WO2019154272A1 - 波束失败恢复方法及用户终端 - Google Patents

波束失败恢复方法及用户终端 Download PDF

Info

Publication number
WO2019154272A1
WO2019154272A1 PCT/CN2019/074181 CN2019074181W WO2019154272A1 WO 2019154272 A1 WO2019154272 A1 WO 2019154272A1 CN 2019074181 W CN2019074181 W CN 2019074181W WO 2019154272 A1 WO2019154272 A1 WO 2019154272A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
failure recovery
contention
beam failure
contention random
Prior art date
Application number
PCT/CN2019/074181
Other languages
English (en)
French (fr)
Inventor
谌丽
伯特兰皮埃尔
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020207025928A priority Critical patent/KR102557593B1/ko
Priority to EP19750254.5A priority patent/EP3755087B1/en
Priority to US16/968,762 priority patent/US11470670B2/en
Priority to EP23163082.3A priority patent/EP4221430A1/en
Publication of WO2019154272A1 publication Critical patent/WO2019154272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment

Definitions

  • the present disclosure relates to the field of communications technologies, and in particular, to a beam failure recovery method and a user terminal.
  • NR New Radio
  • beamforming is widely used for transmission, and user terminals and base stations transmit signaling and data on a determined beam, where the base station There is a correspondence between the receiving and transmitting beams of the user terminal.
  • a beam failure recovery (BFR) process may be initiated, where the beam failure recovery refers to the user terminal re-finding the beam whose channel quality meets the requirements (ie, Beam).
  • the user terminal may select a new available Synchronous Signal Block (SSB) or a Channel State Information Reference Signal (CSI-RS), and different SSBs or CSI-RSs may be different.
  • SSB Synchronous Signal Block
  • CSI-RS Channel State Information Reference Signal
  • the foregoing beam failure recovery process may be implemented by using random access, specifically, selecting a specific beam by the user terminal, and initiating random access. If the random access is successful, determining that the beam failure recovery is completed on the selected beam, where The above random access for beam failure recovery may be non-contention random access or contention random access.
  • the user terminal selects non-contention random access for beam failure recovery, if a random access procedure fails, the user terminal continues to initiate the next random access attempt on the beam until the beam fails to recover.
  • the BFR failure is determined after success, or the maximum number of non-contention random accesses used for beam failure recovery. Therefore, when the beam quality of the first selection of the user terminal is poor, a large amount of random access resources are easily wasted.
  • the embodiment of the present disclosure provides a method for recovering a beam failure and a user terminal, so as to reduce the waste of random access resources in the process of beam failure recovery, accelerate the completion process of beam failure recovery, improve the success probability of beam failure recovery, and reduce the risk of terminal wireless link failure. And further improve the efficiency of data transmission.
  • Embodiments of the present disclosure provide a beam failure recovery method.
  • the method includes:
  • performing the beam failure recovery by using the contention random access including:
  • channel quality detection is performed on a beam configured with a non-contention random access resource for beam failure recovery
  • the contention failure random access is used for beam failure recovery.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • the random access number of the first random access is recorded as 1;
  • the number of random access times for the first time random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access.
  • the backoff indication is ignored, and the randomized random access resource is re-initiated. Access
  • the contention-based random access is re-initiated.
  • the embodiment of the present disclosure further provides a user terminal.
  • the user terminal includes:
  • a first beam failure recovery module configured to perform beam failure recovery by using non-contention random access
  • the second beam failure recovery module is configured to perform the beam failure recovery by using the contention random access in the case that the non-contention random access fails.
  • the second beam failure recovery module includes:
  • a detecting unit configured to perform channel quality detection on a beam configured with a non-contention random access resource for beam failure recovery if the non-contention random access fails;
  • the beam failure recovery unit performs beam failure recovery using the contention random access if the channel quality of the beam configured with the non-contention random access resource for beam failure recovery is less than a preset threshold.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • Embodiments of the present disclosure also provide a user terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, the transceiver for employing non-competitive random Access for beam failure recovery;
  • the transceiver is further configured to perform beam failure recovery by using contention random access in case of non-contention random access failure.
  • the processor is configured to read a program in the memory, and perform the following process: performing channel for a beam configured with a non-contention random access resource for beam failure recovery in case of non-contention random access failure Quality Inspection;
  • the transceiver is further configured to: if the channel quality of the beam configured with the non-contention random access resource for beam failure recovery is less than a preset threshold, use the contention random access to perform beam failure recovery.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • the random access number of the first random access is recorded as 1;
  • the number of random access times for the first time random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access.
  • the transceiver is further configured to:
  • the contention-based random access is re-initiated.
  • the embodiment of the present disclosure further provides a computer readable storage medium, on which a program is stored, and when the program is executed by the processor, the steps in the beam failure recovery method provided by the embodiment of the present disclosure are implemented.
  • non-contention random access is used for beam failure recovery; in the case of non-contention random access failure, the use of contention random access for beam failure recovery. Therefore, the waste of random access resources in the beam failure recovery process can be reduced, the beam failure recovery completion process can be accelerated, the success probability of beam failure recovery can be improved, the risk of terminal radio link failure can be reduced, and the data transmission efficiency can be further improved.
  • FIG. 1 is a flowchart of a contention random access procedure according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a non-contention random access procedure according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a network applicable to an embodiment of the present disclosure.
  • FIG. 5 is a structural diagram of a user terminal according to an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • Random access Random access can be divided into competitive random access and non-competitive random access.
  • the above-mentioned contention random access procedure mainly includes a Random Access Preamble (Msg1), a Random Access Response (Msg2), a Scheduled Transmission (Msg3), and a contention resolution. (Contention Resolution, also known as Msg4) four processes.
  • the above-mentioned competitive random access procedure mainly includes steps 101 to 104.
  • Step 101 The user terminal sends a random access preamble to the base station.
  • the user equipment (User Equipment, UE) sends the Msg1 to the base station.
  • the UE selects a random access preamble (Preamble) and a random access resource, that is, a Physical Random Access Channel (PRACH) resource, and sends the selected random access to the base station on the selected PRACH resource.
  • Preamble a random access preamble
  • PRACH Physical Random Access Channel
  • Step 102 The base station sends a random access response to the user terminal.
  • the base station sends the Msg2 to the user terminal.
  • the base station receives the random access request Msg1 and sends a random access response to the UE.
  • the random access response includes an uplink timing advance, an uplink resource allocated for Msg3 (that is, an uplink grant (UL Grant)), and a temporary allocation allocated by the network side.
  • UL Grant uplink grant
  • C-RNTI Cell Radio Network Temporary Identity
  • the physical downlink control channel (PDCCH) carrying the Msg2 scheduling message is scrambled by a Random Access Radio Network Temporary Identity (RA-RNTI), and the preamble ID is also carried in the Msg2 ( That is, the Preamble ID), the UE may determine that the Msg2 corresponds to the Msg1 sent by the RA-RNTI and the preamble ID.
  • RA-RNTI Random Access Radio Network Temporary Identity
  • Step 103 The user terminal performs scheduled transmission.
  • the user terminal sends the Msg3 to the base station.
  • the uplink transmission is sent by the UE on the uplink grant (UL grant) allocated by the Msg2.
  • the content of the uplink transmission of the Msg3 is different.
  • the Msg3 transmits the radio resource control (Radio Resource Control, RRC) Connection establishment request.
  • RRC Radio Resource Control
  • Step 104 The base station sends a contention resolution to the user terminal.
  • the base station sends Msg4 to the user terminal.
  • the UE can judge whether the random access is successful according to Msg4.
  • the temporary C-RNTI is automatically converted into the UE's unique UE identity C-RNTI in the cell.
  • the non-contention random access procedure includes a Random Access Preamble Assignment (Msg0), a Random Access Preamble (Msg1), and a Random Access Response (Random Access Response). That is, Msg2) three processes.
  • Msg0 Random Access Preamble Assignment
  • Msg1 Random Access Preamble
  • Msg2 Random Access Response
  • the above non-contention random access procedure mainly includes steps 201 to 203.
  • Step 201 The base station allocates a random access preamble to the user terminal.
  • the base station sends Msg0 to the user terminal.
  • the base station allocates a dedicated preamble (ie, Preamble) for non-contention random access and a PRACH resource used by the random access to the UE.
  • a dedicated preamble ie, Preamble
  • Step 202 The user terminal sends a random access preamble to the base station.
  • the user terminal sends the Msg1 to the base station.
  • the UE sends a designated dedicated preamble (ie, Preamble) to the base station on the designated PRACH resource according to the indication of Msg0.
  • the base station calculates the Timing Advance (TA) according to Msg1.
  • TA Timing Advance
  • Step 203 The base station sends a random access response to the user terminal.
  • the base station sends the Msg2 to the user terminal.
  • the format of the random access response is the same as that of the contending random access, and the PDCCH scheduling MAC RAR PDU (Radio Access Control Random Access Response Protocol Data Unit) with the RA-RNTI is used.
  • the MAC RAR PDU includes a RAPID (Random Access Preamble Identification), a Timing Advance Command (TAC), and a subsequent uplink transmission resource allocation uplink authorization. (ie, UL grant), the user terminal completes the contention resolution by using the RAPID in the random access response MAC RAR and the preamble (ie, Preamble) sent by the Msg1.
  • NR New Radio introduces a new non-contention random access scenario: Beam Failure Recovery (BFR).
  • Msg2 is a PDCCH carrying a C-RNTI.
  • the C-RNTI is consistent with the C-RNTI of the user terminal, and the user terminal determines that the random access is successful, so that the beam failure recovery is successful.
  • the non-contention random access for the BFR may include: configuring, by the network side, a candidate beam set (ie, a Candidate Beam Set) for the user terminal, and allocating non-competitive access resources on multiple beams of the candidate beam set (for example, a PRACH resource and/or a preamble (Preamble), if the user terminal selects a non-contention random access resource on the beam, initiates non-contention random access, and after the user terminal sends the Msg1, the configured reception is performed within the configuration time.
  • a candidate beam set ie, a Candidate Beam Set
  • Preamble preamble
  • the base station configures independent random access parameters, including random access response window length (ie, RA-Response Window-BFR) and preamble (ie, Preamble) initial receiving target power (ie, Preamble).
  • random access response window length ie, RA-Response Window-BFR
  • preamble ie, Preamble initial receiving target power
  • Initial Received Target Power-BFR Power Ramping Step-BFR
  • Maximum Random Access Preamble TransMax-BFR
  • the contention random access for the BFR may include: if the beams in the candidate beam set do not satisfy the channel quality condition, the user terminal may initiate a contention random access on the beam with other good channel quality, and perform beam failure. restore.
  • the competitive random access procedure can be consistent with other competing random access procedures in the connected state.
  • the random access related parameters may be the same configuration as the other random access procedures, and the random access related parameters may include a random access response window length (ie, RA-Response Window) and a preamble (ie, Preamble) initial receiving target power ( That is, Preamble Initial Received Target Power), Power Ramping Step, and Maximum Random Access Times (Preamble TransMax).
  • the embodiment of the present disclosure provides a beam.
  • the failure recovery method can be used in the process of beam failure recovery using non-contention random access, and in the case of non-contention random access failure, the use of contention random access for beam failure recovery, so that the quality of the first selected beam is not very good. In a good case, other beams with good channel quality can be selected to initiate contention random access to reduce the waste of random access resources.
  • FIG. 3 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the user equipment (User Equipment, UE) 11 and the network side device 12 are included.
  • the user terminal 11 may be a mobile phone or a tablet.
  • User terminals such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID), or Wearable Device
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • FIG. 3 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the user equipment User Equipment, UE
  • the user terminal 11 may be a mobile phone or a tablet.
  • User terminals such as Tablet Personal Computer, Laptop Computer, Personal Digital Assistant (PDA), Mobile Internet Device (MID), or Wearable Device
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • Wearable Device the specific type of the user terminal 11 is not limited in the embodiment of the present disclosure.
  • the network side device 12 may be a base station, for example, a macro station, an LTE eNB, a 5G NR NB, etc.; the network side device 12 may also be a small station, such as a low power node (LPN) pico, a femto, etc., or The network side device 12 may be an access point (AP); the base station may also be a network node formed by a Central Unit (CU) and a plurality of Transmission Reception Points (TRPs) managed and controlled by the central unit (CU). . It should be noted that the specific type of the network side device 12 is not limited in the embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a beam failure recovery method according to an embodiment of the present disclosure. As shown in FIG. 4, steps 401 to 402 are included.
  • Step 401 Perform beam failure recovery by using non-contention random access.
  • the user terminal when the user terminal measures that the current working beam channel quality is poor and needs to initiate a beam failure recovery process, the user terminal may perform non-competitive random access for beam failure recovery to find that the channel quality meets the requirements. Beam.
  • the user terminal adopts non-contention random access for beam failure recovery, which may include the user terminal selecting a beam from multiple beams of the candidate beam set to which the non-contention access resource is allocated to initiate non-contention random access, in the user.
  • the terminal sends the Msg1
  • the user terminal receives the PDCCH command scrambled by the user terminal C-RNTI in the CORESET of the configured PDCCH command in the configured time
  • the non-contention random access is considered successful;
  • the PDCCH command scrambled by the user terminal C-RNTI is received in the configured CORESET receiving the PDCCH command in the configuration time, the non-contention random access fails.
  • Step 402 Perform non-competitive random access failure, and use the contention random access to perform beam failure recovery.
  • the user terminal in the case that the non-contention random access fails, the user terminal can be replaced with the contending random access for beam failure recovery to select other beams with better channel quality.
  • the user terminal may initiate a contention random access on the beam with better channel quality, and perform beam failure recovery. If the random access fails, the user terminal may continue to initiate the contention random access until the competition is randomized. If the number of random accesses reaches the maximum number of random accesses, the MAC layer of the user terminal reports to the upper layer to initiate a radio link failure and/or radio link reestablishment.
  • the user terminal may perform the beam failure recovery by using the contention random access, so that the beam is initially selected by the user terminal.
  • competitive random access can be initiated on other beams with better channel quality to reduce the waste of random access resources, improve the probability of successful beam failure recovery, and reduce the beam caused by unreasonable initial beam selection. Failed recovery failure, and the resulting cost and data loss of the user terminal to re-connect the network.
  • performing the beam failure recovery by using the contention random access including:
  • channel quality detection is performed on a beam configured with a non-contention random access resource for beam failure recovery
  • the contention failure random access is used for beam failure recovery.
  • an alternative beam configured with non-contention access resources for beam failure recovery may be used before each non-contention random access is initiated.
  • the channel quality of the beam of the set ie, Candidate Beam Set
  • the user terminal initiates non-contention random access for beam failure recovery.
  • the user terminal may select other beams with better channel quality to initiate the contention of the random access. Perform beam failure recovery.
  • the channel quality of the beam of the candidate beam set configured with the non-contention access resource for beam failure recovery may be detected and evaluated, and may be configured in the configuration.
  • the beam failure recovery is performed by using the contention random access.
  • the channel quality of the beam in the candidate beam set configured for the non-contention random access resource for the beam failure recovery is greater than or equal to the preset threshold, the non-contention random access may continue to be initiated.
  • the foregoing device may be selected. A beam in the selected beam set whose channel quality is greater than or equal to a preset threshold initiates non-contention random access. It can be understood that the foregoing preset threshold can be reasonably set according to actual conditions.
  • the embodiment of the present disclosure performs channel quality detection on a beam configured with a non-contention random access resource for beam failure recovery, and the channel quality of the beam configured with the non-contention random access resource for beam failure recovery is less than
  • the contending random access is used to perform the beam failure recovery, so that the user terminal can select the beam with better channel quality to initiate the contending random access, so as to reduce the waste of the random access resource and improve the probability of successful beam failure recovery. And can shorten the time required for random access recovery and improve the stability of data transmission.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the Msg1 initial receiving target power (ie, the Preamble Initial Received Target Power) and/or the Msg1 power climbing step (the Power Ramping Step) of the contention random access for performing the beam failure recovery may be respectively configured with the pre-configured
  • the initial reception target power of the Msg1 for the conventional contention random access is the same as the Msg1 power climb step.
  • the network side may pre-configure the Msg1 initial receiving target power and the Msg1 power climbing step size for the user terminal in advance, and before the user terminal initiates the contention random access, the user terminal may first acquire the Msg1 initial receiving target. Power and Msg1 power climb step and other parameters.
  • the contention random access may include the above-mentioned competitive random access for beam failure recovery and other contention random access.
  • the user terminal initiates a contention random access on the selected beam, and the first-time competitive random access uses the initial received target power (ie, Preamble Initial Received Target Power) to send the Msg1.
  • the transmit power of the Msg1 is the initial receive target power increase power step (ie, the Power Ramping Step), and so on, that is, the competitive random access initiated this time.
  • the transmit power of the Msg1 is increased by the power-up step size of the Msg1's transmit power of the previously initiated competitive random access.
  • the embodiment of the present disclosure adopts the Msg1 initial receiving target power configured in advance for the contention random access, and/or the competitive random access for beam failure recovery in advance for the Msg1 power climbing step configured for the contention random access, which can be used for competition.
  • the configuration of random access parameters simplifies the system.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • the maximum random access number is used for determining a beam failure recovery failure, that is, when the random access number initiated by the user terminal reaches the maximum random access number, if the random access still fails, the determination is performed.
  • the beam failure recovery fails and a notification can be sent to the higher layer so that the user terminal can initiate a radio link failure and/or a radio link re-establishment.
  • the network side may configure, in advance, the maximum random access times (ie, Preamble TransMax-BFR) of the non-contention random access for beam failure recovery, and the maximum random access times of the contention random access (ie, Preamble). TransMax) and so on.
  • the contention random access may include the above-mentioned competitive random access for beam failure recovery and other contention random access.
  • the maximum random access number used to determine the failure of the beam failure recovery may be the maximum random access number configured for the non-contention random access for beam failure recovery, or may be randomized for the competition.
  • the maximum number of random accesses to be configured may also be the smaller of the maximum random access times configured for non-contention random access for beam failure recovery and the maximum random access times configured for contention random access. It may also be a larger value of the maximum number of random accesses configured for non-contention random access for beam failure recovery and the maximum number of random accesses configured for contention random access.
  • the maximum number of random access times for determining beam failure recovery failure may be pre-agreed in the protocol in advance.
  • the maximum random access number configured for the non-contention random access configuration for beam failure recovery and the maximum random access number configured for the contention random access may be pre-configured by the network side. That is, the maximum random access number used for determining the failure of the beam failure recovery may be the maximum random access number configured in advance for the non-contention random access configuration for beam failure recovery, or may be configured in advance for the contention random access.
  • the maximum number of random accesses may also be a smaller value of the maximum random access number configured in advance for non-contention random access for beam failure recovery and the maximum random access number configured for preemptive random access. It may be a larger value of the maximum random access number configured in advance for non-contention random access for beam failure recovery and the maximum random access number configured in advance for contention random access.
  • the maximum random access number configured for non-contention random access for beam failure recovery is used as the maximum random access number for determining beam failure recovery failure, or the maximum configured for contention random access is adopted.
  • the number of random accesses is used as the maximum number of random access attempts to determine the failure of beam failure recovery, or the maximum number of random accesses configured for non-contention random access for beam failure recovery and the maximum random access configured for contention random access.
  • the smaller of the number of incoming times is used as the maximum number of random access attempts to determine the failure of beam failure recovery, or the maximum number of random accesses configured for non-contention random access for beam failure recovery and configured for competing random access.
  • the larger of the maximum random access times is used as the maximum random access number for determining the failure of the beam failure recovery, and the configuration of the parameters for competing random access can be reduced, simplifying the system.
  • the random access number of the first random access is recorded as 1;
  • the number of random access times for the first time random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access.
  • the random access times may be restored to the initial value, that is, 0, and according to the random access times of the initiated contention random access. Accumulate.
  • the random access times may continue to be accumulated on the random access times that have initiated the non-contention random access.
  • the first random competition is initiated during the beam failure recovery process using the contention random access.
  • the random access number of the access record is 1, and each time a random access is initiated, the number of random accesses is increased by one.
  • the beam failure is performed by using the contention random access.
  • the number of random access times for the first random access random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access, and each subsequent random access random access, random The number of accesses is increased by 1.
  • the user terminal has initiated M times of non-contention random access, and the number of random access times of the first randomized random access is initiated. For M+1, each time a contention random access is initiated, the number of random accesses is one of the random access times of the previous random access random access.
  • the backoff indication is ignored, and the randomized random access resource is re-initiated. Access
  • the contention-based random access is re-initiated.
  • the time corresponding to the back-off indication may be a back-off value randomly selected according to the average distribution between 0 and the back-off parameter of the back-off indication, and the user terminal may delay the next back-off value according to the selected back-off value. Sending random access.
  • the user terminal may ignore the backoff indication after the random access fails. And immediately initiate random access on the nearest random access resource to complete beam failure recovery as soon as possible to ensure reliable transmission of data.
  • the new random access may be delayed according to the time specified by the backoff indication to reduce the burden on the network side.
  • the first embodiment is as follows: After the user terminal uses the non-contention random access to perform the BFR failure, the user terminal changes to the BFR by using the contention random access.
  • Step a1 The user terminal selects a non-contention random access resource, initiates random access, and performs BFR.
  • step a2 if the random access fails, that is, after the user terminal sends the Msg1, it is not in the configured Msg2 receiving window length (ie, RA-Response Window-BFR), and the configured PDCCH receiving resource (ie, CORESET) If the PDCCH command with the user terminal C-RNTI is received, step a2 is performed. If the random access is successful, the BFR may be determined to be successful.
  • Step a2 The user terminal performs channel quality detection and evaluation on a beam configured with a non-contention random access resource for BFR.
  • step a3 if the channel quality of all the beams (ie, Beam) configured with the non-contention random access resources for the BFR does not reach the preset threshold, the other beams with good channel quality can be used to initiate the contention of the random access. , that is, step a3 is performed.
  • step a3 the user terminal initiates contention random access according to the parameter configuration of the contention random access on the selected beam.
  • the parameters of the contention random access may include an initial reception target power of Msg1, a Msg1 power climb step size, and a maximum random access number.
  • the Msg1 initial receiving target power may be the Msg1 initial receiving target power (that is, the Msg1 initial transmitting power) of the general competitive random access
  • the Msg1 power climbing step may be the Msg1 power climbing step of the general competitive random access.
  • Embodiment 2 After the user terminal uses the non-contention random access to perform the BFR failure, the BFR is changed to use the contending random access for BFR, and the BFR failure determination is performed according to the maximum random access number of the BFR according to the non-contention random access, which may specifically include The following steps:
  • Step b1 The user terminal performs BFR by using non-contention random access, and after performing M times, BFR is performed by using the contention random access.
  • the channel quality detection may be performed on the beam configured with the non-contention random access resource for the BFR after each non-contention random access failure. Evaluating that if the channel quality of all the beams configured with the non-contention random access resources for BFR (ie, Beam) is detected to reach the preset threshold after initiating the non-contention random access M times, the random competition is adopted. Access for BFR.
  • Step b2 The user terminal initiates a contention random access on the selected beam, and the random access number is set to M+1. If the contention random access fails, the contention random access continues to be initiated, and the random access times continue to be accumulated until The number of random accesses reaches the maximum number of random accesses (ie, Preamble TransMax-BFR) for non-contention random access configured for BFR on the network side, or the random access is successful.
  • the maximum number of random accesses ie, Preamble TransMax-BFR
  • Step b3 If the number of random accesses reaches the upper limit (that is, the Preamble TransMax-BFR) still fails to access the random access, the MAC layer of the user terminal may report to the upper layer to initiate a radio link failure and/or a radio link reestablishment.
  • the upper limit that is, the Preamble TransMax-BFR
  • Embodiment 3 After the BFR failure of the non-contention random access is performed, the user terminal changes to the BFR using the contention random access, and performs the maximum random access number of the BFR and the maximum number of times of the random access according to the non-contention random access.
  • the smaller value of the BFR failure determination may specifically include the following steps:
  • Step c1 The user terminal performs BFR by using non-contention random access, and after performing M times, BFR is performed by using the contention random access.
  • step b1 This step is the same as step b1 above. To avoid repetition, no further details are provided herein.
  • step c2 the user terminal initiates a contention random access on the selected beam, and the random access number is set to M+1. If the contention random access fails, the contention random access continues to be initiated, and the random access times continue to be accumulated until the random access times are continued. The number of random accesses reaches the maximum random access number (ie, Preamble TransMax-BFR) of the non-contention random access for BFR configured on the network side and the maximum random access number of the random access (ie, Preamble TransMax). Small value, or random access is successful.
  • the maximum random access number ie, Preamble TransMax-BFR
  • Step c3 If the number of random accesses reaches the upper limit (ie, the preamble TransMax-BFR (Preamble TransMax) is still random access failure), the MAC layer of the user terminal may report to the upper layer, and initiate a radio link failure and/or radio link reestablishment.
  • the preamble TransMax-BFR Preamble TransMax
  • Embodiment 4 After the user terminal uses the non-contention random access to perform the BFR failure, the user terminal changes to the BFR using the contention random access, and performs the maximum random access number of the BFR and the maximum number of the random accesses according to the non-contention random access.
  • the larger value of the BFR failure determination may specifically include the following steps:
  • Step d1 The user terminal performs BFR by using non-contention random access, and after performing M times, BFR is performed by using the contention random access.
  • step b1 This step is the same as step b1 above. To avoid repetition, no further details are provided herein.
  • Step d2 The user terminal initiates a contention random access on the selected beam, and the random access number is set to M+1. If the contention random access fails, the contention random access continues to be initiated, and the random access times continue to be accumulated until The number of random accesses reaches the maximum random access number (ie, Preamble TransMax-BFR) of the non-contention random access for BFR configured on the network side and the maximum random access number of the random access (ie, Preamble TransMax). Large value, or random access is successful.
  • the maximum random access number ie, Preamble TransMax-BFR
  • Step d3 If the number of random accesses reaches the upper limit (ie, the maximum access level (Preamble TransMax-BFR, Preamble TransMax)) is still random access failure, the MAC layer of the user terminal may report to the upper layer, and initiate a radio link failure and/or a radio link reestablishment.
  • the upper limit ie, the maximum access level (Preamble TransMax-BFR, Preamble TransMax)
  • Embodiment 5 After the BFR failure of the non-contention random access is performed, the user terminal changes to the BFR using the contention random access, and performs the BFR failure determination according to the maximum number of times of the random access, and is used for the BFR competitive random access.
  • the random access times are accumulated in the number of random accesses of the BFR in the previous non-contention random access, and may include the following steps:
  • Step e1 The user terminal performs BFR by using non-contention random access, and after performing M times, BFR is performed by using the contention random access.
  • step b1 This step is the same as step b1 above. To avoid repetition, no further details are provided herein.
  • Step e2 The user terminal initiates a contention random access on the selected beam, and the random access number is set to M+1. If the contention random access fails, the contention of the random access continues to be accumulated until the random access times continue to be accumulated. The number of random accesses reaches the maximum number of random accesses (ie, Preamble TransMax) of the contending random access configured on the network side, or the random access is successful.
  • the maximum number of random accesses ie, Preamble TransMax
  • Step e3 If the number of random accesses reaches the upper limit (that is, the Preamble TransMax), the random access fails, and the MAC layer of the user terminal may report to the upper layer to initiate a radio link failure and/or a radio link reestablishment.
  • the upper limit that is, the Preamble TransMax
  • Embodiment 6 After the BFR failure of the non-contention random access is performed, the user terminal changes to the BFR using the contention random access, and performs the BFR failure determination according to the maximum number of times of the contention random access, and is used for the BFR competitive random access.
  • the number of random accesses is counted from an initial value (for example, 0), and specifically includes the following steps:
  • Step f1 The user terminal performs BFR by using non-contention random access, and after performing M times, BFR is performed by using the contention random access.
  • step b1 This step is the same as step b1 above. To avoid repetition, no further details are provided herein.
  • Step f2 The user terminal initiates a contention random access on the selected beam, and the random access number is set to 1. If the contention random access fails, the contention of the random access continues to be accumulated until the random access is continued. The number of incoming calls reaches the maximum number of random accesses (ie, Preamble TransMax) of the contention random access configured on the network side, or the random access succeeds.
  • the maximum number of random accesses ie, Preamble TransMax
  • Step f3 If the number of random accesses reaches the upper limit (that is, the Preamble TransMax), the random access fails, and the MAC layer of the user terminal may report to the upper layer to initiate a radio link failure and/or a radio link reestablishment.
  • the upper limit that is, the Preamble TransMax
  • Embodiment 7 After the user terminal fails to perform BFR by using non-contention random access, the BFR is changed to use the contention random access to perform BFR, and the contention random access ignores the backoff indication of the Msg2.
  • Step g1 After the user terminal uses the non-contention random access to perform the BFR failure, the BFR is performed by using the contention random access, and the BI parameter in the Msg2 is received.
  • Step g2 If the random access fails, and the user terminal determines that the reason for initiating the random access is BFR, the backoff indication is ignored, and the random access is re-initiated immediately on the latest random access resource.
  • ignoring the foregoing backoff indication may mean that the random access is re-initiated after the delay is not performed according to the backoff indication.
  • Embodiment 8 After the user terminal fails to perform BFR by using non-contention random access, the BFR is changed to use the contention random access to perform BFR, and the contention random access follows the Msg2 backoff indication.
  • Step h1 After the user terminal adopts non-contention random access for BFR failure, the BFR is performed by using the contention random access, and the BI parameter in the Msg2 is received.
  • Step h2 If the random access fails, the user terminal follows the time specified by the backoff indication, and delays in initiating new random access.
  • the beam failure recovery provided by the embodiment of the present disclosure can enable the user terminal to complete the beam failure recovery as soon as possible, and avoid the BFR failure and the random access resource waste caused by the unreasonable initial beam selection, and the user terminal caused thereby. Re-costing network data and data loss.
  • the behavior and parameters on the network side correspond to the user terminal side behaviors and parameters described in the above embodiments.
  • the network side performs the corresponding operation on the non-contention random access initiated by the user terminal, for example, after receiving the Msg1 sent by the user terminal, sending the Msg2 to the user terminal;
  • the network side performs the corresponding operation on the contention random access initiated by the user terminal, for example, after receiving the user terminal, After Msg1, Msg2 is sent to the user terminal, and after receiving the Msg3 sent by the user terminal, Msg4 is sent to the user terminal.
  • FIG. 5 is a structural diagram of a user terminal according to an embodiment of the present disclosure. As shown in FIG. 5, the user terminal 500 includes:
  • a first beam failure recovery module 501 configured to perform beam failure recovery by using non-contention random access
  • the second beam failure recovery module 502 is configured to perform beam failure recovery by using contention random access in case of non-contention random access failure.
  • the second beam failure recovery module 502 includes:
  • the detecting unit 5021 is configured to perform channel quality detection on a beam configured with a non-contention random access resource for beam failure recovery if the non-contention random access fails;
  • the beam failure recovery unit 5022 performs beam failure recovery using the contention random access if the channel quality of the beam configured with the non-contention random access resource for beam failure recovery is less than a preset threshold.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • the user terminal 500 further includes a counting module, configured to:
  • the random access number of the first random access is recorded as 1;
  • the number of random access times for the first time random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access.
  • the second beam failure recovery module 502 is further configured to:
  • the contention-based random access is re-initiated.
  • the user terminal 500 may be a user terminal in any embodiment of the method in the embodiment of the disclosure, and any implementation manner of the user terminal in the method embodiment of the disclosure may be used in this embodiment.
  • the above-mentioned user terminal 500 in the embodiment is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • FIG. 7 is a structural diagram of another user terminal according to an embodiment of the present disclosure.
  • the user terminal includes: a transceiver 710, a memory 720, a processor 700, and a memory stored in the memory.
  • a program on 720 and operable on the processor wherein:
  • the transceiver is configured to perform beam failure recovery by using non-contention random access
  • the transceiver is further configured to perform beam failure recovery by using contention random access in case of non-contention random access failure.
  • the transceiver 710 can be configured to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 700 and various circuits of memory represented by memory 720.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 710 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 can store data used by the processor 700 in performing operations.
  • the memory 720 is not limited to only the user terminal, and the memory 720 and the processor 700 can be separated in different geographical locations.
  • the processor 700 is configured to read a program in the memory 720, and perform the following process: in case of non-contention random access failure, configuring non-contention random access resources for beam failure recovery Beam for channel quality detection;
  • the transceiver 710 is further configured to: if the channel quality of the beam configured with the non-contention random access resource for beam failure recovery is less than a preset threshold, use the contention random access to perform beam failure recovery.
  • the Msg1 initial receiving target power of the contention random access for performing beam failure recovery is the initial receiving target power of the Msg1 configured in advance for the contention random access;
  • the Msg1 power climb step size of the contention random access for beam failure recovery is the Msg1 power climb step configured in advance for the contention random access.
  • the maximum number of random access attempts to determine that the beam failure recovery fails is one of the following:
  • the random access number of the first random access is recorded as 1;
  • the number of random access times for the first time random access is recorded as the number of non-contention random accesses for beam failure recovery plus 1 before the random access.
  • the transceiver 710 is further configured to:
  • the contention-based random access is re-initiated.
  • the foregoing user terminal may be a user terminal in any embodiment of the method in the embodiment of the disclosure, and any implementation manner of the user terminal in the method embodiment in the embodiment of the disclosure may be implemented by the implementation.
  • the above-mentioned user terminal in the example is implemented, and the same beneficial effects are achieved, and details are not described herein again.
  • the embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a program, wherein the program is executed by the processor to implement the steps in the beam failure recovery method provided by the embodiment of the present disclosure.
  • the disclosed method and apparatus may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the steps of the transceiving method of the various embodiments of the present disclosure.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, and the program code can be stored. Medium.

Abstract

本公开提供一种波束失败恢复方法及用户终端,该方法包括:采用非竞争随机接入进行波束失败恢复;在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。

Description

波束失败恢复方法及用户终端
相关申请的交叉引用
本申请主张在2018年2月12日在中国提交的中国专利申请号No.201810146147.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种波束失败恢复方法及用户终端。
背景技术
5G(Fifth-Generation,第五代)NR(New Radio,新接入)系统中,广泛使用波束赋形的方式进行传输,用户终端和基站在确定的波束上传输信令和数据,其中,基站和用户终端的接收、发送波束间有对应关系。当用户终端测量到当前工作的波束信道质量不好时,可以发起波束失败恢复(Beam Failure Recovery,BFR)过程,其中,波束失败恢复是指用户终端重新找到信道质量满足要求的波束(即Beam),具体可以表现为用户终端选择到新的可用的同步信号块(Synchronous Signal Block,SSB)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),不同SSB或CSI-RS与不同的波束对应。
具体的,上述波束失败恢复过程可通过随机接入实现,具体为用户终端选择特定波束,发起随机接入,若随机接入成功,则确定在该选定波束上完成了波束失败恢复,其中,上述用于波束失败恢复的随机接入可以是非竞争随机接入或竞争随机接入。
然而,在相关技术中,用户终端在选择非竞争随机接入进行波束失败恢复时,如果一次随机接入过程失败,用户终端会继续在该波束上发起下一次随机接入尝试,直到波束失败恢复成功,或达到用于波束失败恢复的非竞争随机接入最大次数后判定为BFR失败。从而在用户终端初次选择的波束质量较差时,易造成大量随机接入资源的浪费。
发明内容
本公开实施例提供一种波束失败恢复方法及用户终端,以减少波束失败恢复过程中随机接入资源的浪费,加快波束失败恢复完成过程,提高波束失败恢复成功概率,降低终端无线链路失败风险,并进一步提高数据传输效率。
本公开实施例提供一种波束失败恢复方法。该方法包括:
采用非竞争随机接入进行波束失败恢复;
在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
可选的,所述在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复,包括:
在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
可选的,在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加1。
可选的,在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
本公开实施例还提供一种用户终端。该用户终端包括:
第一波束失败恢复模块,用于采用非竞争随机接入进行波束失败恢复;
第二波束失败恢复模块,用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
可选的,所述第二波束失败恢复模块,包括:
检测单元,用于在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
波束失败恢复单元,若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
本公开实施例还提供一种用户终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,所述收发机,用于采 用非竞争随机接入进行波束失败恢复;
所述收发机还用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
可选的,所述处理器用于读取存储器中的程序,执行下列过程:在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
所述收发机还用于:若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
可选的,在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加1。
可选的,所述收发机还用于:
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
本公开实施例还提供一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时实现本公开实施例提供的波束失败恢复方法中的步骤。
本公开实施例中,采用非竞争随机接入进行波束失败恢复;在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。从而不仅可以减少波束失败恢复过程中随机接入资源的浪费,还可以加快波束失败恢复完成过程,提高波束失败恢复成功概率,降低终端无线链路失败风险,并进一步提高数据传输效率。
附图说明
图1是本公开实施例提供的竞争随机接入过程的流程图;
图2是本公开实施例提供的非竞争随机接入过程的流程图;
图3是本公开实施例可应用的网络结构示意图;
图4是本公开实施例提供的一种波束失败恢复方法的流程图;
图5是本公开实施例提供的一种用户终端的结构图;
图6是本公开实施例提供的另一种用户终端的结构图;
图7是本公开实施例提供的另一种用户终端的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
为了便于理解,以下对本公开实施例涉及的一些术语进行说明:
随机接入:随机接入可分为竞争随机接入和非竞争随机接入。
上述竞争随机接入过程主要包括随机接入前导码(Random Access Preamble,也即Msg1)、随机接入响应(Random Access Response,也即Msg2)、调度传输(Scheduled Transmission,也即Msg3)和竞争解决(Contention Resolution,也即Msg4)四个过程。
如图1所示,上述竞争随机接入过程主要包括步骤101至104。
步骤101、用户终端向基站发送随机接入前导码。
具体的,上述步骤101即用户终端(User Equipment,UE)向基站发送Msg1。UE选择随机接入前导码(即Preamble)和随机接入资源,也即物理随机接入信道(Physical Random Access Channel,PRACH)资源,并在选择的PRACH资源上向基站发送所选的随机接入前导码。
步骤102、基站向用户终端发送随机接入响应。
具体的,上述步骤102即基站向用户终端发送Msg2。基站接收到随机接入请求Msg1,向UE发送随机接入响应,随机接入响应中包含上行定时提前量、为Msg3分配的上行资源(也即上行授权(UL Grant))和网络侧分配的临时小区无线网络临时标识(Cell Radio Network Temporary Identity,C-RNTI)。此外,承载Msg2调度消息的物理下行控制信道(Physical Downlink Shared Channel,PDCCH)用随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,RA-RNTI)加扰,Msg2中还携带前导码ID(即Preamble ID),UE可通过RA-RNTI和前导码ID确定该Msg2是与其发送的Msg1对应。
步骤103、用户终端进行调度传输。
具体的,上述步骤103即用户终端向基站发送Msg3。UE在Msg2分配的上行授权(UL grant)上发送上行传输,对于不同的随机接入原因,Msg3上行传输的内容不同,例如,对于初始接入,Msg3传输的是无线资源控制(Radio Resource Control,RRC)连接建立请求。
步骤104、基站向用户终端发送竞争解决。
具体的,在上述步骤104中,基站向用户终端发送Msg4。UE根据Msg4可以判断随机接入是否成功。对于初始接入UE,竞争解决成功后临时C-RNTI自动转化为UE在该小区的唯一UE标识C-RNTI。
上述非竞争随机接入过程主要包括随机接入前导码分配(Random Access Preamble assignment,也即Msg0)、随机接入前导码(Random Access Preamble,也即Msg1)和随机接入响应(Random Access Response,也即Msg2)三个过程。
如图2所示,上述非竞争随机接入过程主要包括步骤201至203。
步骤201、基站为用户终端分配随机接入前导码。
具体的,上述步骤201即基站向用户终端发送Msg0。基站向UE分配用于非竞争随机接入的专用前导码(即Preamble)以及随机接入使用的PRACH资源。
步骤202、用户终端向基站发送随机接入前导码。
具体的,上述步骤202即用户终端向基站发送Msg1。UE根据Msg0的指示,在指定的PRACH资源上向基站发送指定的专用前导码(即Preamble)。基站接收到Msg1后根据Msg1计算上行定时提前量(Timing Advance,TA)。
步骤203、基站向用户终端发送随机接入响应。
具体的,上述步骤203即基站向用户终端发送Msg2。
需要说明的是,大多数随机接入场景中,随机接入响应的格式和竞争随机接入一样,采用带RA-RNTI的PDCCH调度MAC RAR PDU(Media Access Control Random Access Response Protocol Data Unit,媒介接入控制随机接入响应协议数据单元),MAC RAR PDU中包含RAPID(Random Access Preamble Identification,随机接入前导码标识),定时提前量命令(Timing Advance Command,TAC)、后续上行传输资源分配上行授权(即UL grant),用户终端通过随机接入响应MAC RAR中的RAPID与Msg1发送的前导码(即Preamble)相同完成竞争解决。此外,NR(New Radio,新接入)引入一种新的非竞争随机接入场景:波束失败恢复(Beam Failure Recovery,BFR),这种场景下,Msg2为携带C-RNTI的PDCCH,只要该C-RNTI与用户终端的C-RNTI一致,用户终端判断随机接入成功,从而波束失败恢复成功。
具体的,用于BFR的非竞争随机接入可以包括:网络侧为用户终端配置备选波束集合(即Candidate Beam Set),在备选波束集合的多个波束上分配非竞争接入资源(例如,PRACH资源和/或前导码(即Preamble)),如果用户终端选定波束上有非竞争随机接入资源,则发起非竞争随机接入,用户终端发送Msg1后,在配置时间内在配置的接收PDCCH命令的控制资源集(Control Resource Set,CORESET)中接收到该用户终端C-RNTI加扰的PDCCH命令,则认为非竞争随机接入成功。对于用于BFR的非竞争随机接 入,基站配置独立的随机接入参数,包括随机接入响应窗长(即RA-Response Window-BFR)、前导码(即Preamble)初始接收目标功率(即Preamble Initial Received Target Power-BFR)、功率爬升步长(即Power Ramping Step-BFR)、最大随机接入次数(即Preamble TransMax-BFR)等。
具体的,用于BFR的竞争随机接入可以包括:如果备选波束集合中的波束都不满足信道质量条件,用户终端可以在其他信道质量较好的波束上发起竞争随机接入,进行波束失败恢复。竞争随机接入过程可以与连接态下的其他竞争随机接入过程一致。随机接入相关参数与其他随机接入过程可以是相同的配置,上述随机接入相关参数可以包括随机接入响应窗长(即RA-Response Window)、前导码(即Preamble)初始接收目标功率(即Preamble Initial Received Target Power)、功率爬升步长(即Power Ramping Step)、最大随机接入次数(即Preamble TransMax)等。
由于用户终端在选择非竞争随机接入进行波束失败恢复时,如果一次随机接入过程失败,用户终端会继续在该波束上发起下一次随机接入尝试,直到波束失败恢复成功,或达到用于波束失败恢复的非竞争随机接入最大次数后判定为BFR失败,从而在用户终端初次选择的波束质量较差时,易造成大量随机接入资源的浪费,因此,本公开实施例提供一种波束失败恢复方法,可以在采用非竞争随机接入进行波束失败恢复过程中,在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复,从而可以在初次选择的波束质量不是很好的情况下,可以选择信道质量好的其他波束发起竞争随机接入,以减少随机接入资源的浪费。
参见图3,图3是本公开实施例可应用的网络结构示意图,如图3所示,包括用户终端(User Equipment,UE)11和网络侧设备12,其中,用户终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,简称PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等用户终端侧设备,需要说明的是,在本公开实施例中并不限定用户终端11的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备12也可以是小站,如低功率节点(Low Power Node,LPN) pico、femto等小站,或者网络侧设备12可以是接入点(Access Point,AP);基站也可以是中央单元(Central Unit,CU)与其管理和控制的多个传输接收点(Transmission Reception Point,TRP)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备12的具体类型。
参见图4,图4是本公开实施例提供的波束失败恢复方法的流程图,如图4所示,包括步骤401至402。
步骤401、采用非竞争随机接入进行波束失败恢复。
本实施例中,在用户终端测量得到当前工作的波束信道质量较差,需要发起波束失败恢复过程的情况下,用户终端可以采用非竞争随机接入进行波束失败恢复,以找到信道质量满足要求的波束。
在该步骤中,用户终端采用非竞争随机接入进行波束失败恢复可以包括用户终端从分配了非竞争接入资源的备选波束集合的多个波束中选择波束发起非竞争随机接入,在用户终端发送Msg1后,在用户终端在配置时间内在配置的接收PDCCH命令的CORESET中接收到该用户终端C-RNTI加扰的PDCCH命令的情况下,认为非竞争随机接入成功;在用户终端未在配置时间内在配置的接收PDCCH命令的CORESET中接收到该用户终端C-RNTI加扰的PDCCH命令的情况下,认为非竞争随机接入失败。
步骤402、在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
本实施例中,在非竞争随机接入失败的情况下,用户终端可以更换为采用竞争随机接入进行波束失败恢复,以选择其他信道质量较好的波束。
具体的,用户终端可在其他信道质量较好的波束上发起竞争随机接入,进行波束失败恢复,若该次竞争随机接入失败,则用户终端可以继续发起竞争随机接入,直至竞争随机接入成功,或随机接入次数达到最大随机接入次数,用户终端MAC层上报高层,发起无线链路失败和/或无线链路重建。
需要说明的是,上述用于波束失败恢复的竞争随机接入过程可以与连接态下的其他竞争随机接入过程一致,本公开实施例对此不做限定。
本公开实施例中,在采用非竞争随机接入进行波束失败恢复,且非竞争随机接入失败的情况下,用户终端可以采用竞争随机接入进行波束失败恢复, 从而在用户终端初次选择的波束质量较差时,可以在其他信道质量较好的波束上发起竞争随机接入,以减少随机接入资源的浪费,也可以提高波束失败恢复成功的概率,减少因初始波束选择不合理造成的波束失败恢复失败,以及由此带来的用户终端重新进行网络连接的开销及数据丢失。
可选的,所述在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复,包括:
在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
本公开实施例中,在采用非竞争随机接入进行波束失败恢复过程中,可以在每次发起非竞争随机接入之前,对配置了用于波束失败恢复的非竞争接入资源的备选波束集合(即Candidate Beam Set)的波束的信道质量进行检测和评估,在配置了用于波束失败恢复的非竞争接入资源的备选波束集合的波束的信道质量大于或等于预设阈值的情况下,用户终端发起非竞争随机接入,以进行波束失败恢复。而在配置了用于波束失败恢复的非竞争接入资源的备选波束集合的波束的信道质量小于预设阈值的情况下,用户终端可以选择其他信道质量较好的波束发起竞争随机接入,进行波束失败恢复。
具体的,在非竞争随机接入失败的情况下,可以对配置了用于波束失败恢复的非竞争接入资源的备选波束集合的波束的信道质量进行检测和评估,并可以在所述配置了用于波束失败恢复的非竞争随机接入资源的备选波束集合的波束的信道质量均小于预设阈值时,采用竞争随机接入进行波束失败恢复。而在配置了用于波束失败恢复的非竞争随机接入资源的备选波束集合中存在波束的信道质量大于或等于预设阈值时,可以继续发起非竞争随机接入,例如,可以选择上述备选波束集合中信道质量大于或等于预设阈值的波束发起非竞争随机接入。可以理解的是,上述预设阈值可以根据实际情况进行合理设置。
本公开实施例通过对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测,并在配置了用于波束失败恢复的非竞争随机接入资 源的波束的信道质量小于预设阈值的情况下,采用竞争随机接入进行波束失败恢复,从而使得用户终端可以选择信道质量较好的波束发起竞争随机接入,以减少随机接入资源的浪费,提高波束失败恢复成功的概率,并可以缩短随机接入恢复所需的时间,提高数据传输的稳定性。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
本公开实施例中,上述进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率(即Preamble Initial Received Target Power)和/或Msg1功率爬升步长(即Power Ramping Step)可以分别与预先配置的针对常规的竞争随机接入的Msg1初始接收目标功率和Msg1功率爬升步长相同。具体的,网络侧可以预先为用户终端配置竞争随机接入的Msg1初始接收目标功率和Msg1功率爬升步长等参数,在用户终端发起竞争随机接入前,用户终端可先获取上述Msg1初始接收目标功率和Msg1功率爬升步长等参数。可以理解的是,该竞争随机接入可以包括上述用于波束失败恢复的竞争随机接入和其他的竞争随机接入。
需要说明的是,用户终端在选定波束上发起竞争随机接入,其首次发起的竞争随机接入采用初始接收目标功率(即Preamble Initial Received Target Power)发送Msg1,如果本次竞争随机接入失败,下次在上述波束上发起竞争随机接入时,Msg1的发射功率为初始接收目标功率增加功率爬升步长(即Power Ramping Step),并以此类推,也即本次发起的竞争随机接入的Msg1的发射功率为前一次发起的竞争随机接入的Msg1的发射功率增加功率爬升步长。
本公开实施例采用预先为竞争随机接入配置的Msg1初始接收目标功率,和/或预先为竞争随机接入配置的Msg1功率爬升步长进行波束失败恢复的竞争随机接入,可以减少用于竞争随机接入的参数的配置,简化系统。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
本公开实施例中,上述最大随机接入次数用于波束失败恢复失败的判定,也即在用户终端发起的随机接入次数达到上述最大随机接入次数时,若随机接入仍失败,则判定波束失败恢复失败,并可向高层发送通知,从而用户终端可以发起无线链路失败和/或无线链路重建。
具体的,网络侧可以预先为用户终端配置用于波束失败恢复的非竞争随机接入的最大随机接入次数(即Preamble TransMax-BFR),以及竞争随机接入的最大随机接入次数(即Preamble TransMax)等。需要说明的是,该竞争随机接入可以包括上述用于波束失败恢复的竞争随机接入和其他的竞争随机接入。
在本公开实施例中,上述用于判定波束失败恢复失败的最大随机接入次数可以是为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数,也可以是为竞争随机接入配置的最大随机接入次数,也可以是为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值,也可以是为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。可选的,可以预先在协议中预先约定用于判定波束失败恢复失败的最大随机接入次数。
可以理解的是,上述为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数,可以是网络侧预先配置的。也即上述用于判定波束失败恢复失败的最大随机接入次数可以是预先为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数,也可以是预先为竞争随机接入配置的最大随机接入次数,也可以是预先为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和预先为竞争随机接入配置的最大随机接入次数中的较小值,也可以是预先为用于波束失败恢复 的非竞争随机接入配置的最大随机接入次数和预先为竞争随机接入配置的最大随机接入次数中的较大值。
本公开实施例中,采用为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数作为判定波束失败恢复失败的最大随机接入次数,或是采用为竞争随机接入配置的最大随机接入次数作为判定波束失败恢复失败的最大随机接入次数,或是采用为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值作为判定波束失败恢复失败的最大随机接入次数,或是采用为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值作为判定波束失败恢复失败的最大随机接入次数,可以减少用于竞争随机接入的参数的配置,简化系统。
可选的,在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加1。
本公开实施例中,用户终端从非竞争随机接入变更为竞争随机接入后,随机接入次数可以恢复到初始值,也即0,并根据发起的竞争随机接入的随机接入次数进行累加。可选的,用户终端从非竞争随机接入变更为竞争随机接入后,随机接入次数也可在已发起非竞争随机接入的随机接入次数上继续累加。
具体的,在用户终端从非竞争随机接入变更为竞争随机接入后,随机接入次数恢复到初始值的情况下,在采用竞争随机接入进行波束失败恢复过程中,首次发起的竞争随机接入的随机接入次数记录为1,后续每发起一次竞争随机接入,随机接入次数加1。
在用户终端从非竞争随机接入变更为竞争随机接入后,随机接入次数在已发起非竞争随机接入的随机接入次数上继续累加的情况下,在采用竞争随机接入进行波束失败恢复过程中,首次发起的竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加 1,后续每发起一次竞争随机接入,随机接入次数加1,例如,在用户终端从非竞争随机接入变更为竞争随机接入之前,用户终端已经发起M次非竞争随机接入,则首次发起的竞争随机接入的随机接入次数为M+1,后续每发起一次竞争随机接入,随机接入次数为前一次发起竞争随机接入的随机接入次数加1。
可选的,在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
需要说明的是,上述回退指示所对应的时间可以是在0和回退指示的回退参数之间按照平均分布随机选择的一个回退值,用户终端可按照选择的回退值延迟下一次随机接入的发送。
本公开实施例中,在采用竞争随机接入进行波束失败恢复过程中,用户终端接收到Msg2的回退指示(Backoff Indicator,BI)后,如果本次随机接入失败,可以忽略该回退指示,并在最近的随机接入资源上立刻发起随机接入,以尽快完成波束失败恢复,保障数据的可靠传输。可选的,用户终端接收到Msg2的回退指示后,如果本次随机接入尝试失败,也可以根据该回退指示规定的时间,延迟发起新的随机接入,以减轻网络侧的负担。
需要说明的是,本公开实施例中介绍的多种可选的实施方式彼此可以相互结合实现,也可以单独实现,对此本公开实施例不作限定。
以下结合具体实例对本公开实施例进行说明:
实施例一:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,具体可以包括如下步骤:
步骤a1、用户终端选择非竞争随机接入资源,发起随机接入,进行BFR。
在该步骤中,如果本次随机接入失败,即用户终端发送了Msg1后,没有在配置的Msg2接收窗长(即RA-Response Window-BFR)内,以及在配置的PDCCH接收资源(即CORESET)上接收到带该用户终端C-RNTI的PDCCH 命令,则执行步骤a2,如果本次随机接入成功,则可以判定BFR成功。
步骤a2、用户终端对配置了用于BFR的非竞争随机接入资源的波束进行信道质量检测和评估。
在该步骤中,如果所有配置了用于BFR的非竞争随机接入资源的波束(即Beam)的信道质量都达不到预设阈值,则可择信道质量好的其他波束发起竞争随机接入,也即执行步骤a3。
步骤a3、用户终端在选择的波束上按照竞争随机接入的参数配置,发起竞争随机接入。
在该步骤中,上述竞争随机接入的参数可以包括Msg1初始接收目标功率、Msg1功率爬升步长和最大随机接入次数等。具体的,上述Msg1初始接收目标功率可以为一般竞争随机接入的Msg1初始接收目标功率(也即Msg1初始发射功率),上述Msg1功率爬升步长可以为一般竞争随机接入的Msg1功率爬升步长,在每次随机接入尝试失败后可按照前一次竞争随机接入的Msg1发射功率加上功率步长。
可以理解的是,上述用于波束失败恢复的竞争随机接入过程可以与连接态下的其他竞争随机接入过程一致,本公开实施例对此不做限定。
实施例二:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,并根据非竞争随机接入进行BFR的最大随机接入次数进行BFR失败判定,具体可以包括如下步骤:
步骤b1、用户终端采用非竞争随机接入进行BFR,尝试M次后,采用竞争随机接入进行BFR。
在该步骤中,用户终端采用非竞争随机接入进行BFR过程中,可以在每次非竞争随机接入失败后,对配置了用于BFR的非竞争随机接入资源的波束进行信道质量检测和评估,如果在发起非竞争随机接入M次后,检测到所有配置了用于BFR的非竞争随机接入资源的波束(即Beam)的信道质量都达不到预设阈值,则采用竞争随机接入进行BFR。
步骤b2、用户终端在选择的波束上发起竞争随机接入,随机接入次数设置为M+1,如果本次竞争随机接入失败,继续发起竞争随机接入,随机接入次数继续累加,直至随机接入次数达到网络侧配置的用于BFR的非竞争随机 接入的最大随机接入次数(即Preamble TransMax-BFR),或者随机接入成功。
步骤b3、如果随机接入次数达到上限(即上述Preamble TransMax-BFR)仍随机接入失败,用户终端MAC层可上报高层,发起无线链路失败和/或无线链路重建。
实施例三:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,并根据非竞争随机接入进行BFR的最大随机接入次数和竞争随机接入最大次数中的较小值进行BFR失败判定,具体可以包括如下步骤:
步骤c1、用户终端采用非竞争随机接入进行BFR,尝试M次后,采用竞争随机接入进行BFR。
该步骤同上述步骤b1,为避免重复,在此不做赘述。
步骤c2、用户终端在选择的波束上发起竞争随机接入,随机接入次数设置为M+1,如果本次竞争随机接入失败,继续发起竞争随机接入,随机接入次数继续累加,直至随机接入次数达到网络侧配置的用于BFR的非竞争随机接入的最大随机接入次数(即Preamble TransMax-BFR)和竞争随机接入的最大随机接入次数(即Preamble TransMax)中的较小值,或者随机接入成功。
步骤c3:如果随机接入次数达到上限(即min(Preamble TransMax-BFR,Preamble TransMax))仍随机接入失败,用户终端MAC层可上报高层,发起无线链路失败和/或无线链路重建。
实施例四:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,并根据非竞争随机接入进行BFR的最大随机接入次数和竞争随机接入最大次数中的较大值进行BFR失败判定,具体可以包括如下步骤:
步骤d1、用户终端采用非竞争随机接入进行BFR,尝试M次后,采用竞争随机接入进行BFR。
该步骤同上述步骤b1,为避免重复,在此不做赘述。
步骤d2、用户终端在选择的波束上发起竞争随机接入,随机接入次数设置为M+1,如果本次竞争随机接入失败,继续发起竞争随机接入,随机接入次数继续累加,直至随机接入次数达到网络侧配置的用于BFR的非竞争随机 接入的最大随机接入次数(即Preamble TransMax-BFR)和竞争随机接入的最大随机接入次数(即Preamble TransMax)中的较大值,或者随机接入成功。
步骤d3、如果随机接入次数达到上限(即max(Preamble TransMax-BFR,Preamble TransMax))仍随机接入失败,用户终端MAC层可上报高层,发起无线链路失败和/或无线链路重建。
实施例五:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,并根据竞争随机接入最大次数进行BFR失败判定,且用于BFR的竞争随机接入的随机接入次数在前期非竞争随机接入进行BFR的随机接入次数上累加,具体可以包括如下步骤:
步骤e1、用户终端采用非竞争随机接入进行BFR,尝试M次后,采用竞争随机接入进行BFR。
该步骤同上述步骤b1,为避免重复,在此不做赘述。
步骤e2、用户终端在选择的波束上发起竞争随机接入,随机接入次数设置为M+1,如果本次竞争随机接入失败,继续发起竞争随机接入,随机接入次数继续累加,直至随机接入次数达到网络侧配置的竞争随机接入的最大随机接入次数(即Preamble TransMax),或者随机接入成功。
步骤e3、如果随机接入次数达到上限(即上述Preamble TransMax)仍随机接入失败,用户终端MAC层可上报高层,发起无线链路失败和/或无线链路重建。
实施例六:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,并根据竞争随机接入最大次数进行BFR失败判定,且用于BFR的竞争随机接入的随机接入次数从初始值(例如,0)开始计数,具体可以包括如下步骤:
步骤f1用户终端采用非竞争随机接入进行BFR,尝试M次后,采用竞争随机接入进行BFR。
该步骤同上述步骤b1,为避免重复,在此不做赘述。
步骤f2、用户终端在选择的波束上发起竞争随机接入,随机接入次数设置为1,如果本次竞争随机接入失败,继续发起竞争随机接入,随机接入次数继续累加,直至随机接入次数达到网络侧配置的竞争随机接入的最大随机接 入次数(即Preamble TransMax),或者随机接入成功。
步骤f3、如果随机接入次数达到上限(即上述Preamble TransMax)仍随机接入失败,用户终端MAC层可上报高层,发起无线链路失败和/或无线链路重建。
实施例七:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,且竞争随机接入忽略Msg2的回退指示。
步骤g1、用户终端采用非竞争随机接入进行BFR失败后,采用竞争随机接入进行BFR,并接收Msg2中的BI参数。
步骤g2、如果本次随机接入失败,且用户终端判定发起随机接入的原因是BFR,则忽略回退指示,并在最近的随机接入资源上立刻重新发起随机接入。
在该步骤中,忽略上述回退指示可以是指不根据该回退指示进行延迟后在重新发起随机接入。
实施例八:用户终端采用非竞争随机接入进行BFR失败后,变更为采用竞争随机接入进行BFR,且竞争随机接入遵循Msg2的回退指示。
步骤h1、用户终端采用非竞争随机接入进行BFR失败后,采用竞争随机接入进行BFR,并接收Msg2中的BI参数。
步骤h2、如果本次随机接入失败,则用户终端遵循该回退指示规定的时间,延后发起新的随机接入。
综上,通过本公开实施例提供的波束失败恢复,可以使用户终端尽快完成波束失败恢复,避免由于初始波束选择不合理造成的BFR失败和随机接入资源浪费,以及由此带来的用户终端重新进行网络连接的开销及数据丢失。
可以理解的是,网络侧的行为和参数与上述实施例描述的用户终端侧行为和参数对应。例如,在用户终端采用非竞争随机接入进行BFR时,网络侧对用户终端发起的非竞争随机接入进行对应的操作,例如,在接收到用户终端发送的Msg1后,向用户终端发送Msg2;在用户终端采用非竞争随机接入进行BFR失败,变更为采用竞争随机接入进行BFR的情况下,网络侧对用户终端发起的竞争随机接入进行对应的操作,例如,在接收到用户终端发送的Msg1后,向用户终端发送Msg2,在接收到用户终端发送的Msg3后,向 用户终端发送Msg4。
参见图5,图5是本公开实施例提供的一种用户终端的结构图。如图5所示,用户终端500包括:
第一波束失败恢复模块501,用于采用非竞争随机接入进行波束失败恢复;
第二波束失败恢复模块502,用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
可选的,参见图6,所述第二波束失败恢复模块502,包括:
检测单元5021,用于在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
波束失败恢复单元5022,若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
可选的,所述用户终端500还包括计数模块,用于:
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接 入的次数加1。
可选的,所述第二波束失败恢复模块502还用于:
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
需要说明的是,本实施例中上述用户终端500可以是本公开实施例中方法实施例中任意实施方式的用户终端,本公开实施例中方法实施例中用户终端的任意实施方式都可以被本实施例中的上述用户终端500所实现,以及达到相同的有益效果,此处不再赘述。
请参考图7,图7是本公开实施例提供的另一种用户终端的结构图,如图7所示,该用户终端包括:收发机710、存储器720、处理器700及存储在所述存储器720上并可在所述处理器上运行的程序,其中:
所述收发机,用于采用非竞争随机接入进行波束失败恢复;
所述收发机还用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
其中,收发机710,可以用于在处理器700的控制下接收和发送数据。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
需要说明的是,存储器720并不限定只在用户终端上,可以将存储器720和处理器700分离处于不同的地理位置。
可选的,所述处理器700用于读取存储器720中的程序,执行下列过程:在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
所述收发机710还用于:若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
可选的,进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
可选的,判定波束失败恢复失败的最大随机接入次数为如下之一:
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
为竞争随机接入配置的最大随机接入次数;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
可选的,在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加1。
可选的,所述收发机710还用于:
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
需要说明的是,本实施例中上述用户终端可以是本公开实施例中方法实施例中任意实施方式的用户终端,本公开实施例中方法实施例中用户终端的任意实施方式都可以被本实施例中的上述用户终端所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现本公开实施例提供的波束失败恢复方法中的步骤。
在本公开所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器,或者网络设备等)执行本公开各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (17)

  1. 一种波束失败恢复方法,包括:
    采用非竞争随机接入进行波束失败恢复;
    在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
  2. 根据权利要求1所述的方法,其中,所述在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复,包括:
    在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
    若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
  3. 根据权利要求1所述的方法,其中,
    进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
    进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
  4. 根据权利要求1所述的方法,其中,判定波束失败恢复失败的最大随机接入次数为如下之一:
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
    为竞争随机接入配置的最大随机接入次数;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
  5. 根据权利要求1至4中任一项所述的方法,其中,
    在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
    在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接 入的次数加1。
  6. 根据权利要求1至4中任一项所述的方法,其中,
    在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
    在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
  7. 一种用户终端,包括:
    第一波束失败恢复模块,用于采用非竞争随机接入进行波束失败恢复;
    第二波束失败恢复模块,用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
  8. 根据权利要求7所述的用户终端,其中,所述第二波束失败恢复模块,包括:
    检测单元,用于在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
    波束失败恢复单元,若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
  9. 根据权利要求7所述的用户终端,其中,
    进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
    进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
  10. 根据权利要求7所述的用户终端,其中,判定波束失败恢复失败的最大随机接入次数为如下之一:
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
    为竞争随机接入配置的最大随机接入次数;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞 争随机接入配置的最大随机接入次数中的较小值;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
  11. 一种用户终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,其中,
    所述收发机,用于采用非竞争随机接入进行波束失败恢复;
    所述收发机还用于在非竞争随机接入失败的情况下,采用竞争随机接入进行波束失败恢复。
  12. 根据权利要求11所述的用户终端,其中,
    所述处理器用于读取存储器中的程序,执行下列过程:在非竞争随机接入失败的情况下,对配置了用于波束失败恢复的非竞争随机接入资源的波束进行信道质量检测;
    所述收发机还用于:若所述配置了用于波束失败恢复的非竞争随机接入资源的波束的信道质量小于预设阈值,则采用竞争随机接入进行波束失败恢复。
  13. 根据权利要求11所述的用户终端,其中,
    进行波束失败恢复的竞争随机接入的Msg1初始接收目标功率是预先为竞争随机接入配置的Msg1初始接收目标功率;和/或
    进行波束失败恢复的竞争随机接入的Msg1功率爬升步长是预先为竞争随机接入配置的Msg1功率爬升步长。
  14. 根据权利要求11所述的用户终端,其中,判定波束失败恢复失败的最大随机接入次数为如下之一:
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数;
    为竞争随机接入配置的最大随机接入次数;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较小值;
    为用于波束失败恢复的非竞争随机接入配置的最大随机接入次数和为竞争随机接入配置的最大随机接入次数中的较大值。
  15. 根据权利要求11至14中任一项所述的用户终端,其中,
    在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为1;或者
    在采用竞争随机接入进行波束失败恢复过程中,首次竞争随机接入的随机接入次数记录为在竞争随机接入之前,进行波束失败恢复的非竞争随机接入的次数加1。
  16. 根据权利要求11至14中任一项所述的用户终端,其中,所述收发机还用于:
    在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则忽略回退指示,在最近的随机接入资源上重新发起竞争随机接入;或者
    在采用竞争随机接入进行波束失败恢复过程中,若当前竞争随机接入失败,且接收到回退指示,则等待所述回退指示所对应的时间后,重新发起竞争随机接入。
  17. 一种计算机可读存储介质,其上存储有程序,其中,该程序被处理器执行时实现如权利要求1至6中任一项所述的波束失败恢复方法中的步骤。
PCT/CN2019/074181 2018-02-12 2019-01-31 波束失败恢复方法及用户终端 WO2019154272A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207025928A KR102557593B1 (ko) 2018-02-12 2019-01-31 빔 실패 복구 방법 및 사용자 단말기
EP19750254.5A EP3755087B1 (en) 2018-02-12 2019-01-31 Beam failure recovery method and user terminal
US16/968,762 US11470670B2 (en) 2018-02-12 2019-01-31 Beam failure recovery method and user equipment
EP23163082.3A EP4221430A1 (en) 2018-02-12 2019-01-31 Beam failure recovery method and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810146147.X 2018-02-12
CN201810146147.XA CN110167147B (zh) 2018-02-12 2018-02-12 一种波束失败恢复方法及用户终端

Publications (1)

Publication Number Publication Date
WO2019154272A1 true WO2019154272A1 (zh) 2019-08-15

Family

ID=67548145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074181 WO2019154272A1 (zh) 2018-02-12 2019-01-31 波束失败恢复方法及用户终端

Country Status (5)

Country Link
US (1) US11470670B2 (zh)
EP (2) EP4221430A1 (zh)
KR (1) KR102557593B1 (zh)
CN (1) CN110167147B (zh)
WO (1) WO2019154272A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11032760B2 (en) * 2018-03-02 2021-06-08 FG Innovation Company Limited SCell selection for beam failure recovery
ES2941470T3 (es) 2018-03-28 2023-05-23 Beijing Xiaomi Mobile Software Co Ltd Método de transmisión de información y dispositivo de transmisión de información
CN110324914B (zh) * 2018-03-28 2021-03-23 维沃移动通信有限公司 波束失败的处理方法和终端
CN110536419B (zh) * 2018-05-23 2023-04-18 中兴通讯股份有限公司 一种波束恢复方法和装置
WO2020163874A1 (en) * 2019-02-09 2020-08-13 Apple Inc. System and method for contention based beam failure recovery request in secondary cell
WO2020222474A1 (en) * 2019-05-01 2020-11-05 Lg Electronics Inc. Random access procedure based on beam quality
CN112929921B (zh) * 2019-12-05 2023-01-13 维沃移动通信有限公司 波束失败恢复方法、终端及网络侧设备
CN113260079A (zh) * 2020-02-07 2021-08-13 中国移动通信有限公司研究院 随机接入的处理方法、装置、终端及网络侧设备
CN111711928B (zh) * 2020-04-28 2021-03-16 四川省水利科学研究院 一种基于智能水表的多区域水资源供需风险评价方法及系统
CN117544988A (zh) * 2020-11-16 2024-02-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112839388A (zh) * 2020-12-31 2021-05-25 上海擎昆信息科技有限公司 一种网络接入方式的选择方法和系统
EP4268534A4 (en) * 2021-04-12 2024-01-03 Zte Corp SWITCHING BETWEEN CHANNEL ACCESS METHOD WITH AND EXCLUDING RECEPTION PRIOR TO TRANSMISSION

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400129A (zh) * 2007-09-28 2009-04-01 中兴通讯股份有限公司 随机接入资源分配方法
CN101483924A (zh) * 2008-01-08 2009-07-15 华为技术有限公司 随机接入过程中信息发送、处理方法、装置和通信系统
CN102685892A (zh) * 2011-03-10 2012-09-19 中兴通讯股份有限公司 一种随机接入前导序列的配置方法及装置
CN104780617A (zh) * 2014-01-09 2015-07-15 中兴通讯股份有限公司 一种非竞争随机接入方法、节点设备及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9204395B2 (en) * 2013-01-15 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for discontinuous receive in communication systems with large number of antennas
KR101967540B1 (ko) 2016-07-28 2019-04-09 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 랜덤 액세스 절차의 Msg3 전송을 개선하기 위한 방법 및 장치
WO2018201670A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Ue selection of common and dedicated rach resources
US10813097B2 (en) * 2017-06-14 2020-10-20 Qualcomm Incorporated System and method for transmitting beam failure recovery request
US10674383B2 (en) * 2017-07-25 2020-06-02 Mediatek Inc. Channels and procedures for beam failure recovery
US10411784B2 (en) * 2017-08-09 2019-09-10 Futurewei Technologies, Inc. Apparatus and method for beam failure recovery
CN110139391B (zh) * 2018-02-09 2021-02-02 维沃移动通信有限公司 波束失败事件处理方法、装置及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101400129A (zh) * 2007-09-28 2009-04-01 中兴通讯股份有限公司 随机接入资源分配方法
CN101483924A (zh) * 2008-01-08 2009-07-15 华为技术有限公司 随机接入过程中信息发送、处理方法、装置和通信系统
CN102685892A (zh) * 2011-03-10 2012-09-19 中兴通讯股份有限公司 一种随机接入前导序列的配置方法及装置
CN104780617A (zh) * 2014-01-09 2015-07-15 中兴通讯股份有限公司 一种非竞争随机接入方法、节点设备及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3755087A4 *

Also Published As

Publication number Publication date
EP4221430A1 (en) 2023-08-02
KR20200117022A (ko) 2020-10-13
CN110167147A (zh) 2019-08-23
EP3755087B1 (en) 2023-05-10
US20210014920A1 (en) 2021-01-14
KR102557593B1 (ko) 2023-07-19
EP3755087A1 (en) 2020-12-23
US11470670B2 (en) 2022-10-11
CN110167147B (zh) 2021-07-23
EP3755087A4 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2019154272A1 (zh) 波束失败恢复方法及用户终端
CN108282899B (zh) 一种两步竞争随机接入方法和装置
US10791575B2 (en) Data transmission method, device and system
CN110312309B (zh) 一种随机接入的方法及装置
WO2020042962A1 (zh) 一种通信方法及相关设备
WO2020038331A1 (zh) 确定上行资源的方法与装置
WO2019134506A1 (zh) 一种波束失败恢复方法、装置及设备
CN111566945A (zh) 用于波束故障恢复的基于竞争的随机接入
TWI663889B (zh) 隨機接入方法和裝置
CN111385816B (zh) 随机接入统计信息的上报方法及装置
WO2018024136A1 (zh) 一种随机接入方法及终端
US20220053576A1 (en) Random access method and device and communication system
WO2018024016A1 (zh) 无线网络中的接入方法及设备
WO2016183813A1 (zh) Mtc设备接入方法、基站和系统
US10462827B2 (en) Random access method and apparatus
CN110691415A (zh) 一种随机接入方法及终端
CN113518473A (zh) 随机接入信道的增强报告
US11013037B2 (en) Method and devices of performing a random access procedure between a user equipment, UE, and a radio access network of a telecommunication network
WO2023198022A1 (zh) 随机接入方法及设备
WO2019136631A1 (en) Random access techniques in wireless networks
CN112929978B (zh) 前导码发送方法及装置、计算机可读存储介质
WO2021159401A1 (zh) 随机接入方法、装置和通信系统
RU2791244C1 (ru) Способ и устройство произвольного доступа
WO2023169580A1 (zh) 数据传输方法及装置、存储介质、终端设备、网络设备
WO2016093754A1 (en) Improved random access

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025928

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019750254

Country of ref document: EP

Effective date: 20200914