 4-step random access that the terminal device has tried on the corresponding BWP needs to be counted That's it, I won't repeat it here.
  • the network device may optimize the resource configuration in the random access configuration according to the number of preambles used by the 4-step random access that the terminal device has tried on a certain BWP; or The device can determine whether to configure random access resources on the BWP according to the number of preambles used by the 4-step random access that the terminal device has tried on a certain BWP, which is not specifically limited in this embodiment of the application.
  • the terminal device uses the 4-step random access configuration to perform 4-step random access. It can be considered that the BWP has a fallback from 2-step random access to 4-step random access.
  • the network device can optimize the resource configuration in the random access configuration according to whether a fallback from 2-step random access to 4-step random access occurs in a certain BWP; or, the network equipment can be based on Whether a fallback from 2-step random access to 4-step random access occurs for a certain BWP is determined whether to configure random access resources on the BWP, which is not specifically limited in this embodiment of the application.
  • the terminal device can report the random access failure information that occurs when the terminal device performs random access to the network device, so that the network device can update the random access failure information that occurs when the terminal device performs random access.
  • One or more of the random access configuration, the uplink LBT failure configuration, or the BWP configuration can optimize the random access configuration, the uplink LBT failure configuration, or the BWP configuration. Optimizing random access configuration or BWP configuration can reduce the delay of consistent UL LBT failure recovery; optimizing uplink LBT failure configuration can delay the occurrence of consistent UL LBT failure or avoid consistent UL LBT failure.
  • Reducing the time delay of consistent UL LBT failure recovery or delaying the occurrence of consistent UL LBT failure or avoiding consistent UL LBT failure can improve data transmission efficiency. Therefore, based on the communication method provided by the embodiment of the present application, the data transmission efficiency can be improved.
  • the actions of the network device in the above steps S601 to S603 can be executed by the processor 401 in the network device 40 shown in FIG. 4 calling the application code stored in the memory 402; the actions of the terminal device in the above steps S601 to S603 The action may be executed by the processor 501 in the terminal device 50 shown in FIG. 4 by calling the application code stored in the memory 502.
  • the methods and/or steps implemented by the network device can also be implemented by components (such as chips or circuits) that can be used in the network device; the methods and/or steps implemented by the terminal device, It can also be implemented by components (such as chips or circuits) that can be used in terminal devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or include the foregoing A device of a network device, or a component that can be used for a network device, it can be understood that, in order to realize the above-mentioned functions, the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 7 shows a schematic structural diagram of a communication device 70.
  • the communication device 70 includes a transceiver module 701 and a processing module 702.
  • the transceiver module 701 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 702 is configured to obtain first information, where the first information is random access failure information that occurs when the terminal device performs random access;
  • the module 701 is configured to send first information to a network device, where the first information is used to update one or more of the following: random access configuration, uplink LBT failure configuration, or BWP configuration.
  • the transceiver module 701 is configured to receive first information from the terminal device, and the first information is the random access that occurs when the terminal device performs random access.
  • Failure information The processing module 702 is configured to update one or more of the following according to the first information: random access configuration, uplink LBT failure configuration, or BWP configuration.
  • the communication device 70 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device 70 may adopt the form of the terminal device 50 shown in FIG. 4.
  • the processor 501 in the terminal device 50 shown in FIG. 4 may invoke the computer execution instruction stored in the memory 502, so that the terminal device 50 executes the communication method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 701 and the processing module 702 in FIG. 7 may be implemented by the processor 501 in the terminal device 50 shown in FIG. 4 calling the computer execution instructions stored in the memory 502.
  • the implementation process can be implemented by the transceiver 503 in the terminal device 50 shown in FIG. 4.
  • the communication device 70 may adopt the form of the network device 40 shown in FIG. 4.
  • the processor 401 in the network device 40 shown in FIG. 4 may invoke the computer execution instructions stored in the memory 402 to make the network device 40 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 701 and the processing module 702 in FIG. 7 can be implemented by the processor 401 in the network device 40 shown in FIG. 4 calling the computer execution instructions stored in the memory 402.
  • the implementation process can be implemented by the transceiver 403 in the network device 40 shown in FIG. 4.
  • the communication device 70 provided in this embodiment can execute the communication method in the foregoing method embodiment, the technical effects that can be obtained can refer to the foregoing method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions to perform calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or includes one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Abstract

本申请实施例提供通信方法、设备及系统,通过优化随机接入配置、BWP配置或者行LBT失败配置,使得可以提高数据传输效率。方法包括:终端设备获取第一信息,该第一信息为该终端设备进行随机接入时发生的随机接入失败信息;终端设备向网络设备发送该第一信息,网络设备接收该第一信息之后,根据第一信息,更新以下一项或多项:随机接入配置、上行LBT失败配置或者带宽部分BWP配置。

Description

通信方法、设备及系统 技术领域
本申请涉及通信技术领域,尤其涉及通信方法、设备及系统。
背景技术
先听后说(listen before talk,LBT)是指设备在进行数据传输之前,要做的一个信道接入过程。若信道接入过程完成,则确定LBT成功,数据传输可以进行;若信道接入过程未完成,则确定LBT失败,数据传输不能进行。
为了提高数据传输效率,目前支持一致(consistent)上行(uplink,UL)LBT失败(failure)的检测机制,或者称为连续(consistent)UL LBT失败(failure)的检测机制,具体过程如下:终端设备通过一个定时器(timer)和计数器(counter)来检测是否发生一致UL LBT failure。其中,每确定发生一次UL LBT failure,则counter加1,并重启timer。如果该counter达到最大预设次数,则确定发生一致UL LBT failure。当timer超时时,需要重置counter。
其中,当主小区(primary cell,PCell)发生一致UL LBT failure,终端设备执行带宽部分(bandwidth part,BWP)切换过程,以激活BWP从当前BWP切换到其他BWP进行随机接入,用来恢复一致UL LBT failure。若所有的有物理随机接入信道(physical random access channel,PRACH)资源的BWP都尝过随机接入,且都未随机接入成功,则需要进行重建立过程(即换一个小区进行接入)。
可以看出,一方面,随机接入配置或者BWP配置将直接影响一致UL LBT failure恢复的时延;另一方面,上行LBT失败配置将直接影响一致UL LBT failure发生的时机。因此如何优化这些配置,以提高数据传输效率,是目前亟待解决的问题。
发明内容
本申请实施例提供通信方法、设备及系统,通过优化随机接入配置、BWP配置或者行LBT失败配置,使得可以提高数据传输效率。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片或芯片系统。下面以执行主体为终端设备为例进行描述。终端设备获取第一信息,该第一信息为该终端设备进行随机接入时发生的随机接入失败信息;终端设备向网络设备发送该第一信息,该第一信息用于更新或者说优化以下一项或多项:随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。基于该方案,由于本申请实施例中,终端设备可以将终端设备进行随机接入时发生的随机接入失败信息上报给网络设备,使得网络设备可以根据终端设备进行随机接入时发生的随机接入失败信息更新随机接入配置、上行LBT失败配置或者BWP配置中的一项或多项,因此可以使得随机接入配置、上行LBT失败配置或者BWP配置得到优化。而优化随机接入配置或者BWP配置,可以降低一致UL LBT failure恢复的时延;优化上行LBT失败配置,可以推迟一致UL LBT failure发生的时机或者避免 一致UL LBT failure发生。降低一致UL LBT failure恢复的时延或者推迟一致UL LBT failure发生的时机或者避免一致UL LBT failure发生均可以提高数据传输效率。因此基于本申请实施例提供的通信方法,可以提高数据传输效率。
第二方面,提供了一种通信方法,执行该方法的通信装置可以为网络设备也可以为应用于网络设备中的模块,例如芯片或芯片系统。下面以执行主体为网络设备为例进行描述。网络设备接收来自终端设备的第一信息,该第一信息为该终端设备进行随机接入时发生的随机接入失败信息;网络设备根据该第一信息,更新或者说优化以下一项或多项:随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。其中,第二方面的技术效果可参考上述第一方面,在此不再赘述。
结合上述第一方面或第二方面,在一种可能的实现方式中,该第一信息包括以下一项或多项:BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息,其中,该BWP切换次数信息用于指示该终端设备在一致上行LBT失败恢复完成之前,已经进行的BWP切换次数;该至少一个BWP标识信息用于指示该终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP;该至少一个BWP的随机接入统计量信息用于指示该终端设备在一致上行LBT失败恢复完成之前,在已经进行一致上行LBT失败恢复的BWP上的随机接入统计信息。由于BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息这些参数可以反馈随机接入配置、上行LBT失败配置或者带宽部分BWP配置的合理性,因此网络设备可以根据BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息中的一项或多项优化随机接入配置、上行LBT失败配置或者带宽部分BWP配置。
结合上述第一方面或第二方面,在一种可能的实现方式中,该至少一个BWP中每个BWP的随机接入统计量信息包括以下一项或多项:该终端设备在相应BWP上尝试过的同步信号块SSB和/或信道状态信息参考信号CSI-RS的标识信息、该终端设备在相应BWP上尝试过的SSB和/或CSI-RS的频点信息、该终端设备在相应BWP上尝试过的前导的个数、该终端设备在相应BWP上尝试过的SSB和/或CSI-RS下的前导的个数、该终端设备在相应BWP上尝试过的SSB和/或CSI-RS的信号质量、相应BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争、该终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数、该终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数、或者相应BWP是否发生2步随机接入到4步随机接入的回退。由于上述BWP的随机接入统计量信息均是终端设备在一致上行LBT失败恢复完成之前,在已经进行一致上行LBT失败恢复的BWP上的随机接入统计信息,可以反馈随机接入配置、上行LBT失败配置或者带宽部分BWP配置的合理性,因此网络设备可以根据上述BWP的随机接入统计量信息优化随机接入配置、上行LBT失败配置或者带宽部分BWP配置。
结合上述第一方面或第二方面,在一种可能的实现方式中,该随机接入配置包括以下一项或多项:2步随机接入中前导的物理随机接入信道PRACH配置、2步随机接入中净荷的时频资源配置、用于指示是否可以从2步随机接入回退至4步随机接入的指示信息、4步随机接入中前导的PRACH配置、2步随机接入中前导的分组、4步随 机接入中前导的分组、2步随机接入中的回退参数值、4步随机接入中的回退参数值、2步随机接入中的传输功率控制参数、或者4步随机接入中的传输功率控制参数。通过优化上述随机接入配置,可以降低一致UL LBT failure恢复的时延,进而可以提高数据传输效率。
结合上述第一方面或第二方面,在一种可能的实现方式中,该PRACH配置包括以下一项或多项:根序列索引、零相关区域配置、是否为高速状态、频率偏移、配置索引、或者SSB和/或CSI-RS与随机接入资源的对应关系;其中,该根序列索引用于配置小区或者SSB或者CSI-RS使用的根序列的起始根序列的逻辑序号;该零相关区域配置用于指示PRACH前导生成时所使用的循环移位配置的索引值;该是否为高速状态用于确定小区是否为高速小区或者SSB是否为高速SSB或者CSI-RS是否为高速CSI-RS;该频率偏移用于指示该终端设备发送前导的第一个资源块RB的索引;该配置索引用于指示该终端设备发送前导的时域资源和前导格式;该SSB与随机接入资源的对应关系用于指示一个随机接入资源对应的SSB个数;该CSI-RS与随机接入资源的对应关系用于指示一个随机接入资源对应的CSI-RS个数。
结合上述第一方面或第二方面,在一种可能的实现方式中,该BWP配置包括:是否在BWP为终端设备配置随机接入资源。通过优化上述BWP配置,可以降低一致UL LBT failure恢复的时延,进而可以提高数据传输效率。
结合上述第一方面或第二方面,在一种可能的实现方式中,该上行LBT失败配置包括以下一项或多项:上行LBT失败定时器、上行LBT失败计数器或者能量检测的门限值。通过优化上行LBT失败配置,可以推迟一致UL LBT failure发生的时机或者避免一致UL LBT failure发生,从而可以提高数据传输效率。
第三方面,提供了一种通信装置用于实现上述各种方法。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现上述任一方面的方法。
在一种可能的设计中,该通信装置还包括存储器。该存储器用于存储计算机指令,当处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。
第五方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。
在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令被通信装置执行时,使得该通信装置实现上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当该指令被通信装置执行时, 使得该通信装置实现上述任一方面所述的方法。
其中,第三方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,提供一种通信系统,该通信系统包括用于实现上述第一方面所述的方法的通信装置和用于执行上述第二方面所述的方法的通信装置。
附图说明
图1为本申请实施例提供的4-step RACH的流程示意图;
图2为本申请实施例提供的2-step RACH的流程示意图;
图3为本申请实施例提供的一种通信系统的架构示意图;
图4为本申请实施例提供的终端设备和网络设备的结构示意图;
图5为本申请实施例提供的终端设备的另一种结构示意图;
图6为本申请实施例提供的通信方法的流程示意图;
图7为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,LBT
无线通信的基础是频谱资源,频谱资源按照类型可以分两类,即授权频谱(也可以称之为非共享频谱)和非授权频谱(也可以称之为共享频谱)。授权频谱在某个地方只能由特定运营商使用,而非授权频谱可以由任何运营商使用,是共享的频谱资源。本申请实施例主要针对非授权频谱。
在非授权频谱中,由于是共享的频谱,存在很多不同空口技术,比如无线保真(wireless fidelity,WiFi),长期演进(long term evolution,LTE)授权频谱辅助接入(licensed-assisted access,LAA)或者基于LTE的新技术MuLTEfire等。为了保证不同空口技术在非授权频谱上共存,需要一个机制避免互相干扰,这个机制就是LBT。
如背景技术中所述,LBT是指设备在进行数据传输之前,要做的一个信道接入过程。若信道接入过程完成,则确定LBT成功,数据传输可以进行;若信道接入过程未完成,则确定LBT失败,数据传输不能进行。
目前,信道接入过程包括两类:第一类信道接入过程是基于固定时长的能量检测的信道接入过程,在固定时长内,设备检测非授权频谱资源上的信号强度,如果大于预设门限,则认为信道忙碌,否则认为信道空闲。第二类信道接入过程是基于回退机制的信道接入过程,设备从竞争窗口[最小值,最大值]中随机选取一个数值A,并进行能量检测,只有检测到至少A个检测时隙的参考参考信号接收强度小于或等于预设门限之后,才认为信道空闲,否则认为信道忙碌。设备只有在数据传输之前认为信道空闲时,才确定信道接入过程完成,或LBT成功,可以进行数据传输,否则,确定信道接入过程未完成,或LBT失败。
在以上两类信道接入过程中的能量检测,设备需要接收所有方向上的信号,然后对这些信号进行测量,得到信号强度。这种基于所有方向的检测,也可以称为基于全向的信道接入过程。另外一种,设备只接收部分方向上的信号,然后针对这些部分方 向的信号进行测量,得到部分方向的信号强度,这种部分方向的检测,也可以称为基于部分方向的信道接入过程。
需注意的是,基于全向的信道接入过程,一般主要用于低频中,基于部分方向的信道接入过程,一般用于高频中,原因是高频的路径损耗大,为了补偿路径损耗,都会采用方向性传输(基于波束的传输),不同的方向之间相互独立,基本无干扰。
第二,随机接入过程
在实际应用过程中,终端设备可以在多种可能的场景下发起随机接入,例如,多种可能的场景可以包括如下场景中的至少一种:(1)终端设备的状态从无线资源控制(radio resource control,RRC)空闲态发起的初始接入。(2)在终端设备与网络设备之间的无线链路失败之后,终端设备与网络设备进行RRC连接重建立时发起随机接入。(3)当终端设备需要与新小区建立上行同步时发起随机接入。(4)当终端设备为RRC连接态,且上行不同步时,若有上行或下行数据到达,则发起随机接入。(5)当终端设备处于RRC连接态,但还未在物理上行链路控制信道(physical uplink control channel,PUCCH)上为终端设备配置专用的发送调度请求的资源时发起随机接入。(6)调度请求失败时发起随机接入。(7)同步重配置时的RRC请求时发起随机接入。(8)终端设备的状态从RRC非激活态切换到RRC连接态时发起随机接入。(9)在增加第二个小区时建立时间对齐时发起随机接入。(10)请求除了主信息块(master information block,MIB)和系统信息快(system information block,SIB)的其他系统信息时发起随机接入。(11)波束失败恢复时发起随机接入。(4)一致上行LBT失败时发起随机接入。
本申请所涉及的随机接入可以包括四步随机接入(或称为四步随机接入信道,以下简称为4步(4-step)随机接入信道(random access channel,RACH)或两步随机接入(或称为两步随机接入信道,以下简称为2-step RACH),为了便于理解,下面分别对4-step RACH和2-step RACH的过程进行详细说明。
图1为本申请实施例提供的4-step RACH的流程示意图。4-step RACH在现有的技术规范(technical specification,TS)38.300中已经详细定义,本申请只是简单进行了描述。请参见图1,该方法可以包括如下步骤:
S101、终端设备向网络设备发送MSG1(或称为Msg1,或称为msg1)。相应的,网络设备接收来自终端设备的MSG1。
其中,MSG1用于传输随机接入前导(或称为随机接入前导序列或称为前导,以下简称为preamble,也可以称为preamble序列)。在本申请实施例中,preamble以及发送preamble所占用的时频资源称作为PRACH资源。
可选的,网络设备可以广播可用的PRACH资源,终端设备可以选取一个preamble,并在相应的时频资源上发送preamble。例如,网络设备可以通过系统信息广播可用的PRACH资源。
S102、网络设备向终端设备发送MSG2(或称为Msg2,或称为msg2)。相应的,终端设备接收来自网络设备的MSG2。
其中,MSG2包含了网络设备确定给终端设备用于发送净荷(payload)所使用的时频资源。
S103、终端设备向网络设备发送MSG3(或称为Msg3,或称为msg3)。相应的,网络设备接收来自终端设备的MSG3。
其中,MSG3是随机接入过程中的第一个调度传输,用于发送净荷(payload),例如,MSG3可以包括RRC连接请求消息、跟踪区域更新消息等。
需要说明的是,若不同的终端设备在S101中选择了相同的preamble并且在相同的时频资源上发送该preamble,则该不同的终端设备在相同的时频资源上发送净荷,进而导致资源使用冲突。
S104、网络设备向终端设备发送MSG4(或称为Msg4,或称为msg4)。相应的,终端设备接收来自网络设备的MSG4。
其中,MSG4用于指示该终端设备是否成功的接入到该网络设备。如果终端设备没有在竞争解决定时器运行期间,接收到针对自己的MSG4,那么执行S101的步骤。
在图1所示的4-step RACH中,终端设备和网络设备需要进行四次信令交互,信令开销大,以及通信时延较高。
图2为本申请实施例提供的2-step RACH的流程示意图。请参见图2,该方法可以包括如下步骤:
S201、终端设备向网络设备发送msgA(或称为MsgA,或称为MSGA)。相应的,网络设备接收来自终端设备的msgA。
其中,msgA包含有preamble以及净荷(例如,RRC连接请求消息、跟踪区域更新消息等)。
S202、网络设备向终端设备发送msgB(或称为MsgB,或称为MSGB)。相应的,终端设备接收来自网络设备的msgB。
其中,msgB用于指示该终端设备是否成功的接入到该网络设备。
需说明的是,msgB包括回退(fallback)随机接入响应(random access response,RAR)和成功(success)RAR,fallback RAR在网络设备成功解码preamble,但是没有成功解码payload时发送。Success RAR在网络设备成功解码preamble和payload时发送。
当终端设备接收到success RAR时,则认为随机接入完成;当终端设备接收到fallback RAR,则再次传输payload(类似于msg3),如果网络设备成功解码payload,会向终端设备发送竞争解决消息(类似于msg4),如果终端设备没有接收到竞争解决消息,那么执行S201。
其中,如果终端没有接收到针对自己的fallback RAR或successRAR,则执行S201的步骤。
在图2所示的2-step RACH中,终端设备和网络设备需要进行两次信令交互,相比于4-step RACH,减小了信令开销,并降低了通信时延。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中, 除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE系统或新无线(new radio,NR)系统,也可以适用于其他面向未来的新系统等,本申请实施例对此不作具体限定。此外,术语“系统”可以和“网络”相互替换。
如图3所示,为本申请实施例提供的一种通信系统30。该通信系统30包括网络设备40,以及与该网络设备40连接的一个或多个终端设备50。其中,终端设备50通过无线的方式与网络设备40相连。可选的,不同的终端设备50之间可以相互通信。终端设备50可以是固定位置的,也可以是可移动的。
需要说明的是,图3仅是示意图,虽然未示出,但是该通信系统30中还可以包括其它网络设备,如该通信系统30还可以包括核心网设备、无线中继设备和无线回传设备中的一个或多个,在此不做具体限定。其中,网络设备可以通过无线或有线方式与核心网设备连接。核心网设备与网络设备40可以是独立的不同的物理设备,也可以是将核心网设备的功能与网络设备40的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的网络设备40的功能,本申请实施例对此不做具体限定。
以图3所示的网络设备40与任一终端设备50进行交互为例,本申请实施例中,终端设备50获取第一信息,并向网络设备40发送第一信息,第一信息为终端设备50进行随机接入时发生的随机接入失败信息,第一信息用于更新或者说优化以下一项或多项:随机接入配置、上行LBT失败配置或者带宽部分(bandwidth part,BWP)配置。网络设备40接收来自终端设备的第一信息,并根据第一信息,更新或者说优化以下一项或多项:随机接入配置、上行LBT失败配置或者BWP配置。其中,该方案的具体实现将在后续方法实施例中详细描述,在此不予赘述。基于该方案,由于本申请实施例中,终端设备可以将终端设备进行随机接入时发生的随机接入失败信息上报给网络设备,使得网络设备可以根据终端设备进行随机接入时发生的随机接入失败信息更新随机接入配置、上行LBT失败配置或者BWP配置中的一项或多项,因此可以使得随机接入配置、上行LBT失败配置或者BWP配置得到优化。而优化随机接入配置或者BWP配置,可以降低一致UL LBT failure恢复的时延;优化上行LBT失败配置,可以推迟一致UL LBT failure发生的时机或者避免一致UL LBT failure发生。降低一致UL LBT failure恢复的时延或者推迟一致UL LBT failure发生的时机或者避免一致UL LBT  failure发生均可以提高数据传输效率。因此基于本申请实施例提供的通信系统,可以提高数据传输效率。
可选的,本申请实施例中的网络设备40,是一种将终端设备50接入到无线网络的设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,如果无特殊说明,网络设备均指无线接入网设备。
可选的,本申请实施例中的终端设备50,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。终端也可以称为用户设备(user equipment,UE)、移动台、移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备40和终端设备50可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备40和终端设备50的应用场景不做限定。
可选的,本申请实施例中的网络设备40和终端设备50之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备40和终端设备50之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备40和终端设备50之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备40与终端设备50也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图4所示,为本申请实施例提供的网络设备40和终端设备50的结构示意图。
其中,终端设备50包括至少一个处理器501和至少一个收发器503。可选的,终端设备50还可以包括至少一个存储器502、至少一个输出设备504或至少一个输入设备505。
处理器501、存储器502和收发器503通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器501可以是通用中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意 组合。通用处理器可以是微处理器,也可以是任何常规的处理器。在具体实现中,作为一种实施例,处理器501也可以包括多个CPU,并且处理器501可以是单核处理器或多核处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据的处理核。
存储器502可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器502可以是独立存在,通过通信线路与处理器501相连接。存储器502也可以和处理器501集成在一起。
其中,存储器502用于存储执行本申请方案的计算机执行指令,并由处理器501来控制执行。具体的,处理器501用于执行存储器502中存储的计算机执行指令,从而实现本申请实施例中所述的通信方法。
或者,可选的,本申请实施例中,也可以是处理器501执行本申请下述实施例提供的通信方法中的处理相关的功能,收发器503负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器503可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器503包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备504和处理器501通信,可以以多种方式来显示信息。例如,输出设备504可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备505和处理器501通信,可以以多种方式接受用户的输入。例如,输入设备505可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备40包括至少一个处理器401、至少一个收发器403和至少一个网络接口404。可选的,网络设备40还可以包括至少一个存储器402。其中,处理器401、存储器402、收发器403和网络接口404通过通信线路相连接。网络接口404用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图4中未示出),本申请实施例对此不作具体限定。另外,处理器401、存储器402和收发器403的相关描述可参考终端设备50中处理器501、存储器502和收发器503的描述,在此不再赘述。
结合图4所示的终端设备50的结构示意图,示例性的,图5为本申请实施例提供的终端设备50的一种具体结构形式。
其中,在一些实施例中,图4中的处理器501的功能可以通过图5中的处理器110实现。
在一些实施例中,图4中的收发器503的功能可以通过图5中的天线1,天线2,移动通信模块150,无线通信模块160等实现。移动通信模块150可以提供应用在终端设备50上的包括LTE、NR或者未来移动通信等无线通信技术的解决方案。无线通信模块160可以提供应用在终端设备50上的包括WLAN(如WiFi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外等无线通信技术的解决方案。在一些实施例中,终端设备50的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备50可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图4中的存储器502的功能可以通过图5中的内部存储器121或者外部存储器接口120连接的外部存储器等实现。
在一些实施例中,图4中的输出设备504的功能可以通过图5中的显示屏194实现。
在一些实施例中,图4中的输入设备505的功能可以通过鼠标、键盘、触摸屏设备或图5中的传感器模块180来实现。
在一些实施例中,如图5所示,该终端设备50还可以包括音频模块170、摄像头193、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个。
可以理解的是,图5所示的结构并不构成对终端设备50的具体限定。比如,在本申请另一些实施例中,终端设备50可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图1至图5,以图3所示的网络设备40与任一终端设备50进行交互为例,对本申请实施例提供的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
需要说明的是,下面几个实施例可以独立存在,也可以相互结合,对于相同或相似的内容,在不同的实施例中不再重复说明。
如图6所示,为本申请实施例提供的一种通信方法,该通信方法包括步骤S601至S603。
S601、终端设备获取第一信息,该第一信息为终端设备进行随机接入时发生的随机接入失败信息。
S602、终端设备向网络设备发送第一信息。相应的,网络设备接收来自终端设备的第一信息。
S603、网络设备根据第一信息,更新以下一项或多项:随机接入配置、上行LBT失败配置或者BWP配置。
在上述步骤S601-S603中:
可选的,本申请实施例中,随机接入配置包括以下一项或多项:
1)、2步随机接入中前导的PRACH配置(PRACH configuration)。
其中,2步随机接入中前导的PRACH配置包括2步随机接入中前导和/或传输前导所使用的时频资源。
2)、4步随机接入中前导的PRACH配置。
其中,4步随机接入中前导的PRACH配置包括4步随机接入中前导和/或传输前导所使用的时频资源。
可选的,本申请实施例中,上述1)和2)中的PRACH配置包括以下一项或多项:
一、根序列索引
根序列索引用于配置小区或者同步信号块(synchronization signal and physical paging channel block,SSB)或者信道状态信息参考信号(channel-state information-reference signal,CSI-RS)使用的根序列的起始根序列的逻辑序号。其中,小区或者SSB或者CSI-RS对应的可用的前导集合是由一个或多个根Zadoff-Chu序列(ZC序列)进行循环移位产生的,小区或者SSB或者CSI-RS使用的根序列的起始根序列的逻辑序号由根序列索引这一参数进行配置。当根序列索引这一参数的值确定后,小区或者SSB或者CSI-RS所使用的根序列就确定了。当两个小区或者SSB或者CSI-RS的根序列索引这一参数的值不同时,这两个小区或者SSB或者CSI-RS使用的根序列不同,进而这两个小区或者SSB或者CSI-RS可用的preamble就不同。例如,小区1或者SSB1或者CSI-RS1的根序列索引这一参数的值为1,小区2或者SSB2或者CSI-RS2的根序列索引这一参数的值为2,则小区1或者SSB1或者CSI-RS1中用于产生preamble所使用的ZC序列为根序列索引对照表中的根序列索引这一参数的值为1的根序列索引所对应的ZC序列,小区2或者SSB2或者CSI-RS2中用于产生preamble所使用的ZC序列为根序列索引对照表中的根序列索引这一参数的值为2的根序列索引所对应的ZC序列。
二、零相关区域配置
零相关区域配置用于指示PRACH前导生成时所使用的循环移位配置的索引值。其中,当零相关区域配置的值确定后,生成preamble时所使用的循环移位就确定了,进而小区或者SSB或者CSI-RS可用的preamble就确定了。在两个小区或者SSB或者CSI-RS使用相同的根序列生成preamble时,如果使用不同的零相关区域配置,则这两个小小区或者SSB或者CSI-RS可用的preamble不同。
三、是否为高速状态
是否为高速状态用于确定小区是否为高速小区或者SSB是否为高速SSB或者CSI-RS是否为高速CSI-RS。
高速小区或者SSB或者CSI-RS和非高速小区或者SSB或者CSI-RS生成preamble时所使用的根序列不同。例如,小区1为高速小区,小区2为非高速小区,则这两个小区生成preamble时所使用的根序列不同,进而这两个小区可用的preamble不同。或 者,SSB1为高速SSB,SSB2为非高速SSB,则这两个SSB生成preamble时所使用的根序列不同,进而这两个SSB可用的preamble不同。或者,CSI-RS1为高速CSI-RS,CSI-RS2为非高速CSI-RS,则这两个CSI-RS生成preamble时所使用的根序列不同,进而这两个CSI-RS可用的preamble不同。
四、频率偏移
频率偏移用于指示终端设备发送前导的第一个资源块(resource block,RB)的索引。例如,小区1或者SSB1或者CSI-RS1的频率偏移为1,小区2或者SSB2或者CSI-RS2的频率偏移为2,则小区1或者SSB1或者CSI-RS1中用于传输preamble的起始RB为第一个RB,小区2或者SSB2或者CSI-RS2中用于传输preamble的RB为第二个RB。
五、配置索引
配置索引用于指示终端设备发送前导的时域资源和前导格式。例如,小区1或者SSB1或者CSI-RS1的配置索引为1,小区2或者SSB2的配置索引为2,则小区1或者SSB1中用于传输preamble的时频资源为随机接入配置索引对照表中的配置索引的值为1的配置索引所对应的时频资源,小区2或者SSB2中用于传输preamble的时域资源为随机接入配置索引对照表中的配置索引的值为2的配置索引所对应的时频资源。当两个小区或者SSB使用不同的配置索引时,这两个小区或者SSB用于传输preamble的时域资源不同。
六、SSB与随机接入资源的对应关系
SSB与随机接入资源的对应关系用于指示一个随机接入资源对应的SSB个数。
七、CSI-RS与随机接入资源的对应关系
CSI-RS与随机接入资源的对应关系用于指示一个随机接入资源对应的CSI-RS个数。
3)、2步随机接入中净荷的时频资源配置。
4)、用于指示是否可以从2步随机接入回退至4步随机接入的指示信息。
5)、2步随机接入中前导的分组(RA preamble group)。
6)、4步随机接入中前导的分组。
7)、2步随机接入中的回退参数值(RA backoff parameter value)。
8)、4步随机接入中的回退参数值。
9)、2步随机接入中的传输功率控制参数(RA transmission power control parameters)。
10)、4步随机接入中的传输功率控制参数。
可选的,本申请实施例中,BWP配置包括:是否在该BWP上为终端设备配置随机接入资源。
可选的,本申请实施例中,上行LBT失败配置用于监测一致UL LBT failure,包括以下一项或多项参数:上行LBT失败定时器、上行LBT失败计数器、能量检测的门限值。示例性的,终端设备通过一个timer(如上行LBT失败定时器)和counter(如上行LBT失败计数器)来检测是否发生一致UL LBT failure。其中,每确定发生一次UL LBT failure,则counter加1,并重启timer。如果该counter达到最大预 设次数,则确定发生一致UL LBT failure。当timer超时时,说明没有数据调度或UL LBT成功过一次或多次,所以需要重置counter,因为该counter是用于统计一致UL LBT失败的次数。
可选的,本申请实施例中,第一信息包括以下一项或多项:BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息。
其中,终端设备在一致上行LBT失败恢复中,可能会切换BWP,用来一致上行LBT失败的恢复。BWP切换次数信息用于指示终端设备在一致上行LBT失败恢复完成之前,已经进行的BWP切换次数。在随机接入成功时,终端设备一致上行LBT失败恢复完成。比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功,则此时BWP切换次数信息可以视为3,即,终端设备在一致上行LBT失败恢复完成之前,已经进行3次BWP切换。
本申请实施例中,如果终端设备进行BWP切换的次数太多,则说明随机接入配置可能不太合理,某些BWP可以不用配置随机接入资源或者某些BWP上的随机接入配置需要优化。
其中,至少一个BWP标识信息用于指示终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP。比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功,则此时至少一个BWP标识信息包括BWP2的标识信息、BWP3的标识信息和BWP4的标识信息,即,终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP包括BWP2、BWP3和BWP4。
本申请实施例中的一致上行LBT失败恢复可以是四步随机接入过程或两步随机接入过程或调度请求过程,本申请实施例对此不做具体限定。如果携带的BWP标识信息过多,则说明随机接入配置或调度请求配置可能不太合理,某些BWP可以不用配置随机接入资源(或调度请求资源)或者某些BWP上的随机接入配置(或调度请求配置)需要优化。
其中,至少一个BWP的随机接入统计量信息用于指示终端设备在一致上行LBT失败恢复完成之前,在已经进行一致上行LBT失败恢复的BWP上的随机接入统计信息。其中,这里的至少一个BWP为终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP。相关示例可参考上述至少一个BWP标识信息的描述部分,在此不予赘述。
可选的,本申请实施例中,至少一个BWP中每个BWP的随机接入统计量信息包括以下一项或多项:
a、终端设备在相应BWP上尝试过的SSB和/或CSI-RS的标识信息。
本申请实施例中,终端设备在相应BWP上尝试过的SSB是指,在一致上行LBT失败恢复完成之前,终端设备在相应BWP上使用该SSB进行过随机接入,具体的,使用过该SSB对应的随机接入资源向网络设备发送前导。终端设备在相应BWP上尝试过的CSI-RS是指,在一致上行LBT失败恢复完成之前,终端设备在相应BWP上使用该CSI-RS进行过随机接入,具体的,使用过该CSI-RS对应的随机接入资源向网络设备发送前导。
其中,终端设备在某个BWP上尝试过的SSB和/或CSI-RS的标识信息可以是一个或多个,本申请实施例对此不作具体限定。
比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用SSB1和SSB2进行随机接入;终端设备在BWP3上使用SSB1进行随机接入;终端设备在BWP4上使用SSB1进行随机接入失败,使用SSB2进行随机接入成功,则终端设备在相应BWP上尝试过的SSB的标识信息包括:BWP2的标识信息:SSB1的标识信息和SSB2的标识信息;BWP3的标识信息:SSB1的标识信息;BWP4的标识信息:SSB1的标识信息。需要说明的是,SSB的标识信息的编号是每个BWP独立编号的,所有BWP上都会有SSB1,网络设备只有根据上报的BWP的标识信息才能区分一个SSB1对应是哪个BWP,在此统一说明,以下不再赘述。
或者,比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用CSI-RS1和CSI-RS2进行随机接入;终端设备在BWP3上使用CSI-RS1进行随机接入;终端设备在BWP4上使用CSI-RS1进行随机接入失败,使用CSI-RS2进行随机接入成功,则终端设备在相应BWP上尝试过的CSI-RS的标识信息包括:BWP2的标识信息:CSI-RS1的标识信息和CSI-RS2的标识信息;BWP3的标识信息:CSI-RS1的标识信息;BWP4的标识信息:CSI-RS1的标识信息。需要说明的是,CSI-RS的标识信息的编号是每个BWP独立编号的,所有BWP上都会有CSI-RS1,网络设备只有根据上报的BWP的标识信息才能区分一个CSI-RS1对应是哪个BWP,在此统一说明,以下不再赘述。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的 SSB和/或CSI-RS的标识信息,优化随机接入配置中的SSB或CSI-RS选择的门限;或者,网络设备可以根据在某个BWP上尝试过的SSB和/或CSI-RS的标识信息,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
b、终端设备在相应BWP上尝试过的SSB和/或CSI-RS的频点信息。
终端设备在相应BWP上尝试过的SSB或者CSI-RS的相关描述可参考上述描述,在此不再赘述。
其中,终端设备在某个BWP上尝试过的SSB和/或CSI-RS的频点信息可以是一个或多个,本申请实施例对此不作具体限定。
比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用SSB1和SSB2进行随机接入,SSB1的频点信息为频点1,SSB2的频点信息为频点2。终端设备在BWP3上使用SSB1进行随机接入,SSB1的频点信息为频点3。终端设备在BWP4上使用SSB1进行随机接入失败,使用SSB2进行随机接入成功,SSB1的频点信息为频点4,SSB2的频点信息为频点5。则终端设备在相应BWP上尝试过的SSB的频点信息包括:BWP2的标识信息:SSB1的标识信息-频点1,SSB2的标识信息-频点2;BWP3的标识信息:SSB1的标识信息-频点3;BWP4的标识信息:SSB1的标识信息-频点4。需要说明的是,SSB的标识信息的编号是每个BWP独立编号的,所有BWP上都会有SSB1,网络设备只有根据上报的BWP的标识信息才能区分一个SSB1对应是哪个BWP,在此统一说明,以下不再赘述。
或者,比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用CSI-RS1和CSI-RS2进行随机接入,CSI-RS1的频点信息为频点1,CSI-RS2的频点信息为频点2。终端设备在BWP3上使用CSI-RS1进行随机接入,CSI-RS1的频点信息为频点3。终端设备在BWP4上使用CSI-RS1进行随机接入失败,使用CSI-RS2进行随机接入成功,CSI-RS1的频点信息为频点4,CSI-RS2的频点信息为频点5。则终端设备在相应BWP上尝试过的CSI-RS的频点信息包括:BWP2的标识信息:CSI-RS1的标识信息-频点1,CSI-RS2的标识信息-频点2;BWP3的标识信息:CSI-RS1的标识信息-频点3;BWP4的标识信息:CSI-RS1的标识信息-频点4。需要说明的是,CSI-RS的标识信息的编号是每个BWP独立编号的,所有BWP上都会有CSI-RS1,网络设备只有根据上报的BWP的标识信息才能区分一个CSI-RS1对应是哪个BWP,在此统一说明,以下不再赘述。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的SSB和/或CSI-RS的频点信息,优化随机接入配置中的SSB或CSI-RS选择的门限;或者,网络设备可以根据终端设备在某个BWP上尝试过的SSB和/或CSI-RS的频点信息,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
c、终端设备在相应BWP上尝试过的前导的个数。
本申请实施例中,终端设备在相应BWP上尝试过的前导是指,在一致上行LBT失败恢复完成之前,终端设备在相应BWP上使用该前导进行过随机接入。
其中,终端设备在某个BWP上尝试过的前导可以是一个或多个,本申请实施例对此不作具体限定。
假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用前导1和前导2进行随机接入;终端设备在BWP3上使用前导3进行随机接入;终端设备在BWP4上使用前导4进行随机接入失败,使用前导5进行随机接入成功,则终端设备在相应BWP上尝试过的前导的个数包括:BWP2的标识信息:2个;BWP3的标识信息:1个;BWP4的标识信息:1个。需要说明的是,本申请实施例中,终端设备在BWP上使用前导进行随机接入时,可以采用2步随机接入流程或者4步随机接入,本申请实施例对此不作具体限定。此外,终端设备在BWP上使用的前导可能关联到不同的SSB或者CSI-RS。比如,终端设备在BWP2上使用的前导1可能关联到SSB1或者CSI-RS1,终端设备在BWP2上使用的前导2可能关联到SSB2或者CSI-RS2,本申请实施例对此不作具体限定。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的前导的个数,优化随机接入配置中的资源配置;或者,网络设备可以根据终端设备在某个BWP上尝试过的前导的个数,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
d、终端设备在相应BWP上尝试过的SSB和/或CSI-RS下的前导的个数。
终端设备在相应BWP上尝试过的SSB或者CSI-RS的相关描述可参考上述描述,在此不再赘述。
参考上述终端设备在相应BWP上尝试过的前导的个数的示例,假设终端设备在BWP2上使用的前导1可能关联到SSB1,终端设备在BWP2上使用的前导2可能关联到SSB2,则终端设备在BWP1上尝试过的SSB1下的前导的个数为1,终端设备在BWP1上尝试过的SSB2下的前导的个数为1。或者,假设终端设备在BWP2上使用的前导1可能关联到CSI-RS1,终端设备在BWP2上使用的前导2可能关联到CSI-RS2,则终端设备在BWP1上尝试过的CSI-RS1下的前导的个数为1,终端设备在BWP1上尝试过的CSI-RS2下的前导的个数为1。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的 SSB和/或CSI-RS下的前导的个数,优化随机接入配置中的资源配置;或者,网络设备可以根据终端设备在某个BWP上尝试过的SSB和/或CSI-RS下的前导的个数,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
e、终端设备在相应BWP上尝试过的SSB和/或CSI-RS的信号质量。
终端设备在相应BWP上尝试过的SSB或者CSI-RS的相关描述可参考上述描述,在此不再赘述。此外,本申请实施例中的信号质量例如可以包括参考信号接收功率(reference signal receiving power,RSRP)或者参考信号接收质量(reference signal receiving quality,RSRQ),本申请实施例对此不作具体限定。
比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用SSB1和SSB2进行随机接入,SSB1上的信号质量为RSRP1,SSB2上的信号质量为RSRP2。终端设备在BWP3上使用SSB1进行随机接入,SSB1上的信号质量为RSRP 3。终端设备在BWP4上使用SSB1进行随机接入失败,使用SSB2进行随机接入成功,SSB1上的信号质量为RSRP 4,SSB2上的信号质量为RSRP5。则终端设备在相应BWP上尝试过的SSB的信号质量包括:BWP2的标识信息:SSB1的标识信息-RSRP1,SSB2的标识信息-RSRP2;BWP3的标识信息:SSB1的标识信息-RSRP3;BWP4的标识信息:SSB1的标识信息-RSRP4。需要说明的是,SSB的标识信息的编号是每个BWP独立编号的,所有BWP上都会有SSB1,网络设备只有根据上报的BWP的标识信息才能区分一个SSB1对应是哪个BWP,在此统一说明,以下不再赘述。
比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上使用CSI-RS1和CSI-RS2进行随机接入,CSI-RS1上的信号质量为RSRP1,CSI-RS2上的信号质量为RSRP2。终端设备在BWP3上使用CSI-RS1进行随机接入,CSI-RS1上的信号质量为RSRP 3。终端设备在BWP4上使用CSI-RS1进行随机接入失败,使用CSI-RS2进行随机接入成功,CSI-RS1上的信号质量为RSRP 4,CSI-RS2上的信号质量为RSRP5。则终端设备在相应BWP上尝试过的CSI-RS的信号质量包括:BWP2的标识信息:CSI-RS1的标识信息-RSRP1,CSI-RS2的标识信息-RSRP2;BWP3的标识信息:CSI-RS1的标识信息-RSRP3;BWP4的标识信息:CSI-RS1的标识信息-RSRP4。需要说明的是,CSI-RS的标识信息的编号是每个BWP独立编号的,所有BWP上都会有CSI-RS1,网络设备只有根据上报的BWP的标识信息才能区 分一个CSI-RS1对应是哪个BWP,在此统一说明,以下不再赘述。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的SSB和/或CSI-RS的信号质量,优化随机接入配置中的SSB或CSI-RS选择的门限;或者,网络设备可以根据终端设备在某个BWP上尝试过的SSB和/或CSI-RS的信号质量,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
f、相应BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争。
比如,假设当前激活的BWP为BWP1,只有在激活的BWP上才可以进行上行传输,终端设备确定BWP1的一致上行LBT失败,则在一致上行LBT失败恢复中,若终端设备的激活BWP从BWP1切换到BWP2,并在BWP2上进行随机接入,但是在BWP2上的随机接入失败,终端设备的激活BWP从BWP2切换到BWP3,并在BWP3上进行随机接入,但是在BWP3上的随机接入失败,终端设备的激活BWP从BWP3切换到BWP4,并在BWP4上进行随机接入,且在BWP4上的随机接入成功。假设终端设备在BWP2上进行过2次随机接入,一次随机接入为2步随机接入,另一次随机接入为4步随机接入,2步随机接入失败的原因可能是由于2步随机接入的前导的竞争产生的,4步随机接入失败的原因并不是由于4步随机接入的前导的竞争产生的,则可以获知BWP2上存在2步随机接入的前导的竞争,不存在4步随机接入的前导的竞争。
可选的,本申请实施例中,网络设备可以根据某个BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争,优化随机接入配置中的资源配置;或者,网络设备可以根据某个BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
g、终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数。
其中,终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数的相关描述可参考上述终端设备在相应BWP上尝试过的前导的个数的描述,区别比如在于上述终端设备在相应BWP上尝试过的前导可能用于2步随机接入或者4步随机接入,此处仅需统计终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数即可,在此不再赘述。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的2步随机接入所使用的前导的个数,优化随机接入配置中的资源配置;或者,网络设备可以根据终端设备在某个BWP上尝试过的2步随机接入所使用的前导的个数,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
h、终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数。
其中,终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数的相关描述可参考上述终端设备在相应BWP上尝试过的前导的个数的描述,区别比如在于上述终端设备在相应BWP上尝试过的前导可能用于2步随机接入或者4步随机接入,此处仅需统计终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数即可,在此不再赘述。
可选的,本申请实施例中,网络设备可以根据终端设备在某个BWP上尝试过的4步随机接入所使用的前导的个数,优化随机接入配置中的资源配置;或者,网络设备 可以根据终端设备在某个BWP上尝试过的4步随机接入所使用的前导的个数,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
i、相应BWP是否发生2步随机接入到4步随机接入的回退。
示例性的,假设在某个BWP上,2步随机接入的前导达到最大预设次数,并都没随机接入成功,则终端设备使用4步随机接入配置执行4步随机接入,此时可以认为该BWP发生2步随机接入到4步随机接入的回退。
可选的,本申请实施例中,网络设备可以根据某个BWP是否发生2步随机接入到4步随机接入的回退,优化随机接入配置中的资源配置;或者,网络设备可以根据某个BWP是否发生2步随机接入到4步随机接入的回退,确定是否在该BWP上配置随机接入资源,本申请实施例对此不作具体限定。
由于本申请实施例中,终端设备可以将终端设备进行随机接入时发生的随机接入失败信息上报给网络设备,使得网络设备可以根据终端设备进行随机接入时发生的随机接入失败信息更新随机接入配置、上行LBT失败配置或者BWP配置中的一项或多项,因此可以使得随机接入配置、上行LBT失败配置或者BWP配置得到优化。而优化随机接入配置或者BWP配置,可以降低一致UL LBT failure恢复的时延;优化上行LBT失败配置,可以推迟一致UL LBT failure发生的时机或者避免一致UL LBT failure发生。降低一致UL LBT failure恢复的时延或者推迟一致UL LBT failure发生的时机或者避免一致UL LBT failure发生均可以提高数据传输效率。因此基于本申请实施例提供的通信方法,可以提高数据传输效率。
其中,上述步骤S601至S603中的网络设备的动作可以由图4所示的网络设备40中的处理器401调用存储器402中存储的应用程序代码来执行;上述步骤S601至S603中的终端设备的动作可以由图4所示的终端设备50中的处理器501调用存储器502中存储的应用程序代码来执行。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现;由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处 理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图7示出了一种通信装置70的结构示意图。该通信装置70包括收发模块701和处理模块702。所述收发模块701,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,以通信装置70为上述方法实施例中的网络设备为例,处理模块702,用于获取第一信息,该第一信息为终端设备进行随机接入时发生的随机接入失败信息;收发模块701,用于向网络设备发送第一信息,该第一信息用于更新以下一项或多项:随机接入配置、上行LBT失败配置或者BWP配置。
或者,以通信装置70为上述方法实施例中的网络设备为例,收发模块701,用于接收来自终端设备的第一信息,该第一信息为终端设备进行随机接入时发生的随机接入失败信息;处理模块702,用于根据第一信息,更新以下一项或多项:随机接入配置、上行LBT失败配置或者BWP配置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该通信装置70以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
以通信装置70为上述方法实施例中的终端设备为例,在一个简单的实施例中,本领域的技术人员可以想到该通信装置70可以采用图4所示的终端设备50的形式。比如,图4所示的终端设备50中的处理器501可以通过调用存储器502中存储的计算机执行指令,使得终端设备50执行上述方法实施例中的通信方法。具体的,图7中的收发模块701和处理模块702的功能/实现过程可以通过图4所示的终端设备50中的处理器501调用存储器502中存储的计算机执行指令来实现。或者,图7中的处理模块702的功能/实现过程可以通过图4所示的终端设备50中的处理器501调用存储器502中存储的计算机执行指令来实现,图7中的收发模块701的功能/实现过程可以通过图4所示的终端设备50中的收发器503来实现。
以通信装置70为上述方法实施例中的网络设备为例,在一个简单的实施例中,本领域的技术人员可以想到该通信装置70可以采用图4所示的网络设备40的形式。比如,图4所示的网络设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得网络设备40执行上述方法实施例中的通信方法。具体的,图7中的收发模块701和处理模块702的功能/实现过程可以通过图4所示的网络设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图7中的处理模块702的功能/实现过程可以通过图4所示的网络设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图7中的收发模块701的功能/实现过程可以通过图4所示的网络设备40中的收发器403来实现。
由于本实施例提供的通信装置70可执行上述方法实施例中的通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅 仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种通信方法,其特征在于,所述方法包括:
    获取第一信息,所述第一信息为终端设备进行随机接入时发生的随机接入失败信息;
    向网络设备发送所述第一信息,所述第一信息用于更新以下一项或多项:
    随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。
  2. 一种通信方法,其特征在于,所述方法包括:
    接收来自终端设备的第一信息,所述第一信息为所述终端设备进行随机接入时发生的随机接入失败信息;
    根据所述第一信息,更新以下一项或多项:
    随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息,其中,
    所述BWP切换次数信息用于指示所述终端设备在一致上行LBT失败恢复完成之前,已经进行的BWP切换次数;
    所述至少一个BWP标识信息用于指示所述终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP;
    所述至少一个BWP的随机接入统计量信息用于指示所述终端设备在一致上行LBT失败恢复完成之前,在已经进行一致上行LBT失败恢复的BWP上的随机接入统计信息。
  4. 根据权利要求3所述的方法,其特征在于,所述至少一个BWP中每个BWP的随机接入统计量信息包括以下一项或多项:
    所述终端设备在相应BWP上尝试过的同步信号块SSB和/或信道状态信息参考信号CSI-RS的标识信息、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS的频点信息、所述终端设备在相应BWP上尝试过的前导的个数、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS下的前导的个数、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS的信号质量、相应BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争、所述终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数、所述终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数、或者相应BWP是否发生2步随机接入到4步随机接入的回退。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述随机接入配置包括以下一项或多项:
    2步随机接入中前导的物理随机接入信道PRACH配置、2步随机接入中净荷的时频资源配置、用于指示是否可以从2步随机接入回退至4步随机接入的指示信息、4步随机接入中前导的PRACH配置、2步随机接入中前导的分组、4步随机接入中前导的分组、2步随机接入中的回退参数值、4步随机接入中的回退参数值、2步随机接入中的传输功率控制参数、或者4步随机接入中的传输功率控制参数。
  6. 根据权利要求5所述的方法,其特征在于,所述PRACH配置包括以下一项或多项:
    根序列索引、零相关区域配置、是否为高速状态、频率偏移、配置索引、或者SSB和/或CSI-RS与随机接入资源的对应关系;其中,
    所述根序列索引用于配置小区或者SSB或者CSI-RS使用的根序列的起始根序列的逻辑序号;
    所述零相关区域配置用于指示PRACH前导生成时所使用的循环移位配置的索引值;
    所述是否为高速状态用于确定小区是否为高速小区或者SSB是否为高速SSB或者CSI-RS是否为高速CSI-RS;
    所述频率偏移用于指示所述终端设备发送前导的第一个资源块RB的索引;
    所述配置索引用于指示所述终端设备发送前导的时域资源和前导格式;
    所述SSB与随机接入资源的对应关系用于指示一个随机接入资源对应的SSB个数;
    所述CSI-RS与随机接入资源的对应关系用于指示一个随机接入资源对应的CSI-RS个数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述BWP配置包括:是否在BWP为终端设备配置随机接入资源。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述上行LBT失败配置包括以下一项或多项:
    上行LBT失败定时器、上行LBT失败计数器或者能量检测的门限值。
  9. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述处理模块,用于获取第一信息,所述第一信息为终端设备进行随机接入时发生的随机接入失败信息;
    所述收发模块,用于向网络设备发送所述第一信息,所述第一信息用于更新以下一项或多项:
    随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。
  10. 一种通信装置,其特征在于,所述通信装置包括:处理模块和收发模块;
    所述收发模块,用于接收来自终端设备的第一信息,所述第一信息为所述终端设备进行随机接入时发生的随机接入失败信息;
    所述处理模块,用于根据所述第一信息,更新以下一项或多项:
    随机接入配置、上行先听后说LBT失败配置或者带宽部分BWP配置。
  11. 根据权利要求9或10所述的通信装置,其特征在于,所述第一信息包括以下一项或多项:
    BWP切换次数信息、至少一个BWP标识信息、或者至少一个BWP的随机接入统计量信息,其中,
    所述BWP切换次数信息用于指示所述终端设备在一致上行LBT失败恢复完成之前,已经进行的BWP切换次数;
    所述至少一个BWP标识信息用于指示所述终端设备在一致上行LBT失败恢复完成之前,已经进行一致上行LBT失败恢复的BWP;
    所述至少一个BWP的随机接入统计量信息用于指示所述终端设备在一致上行 LBT失败恢复完成之前,在已经进行一致上行LBT失败恢复的BWP上的随机接入统计信息。
  12. 根据权利要求11所述的通信装置,其特征在于,所述至少一个BWP中每个BWP的随机接入统计量信息包括以下一项或多项:
    所述终端设备在相应BWP上尝试过的同步信号块SSB和/或信道状态信息参考信号CSI-RS的标识信息、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS的频点信息、所述终端设备在相应BWP上尝试过的前导的个数、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS下的前导的个数、所述终端设备在相应BWP上尝试过的SSB和/或CSI-RS的信号质量、相应BWP上是否存在2步随机接入的前导或4步随机接入的前导的竞争、所述终端设备在相应BWP上尝试过的2步随机接入所使用的前导的个数、所述终端设备在相应BWP上尝试过的4步随机接入所使用的前导的个数、或者相应BWP是否发生2步随机接入到4步随机接入的回退。
  13. 根据权利要求9-12任一项所述的通信装置,其特征在于,所述随机接入配置包括以下一项或多项:
    2步随机接入中前导的物理随机接入信道PRACH配置、2步随机接入中净荷的时频资源配置、用于指示是否可以从2步随机接入回退至4步随机接入的指示信息、4步随机接入中前导的PRACH配置、2步随机接入中前导的分组、4步随机接入中前导的分组、2步随机接入中的回退参数值、4步随机接入中的回退参数值、2步随机接入中的传输功率控制参数、或者4步随机接入中的传输功率控制参数。
  14. 根据权利要求13所述的通信装置,其特征在于,所述PRACH配置包括以下一项或多项:
    根序列索引、零相关区域配置、是否为高速状态、频率偏移、配置索引、或者SSB和/或CSI-RS与随机接入资源的对应关系;其中,
    所述根序列索引用于配置小区或者SSB或者CSI-RS使用的根序列的起始根序列的逻辑序号;
    所述零相关区域配置用于指示PRACH前导生成时所使用的循环移位配置的索引值;
    所述是否为高速状态用于确定小区是否为高速小区或者SSB是否为高速SSB或者CSI-RS是否为高速CSI-RS;
    所述频率偏移用于指示所述终端设备发送前导的第一个资源块RB的索引;
    所述配置索引用于指示所述终端设备发送前导的时域资源和前导格式;
    所述SSB与随机接入资源的对应关系用于指示一个随机接入资源对应的SSB个数;
    所述CSI-RS与随机接入资源的对应关系用于指示一个随机接入资源对应的CSI-RS个数。
  15. 根据权利要求9-14任一项所述的通信装置,其特征在于,所述BWP配置包括:是否在BWP为终端设备配置随机接入资源。
  16. 根据权利要求9-15任一项所述的通信装置,其特征在于,所述上行LBT失败配置包括以下一项或多项:
    上行LBT失败定时器、上行LBT失败计数器或者能量检测的门限值。
  17. 一种通信装置,其特征在于,包括处理器;
    所述处理器用于与存储器耦合,并读取所述存储器中的指令之后,根据所述指令实现如权利要求1、或者3-8中任一项所述的方法或者实现如权利要求2、或者3-8中任一项所述的方法。
  18. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1、或者3-8中任一项所述的方法;或者,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求2、或者3-8中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1、或者3-8中任一项所述的方法或者实现如权利要求2、或者3-8中任一项所述的方法。
PCT/CN2019/128909 2019-12-26 2019-12-26 通信方法、设备及系统 WO2021128224A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/128909 WO2021128224A1 (zh) 2019-12-26 2019-12-26 通信方法、设备及系统
EP19957080.5A EP4072231A4 (en) 2019-12-26 2019-12-26 COMMUNICATION METHOD, DEVICE AND SYSTEM
US17/849,166 US20220322452A1 (en) 2019-12-26 2022-06-24 Communication method and system, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128909 WO2021128224A1 (zh) 2019-12-26 2019-12-26 通信方法、设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,166 Continuation US20220322452A1 (en) 2019-12-26 2022-06-24 Communication method and system, and device

Publications (1)

Publication Number Publication Date
WO2021128224A1 true WO2021128224A1 (zh) 2021-07-01

Family

ID=76573823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128909 WO2021128224A1 (zh) 2019-12-26 2019-12-26 通信方法、设备及系统

Country Status (3)

Country Link
US (1) US20220322452A1 (zh)
EP (1) EP4072231A4 (zh)
WO (1) WO2021128224A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115119283A (zh) * 2022-06-10 2022-09-27 京信网络系统股份有限公司 无线通信设备的接入方法、装置、通信设备及介质
US11553523B2 (en) * 2019-11-07 2023-01-10 Qualcomm Incorporated Uplink listen-before-talk failure recovery
WO2024030060A1 (en) * 2022-08-04 2024-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Reporting random access information for events or operations in shared channels

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378380A (zh) * 2010-08-20 2012-03-14 中兴通讯股份有限公司 小区随机接入参数优化的方法及系统
CN108243508A (zh) * 2016-12-23 2018-07-03 北京佰才邦技术有限公司 一种资源配置方法、信息发送方法、基站及终端
CN110557763A (zh) * 2018-05-31 2019-12-10 维沃移动通信有限公司 一种数据传输方法、参数优化方法、装置及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102512908B1 (ko) * 2018-03-29 2023-03-22 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보를 보고하는 방법 및 장치, 대역폭 파트에 기초한 동작 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378380A (zh) * 2010-08-20 2012-03-14 中兴通讯股份有限公司 小区随机接入参数优化的方法及系统
CN108243508A (zh) * 2016-12-23 2018-07-03 北京佰才邦技术有限公司 一种资源配置方法、信息发送方法、基站及终端
CN110557763A (zh) * 2018-05-31 2019-12-10 维沃移动通信有限公司 一种数据传输方法、参数优化方法、装置及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Detecting and Handling of UL LBT failures", 3GPP DRAFT; R2-1912625-DETECTING AND HANDLING OF UL LBT FAILURES, vol. RAN WG2, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 5, XP051790664 *
VIVO: "Remaining issues of uplink LBT failure", 3GPP DRAFT; R2-1912177 REMAINING ISSUES OF UPLINK LBT FAILURE, vol. RAN WG2, 4 October 2019 (2019-10-04), Chongqing, China, pages 1 - 4, XP051790229 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11553523B2 (en) * 2019-11-07 2023-01-10 Qualcomm Incorporated Uplink listen-before-talk failure recovery
CN115119283A (zh) * 2022-06-10 2022-09-27 京信网络系统股份有限公司 无线通信设备的接入方法、装置、通信设备及介质
CN115119283B (zh) * 2022-06-10 2023-08-29 京信网络系统股份有限公司 无线通信设备的接入方法、装置、通信设备及介质
WO2024030060A1 (en) * 2022-08-04 2024-02-08 Telefonaktiebolaget Lm Ericsson (Publ) Reporting random access information for events or operations in shared channels

Also Published As

Publication number Publication date
EP4072231A4 (en) 2022-11-23
US20220322452A1 (en) 2022-10-06
EP4072231A1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
WO2019096150A1 (zh) 用于随机接入的方法、终端设备和网络设备
US20200187266A1 (en) Random access method, device, and system
EP3975658A1 (en) Method for configuring sul, and communication apparatus
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
US20220322452A1 (en) Communication method and system, and device
EP3509365B1 (en) Method and device for data transmission
TWI771369B (zh) 系統訊息的獲取方法及裝置
CN110557837A (zh) 通信方法和装置
JP2024038406A (ja) 通信方法および通信装置
WO2019128760A1 (zh) 消息接收方法及终端
US20240129900A1 (en) Information transmission method and apparatus
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
US20230049532A1 (en) Random access method and terminal device
US20230077110A1 (en) Communication Method, Apparatus, and System
JP7036354B2 (ja) 信号送信方法および信号送信装置
KR20220004135A (ko) 랜덤 액세스 방법 및 장치
WO2024067872A1 (zh) 随机接入方法、装置及系统
WO2023004545A1 (zh) 通信方法及通信装置
WO2023231005A1 (zh) 无线通信的方法及装置
US20230224877A1 (en) Access Method, Apparatus, Electronic Device, and Readable Storage Medium
WO2023225876A1 (zh) 波束确定方法和装置
WO2023143269A1 (zh) 一种通信方法及装置
WO2024099185A1 (zh) 随机接入方法、装置、终端、网络侧设备及介质
WO2024032325A1 (zh) 一种测量方法、装置及计算机可读存储介质
US20230337223A1 (en) Communication method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019957080

Country of ref document: EP

Effective date: 20220707

NENP Non-entry into the national phase

Ref country code: DE