WO2014065477A1 - 이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치 - Google Patents

이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치 Download PDF

Info

Publication number
WO2014065477A1
WO2014065477A1 PCT/KR2013/003692 KR2013003692W WO2014065477A1 WO 2014065477 A1 WO2014065477 A1 WO 2014065477A1 KR 2013003692 W KR2013003692 W KR 2013003692W WO 2014065477 A1 WO2014065477 A1 WO 2014065477A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
tower
absorption
absorption tower
Prior art date
Application number
PCT/KR2013/003692
Other languages
English (en)
French (fr)
Inventor
이만수
한건우
안치규
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120119942A external-priority patent/KR20140056502A/ko
Priority claimed from KR1020120152523A external-priority patent/KR101937801B1/ko
Priority claimed from KR1020120153906A external-priority patent/KR20140085672A/ko
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Publication of WO2014065477A1 publication Critical patent/WO2014065477A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0233Other waste gases from cement factories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide capture device for suppressing or preventing volatilization of an absorbent from the absorbent liquid in a carbon dioxide capture process using the absorbent liquid.
  • the present invention relates to a carbon dioxide capture device that can increase the efficiency and economic efficiency of the carbon dioxide capture process by controlling the direction of the exhaust gas and the absorbent flow in the carbon dioxide absorption tower to prevent volatilization of the absorbent from the absorbent solution.
  • the present invention can more efficiently clean the absorbent discharged to the outside by recycling the washing water discharged from the regeneration tower during the carbon dioxide capture process, and reduce the energy used in the carbon dioxide capture process due to the reduced amount of the washing water used. It relates to a carbon dioxide capture device that can be.
  • the present invention relates to a carbon dioxide capture device for removing carbon dioxide by using an absorbent liquid and simultaneously removing sulfur oxides of exhaust gas by using washing water used in the carbon dioxide removal process.
  • CO 2 carbon dioxide
  • Such carbon dioxide is a representative global warming material and is recognized as a major cause of environmental pollution. Accordingly, the development of carbon dioxide capture technology and storage technology to reduce the carbon dioxide emissions worldwide is actively developed.
  • Absorption method generally mixes the absorbent with water and drops the liquid absorbent liquid from the upper part of the absorption tower, and supplies the exhaust gas to be treated from the lower part to selectively absorb only carbon dioxide through the absorption reaction between the absorbent and carbon dioxide in the filler in the absorption tower.
  • the absorbent absorbed and absorbed carbon dioxide is sent to a regeneration tower to regenerate and recycle the absorbent.
  • the conventional carbon dioxide capture device 100 is a target gas 102 containing carbon dioxide is supplied from the lower portion of the absorption tower 10
  • the absorbent 111 falls from the upper portion of the absorption tower 10 to the lower portion, and the processing target gas 102 is pushed up from the lower portion of the absorption tower 10.
  • the absorbent 113 which selectively absorbs carbon dioxide from the gas to be treated 102 is collected in the lower portion of the absorption tower 10. Then, the temperature rises while passing through the heat exchanger 74, and subsequently, the regeneration tower 20. Supplied.
  • the absorbent 113 absorbing the carbon dioxide may be supplied to the upper portion of the regeneration tower 20 to fall toward the lower portion, and heated through the reboiler 22 to be separated back into the carbon dioxide and the absorbent.
  • the carbon dioxide gas 107 removed from the absorbent is discharged to the upper portion of the regeneration tower 20, and the regenerated absorbent 115 is supplied to the absorption tower 10 through a pump.
  • the washing water 121 may be supplied to the uppermost portion of the absorption tower 10 or an additive may be injected into the absorbent. In this manner, the washing water 123 may be supplied. Furthermore, as shown in FIG. 4, a concentration tower 30 is further provided to remove and concentrate the absorbent contained in the washing water 124 discharged from the regeneration tower 20 to supply the regeneration tower 20 to the regeneration tower 20. can do.
  • absorbents commonly used in such processes are materials such as amines, ammonia, and the like, especially when using highly volatile absorbents such as ammonia, due to the high vapor pressure of the absorbents, the absorbents are still present at the top of the absorption tower or regeneration tower. Not only can it be discharged with the stream to contaminate the atmospheric environment, but it is also partly contained in the captured carbon dioxide, requiring further processing such as subsequent purification or concentration control.
  • a method of preventing the release of ammonia by spraying the washing water to the absorption tower and the regeneration tower is known as a general method, and reusing the washing water used in the washing stage in the carbon dioxide capture process using the concentration process as described above.
  • a lot of researches have been conducted since additional steam energy for concentrating the washing water is consumed. Since this is closely related to the economics of the process, it is very important to increase the process efficiency.
  • the present invention may be usefully used in the related art when an apparatus and a method capable of further improving process efficiency by reusing the washing water containing ammonia generated in a carbon dioxide capture process using ammonia water are provided.
  • nitrogen, oxygen, and trace elements include sulfur oxides (SOx) and nitrogen oxides (NOx).
  • SOx sulfur oxides
  • NOx nitrogen oxides
  • All stages of the process of removing carbon dioxide from the exhaust gas has a general, exhaust gas treatment process, typically a particulate matter is collected by a bag filter or an electrostatic precipitator, SCR (optional) for the removal of nitrogen oxides
  • SCR selective catalytic reduction
  • FGD flue gas desulfurization
  • the amine-based absorbent liquid of the absorbent liquid used in the chemical absorption method of carbon dioxide as described above generally has a high reactivity with sulfur oxides and has a disadvantage in that it reacts with sulfur oxides and deteriorates. Therefore, in the carbon dioxide absorption process, a facility for pretreating sulfur oxides by placing a desulfurization facility such as shown in FIG. 2 before the carbon dioxide capture process is necessary, and in some cases, further desulfurization facility is required when more stringent sulfur oxide concentration control is required. It is also installed in a two-stage desulfurization process.
  • one embodiment of the present invention to provide a carbon dioxide capture device that can suppress the volatilization of the absorbent from the absorbent liquid without causing problems such as the addition of equipment.
  • the present invention is to provide a carbon dioxide capture device that can more efficiently clean the absorbent volatilized by reusing the cleaning liquid discharged from the regeneration tower cleaning stage as the cleaning liquid of the absorption tower cleaning stage.
  • another aspect of the present invention is to remove carbon dioxide present in the exhaust gas by using an absorbent liquid having ammonia as an absorbent, and to effectively remove sulfur oxides by using ammonia that is slipped, and to use the thermal energy of the exhaust gas as the absorbent renewable energy.
  • an absorbent liquid having ammonia as an absorbent
  • sulfur oxides by using ammonia that is slipped
  • thermal energy of the exhaust gas as the absorbent renewable energy.
  • an absorbent liquid containing a carbon dioxide absorbent and a carbon dioxide-containing exhaust gas are respectively supplied, and the absorbent liquid and the carbon dioxide-containing exhaust gas are supplied to flow in the same direction, and the absorber absorbs carbon dioxide in the carbon dioxide-containing exhaust gas and absorbs the carbon dioxide.
  • An absorption tower each discharging one carbon dioxide-containing absorption liquid and exhaust gas from which carbon dioxide has been removed;
  • An absorption tower washing stage provided above the absorption tower and absorbing the absorbent volatilized from the absorption liquid and carbon dioxide remaining in the exhaust gas from the carbon dioxide removal flue gas discharged from the absorption tower;
  • a regeneration tower cleaning stage provided on the regeneration tower and absorbing carbon dioxide discharged from the regeneration tower and an absorbent volatilized from the regenerated absorbent liquid using the washing water.
  • the absorption tower is provided with an absorption liquid supply pipe and a carbon dioxide containing exhaust gas supply pipe for supplying the absorption liquid and carbon dioxide-containing exhaust gas at the bottom, respectively, the absorption liquid and carbon dioxide-containing exhaust gas supplied through the respective supply pipes
  • a carbon dioxide capture device that flows from bottom to top.
  • a carbon dioxide capture device having a heat exchanger for heat exchange between the carbon dioxide-containing absorption liquid discharged from the absorption tower and the regenerated absorption liquid discharged from the regeneration tower.
  • a concentrated tower for regenerating the cleaning water by concentrating the absorbent contained in the cleaning water discharged from at least one of the absorption tower cleaning stage and the regeneration tower cleaning stage to the carbon dioxide absorption process It further provides a carbon dioxide capture device comprising.
  • a regeneration tower scrubber discharged from the regeneration tower scrubber stage provides a carbon dioxide capture device introduced into the scrubber of the absorption tower scrubber stage.
  • the carbon dioxide capture device further comprises a concentration tower for regenerating the washing water by concentrating the absorbent contained in the absorption tower washing water discharged from the absorption tower cleaning stage to the carbon dioxide absorption process To provide.
  • a carbon dioxide capture device for supplying the absorbent stripped from the absorption tower washing water to the regeneration tower.
  • a carbon dioxide capture device which is supplied to the regeneration tower cleaning stage the washing water regenerated in the concentration tower.
  • the absorption tower washing water and the regeneration tower cleaning are supplied with carbon dioxide and sulfur oxide-containing flue gas, and the absorber and carbon dioxide discharged from at least one of the absorption tower cleaning stage and the regeneration tower cleaning stage.
  • At least one of the water is supplied, and further comprising a desulfurization facility for absorbing and removing sulfur oxides from the carbon dioxide and sulfur oxide-containing exhaust gas by the washing water, and supplying the carbon dioxide-containing exhaust gas from which sulfur oxides are removed to the absorption tower.
  • a carbon dioxide capture device Provide a carbon dioxide capture device.
  • a carbon dioxide capture device further comprising a solid-liquid separator separating solid phase (NH 4 ) 2 SO 4 from the washing water absorbed sulfur oxide discharged from the desulfurization facility.
  • the solid-state (NH 4 ) 2 SO 4 The washing water is separated to provide a carbon dioxide capture device is supplied to any one of the absorption tower cleaning stage and the regeneration tower cleaning stage.
  • a carbon dioxide capture device further comprising a steam heat exchanger for heat exchange between the carbon dioxide and sulfur oxide containing exhaust gas and steam.
  • the steam generated by the steam heat exchanger is supplied to provide a carbon dioxide capture device further comprises a reboiler (reboiler) for supplying thermal energy to the regeneration tower.
  • a reboiler reboiler
  • a carbon dioxide removal apparatus further comprising an exhaust gas heat exchanger for heat exchange between the carbon dioxide-containing exhaust gas discharged from the desulfurization facility and the exhaust gas discharged from the absorption tower.
  • the ammonia removal efficiency in the absorption tower washing stage is increased.
  • the amount of washing water used can be significantly reduced than that of the existing washing water. As a result, it is possible to reduce the additional steam energy used for the concentration of the absorbent in the concentration tower, thereby improving the economics of the entire carbon dioxide capture process.
  • the sulfur oxides can be effectively removed by reusing the washing water generated in the carbon dioxide removal process, so that desulfurization using conventional slaked lime Compared to the process, the chemical cost and waste disposal cost can be saved, and the heat energy of the exhaust gas can be used as the energy required for the carbon dioxide removal process, thereby increasing the economic efficiency.
  • FIG. 1 schematically illustrates a general carbon dioxide absorption process.
  • Figure 2 schematically shows a desulfurization plant conventionally used.
  • FIG. 3 schematically depicts an exemplary apparatus for performing the method of the present invention.
  • FIG. 4 to 6 schematically illustrate a device for collecting carbon dioxide in a gas to be treated in accordance with some embodiments of the present invention.
  • FIG. 7 and 8 schematically illustrate an apparatus for removing carbon dioxide and sulfur oxides contained in the gas to be treated in the present invention.
  • the present invention relates to a method for preventing volatilization of an absorbent in a carbon dioxide capture process, and more particularly, an apparatus and method for preventing volatilization of an absorbent from an absorbent liquid by controlling the flow of exhaust gas and absorbent liquid containing carbon dioxide in an absorption tower. To provide.
  • a carbon dioxide capture device including an absorption tower that absorbs carbon dioxide as an absorption liquid and a regeneration tower that regenerates the absorbent from the absorption liquid that absorbed carbon dioxide discharged from the absorption tower is used.
  • an absorption liquid is supplied in a direction opposite to the flue gas so that carbon dioxide is absorbed by contact of the absorbent in the absorption liquid and the flue gas.
  • the present invention is intended to improve the absorption efficiency of carbon dioxide by the absorbent in the absorbent liquid by allowing the absorbent liquid and the exhaust gas to flow in the same direction, thereby suppressing the volatilization of the absorbent.
  • the carbon dioxide capture device of the present invention is supplied with an absorbent liquid containing a carbon dioxide absorbent and a carbon dioxide-containing exhaust gas, respectively, so that the absorbent liquid and the carbon dioxide-containing exhaust gas flow in the same direction, and absorb the carbon dioxide in the carbon dioxide-containing exhaust gas with the absorbent liquid.
  • an absorption tower for discharging the carbon dioxide-containing absorption liquid absorbing the carbon dioxide and the exhaust gas from which the carbon dioxide has been removed, and an upper portion of the absorption tower, and volatilizing from the absorption liquid using washing water from the carbon dioxide removal exhaust gas discharged from the absorption tower.
  • the absorber and the absorption tower cleaning stage for absorbing the carbon dioxide remaining in the exhaust gas, and the carbon dioxide-containing absorption liquid discharged from the absorption tower is vaporized by heating the gaseous carbon dioxide and the absorption liquid.
  • the carbon dioxide collecting device 100 of the present invention is an absorption tower 10, absorption tower cleaning stage 16, regeneration tower 20 and a regeneration tower cleaning stage 26.
  • the absorption tower 10 is supplied with a target gas (carbon dioxide containing gas) 102 containing carbon dioxide, and is supplied with absorbent liquids 111 and 115 including an absorbent for absorbing carbon dioxide from the target gas 102.
  • the carbon dioxide is absorbed from the gas to be treated 102 by the absorption liquids 111 and 115, whereby the carbon dioxide-containing absorption liquid 113 and the exhaust gas 103 from which carbon dioxide is removed are discharged from the absorption tower 10, respectively. do.
  • the treatment target gas 102 is not particularly limited as long as it contains carbon dioxide, and may be an exhaust gas generated in various industrial processes such as steel mills and power plants.
  • power plant flue gas blast furnace gas (BFG), converter gas (LDG), Finex gas (FOG), coke furnace gas (COG), magnesium smelting process by-product gas, calcined gas from cement production process, natural gas extraction And by-product gas of the petrochemical process.
  • the absorbent liquid containing the absorbent is a volatile solution capable of absorbing and removing carbon dioxide by reacting with carbon dioxide contained in the gas to be treated 102, for example, an alkaline solution such as ammonia water and a mixed aqueous solution of an amine or an amine absorbent. It is preferably at least one selected from the group consisting of, and the amine includes, but is not limited to, monoethanolamine (MEA), methyldiethanolamine (MDEA), and the like. On the other hand, in this invention, it is more preferable that the said absorption liquid uses ammonia water.
  • the absorption tower 10 is provided with a respective supply unit for supplying the treatment target gas 102 and the absorption liquid (111, 115).
  • the treatment target gas supply unit and the absorbent liquid supply unit may be positioned such that the treatment target gas 102 and the absorbent liquids 111 and 115 flow in the same direction.
  • the treatment target gas supply part and the absorbent liquid supply part are located at the upper part of the absorption tower 10 so that the upper part of the absorption tower 10 may flow from the upper part to the lower part.
  • the processing target gas supply unit and the absorbent liquid supply unit may be positioned below the absorption tower 10 to allow flow from the lower side of the absorption tower 10 to the upper side.
  • the contact time between the absorbent and the exhaust gas can be increased, Can increase the absorption amount or absorption efficiency of carbon dioxide.
  • the volatile absorbent absorbs a larger amount of carbon dioxide, thereby reducing the volatilization amount of the absorbent liquid volatilized to the gas phase.
  • each of the supply unit may be disposed below the absorption tower (10).
  • the present invention will be described in detail with reference to the carbon dioxide collecting device 100 illustrated in FIG. 3.
  • the pressure of the gas is proportional to the concentration of the absorbent in the absorbent liquid.
  • ammonia as an absorbent is present as free ammonia (NH 3 ) and ammonium ions (NH 4 + ).
  • the component related to volatilization of ammonia is a free ammonia component, and when the concentration of free ammonia in the absorbent liquid is low, as can be seen from the above equation, the equilibrium pressure of the gas phase is lowered and the volatilization amount of free ammonia is reduced.
  • the concentration of ammonia (free ammonia) is high in the lower portion of the absorption tower 10, and the concentration of ammonia (free ammonia) decreases toward the upper portion of the absorption tower 10, it is noted that the absorbent in the absorption liquid volatilizes to the gas phase. It is more effective to suppress. In other words, in order to reduce the amount of ammonia present in the gas phase, it is necessary to lower the concentration of free ammonia in the liquid phase, particularly the free ammonia concentration in the liquid phase above the absorption tower.
  • the processing gas supply unit and the absorbent liquid supply unit are disposed under the absorption tower 10 to allow the processing gas 102 and the absorption liquids 111 and 115 to flow from the lower portion of the absorption tower 10 to the upper direction.
  • the absorbents in the absorbent liquids 111 and 115 are in a state in which more carbon dioxide in the gas to be treated 102 is absorbed and the concentration of free ammonia in the absorbent is lowered toward the upper portion of the absorption tower 10. It is more preferable because the amount of absorbent volatilized in the gas phase can be reduced as compared with the carbon dioxide capture process.
  • the amount of the washing water injected into the absorption tower cleaning stage in the upper part of the absorber 10 can be greatly reduced in order to prevent volatilization of the absorbent, and without using additional additives,
  • the use of additives is unnecessary because the volatilization can be effectively reduced. Therefore, in some cases, an additional process such as a concentration tower for recycling the absorbent is unnecessary, so that the process can be omitted, thereby simplifying the process and consequently increasing the economic efficiency of the carbon dioxide capture process. .
  • the gas to be treated 102 and the absorbing liquids 111 and 115 are supplied to the absorption tower 10
  • the gas to be treated may be supplied to the absorbing liquids 111 and 115 by bubbling. In this way, the absorbent can be made to absorb more carbon dioxide.
  • the absorption liquid supplied to the absorption tower 10 may be the absorption liquid 115 regenerated from the regeneration tower 20 described below.
  • a new absorbent liquid may be supplied together to the supplemental absorbent liquid 111.
  • the regenerated absorbent liquid 115 is heated and heated to separate carbon dioxide from the regeneration tower 20.
  • the temperature of the absorption liquid is lower, it is preferable, and it is necessary to lower the temperature of the absorption liquid.
  • the carbon dioxide collecting device 100 of the present invention may be provided with a heat exchanger 74 for heat exchange between the regenerated absorbent liquid 115 and the absorbent liquid 113 absorbing the carbon dioxide discharged from the absorption tower 10. have.
  • a heat exchanger 74 for heat exchange between the regenerated absorbent liquid 115 and the absorbent liquid 113 absorbing the carbon dioxide discharged from the absorption tower 10.
  • the temperature of the regenerated absorbent liquid 115 supplied to the absorption tower 10 may be lowered.
  • the absorbent liquid 113 absorbing the carbon dioxide may be heated by such heat exchange to reduce the thermal energy supplied for the removal of carbon dioxide from the regeneration tower 20.
  • absorption tower circulation coolers 91 and 92 may be provided.
  • heat exchangers 71 and 72 may be provided together with or integrally with the absorption tower circulation coolers 91 and 92. Heat generated in the absorbent may be recovered through the heat exchangers 71 and 72, and the absorption tower circulation coolers 91 and 92 may reduce the absorbent temperature to a predetermined temperature to increase the carbon dioxide absorption efficiency of the absorbent. You can.
  • the number of the absorption parts 12 provided in the inside of the absorption tower 10 is not specifically limited.
  • the absorbent liquid in order to recover the heat generated in the absorbent liquid to improve the absorption efficiency of the absorbent liquid may be provided with a heat dissipation unit (not shown) integrally with the absorption tower circulation coolers (91, 92).
  • the heat generated from the absorbent liquids 111 and 115 may be recovered through the heat dissipation unit, and the absorbent liquids 111 and 115 are lowered to a predetermined temperature by the absorption tower circulation coolers 91 and 92. It is possible to improve the carbon dioxide absorption efficiency of 115).
  • the heat dissipation unit and the absorption tower circulation coolers 91 and 92 may be provided in plural to reduce the temperature of the absorption liquid.
  • the exhaust gas 103 from which carbon dioxide is removed from the gas to be treated 102 by the absorption liquids 111 and 115 is discharged through the absorption tower 10 and the absorption liquid 113 absorbing carbon dioxide.
  • the exhaust gas 103 may include an absorbent volatilized from the absorbent liquids 111 and 115 in the absorption tower 10 due to the volatility of the absorbent, and further includes carbon dioxide not removed from the absorption tower 10. It may be included, it is preferable that they are removed from the exhaust gas 103.
  • the absorption tower 10 may include an absorption tower cleaning stage 16 for recovering the absorbent gas contained in the exhaust gas 103.
  • the absorption tower cleaning stage 16 may have a separate structure from the absorption tower 10 at the top of the absorption tower 10, and as illustrated in FIGS. 7 and 8, the absorption tower. (10) It can have an integral structure provided integrally at the upper end, and is not specifically limited.
  • the absorption tower washing stage 16 is supplied with washing water (absorption tower washing stage inlet washing water) 121 and absorbs the absorbent contained in the exhaust gas 105 discharged through the absorption tower washing stage 16. Absorbed into the washing water 121. At this time, carbon dioxide remaining in the exhaust gas 105 is also absorbed. As a result, the absorption tower cleaning stage discharge washing water 122 discharged from the absorption tower cleaning stage 16 contains carbon dioxide and an absorbent.
  • the inflow cleaning water 121 supplied to the absorption tower cleaning stage 16 is not particularly limited, but water may be used.
  • the inflow washing water 121 is preferably washing water 125 that is cooled and circulated by the heat exchanger 81 after regeneration in the concentration tower 30, but is not limited thereto.
  • other solutions which are easy to absorb and remove ammonia contained in the mixed gas may be used or they may be added and used.
  • ammonia contained in the exhaust gas 103 from which carbon dioxide has been removed by the inflow scrubbing water 121 in the absorption tower cleaning stage 16 may be removed, and carbon dioxide and ammonia may be removed.
  • the discharged gas is discharged to the outside as the exhaust gas 105 through the upper portion of the absorption tower 10 or the absorption tower cleaning stage 16.
  • the absorbent liquid 113 absorbing carbon dioxide in the absorption tower 10 is transferred to the regeneration tower 20 to remove and remove carbon dioxide from the absorbent to regenerate and recycle the absorbent.
  • the pump 93 and the heat exchanger 73 may be provided as needed.
  • the absorbent liquid 113 absorbing the transferred carbon dioxide may increase the temperature by recovering heat from the regenerated absorbent liquid 115 discharged from the regeneration tower 20 through the heat exchanger 74.
  • the regeneration tower 20 by heating the transferred absorbent liquid 113 can remove the carbon dioxide absorbed in the absorbent to regenerate the absorbent liquid.
  • the absorbed liquid 115 is moved to the lower portion of the regeneration tower 20, and may be supplied to the absorption tower 10 and reused as the absorbent liquid as described above.
  • the regeneration tower may further include a pump 95 and a heat exchanger 75 as necessary.
  • the stripping temperature of the regeneration tower 20 may vary depending on the type, concentration, and pressure conditions of the absorbent liquid, but is not particularly limited, but may be in the range of 75 ° C to 120 ° C. It is preferable.
  • the stripping temperature of the regeneration tower 20 can be heated in the range of 75-85 °C at normal pressure when using 10wt% ammonia water as the absorbent on the basis of the atmospheric pressure, 30-40wt% aqueous amine solution as the absorbent When used, it can be heated in the range of 100-120 ° C. at normal pressure. This stripping temperature may be higher when the absorbent is regenerated at high pressure.
  • the regeneration tower 20 may optionally include a regeneration tower reboiler 22 as shown in FIGS. 7 and 8. Carbon dioxide may be removed and removed from the absorption liquid 113 introduced into the regeneration tower 20 from the absorption tower 10 by the thermal energy supplied to the rain equipment 22.
  • the absorbent liquid 113 absorbing carbon dioxide discharged from the absorption tower 10 and supplied to the regeneration tower 20 may be subjected to heat exchange with the regenerated absorbent liquid 115 discharged from the regeneration tower 20.
  • the temperature can be increased, thereby reducing the energy consumption for raising the temperature to the stripping temperature in the regeneration tower 20.
  • a heat exchanger 74 may be provided for the heat exchange.
  • the high concentration of gaseous carbon dioxide 107 separated from the absorbent in the regeneration tower 20 moves to the top of the regeneration tower 20 by a pump 94 or the like and is discharged from the regeneration tower 20.
  • the gaseous carbon dioxide 107 discharged includes a part of the gaseous absorbent volatilized from the absorbent liquid, it is preferable to recover the absorbent.
  • the upper part of the regeneration tower 20 may include a regeneration tower cleaning stage 26 for recovering the absorbent from the carbon dioxide 107 discharged.
  • the regeneration tower cleaning stage 26 may have a separate structure separated from the regeneration tower as shown in FIGS. 4 to 6, and an integrated structure integrated with the regeneration tower 20 as shown in FIGS. 7 and 8. As it may be, it does not specifically limit.
  • the regeneration tower washing stage 26 is supplied with washing water (regeneration tower washing stage inlet washing water) 123, and absorbents contained in the carbon dioxide 107 in the gaseous phase discharged through the regeneration tower washing stage 16 are provided. It may be absorbed into the inflow washing water 123, and some carbon dioxide is also absorbed together. As a result, the regeneration tower washing stage discharge washing water 124 discharged from the regeneration tower washing stage 26 contains carbon dioxide and an absorbent.
  • the inflow washing water 123 supplied to the regeneration tower washing stage 26 is not particularly limited, but water may be used.
  • Equations (1) to (8) below represent chemical reactions occurring in the absorption tower cleaning stage 16 and the regeneration tower cleaning stage 26 of the carbon dioxide capture process using ammonia water.
  • the inlet washing water 123 of the regeneration tower cleaning stage 26 is for absorbing the absorbent contained in the carbon dioxide 107 in the gas phase discharged from the regeneration tower. Carbon dioxide is also absorbed in the absorption process of the absorbent, and thus, the discharged regeneration tower scrubber discharge washing water 124 includes a large amount of carbon dioxide. As described above, the large amount of carbon dioxide contained in the inlet scrubbing water 123 may effectively absorb the absorbent by easily reacting with the absorbent included in the carbon dioxide in the regeneration tower washing stage 26.
  • the absorption tower cleaning stage discharge washing water 122 discharged from the absorption tower cleaning stage 16 includes carbon dioxide, but the exhaust gas 103 discharged from the absorption tower 10 is the gas to be treated 102. Since the carbon dioxide is removed from the gas, the concentration of carbon dioxide remaining in the exhaust gas 103 is low. Therefore, the inflow washing water 121 of the absorption tower cleaning stage 16 has a low efficiency of absorbing the absorbent from the exhaust gas 103 discharged from the absorption tower 10, and thus, the absorbent contained in the exhaust gas 105. A large amount of washing water is required to keep the concentration below the proper concentration.
  • the exhaust gas 103 may supply the regeneration tower washing stage discharge washing water 124 having the high carbon dioxide content to the absorption tower washing stage inlet washing water 121 of the absorption tower washing stage 16. It is preferred for the absorption of volatile absorbents. This is schematically shown in FIGS. 5, 6 and 8. As such, the regeneration tower washing stage discharge washing water 124 having a high carbon dioxide content may be reused as the inlet washing water 121 of the absorption tower washing stage 16 to effectively absorb the absorbent discharged with the exhaust gas.
  • the inlet washing water 121 supplied to the absorption tower washing stage 16 may use the regeneration tower washing stage discharge washing water 124 discharged from the regeneration tower washing stage 26, as well as new washing.
  • the number can be supplied to the absorption tower cleaning stage 16 and is not particularly limited.
  • the fresh or regenerated washing water 125 is first supplied to the regeneration tower washing stage 26, and the absorption tower washing stage discharge washing water 124 discharged from the regeneration tower washing stage 26 is absorbed. It is preferable to use as the inflow washing water 121 of the tower washing stage 16.
  • the regeneration tower cleaning stage discharge washing water 124 discharged from the regeneration tower cleaning stage 26 is heated in the process of absorbing the absorbent in the regeneration tower cleaning stage 26, as shown in FIGS. 5, 6, and 8,
  • the cooling is not particularly limited, but cooling means such as a heat exchanger, a cooling tower, or a chiller may be used.
  • 5, 6 and 8 show a heat exchanger 82 as an example.
  • the regeneration tower washing stage discharge washing water 124 supplied to the inlet washing water 121 of the absorption tower washing stage 16 is cooled to a temperature as low as possible to improve the absorption efficiency of the absorbent present in the exhaust gas 103. Although it does not specifically limit as a preferable thing, It can cool at 35 degrees C or less, and can also cool to 10 degrees C or less as needed. However, in terms of electrical energy consumption and absorbent absorption efficiency for cooling, cooling to temperatures in the range of 25 to 35 ° C. is appropriate.
  • the position supplied to the absorption tower cleaning stage 16 after the cooling is not particularly limited as long as the temperature distribution in the absorption tower cleaning stage 16 can be kept relatively low, and the upper portion of the absorption tower cleaning stage 16, or Can be fed to an intermediate position.
  • the same flow of the absorption liquids 111 and 115 of the present invention and the gas to be treated 102 is provided. It can be applied to the carbon dioxide collection according to, as shown in Figure 1, the absorption liquid (111, 115) is supplied from the top of the absorption tower 10, and the gas to be treated 102 is supplied from the absorption tower 10 below It can be effectively applied to the conventional carbon dioxide capture device.
  • the carbon dioxide collection device 100 of the present invention may further include a concentration tower 30 as shown in FIGS. 4 to 6.
  • the concentration tower 30 is for regenerating the washing water by removing the absorbent contained in the discharge washing water 122, 124 discharged from the absorption tower washing stage 16 and the regeneration tower washing stage 26.
  • Each of the washing water discharged from the absorption tower washing stage 16 and the regeneration tower washing stage 26 and recovered to the washing water drum 40 is supplied with energy from the concentration tower 30 to absorb the absorbent and carbon dioxide from the washing water.
  • the washing water 125 from which the absorbent is removed is discharged to the lower portion of the concentration column 30, and the high concentration of gas absorbent 117 is in the middle of the regeneration tower 20 or Can be injected into the bottom and reused.
  • the washing water 125 from which the carbon dioxide and the absorbent are removed may be supplied to the absorption tower washing stage 16 and / or the regeneration tower washing stage 26 to be used as washing water.
  • the inflow scrubbing water 121 supplied to the absorption tower scrubbing stage 16 includes a high concentration of carbon dioxide discharged from the scrubber scrubbing stage 26. ) May be used as the inflow washing water 121 of the absorption tower cleaning stage 16, and as shown in FIGS. 5 and 6, the feed to the concentration tower 30 through the washing water drum is the absorption tower cleaning.
  • the exhaust cleaning water 122 may be used.
  • the absorbent gas 117 supplied from the concentration tower 30 to the regeneration tower 20 may further include carbon dioxide and water vapor in addition to the absorbent.
  • the high concentration absorbent gas 117 concentrated in the concentration tower 30 and supplied to the regeneration tower 20 removes carbon dioxide from the regeneration tower 20, and the regenerated absorbent 115 is used for the absorption tower 10 again. Resupply).
  • the carbon dioxide collection device 100 of the present invention may be provided with a washing water drum 40 for containing the washing water.
  • the washing water 125 in which the absorbent is completely removed from the concentration tower 30 is first cooled by the heat exchanger 81, and then additionally cooled if necessary, thereby allowing the washing water 121 and 123 to flow into the washing stages 16 and 26. Will be reused.
  • the inflow cleaning water is supplied to the inflow cleaning water 123 of the regeneration tower cleaning stage 26, and thereafter, the regeneration tower cleaning stage discharge washing water 124 discharged from the regeneration tower cleaning stage 26. ) May be supplied to the absorption tower cleaning stage inlet washing water 121.
  • the carbon dioxide capture device 100 of the present invention may further include a desulfurization facility 60 for removing sulfur oxides contained in the gas to be treated 102 using washing water.
  • the desulfurization facility 60 is supplied with the absorbent and the carbon dioxide-containing washing water 122 and 124 discharged from the absorption tower cleaning stage 16 and the regeneration tower cleaning stage 26 to discharge carbon dioxide and sulfur oxide-containing flue gas 101.
  • a sulfur dioxide (SOx) may be absorbed and carbon dioxide-containing exhaust gas 102 from which sulfur oxides have been removed may be supplied to the absorption tower 10.
  • the carbon dioxide capture device 100 of the present invention further includes a desulfurization facility 60, and thus the gas to be treated using the absorption stage washing water 122 and 124 containing the absorbent liquid and carbon dioxide used in the carbon dioxide capture process.
  • the sulfur oxide contained in 101 can be removed.
  • ammonia is used as an absorbent in the absorption tower cleaning stage discharge washing water 122 and the recovery tower cleaning stage discharge washing water 124 discharged from the absorption tower cleaning stage 16 and the regeneration tower cleaning stage 26, And carbon dioxide, ammonium carbonate or ammonium bicarbonate.
  • the ammonia, ammonium carbonate or ammonium bicarbonate reacts with the sulfur oxide in the gas to be treated 101 as shown in Schemes 9 to 11 to remove the sulfur oxide in the gas to be treated 101.
  • the (NH 4 ) 2 SO 4 produced by the reaction as described above is discharged from the desulfurization plant 60 together with the desulfurization plant discharge water 131 as a solid state, and then (NH 4 ) 2 SO 4 by solid-liquid separation. Can be removed.
  • the object gas 102 in which the sulfur oxide is removed by the reaction is supplied to the absorption tower 10 as the object gas 102 for the carbon dioxide collection according to the present invention to remove the carbon dioxide. Can be done.
  • the washing water used for the carbon dioxide removal process in the desulfurization facility 60 that is, the cleaning water containing carbon dioxide and absorbent in the desulfurization process, such as CaCO 3 , Ca (OH) 2 and CaO used in the conventional desulfurization process Since no additional cost is consumed for the drug, it can increase the economic efficiency, and the desulfurization process can be performed simultaneously with the carbon dioxide removal process, thereby increasing the efficiency of the process.
  • the desulfurization facility 60 may further include a solid-liquid separator 62 to remove the solid phase (NH 4 ) 2 SO 4 contained in the desulfurization facility discharge water 131.
  • a solid-liquid separator 62 By including the solid-liquid separator 62, the solid phase (NH 4 ) 2 SO 4 included in the desulfurization facility discharge water 131 may be separated and removed.
  • concentration of (NH 4 ) 2 SO 4 in the desulfurization facility discharge water 131 continuously increases, it precipitates in the form of a salt to generate solid phase (NH 4 ) 2 SO 4 , thereby separating the solid by using a solid-liquid separator 62. Can be discharged (137).
  • the solid-liquid separator 62 is not particularly limited, and for example, hydrocyclone may be used.
  • CaSO 4 generated as a waste in a conventional desulfurization process required a separate treatment, but (NH 4 ) 2 SO 4 can be used as a fertilizer after drying, it does not require additional treatment facilities or processes for its removal.
  • the desulfurization facility effluent 131 in which the (NH 4 ) 2 SO 4 is removed has a pH of usually 5.5 or less
  • the absorbent volatilized in the absorption tower cleaning stage 16 and the regeneration tower cleaning stage 26 is cleaned. It may be supplied to the inlet washing water (121, 123), and may be heat exchanged by the heat exchanger (85) in the process of being transferred to the absorption tower cleaning stage 16 and the regeneration tower cleaning stage (26).
  • the carbon dioxide capture device 100 including the desulfurization facility 60 of the present invention may further include a steam heat exchanger (83).
  • the steam heat exchanger 83 is for heat-exchanging the processing target gas 101 and steam before the processing target gas 101 including the carbon dioxide and the sulfur oxide is supplied to the desulfurization facility 60.
  • the target gas 101 containing carbon dioxide and sulfur oxides has a temperature of about 120 to 130 ° C. Therefore, the steam may be heated to about 110 ° C. or more by heat-exchanging the high-temperature gas to be treated with the gas 101.
  • the steam supplied to the steam heat exchanger 83 by the heat exchanger is supplied with thermal energy, the steam (array recovery steam) 135 heated up may be supplied to the reboiler 22 and supplied as thermal energy. The renewable energy required for the carbon dioxide removal process can be reduced.
  • the temperature of the gas to be treated 101 containing the carbon dioxide and the sulfur oxides can be lowered, and thus, sulfuric acid with respect to the washing water 122 and 124 supplied to the desulfurization facility 60.
  • the solubility of the cargo can be increased to improve the sulfur oxide removal efficiency.
  • the carbon dioxide capture device 100 including the desulfurization facility 60 of the present invention may further include an exhaust gas heat exchanger 84.
  • the exhaust gas heat exchanger 84 converts the gas to be treated 102 containing the carbon dioxide discharged from the desulfurization facility 60 and the exhaust gases 103 and 105 discharged from the absorption tower 10 or the absorption tower cleaning stage 16. Can be heat exchanged.
  • the temperature of the gas to be treated 102 containing carbon dioxide discharged from the desulfurization facility 60 is 60 to 80 ° C.
  • the exhaust gases 103 and 105 discharged from the absorption tower 10 are 60.
  • the temperature may be raised to ⁇ 80 ° C., and the temperature of the gas 102 immediately before the absorption tower may be adjusted to 40 ° C. to 60 ° C. At this time, by increasing the temperature of the exhaust gas (103, 105) it can be easily discharged from the stack (50).
  • Driving the desulfurization facility 60 together with the carbon dioxide capture device 100 is suitable in the carbon dioxide capture device 100 for supplying the gas to be treated and the absorbent liquid in the same flow as in the present invention, as well as conventional countercurrent, That is, it can be suitably applied to the conventional carbon dioxide capture device shown in Figure 1 for supplying the absorbent liquid from the upper end of the absorption tower 10, and supplying the gas to be treated from the lower portion of the absorption tower (10).
  • absorption tower 12 absorption section 16: absorption tower cleaning stage
  • Reference Example 1 corresponds to the embodiment of the present invention for flowing the treatment gas and the absorbent liquid in the same direction, but is shown for comparison with Examples 1 and 2 in terms of reuse of the washing water, Reference Example The embodiments described in are not excluded from the invention.
  • Example 2 As shown in FIG. 4, the same procedure as in Example 1 was performed except that new washing water was introduced into the absorption tower washing stage 16 as the inflow washing water 121 of the absorption tower washing stage 16. The results are shown in Table 1 below.
  • the regeneration tower washing stage discharge washing water 124 discharged from the regeneration tower washing stage 26 together with the fresh washing water as the inflow washing water 121 of the absorption tower washing stage 16.
  • the process was set to inflow, and the components of the exhaust gas 105 discharged from the absorption tower cleaning stage 16 were analyzed and the results are shown in Table 1 below.
  • Example 2 103 CO 2 / NH 3 (molar ratio) 0.79 0.5 0.53 107 CO 2 / NH 3 (molar ratio) 23.7 23.1 22.4 105 CO 2 molarity 2.6% 2.8% 2.5% 122 CO 2 molarity 0.7% 0.9% 0.9% NH 3 molarity 2.1% 3.0% 2.7% 124 CO 2 molarity 0.9% 0.3% 0.9% NH 3 molarity 1.1% 0.3% 1.1% 113 Circulating water 100% (standard) 77% 81% 121 Amount of washing water Absorption tower cleaning stage 100% (standard) 100% 0% 123 Regeneration Tower Cleaning Stage 50% 50% 150% CO 2 capture rate 90.1% 90.1% 90.6% Total heat energy (regeneration tower / concentration tower) 100% (standard) 92% 93%
  • No. * indicates the number of the corresponding stream in FIGS.

Abstract

본 발명은 이산화탄소 포집 장치에 관한 것으로, 보다 상세하게는 이산화탄소 흡수제를 포함하는 흡수액 및 이산화탄소 함유 배가스가 각각 공급되되, 상기 흡수액 및 이산화탄소 함유 배가스가 동일한 방향으로 유동하도록 공급되며, 상기 흡수액으로 상기 이산화탄소 함유 배가스 중의 이산화탄소를 흡수하고, 상기 이산화탄소를 흡수한 이산화탄소 함유 흡수액 및 이산화탄소가 제거된 배가스를 각각 배출하는 흡수탑; 상기 흡수탑 상부에 구비되며, 상기 흡수탑으로부터 배출되는 이산화탄소 제거 배가스로부터 세정수를 이용하여 상기 흡수액으로부터 휘발된 흡수제 및 상기 배가스 중에 잔존하는 이산화탄소를 흡수하는 흡수탑 세정단; 상기 흡수탑으로부터 배출된 이산화탄소 함유 흡수액을 가열에 의해 이산화탄소를 기화시키고, 기상의 이산화탄소 및 흡수액을 각각 배출하여 흡수액을 재생하는 재생탑; 및 상기 재생탑 상부에 구비되며, 상기 재생탑으로부터 배출되는 이산화탄소 및 상기 재생된 흡수액으로부터 세정수를 이용하여 휘발되는 흡수제를 흡수하는 재생탑 세정단을 포함하는 이산화탄소 포집 장치에 관한 것이다.

Description

이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치
본 발명은 흡수액을 사용하는 이산화탄소 포집 공정에 있어서 상기 흡수액으로부터 흡수제가 휘발되는 것을 억제 내지 방지하는 이산화탄소 포집 장치에 관한 것이다.
보다 상세하게는 이산화탄소 흡수탑 내 배가스와 흡수액 흐름의 방향을 조절하여 흡수액으로부터 흡수제가 휘발되는 것을 방지함으로써 이산화탄소 포집 공정의 효율성 및 경제성을 증대시킬 수 있는 이산화탄소 포집 장치에 관한 것이다.
또한, 본 발명은 이산화탄소 포집 공정 중 재생탑에서 배출되는 세정수를 재활용함으로써 외부로 배출되는 흡수제를 보다 효율적으로 세정할 수 있고, 또 세정수 사용량 감소로 인한 이산화탄소 포집 공정에 사용되는 에너지를 감소시킬 수 있는 이산화탄소 포집장치에 관한 것이다.
나아가, 본 발명은 흡수액을 이용하여 이산화탄소를 제거함과 동시에 상기 이산화탄소 제거 공정에 사용되는 세정수를 이용하여 배가스의 황산화물을 제거하는 이산화탄소 포집 장치에 관한 것이다.
산업이 발달함에 따라 발전소, 제철소 등과 같은 대형 산업 시설로부터 이산화탄소(CO2)가 대량 배출되고 있다. 이와 같은 이산화탄소는 대표적인 지구 온난화 물질로서 환경 오염의 주 원인으로 인식되고 있다. 이에, 전 세계적으로 이산화탄소 배출량을 저감시키기 위한 이산화탄소 포집 기술 및 저장 기술의 개발이 활발하게 전개되고 있다.
이산화탄소를 직접적으로 포집하기 위한 여러 방안 중에서 흡수법은 기술적 성숙도가 가장 높은 것으로 평가되고 있으며, 다양한 화학 공정 등에서 상용화가 진행되고 있다. 흡수법은 일반적으로 흡수제를 물과 섞어 액상의 흡수액을 흡수탑의 상부로부터 낙하시키고, 처리하고자 하는 대상인 배가스를 하부에서 공급하여 흡수탑 내 충진재에서 흡수제와 이산화탄소 사이의 흡수 반응을 통하여 이산화탄소만을 선택적으로 흡수하고, 이산화탄소를 흡수한 흡수제는 재생탑으로 보내어 흡수제를 재생하여 재활용하는 공정으로 구성되어 있다.
도 1은 일반적인 이산화탄소 흡수 공정을 설명하기 위한 것으로, 도 1에 나타낸 바와 같이, 종래의 이산화탄소 포집 장치(100)는 이산화탄소를 함유하는 처리 대상가스(102)가 흡수탑(10)의 하부에서 공급되며, 흡수탑(10)의 상부에서 흡수제(111)가 하부로 낙하하고, 흡수탑(10) 하부에서 처리 대상가스(102)를 밀어올리는 방식이다. 처리대상가스(102)로부터 이산화탄소를 선택적으로 흡수한 흡수제(113)는 흡수탑(10) 하부로 모이게 되며, 이후 열교환기(74)를 거치면서 온도가 상승하고 후속적으로 재생탑(20)으로 공급된다. 상기 이산화탄소를 흡수한 흡수제(113)는 재생탑(20)의 상부로 공급되어 하부를 향해 낙하하고, 리보일러(22)를 통해서 가열되어 이산화탄소와 흡수제로 다시 분리될 수 있다. 흡수제로부터 탈거된 이산화탄소 가스(107)는 재생탑(20)의 상부로 배출되게 되며, 재생된 흡수제(115)는 펌프를 통하여 흡수탑(10)으로 재공급된다.
이때, 흡수제의 증발을 최대한 억제하기 위해, 도 4에 나타낸 바와 같이, 흡수탑(10)의 최상단 부분에 세정수(121)를 공급하거나 흡수제에 첨가제를 주입할 수 있으며, 재생탑(20)에도 이와 같은 방식으로 세정수(123)를 공급할 수 있다. 나아가, 도 4에 나타낸 바와 같이, 재생탑(20)으로부터 배출되는 세정수(124)에 함유된 흡수제를 탈거하여 농축하여 재생탑(20)에 재공급하기 위한 농축탑(30)을 추가로 구비할 수 있다.
그러나, 상기와 같은 공정에서 일반적으로 사용되는 흡수제는 아민, 암모니아 등과 같은 물질이며, 특히, 암모니아와 같이 휘발성이 높은 흡수제를 사용할 경우 흡수제의 높은 증기압 때문에 흡수제가 여전히 흡수탑 혹은 재생탑의 상부에서 가스 스트림과 함께 배출되어 대기 환경을 오염시킬 수 있을 뿐만 아니라, 포집된 이산화탄소에도 일부 포함되어 이후의 정제 또는 농도 제어와 같은 추가 공정이 요구되고 있다.
이에 암모니아와 같은 휘발성이 높은 흡수제의 휘발을 방지하는 것이 중요한 기술적인 문제로 인식되고 있으며, 이와 같은 흡수제의 휘발을 방지하기 위하여 화학적 첨가제를 첨가하는 방법, 또는 흡수제의 휘발을 억제하기 위해 흡수탑 전체의 온도를 낮추는 등의 운전의 최적화 방법 등에 대한 연구들이 이루어지고 있다.
그러나, 흡수탑 전체의 온도를 낮추는 방법을 사용할 경우 흡수제의 온도를 낮추기 위한 냉각수 등의 사용이 필요하게 되고, 이 경우 냉각탑의 부하 증가 등의 문제점으로 인하여 전체적인 공정의 경제성을 저해하게 된다.
또한, 화학적 첨가제를 사용할 경우 이산화탄소의 흡수 효율이 낮아지거나, 또는 사용된 첨가제의 회수를 위한 공정이 추가로 요구되는 등 공정이 복잡해지는 문제가 있다.
한편, 세정단을 이용하여 휘발된 기상 흡수제를 포집 회수하는 방법에 대한 기술이 개발되고 있다. 상기 세정단을 이용한 기상의 암모니아를 회수하는 방법에 있어서, 회수한 암모니아를 이산화탄소 포집 공정에 재이용하기 위해 농축 공정을 수행하여 세정수에 포함된 암모니아를 분리하여 재이용하고 이때 생성되는 정화된 세정수는 다시 냉각하여 세정수로 재이용할 수 있다.
예를 들어, 흡수탑과 재생탑에 세정수를 뿌려 암모니아의 배출을 방지하는 방법이 일반적인 방법으로 알려져 있으며, 상기와 같이 세정단에서 사용된 세정수를 농축공정을 이용하여 이산화탄소 포집 공정에 재이용하기 위해서는 세정수를 농축하기 위한 스팀에너지가 추가로 소모되기 때문에 이산화탄소 포집시 사용되는 스팀량을 줄이기 위한 방법도 많이 연구되고 있다. 이는 공정의 경제성과 밀접한 연관이 있기 때문에 공정 효율 증대가 매우 중요하다.
따라서, 암모니아수를 이용한 이산화탄소 포집 공정에서 발생하는 암모니아가 포함된 세정수를 재사용하여 공정 효율을 보다 향상시킬 수 있는 장치 및 방법이 제공되는 경우 관련 분야에서 유용하게 사용될 수 있을 것으로 기대된다.
한편, 석탄화력발전소 배가스에는 이산화탄소가 약 10~15% 존재하며, 이외에 질소, 산소, 미량성분으로는 황산화물(SOx), 질소산화물(NOx)이 존재한다. 상기 배가스로부터 이산화탄소를 제거하는 공정의 전 단계에는 일반적인, 배가스 처리 공정을 두고 있으며, 대표적으로 입자상 물질을 백 필터(bag filter) 또는 전기 집진기 등을 이용하는 집진 공정, 질소산화물의 제거를 위한 SCR(선택적 촉매 환원, selective catalytic reduction) 공정, 황산화물의 제거를 위한 탈황 공정(FGD: flue gas desulfurization)이 있다. 이와 같은 공정을 개략적으로 도 2에 나타내었다.
상기와 같은 이산화탄소의 화학흡수법에 사용되는 흡수액 중 아민 계열의 흡수액은 일반적으로 황산화물에 대한 반응성이 높아, 황산화물과 반응하여 열화되는 단점을 가지고 있다. 따라서, 이산화탄소 흡수 공정에는 도 2에 도시된 것과 같은 탈황 설비를 이산화탄소 포집 공정 이전에 두어 황산화물을 전 처리하는 설비가 반드시 필요하며, 경우에 따라서는 보다 엄격한 황산화물 농도 제어가 필요할 경우 추가적으로 탈황 설비를 설치하여 2단 탈황 공정으로 구성하기도 한다.
아민 흡수제 대신 암모니아수를 흡수제로 이용하는 이산화탄소 포집 공정에 있어서는 암모니아 자체의 높은 증기압으로 인한 암모니아의 슬립 문제가 가장 큰 문제로 작용하고 있으며, 이를 해결하기 위한 다양한 시도들이 이루어지고 있다. 대표적인 암모니아 슬립 저감을 위한 방법으로는 외부에서 첨가제를 주입하는 방법이 있으나, 첨가제 주입을 위한 별도의 설치 비용 및 첨가제 사용에 따른 첨가제 회수를 위한 공정이 추가로 요구된다. 또한, 세정단을 설치하여 휘발되는 암모니아를 세정하는 방법이 있으나, 휘발되는 암모니아의 양이 많아, 이의 농축을 위한 추가 스팀에너지가 필요하다는 문제가 있다.
또한, 전형적인 탈황 공정에서는 CaCO3 또는 Ca(OH)2의 슬러리나 고상의 CaO를 황산화물과 반응시켜 CaSO4 형태로 만들어 SOx를 제거하는데, 이 과정에서 다량의 CaCO3, Ca(OH)2 또는 CaO가 소모되며, CaSO4가 폐기물로 생성되기 때문에 약품 구입비 및 폐기물 처리비용이 높다는 문제가 있다.
이에 본 발명의 일 구현예로서, 설비 추가 등의 문제점을 발생시키지 않고 흡수액으로부터 흡수제가 휘발되는 것을 억제할 수 있는 이산화탄소 포집 장치를 제공하는 것이다.
또한, 본 발명은 재생탑 세정단에서 배출되는 세정액을 흡수탑 세정단의 세정액으로 재사용함으로써 휘발되는 흡수제를 보다 효율적으로 세정할 수 있는 이산화탄소 포집장치를 제공하는 것이다.
나아가, 본 발명의 또 다른 측면은 암모니아를 흡수제로 하는 흡수액을 사용하여 배가스에 존재하는 이산화탄소를 제거함과 동시에 슬립되는 암모니아를 이용하여 황산화물을 효과적으로 제거하고, 배가스의 열에너지를 흡수액 재생에너지로 사용할 수 있는 이산화탄소 포집 장치를 제공하고자 한다.
본 발명은 이산화탄소 흡수제를 포함하는 흡수액 및 이산화탄소 함유 배가스가 각각 공급되되, 상기 흡수액 및 이산화탄소 함유 배가스가 동일한 방향으로 유동하도록 공급되며, 상기 흡수액으로 상기 이산화탄소 함유 배가스 중의 이산화탄소를 흡수하고, 상기 이산화탄소를 흡수한 이산화탄소 함유 흡수액 및 이산화탄소가 제거된 배가스를 각각 배출하는 흡수탑; 상기 흡수탑 상부에 구비되며, 상기 흡수탑으로부터 배출되는 이산화탄소 제거 배가스로부터 세정수를 이용하여 상기 흡수액으로부터 휘발된 흡수제 및 상기 배가스 중에 잔존하는 이산화탄소를 흡수하는 흡수탑 세정단; 상기 흡수탑으로부터 배출된 이산화탄소 함유 흡수액을 가열에 의해 이산화탄소를 기화시키고, 기상의 이산화탄소 및 흡수액을 각각 배출하여 흡수액을 재생하는 재생탑; 및 상기 재생탑 상부에 구비되며, 상기 재생탑으로부터 배출되는 이산화탄소 및 상기 재생된 흡수액으로부터 세정수를 이용하여 휘발되는 흡수제를 흡수하는 재생탑 세정단을 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 일 구현예에 따르면, 상기 흡수탑은 하부에 상기 흡수액 및 이산화탄소 함유 배가스를 공급하는 흡수액 공급관 및 이산화탄소 함유 배가스 공급관을 각각 구비하며, 상기 각각의 공급관을 통해 공급된 흡수액 및 이산화탄소 함유 배가스가 하부에서 상부로 유동하는 이산화탄소 포집 장치를 제공한다.
본 발명의 다른 구현예에 따르면, 상기 흡수탑으로부터 배출되는 이산화탄소 함유 흡수액과 상기 재생탑으로부터 배출되는 재생된 흡수액간의 열교환을 위한 열교환기를 구비하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 흡수탑 세정단 및 재생탑 세정단 중 적어도 하나로부터 배출되는 세정수에 함유된 흡수제를 농축하여 이산화탄소 흡수 공정에 제공하여 상기 세정수를 재생하는 농축탑을 더 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 재생탑 세정단으로부터 배출되는 재생탑 세정수가 흡수탑 세정단의 세정수로 유입되는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 흡수탑 세정단으로부터 배출되는 흡수탑 세정수에 함유된 흡수제를 농축하여 이산화탄소 흡수 공정에 제공하여 상기 세정수를 재생하는 농축탑을 더 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 흡수탑 세정수로부터 탈거된 상기 흡수제를 상기 재생탑으로 공급하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 농축탑에서 재생된 세정수가 재생탑 세정단으로 공급되는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 이산화탄소 및 황산화물 함유 배가스가 공급되고, 상기 흡수탑 세정단 및 재생탑 세정단 중 적어도 하나로부터 배출되는 흡수제 및 이산화탄소를 함유하는 흡수탑 세정수 및 재생탑 세정수 중 적어도 하나가 공급되며, 상기 세정수에 의해 상기 이산화탄소 및 황산화물 함유 배가스로부터 황산화물을 흡수하여 제거하고, 황산화물이 제거된 이산화탄소 함유 배가스를 상기 흡수탑에 공급하는 탈황설비를 더 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 탈황설비에서 배출된 황산화물을 흡수한 세정수로부터 고상의 (NH4)2SO4를 분리하는 고액분리기를 추가로 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 고상의 (NH4)2SO4가 분리된 세정수는 상기 흡수탑 세정단 및 재생탑 세정단 중 어느 하나에 공급되는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 이산화탄소 및 황산화물 함유 배가스와 스팀을 열교환하는 스팀 열교환기를 추가로 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 스팀 열교환기에서 생성된 스팀이 공급되어 상기 재생탑에 열에너지를 공급하는 리보일러(재비기)를 추가로 포함하는 이산화탄소 포집 장치를 제공한다.
본 발명의 또 다른 구현예에 따르면, 상기 탈황설비에서 배출된 이산화탄소 함유 배가스와 상기 흡수탑에서 배출된 배가스를 열교환하는 배가스 열교환기를 추가로 포함하는 이산화탄소 제거 장치를 제공한다.
본 발명에 의하면, 이산화탄소 흡수탑 내 배가스와 흡수액의 흐름을 조절하여 흡수액으로부터 흡수제의 휘발을 방지 내지 억제함으로써 세정수 사용량을 감소시킬 수 있어 이산화탄소 포집공정의 효율성 및 경제성을 증대시킬 수 있다.
본 발명의 혼합 가스의 이산화탄소 포집 공정 내 재생탑 세정수를 흡수탑 세정수로 재이용함으로써 흡수탑 세정단에서의 암모니아 제거 효율이 증가하며, 따라서 동일 효율의 흡수탑과 재생탑 상단의 암모니아 세정을 위해 사용하는 세정수량을 기존 세정수량 보다 현저하게 감소시킬 수 있다. 그 결과 농축탑에서 흡수액의 농축을 위해 사용되는 추가 스팀에너지를 감소시킬 수 있음으로 전체 이산화탄소 포집 공정의 경제성 향상을 도모할 수 있다.
본 발명의 이산화탄소 포집 장치에 잇어서, 이산화탄소 포집 공정 중에 발생한 세정수를 활용한 탈황설비를 구비함으로써, 이산화탄소 제거 공정에 발생한 세정수를 재이용하여 황산화물을 효과적으로 제거할 수 있어 기존의 소석회를 사용하던 탈황공정에 비해 별도의 약품비 및 폐기물 처리비용을 절약시킬 수 있으며, 배가스의 열에너지를 이산화탄소 제거 공정에 소요되는 에너지로 사용할 수 있어 경제성을 높일 수 있다.
도 1은 일반적인 이산화탄소 흡수 공정을 개략적으로 도시한 것이다.
도 2는 종래에 사용되는 탈황 설비를 개략적으로 도시한 것이다.
도 3은 본 발명의 방법을 수행하기 위한 예시적인 장치를 개략적으로 나타낸 것이다.
도 4 내지 6은 본 발명의 일부 구현예에 따른 처리대상가스 중의 이산화탄소 포집 장치를 개략적으로 도시한 것이다.
도 7 및 8은 본 발명의 처리대상가스 중에 포함된 이산화탄소 및 황산화물을 제거하는 장치를 개략적으로 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.
본 발명은 이산화탄소 포집 공정에 있어서 흡수제의 휘발을 방지하는 방법에 관한 것으로, 보다 상세하게는 흡수탑 내에서 이산화탄소를 함유하는 배가스와 흡수액의 흐름을 조절하여 흡수액으로부터 흡수제의 휘발을 방지하는 장치 및 방법을 제공하고자 한다.
일반적으로 이산화탄소 함유 배가스로부터 이산화탄소를 흡수 제거함에 있어서, 이산화탄소를 흡수액으로 흡수하는 흡수탑 및 상기 흡수탑에서 배출된 이산화탄소를 흡수한 흡수액으로부터 흡수제를 재생하는 재생탑을 포함하는 이산화탄소 포집 장치를 사용한다. 일반적으로 처리 대상인 이산화탄소 함유 배가스로부터 이산화탄소를 흡수하기 위해 상기 배가스와는 반대방향으로 흡수액을 공급함으로써 흡수액 중의 흡수제와 배가스의 접촉에 의해 이산화탄소 흡수를 도모하고 있다.
그러나, 배가스와 흡수액이 반대 방향으로 흐름으로 인해 흡수액 중의 흡수제가 배가스와 접촉하는 시간이 짧아 배가스 중의 이산화탄소를 흡수하는 효율이 낮다. 나아가, 배가스가 흡수액이 하부에서 공급되는 한편, 흡수액이 상부에서 하부로 공급됨으로써, 배가스 중의 이산화탄소와 반응하기 전에 흡수액 중의 흡수제의 일부가 휘발됨으로써 흡수탑으로부터 배가스와 함께 기상으로 배출되어 전체 흡수제의 사용량 증대의 문제가 있다. 이에, 본 발명은 흡수액과 배가스가 동일한 방향으로 흐르도록 함으로써 흡수액 중의 흡수제에 의한 이산화탄소 흡수 효율을 향상시키고, 이에 의해 흡수제 휘발 억제를 도모하고자 한다.
이를 위해 본 발명의 이산화탄소 포집 장치는 이산화탄소 흡수제를 포함하는 흡수액 및 이산화탄소 함유 배가스가 각각 공급되되, 상기 흡수액 및 이산화탄소 함유 배가스가 동일한 방향으로 유동하도록 공급되며, 상기 흡수액으로 상기 이산화탄소 함유 배가스 중의 이산화탄소를 흡수하고, 상기 이산화탄소를 흡수한 이산화탄소 함유 흡수액 및 이산화탄소가 제거된 배가스를 각각 배출하는 흡수탑, 상기 흡수탑 상부에 구비되며, 상기 흡수탑으로부터 배출되는 이산화탄소 제거 배가스로부터 세정수를 이용하여 상기 흡수액으로부터 휘발된 흡수제 및 상기 배가스 중에 잔존하는 이산화탄소를 흡수하는 흡수탑 세정단, 상기 흡수탑으로부터 배출된 이산화탄소 함유 흡수액을 가열에 의해 이산화탄소를 기화시키고, 기상의 이산화탄소 및 흡수액을 각각 배출하여 흡수액을 재생하는 재생탑 및 상기 재생탑 상부에 구비되며, 상기 재생탑으로부터 배출되는 이산화탄소 및 상기 재생된 흡수액으로부터 세정수를 이용하여 휘발되는 흡수제를 흡수하는 재생탑 세정단을 포함하는 이산화탄소 포집 장치를 제공하고자 한다.
도 3은 본 발명에 따른 이산화탄소 포집 장치(100)의 일 구현예를 개략적으로 나타낸 도면으로서, 본 발명의 이산화탄소 포집 장치(100)는 흡수탑(10), 흡수탑 세정단(16), 재생탑(20) 및 재생탑 세정단(26)을 포함한다.
상기 흡수탑(10)은 이산화탄소를 함유하는 처리대상가스(이산화탄소 함유 가스, 102)가 공급되며, 상기 처리대상가스(102)로부터 이산화탄소를 흡수하기 위한 흡수제를 포함하는 흡수액(111, 115)이 공급되며, 상기 흡수액(111, 115)에 의해 상기 처리대상가스(102)로부터 이산화탄소가 흡수되며, 이에 의해 이산화탄소 함유 흡수액(113)과 이산화탄소가 제거된 배가스(103)가 각각 흡수탑(10)으로부터 배출된다.
상기 처리대상가스(102)는 이산화탄소를 함유하는 것이라면 특별히 한정하지 않으며, 제철소 및 발전소 등 다양한 산업 공정에서 발생하는 배가스 등일 수 있다. 예를 들어, 발전소 배가스, 고로 가스(BFG), 전로 가스(LDG), 파이넥스 가스(FOG), 코크스로 가스(COG), 마그네슘 제련 공정 부생가스, 시멘트 생산 공정의 소성 가스, 천연가스 채취 시 발생하는 부생가스 및 석유화학 공정의 부생가스 등을 들 수 있다.
한편, 상기 흡수제를 함유하는 흡수액은 처리대상가스(102) 중에 포함된 이산화탄소와 반응하여 이산화탄소를 흡수 제거할 수 있는 휘발성 용액으로서, 예를 들어 암모니아수 및 아민 또는 아민계 흡수제의 혼합 수용액과 같은 알칼리성 용액으로 이루어진 그룹으로부터 선택된 1종 이상인 것이 바람직하며, 상기 아민은 모노에탄올아민(MEA), 메틸디에탄올아민(MDEA) 등을 포함하나, 이에 한정하는 것은 아니다. 한편, 본 발명에 있어서 상기 흡수액은 암모니아수를 이용하는 것이 보다 바람직하다.
본 발명에 있어서, 상기 흡수탑(10)은 상기 처리대상가스(102)와 흡수액(111, 115)을 공급하기 위한 각각의 공급부를 구비한다. 이때, 상기 처리대상가스 공급부 및 흡수액 공급부는 상기 처리대상가스(102) 및 흡수액(111, 115)이 동일한 방향으로 유동하도록 위치하는 것이 바람직하다. 예를 들어, 도면으로 나타내지 않았으나, 상기 흡수탑(10)의 상부에 상기 처리대상가스 공급부 및 흡수액 공급부가 위치함으로써 흡수탑(10)의 상부에서 하부로 유동시킬 수 있으며, 또한, 도 3에 나타낸 바와 같이 상기 흡수탑(10)의 하부에 상기 처리대상가스 공급부 및 흡수액 공급부가 위치함으로써 흡수탑(10)의 하부에서 상부로 유동시킬 수 있다.
이와 같이 이산화탄소를 함유하는 처리대상가스(102) 및 흡수액(111, 115)을 동일 또는 유사한 위치에서 공급하여 이들이 동일한 방향으로 흐르도록 함으로써 상기 흡수제와 배가스의 접촉 시간을 증대시킬 수 있어, 상기 흡수제에 의한 이산화탄소의 흡수량 또는 흡수 효율을 증대시킬 수 있다. 이로 인해 휘발성이 강한 흡수제가 보다 많은 양의 이산화탄소를 흡수함으로써 기상으로 휘발되는 흡수액의 휘발량을 감소시킬 수 있다.
보다 바람직하게는 상기 각각의 공급부는, 도 3에 나타낸 바와 같이, 흡수탑(10)의 하부에 배치될 수 있다. 이하, 도 3에 나타낸 이산화탄소 포집 장치(100)를 예로 들어, 본 발명을 구체적으로 설명한다.
아래 식으로 표현되는 헨리의 법칙에 따르면, 기체의 압력은 흡수액에서의 흡수제 농도에 비례한다.
P*=Hc
(P* = 기상의 평형상태 압력, H = 헨리 상수, c = 액상 농도)
따라서, 흡수제의 농도가 낮아지면 기상으로 존재하는 흡수제의 평형압력도 낮아지게 된다.
예를 들어, 암모니아수를 흡수액으로 이용하는 이산화탄소 흡수 공정에서는 흡수제인 암모니아는 자유 암모니아 (NH3)와 암모늄 이온 (NH4 +)으로 존재한다. 이때, 암모니아의 휘발과 관련된 성분은 자유 암모니아 성분으로서, 흡수액 내의 자유 암모니아의 농도가 낮을 경우, 위의 식에서 알 수 있는 바와 같이, 기상의 평형 상태 압력이 낮아져 자유 암모니아의 휘발량이 감소하게 된다. 그러므로, 흡수탑(10) 하부에 암모니아(자유 암모니아)의 농도가 높고, 흡수탑(10) 상부로 갈수록 암모니아(자유 암모니아)의 농도가 낮아지도록 구성하는 경우, 흡수액 중의 흡수제가 기상으로 휘발하는 것을 억제하는데 보다 효과적이라 할 수 있다. 즉, 가스상으로 존재하는 암모니아의 양을 줄이기 위해서는 액상의 자유 암모니아의 농도, 특히 흡수탑 상부의 액상의 자유 암모니아 농도를 최대한 낮출 필요가 있다.
상기 처리대상가스 공급부 및 흡수액 공급부를 흡수탑(10) 하부에 배치하여 흡수탑(10)의 하부에서 상부 방향으로 상기 처리대상가스(102)와 흡수액(111, 115)이 흐르도록 함으로써 유체의 유동 중에 상기 흡수액(111, 115) 내의 흡수제는 처리대상가스(102) 내의 이산화탄소를 보다 많이 흡수된 상태로 되어 흡수탑(10) 상부로 갈수록 흡수제 중 자유 암모니아의 농도가 낮아지게 되며, 이로 인해 종래의 이산화탄소 포집 공정에 비하여 기상으로 휘발되는 흡수제의 양을 줄일 수 있어 보다 바람직하다.
이와 같이 흡수제의 휘발이 억제되면, 흡수제의 휘발을 방지하기 위해서 흡수탑(10) 상부의 흡수탑 세정단에 주입하는 세정수의 양을 대폭 줄일 수 있으며, 추가의 첨가제를 사용하지 않고서도 흡수제의 휘발을 효과적으로 감소시킬 수 있기 때문에 첨가제의 사용이 불필요하게 된다. 그러므로, 경우에 따라서는, 흡수제의 재활용을 위한 농축탑 등의 추가 공정이 불필요하게 되어 공정을 생략할 수 있으며, 이로 인해 공정을 간략화할 수 있고, 결과적으로 이산화탄소 포집 공정의 경제성을 증대시킬 수 있다.
나아가, 상기 처리대상가스(102) 및 흡수액(111, 115)을 흡수탑(10)에 공급할 때 상기 흡수액(111, 115)에 상기 처리대상가스(102)를 버블링하여 공급할 수 있다. 이와 같이 함으로써, 흡수제가 이산화탄소를 더욱 많이 흡수하도록 할 수 있다.
상기 흡수탑(10)에 공급되는 흡수액은 아래에서 설명하는 재생탑(20)으로부터 재생된 흡수액(115)일 수 있다. 또한, 흡수액의 농도 조절을 위해, 새로운 흡수액을 보충 흡수액(111)으로 함께 공급할 수 있다. 다만, 상기 재생된 흡수액(115)은 재생탑(20)에서 이산화탄소의 분리를 위해 가열되어 승온된 상태이다. 흡수탑(10)에서 높은 효율로 이산화탄소를 흡수하기 위해서는 흡수액의 온도가 낮을수록 바람직하므로, 흡수액의 온도를 낮출 필요가 있다.
이를 위해, 본 발명의 이산화탄소 포집 장치(100)는 상기 재생된 흡수액(115)과 흡수탑(10)에서 배출된 이산화탄소를 흡수한 흡수액(113) 간의 열교환을 위한 열교환기(74)를 구비할 수 있다. 이와 같은 열교환에 의해 흡수탑(10)으로 공급되는 재생된 흡수액(115)의 온도를 낮출 수 있다. 나아가, 상기 이산화탄소를 흡수한 흡수액(113)은 이와 같은 열교환에 의해 승온됨으로써 재생탑(20)에서 이산화탄소의 탈거를 위해 공급되는 열에너지를 절감할 수 있다.
또한, 상기 흡수탑(10)은 흡수액(111, 115)이 처리대상가스(102) 중의 이산화탄소를 흡수할 때 발생되는 흡수열을 회수함으로써 흡수액(111, 115)의 온도를 감소시키기 위해, 도 7 내지 도 8에 나타낸 바와 같이, 흡수탑 순환 쿨러(91, 92)가 구비될 수 있다. 나아가, 상기 흡수탑 순환 쿨러(91, 92)와 함께, 또는 일체로 열교환기(71, 72)가 구비될 수 있다. 상기 열교환기(71, 72)를 통하여 흡수제에서 발생되는 열을 회수할 수 있으며, 상기 흡수탑 순환 쿨러(91, 92)에 의하여 흡수제의 온도를 소정의 온도로 감소시킴으로써 흡수제의 이산화탄소 흡수 효율을 증가시킬 수 있다. 또한, 여기서, 상기 흡수탑(10)의 내부에 구비되는 흡수부(12)의 수는 특별히 제한되지 않는다.
한편, 상기 흡수액에서 발생되는 열을 회수하여 흡수액의 흡수 효율을 향상시키기 위하여 흡수탑 순환 쿨러(91, 92)와 일체로 방열부(미도시)가 구비될 수 있다. 이와 같은 방열부를 통하여 흡수액(111, 115)에서 발생되는 열을 회수할 수 있으며, 상기 흡수탑 순환 쿨러(91, 92)에 의하여 흡수액(111, 115)을 소정의 온도로 낮춤으로써 흡수액(111, 115)의 이산화탄소 흡수 효율을 향상시킬 수 있다. 또한, 상기 방열부와 흡수탑 순환 쿨러(91, 92)는 다수 개를 구비하여 흡수액의 온도를 감소시키도록 하는 것도 가능하다.
도 3에 나타낸 바와 같이, 상기 흡수액(111, 115)에 의해 처리대상가스(102)로부터 이산화탄소가 제거된 배가스(103)는 흡수탑(10) 상부를 통해 배출되며, 이산화탄소를 흡수한 흡수액(113)은 별도의 배출구를 통해 흡수탑(10) 상부로 배출된다. 이때, 상기 배가스(103)에는 흡수제의 휘발성으로 인해 흡수탑(10) 내부에서 흡수액(111, 115)으로부터 일부 휘발된 흡수제를 포함할 수 있으며, 또한 흡수탑(10)에서 미처 제거되지 않은 이산화탄소를 포함할 수 있는바, 상기 배가스(103)로부터 이들이 제거되는 것이 바람직하다.
이에, 흡수탑(10)의 상부에는, 도 4 내지 8에 나타낸 바와 같이, 상기 배가스(103)에 포함된 흡수제 가스를 회수하기 위한 흡수탑 세정단(16)을 포함할 수 있다. 상기 흡수탑 세정단(16)은, 도 4 내지 6에 나타낸 바와 같이, 흡수탑(10) 상단에 흡수탑(10)과 분리형 구조를 가질 수 있으며, 도 7 및 8에 나타낸 바와 같이, 흡수탑(10) 상단에 일체로 구비된 일체형 구조를 가질 수 있는 것으로서, 특별히 한정하지 않는다.
상기 흡수탑 세정단(16)에는 세정수(흡수탑 세정단 유입 세정수)(121)가 공급되며, 상기 흡수탑 세정단(16)을 통해 배출되는 배가스(105) 내에 포함된 흡수제를 상기 유입 세정수(121)로 흡수할 수 있다. 이때, 배가스(105)에 잔존하는 이산화탄소도 함께 흡수된다. 이로 인해 상기 흡수탑 세정단(16)에서 배출되는 흡수탑 세정단 배출 세정수(122)는 이산화탄소 및 흡수제를 함유하게 된다.
상기 흡수탑 세정단(16)에 공급되는 상기 유입 세정수(121)는 특별히 한정하지 않으나, 물을 사용할 수 있다. 여기서, 상기 유입 세정수(121)는 농축탑(30)에서 재생 후 열교환기(81)에 의해 냉각되어 순환되는 세정수(125)인 것이 바람직하나, 이에 제한되는 것은 아니며, 상기 혼합 가스에 접촉하여 혼합 가스에 함유된 암모니아를 흡수 및 제거하기 용이한 다른 용액을 사용하거나 이들이 첨가되어 사용될 수도 있다.
예를 들어, 흡수제로 암모니아를 이용하는 경우, 흡수탑 세정단(16)에서 유입 세정수(121)에 의하여 이산화탄소가 제거된 배가스(103)에 함유된 암모니아가 제거될 수 있으며, 이산화탄소 및 암모니아가 제거된 가스는 상기 흡수탑(10) 또는 흡수탑 세정단(16)의 상부를 통하여 배가스(105)로서 외부로 배출된다.
상기 흡수탑(10)에서 이산화탄소를 흡수한 흡수액(113)은 흡수제로부터 이산화탄소를 탈거 및 제거하여 흡수제를 재생 및 재활용하기 위해 재생탑(20)으로 이송된다. 이때, 필요에 따라 펌프(93) 및 열교환기(73)를 구비할 수 있다. 나아가, 상기한 바와 같이, 이송되는 이산화탄소를 흡수한 흡수액(113)은 열교환기(74)를 통해 재생탑(20)에서 배출된 재생된 흡수액(115)으로부터 열을 회수하여 온도를 높일 수 있다.
한편, 상기 재생탑(20)에서는 이송된 흡수액(113)을 가열함으로써 흡수제에 흡수된 이산화탄소를 탈거하여 흡수액을 재생시킬 수 있다. 이에 의해 재생된 흡수액(115)은 재생탑(20) 하부로 이동되고, 상기한 바와 같이 흡수탑(10)에 공급되어 흡수액으로 재사용될 수 있다. 상기 재생탑은 필요에 따라 펌프(95) 및 열교환기(75)를 더 구비할 수 있다.
상기 흡수제로부터 이산화탄소를 탈거 및 제거함에 있어서, 상기 재생탑(20)의 탈거 온도는 흡수액의 종류, 농도 및 압력 조건에 따라 다양할 수 있는 것으로서, 특별히 한정하지 않으나, 75℃ 내지 120℃ 범위로 이루어지는 것이 바람직하다. 예를 들어, 상기 재생탑(20)의 탈거 온도는 상압 기준으로 흡수제로서 10wt%의 암모니아수를 이용하는 경우 상압에서 75-85℃의 범위로 가열할 수 있으며, 흡수제로서 30-40wt%의 아민 수용액을 사용하는 경우에는 상압에서 100-120℃의 범위로 가열할 수 있다. 이와 같은 탈거 온도는 고압 상태에서 흡수제를 재생할 경우에는 더욱 높아질 수 있다.
상기와 같은 탈거 온도로의 가열을 위해 상기 재생탑(20)은, 도 7 및 도 8에 나타낸 바와 같이, 임의로 재생탑 리보일러(재비기)(22)를 구비할 수 있으며, 상기 재생탑 재비기(22)에 공급되는 열에너지에 의하여 흡수탑(10)에서 재생탑(20)으로 유입된 흡수액(113)에서 이산화탄소를 탈거 및 제거할 수 있다. 또한, 상기한 바와 같이, 흡수탑(10)으로부터 배출되어 재생탑(20)으로 공급되는 이산화탄소를 흡수한 흡수액(113)은 상기 재생탑(20)으로부터 배출되는 재생된 흡수액(115)과 열교환에 의해 온도를 상승시킬 수 있으며, 이에 의해 재생탑(20)에서의 탈거 온도로의 승온을 위한 에너지 사용량을 감소시킬 수 있다. 이와 같은 열교환을 위해 열교환기(74)를 구비할 수 있다.
한편, 상기 재생탑(20)에서 흡수제로부터 분리된 고농도의 기상의 이산화탄소(107)는 펌프(94) 등에 의해 재생탑(20) 상단으로 이동하여 재생탑(20)으로부터 배출된다. 이때, 배출되는 기상의 이산화탄소(107)는 흡수액으로부터 휘발된 기상의 흡수제를 일부 포함하는바, 상기 흡수제를 회수하는 것이 바람직하다. 이를 위해, 상기 재생탑(20) 상단에는 배출되는 이산화탄소(107)로부터 흡수제를 회수하기 위한 재생탑 세정단(26)을 포함할 수 있다. 상기 재생탑 세정단(26)은, 도 4 내지 6에 나타낸 바와 같이, 상기 재생탑과 분리된 분리형 구조일 수 있으며, 도 7 및 8에 나타낸 바와 같이 상기 재생탑(20)과 일체화된 일체형 구조일 수 있는 것으로서, 특별히 한정하지 않는다.
상기 재생탑 세정단(26)에는 세정수(재생탑 세정단 유입 세정수)(123)가 공급되며, 상기 재생탑 세정단(16)을 통해 배출되는 기상의 이산화탄소(107) 내에 포함된 흡수제를 상기 유입 세정수(123)로 흡수할 수 있으며, 일부 이산화탄소도 함께 흡수된다. 이로 인해 상기 재생탑 세정단(26)에서 배출되는 재생탑 세정단 배출 세정수(124)는 이산화탄소 및 흡수제를 함유하게 된다. 이때, 상기 재생탑 세정단(26)에 공급되는 상기 유입 세정수(123)는 특별히 한정하지 않으나, 물을 사용할 수 있다.
아래의 식 (1) 내지 (8)에 나타낸 식들은 암모니아수를 이용한 이산화탄소 포집 공정의 흡수탑 세정단(16) 및 재생탑 세정단(26)에서 일어나는 화학반응을 나타낸 것이다.
NH3 + H2O ↔ NH4 + + OH- (1)
CO2 + H2O ↔ HCO3 - + H+ (2)
HCO3 - ↔ CO3 2- + H+ (3)
NH3 + HCO3 - ↔ NH2COO- + H2O (4)
H2O ↔ H+ + OH- (5)
2NH4 + + CO3 2- ↔ (NH4)2CO3 (6)
NH4 + + HCO3 - ↔ NH4HCO3 (7)
NH4 + + NH2COO- ↔ NH2COONH4 (8)
한편, 상기 재생탑 세정단(26)의 유입 세정수(123)는 재생탑으로부터 배출되는 기상의 이산화탄소(107) 내에 포함된 흡수제를 흡수하기 위한 것이다. 이와 같은 흡수제의 흡수 과정에서 이산화탄소도 함께 흡수되며, 따라서, 배출되는 재생탑 세정단 배출 세정수(124)는 다량의 이산화탄소를 포함한다. 이와 같이 상기 유입 세정수(123)에 포함된 다량의 이산화탄소는 재생탑 세정단(26)에서 이산화탄소 내에 포함된 흡수제와 용이하게 반응함으로써 흡수제를 효과적으로 흡수할 수 있다. 즉, 재생탑 세정단(26)에 공급되는 유입 세정수(123)는 상기 식 (2) 또는 (3)에 나타낸 바와 같은 반응에 의해 이산화탄소 농도가 높은 조건이므로, 이러한 이산화탄소와 흡수제 간에 식 (4), (6) 내지 (8)과 같은 중화반응을 통해 대부분의 흡수제를 흡수할 수 있다.
상기한 바와 같이, 흡수탑 세정단(16)에서 배출되는 흡수탑 세정단 배출 세정수(122)에도 이산화탄소를 포함하고 있으나, 흡수탑(10)으로부터 배출되는 배가스(103)는 처리대상가스(102)로부터 이산화탄소가 제거된 상태의 가스이므로, 배가스(103) 내에 잔존하는 이산화탄소의 농도가 낮다. 따라서, 상기 흡수탑 세정단(16)의 유입 세정수(121)는 흡수탑(10)에서 배출되는 배가스(103)로부터 흡수제를 흡수하는 효율이 낮으며, 이로 인해 배가스(105) 내에 함유된 흡수제의 농도를 적정 농도 이하가 되도록 하기 위해서는 많은 양의 세정수 공급이 요구된다.
따라서, 이와 같이 높은 이산화탄소 함량을 갖는 재생탑 세정단 배출 세정수(124)를 상기 흡수탑 세정단(16)의 흡수탑 세정단 유입 세정수(121)로 공급하는 것이 배가스(103)에 함유된 휘발되는 흡수제의 흡수를 위해 바람직하다. 이를 도 5, 6 및 8에 개략적으로 나타내었다. 이와 같이 이산화탄소 함량이 높은 재생탑 세정단 배출 세정수(124)를 흡수탑 세정단(16)의 유입 세정수(121)로 재사용함으로써 배가스와 함께 배출되는 흡수제를 효과적으로 흡수할 수 있다.
상기 흡수탑 세정단(16)으로 공급되는 유입 세정수(121)는 상기 재생탑 세정단(26)으로부터 배출되는 재생탑 세정단 배출 세정수(124)를 사용할 수 있음은 물론, 이와 함께 새로운 세정수가 흡수탑 세정단(16)으로 공급될 수 있는 것으로서 특별히 한정하지 않는다. 바람직하게는 새로운 또는 재생된 세정수(125)는 우선 상기 재생탑 세정단(26)으로 공급하고, 상기 재생탑 세정단(26)으로부터 배출되는 재생탑 세정단 배출 세정수(124)를 상기 흡수탑 세정단(16)의 유입 세정수(121)로 사용하는 것이 바람직하다.
상기 재생탑 세정단(26)에서 배출되는 재생탑 세정단 배출 세정수(124)는 재생탑 세정단(26)에서 흡수제를 흡수하는 과정에서 승온되므로, 도 5, 6 및 8에 나타낸 바와 같이, 흡수탑 세정단(16)에서 흡수제의 흡수 효율을 높이기 위해 흡수탑 세정단(16)에 공급되기 전에 적정한 온도로 냉각하는 것이 바람직하다. 상기 냉각은 특별히 제한하는 것은 아니나, 열교환기, 냉각탑 또는 칠러 등의 냉각수단을 사용할 수 있다. 도 5, 6 및 8에는 열교환기(82)를 예로 들어 나타내었다.
상기 흡수탑 세정단(16)의 유입 세정수(121)로 공급되는 재생탑 세정단 배출 세정수(124)는 가능한 낮은 온도로 냉각하는 것이 배가스(103) 내에 존재하는 흡수제의 흡수 효율 향상을 위해 바람직한 것으로서, 특별히 한정하는 것은 아니나, 35℃ 이하의 온도로 냉각할 수 있으며, 필요에 따라 10℃ 이하로도 냉각할 수 있다. 그러나, 냉각을 위한 전기 에너지 소모 및 흡수제 흡수 효율 측면에서 25 내지 35℃ 범위의 온도로 냉각하는 것이 적절하다.
상기 냉각 후 흡수탑 세정단(16)에 공급되는 위치는 상기 흡수탑 세정단(16) 내의 온도 분포를 비교적 낮게 유지시킬 수 있는 것이라면 특별히 한정하지 않으며, 흡수탑 세정단(16)의 상부, 또는 중간 위치에 공급할 수 있다.
상기한 바와 같은 재생탑 세정단 배출 세정수(124)를 흡수탑 세정단 유입 세정수(121)로 재이용과 관련하여, 본 발명의 흡수액(111, 115)과 처리대상가스(102)의 동류 공급에 따른 이산화탄소 포집에 적용될 수 있음은 물론, 도 1에 나타낸 바와 같이, 흡수탑(10) 상단에서 흡수액(111, 115)을 공급하고, 처리대상가스(102)를 흡수탑(10) 하부에서 공급하는 종래의 이산화탄소 포집 장치에서도 유효하게 적용될 수 있는 것이다.
본 발명의 이산화탄소 포집 장치(100)는, 도 4 내지 6에 나타낸 바와 같이, 농축탑(30)을 또한 구비할 수 있다. 상기 농축탑(30)은 흡수탑 세정단(16) 및 재생탑 세정단(26)으로부터 배출되는 배출 세정수(122, 124)에 함유된 흡수제를 탈거함으로써 세정수를 재생하기 위한 것이다. 상기 흡수탑 세정단(16) 및 재생탑 세정단(26)으로부터 배출되어 세정수 드럼(40)으로 회수된 각각의 세정수를 농축탑(30)에서 에너지를 공급하여 흡수제 및 이산화탄소를 세정수로부터 탈거함으로써 고농도의 기상의 흡수제로 만든 후, 상기 흡수제가 탈거된 세정수(125)는 농축탑(30)의 하부로 배출하고, 고농도의 기상의 흡수제(117)는 재생탑(20)의 중부 또는 하부로 주입하여 재사용할 수 있다.
한편, 상기 이산화탄소 및 흡수제가 탈거된 세정수(125)는 다시 흡수탑 세정단(16) 및/또는 재생탑 세정단(26)에 공급하여 세정수로서 사용될 수 있다. 상기한 바와 같이, 본 발명은 흡수탑 세정단(16)에 공급되는 유입 세정수(121)는 재생탑 세정단(26)으로부터 배출되는 고농도의 이산화탄소를 함유하는 재생탑 세정단 배출 세정수(124)를 흡수탑 세정단(16)의 유입 세정수(121)로 사용할 수 있는바, 도 5 및 6에 나타낸 바와 같이, 상기 세정수 드럼을 통해 상기 농축탑(30)으로 공급되는 것은 흡수탑 세정단 배출 세정수(122) 단독일 수 있다.
이때, 상기 농축탑(30)에서 재생탑(20)으로 공급되는 상기 흡수제 가스(117)는 흡수제 외에 이산화탄소 및 수증기를 또한 포함할 수 있다. 상기 농축탑(30)에서 농축되고 재생탑(20)으로 공급된 고농도 흡수제 기체(117)는 재생탑(20)에서 이산화탄소가 제거되고, 재생된 흡수제(115)는 다시 사용하기 위해 흡수탑(10)으로 재공급된다.
또한, 본 발명의 이산화탄소 포집 장치(100)는 세정수를 담기 위한 세정수 드럼(40)을 구비할 수 있다. 상기 농축탑(30)에서 흡수제가 완전히 제거된 세정수(125)는 열교환기(81)에 의해 일차 냉각 후, 필요 시 추가로 냉각하여 세정단(16, 26)의 유입 세정수(121, 123)로 재사용 된다. 이때, 바람직하게는 상기 유입 세정수는 재생탑 세정단(26)의 유입 세정수(123)로 공급되고, 이후, 상기 재생탑 세정단(26)으로부터 배출된 재생탑 세정단 배출 세정수(124)가 흡수탑 세정단 유입 세정수(121)로 공급될 수 있다.
본 발명의 이산화탄소 포집 장치(100)는 처리대상가스(102)에 포함된 황산화물을 세정수를 이용하여 제거하는 탈황 설비(60)를 더 포함할 수 있다.
상기 탈황설비(60)는 상기 흡수탑 세정단(16) 및 재생탑 세정단(26)에서 배출된 흡수제 및 이산화탄소 함유 세정수(122, 124)가 공급되어 이산화탄소 및 황산화물 함유 배가스(101)로부터 황산화물(SOx)을 흡수하고, 황산화물이 제거된 이산화탄소 함유 배가스(102)를 상기 흡수탑(10)으로 공급할 수 있다.
본 발명의 이산화탄소 포집 장치(100)는 탈황설비(60)를 추가로 포함함으로써, 이산화탄소 포집 공정에 사용되는 흡수액 및 이산화탄소를 함유하는 세정단 배출 세정수(122, 124)를 이용하여 상기 처리대상가스(101)에 포함된 황산화물을 제거할 수 있다. 상기 흡수탑 세정단(16) 및 재생탑 세정단(26)에서 배출되는 흡수탑 세정단 배출 세정수(122) 및 재생탑 세정단 배출 세정수(124) 내에는 흡수제로서 암모니아를 사용한 경우, 암모니아 및 이산화탄소, 탄산암모늄 또는 중탄산암모늄의 형태로 존재한다. 상기 암모니아, 탄산암모늄 또는 중탄산암모늄은 상기 처리대상가스(101) 내의 황산화물과 하기의 반응식 9 내지 11과 같이 반응하여 처리대상가스(101) 내의 황산화물을 제거한다.
4NH3 + 2SO2 + O2 + 2H20 → 2(NH4)2SO4 (9)
(NH4)2CO3 + SO2 + O2 → (NH4)2SO4 + CO2 (10)
4NH4HCO3 + 2SO2 + O2 → 2(NH4)2SO4 + 4CO2 + 2H2O (11)
상기와 같은 반응으로 생성된 (NH4)2SO4는 고체상태로서 탈황설비 배출수(131)와 함께 탈황설비(60)로부터 배출되며, 이후, 고액 분리에 의해 고상의 (NH4)2SO4를 제거할 수 있다.
상기 반응에 의해 황산화물이 제거된 처리대상가스(102)를, 앞에서 기재한 바와 같이, 본 발명에 의해 이산화탄소 포집을 위한 처리대상가스(102)로서 흡수탑(10)으로 공급하여 이산화탄소 제거 단계를 수행할 수 있다.
이와 같이, 상기 탈황설비(60)에서 이산화탄소 제거 공정에 사용한 세정수, 즉 이산화탄소 및 흡수제 함유 세정수를 탈황공정에 사용함으로써, 종래 탈황공정에서 사용되는 CaCO3, Ca(OH)2 및 CaO 등의 약품에 별도의 비용이 소모되지 않아 경제성을 높일 수 있으며, 이산화탄소 제거 공정과 동시에 탈황공정을 수행할 수 있어 공정의 효율성을 높일 수 있다.
또한, 상기 탈황설비(60)는 상기 탈황설비 배출수(131)에 포함된 고상의 (NH4)2SO4를 제거하기 위해 고액분리기(62)를 추가로 포함할 수 있다. 이와 같은 고액분리기(62)를 포함함으로써 상기 탈황설비 배출수(131)에 포함된 고상의 (NH4)2SO4를 분리 제거할 수 있다. 상기 탈황설비 배출수(131)의 (NH4)2SO4 농도가 지속적으로 증가함에 따라 염의 형태로 석출되어 고상의 (NH4)2SO4가 생성되므로, 이를 고액분리기(62)로 분리함으로써 외부로 배출(137)할 수 있다.
상기 고액분리기(62)는 특별히 제한되지 않으며, 예를 들어 하이드로사이클론(Hydrocyclone)을 사용할 수 있다. 종래 탈황공정에서 폐기물로 발생하는 CaSO4는 별도의 처리가 요구되었으나, 상기 (NH4)2SO4는 건조 후 비료로 활용할 수 있어, 이의 제거를 위한 추가적인 처리 설비 내지 공정을 요하지 않는다.
또한, 상기 (NH4)2SO4가 제거된 탈황설비 배출수(131)는 통상 pH가 5.5 이하이므로, 상기 흡수탑 세정단(16) 및 재생탑 세정단(26)에서 휘발되는 흡수제를 세정하기 위한 유입 세정수(121, 123)로 공급할 수 있으며, 흡수탑 세정단(16) 및 재생탑 세정단(26)에 이송되는 과정에서 열교환기(85)에 의해 열교환될 수 있다.
한편, 본 발명의 탈황설비(60)를 포함하는 이산화탄소 포집 장치(100)는 스팀 열교환기(83)를 추가로 포함할 수 있다. 상기 스팀 열교환기(83)는 상기 이산화탄소 및 황산화물을 포함하는 처리대상가스(101)가 탈황설비(60)에 공급되기 전에, 상기 처리대상가스(101)와 스팀을 열교환하기 위한 것이다.
통상적으로 이산화탄소 및 황산화물을 함유하는 처리대상가스(101)는 약 120~130℃의 온도를 갖는다. 따라서, 이와 같은 고온의 처리대상가스(101)와 스팀을 열교환함으로써 상기 스팀을 약 110℃ 이상으로 승온시킬 수 있다. 또한, 상기 열교환에 의해 상기 스팀 열교환기(83)에 공급된 스팀은 열에너지를 공급받아 승온된 상기 스팀(배열회수 스팀)(135)은 상기 재비기(22)에 공급되어 열에너지로 공급할 수 있으므로, 이산화탄소 제거 공정에 소요되는 재생에너지를 절감시킬 수 있다.
또한, 이와 같은 열교환에 의해 상기 이산화탄소 및 황산화물을 함유하는 처리대상가스(101)의 온도를 낮출 수 있으며, 이에 따라, 상기 탈황설비(60)로 공급되는 세정수(122, 124)에 대한 황산화물의 용해도를 높일 수 있어 황산화물 제거 효율을 향상시킬 수 있다.
또한, 본 발명의 탈황설비(60)를 포함하는 이산화탄소 포집 장치(100)는 배가스 열교환기(84)를 추가로 포함할 수 있다. 상기 탈황설비(60)에서 배출된 이산화탄소를 함유하는 처리대상가스(102)와 상기 흡수탑(10) 또는 흡수탑 세정단(16)에서 배출된 배가스(103, 105)를 상기 배가스 열교환기(84)에 의해 열교환할 수 있다. 특별히 제한하지 않으나, 상기 탈황설비(60)에서 배출된 이산화탄소를 함유하는 처리대상가스(102)의 온도는 60~80℃이므로, 상기 흡수탑(10)에서 배출된 배가스(103, 105)를 60~80℃까지 승온시킬 수 있으며, 흡수탑 유입직전의 가스 (102)의 온도를 40~60℃까지 조절할 수 있다. 이때 상기 배가스(103, 105)를 승온시킴으로써 스택(50)에서 용이하게 배출시킬 수 있다.
이와 같은 탈황 설비(60)를 이산화탄소 포집 장치(100)와 함께 구동하는 것은 본 발명에서와 같이 처리대상가스와 흡수액을 동류로 공급하는 이산화탄소 포집 장치(100)에서 적합한 것임은 물론, 종래의 향류, 즉, 흡수액을 흡수탑(10) 상단에서 공급하고, 처리대상가스를 흡수탑(10) 하부에서 공급하는 도 1에 나타낸 종래의 이산화탄소 포집 장치에 대하여도 적합하게 적용될 수 있는 것이다.
도면 부호에 대한 설명
100: 이산화탄소 포집 장치
10: 흡수탑 12: 흡수부 16: 흡수탑 세정단
20: 재생탑 22: 리보일러 26: 재생탑 세정단
30: 농축탑 40: 세정수 드럼 50: 스택
60: 탈황설비 62: 고액 분리기
71, 72, 73, 74, 75, 81, 82, 83, 84, 85: 열교환기
91, 92, 93, 94, 95: 순환쿨러(펌프)
101: 황 및 이산화탄소 함유 처리대상가스
102: 이산화탄소 함유 처리대상가스
103: 흡수탑 배출 배가스
105: 흡수탑 세정단 배출 배가스
107: 재생탑 배출 이산화탄소 가스
109: 재생탑 세정단 배출 이산화탄소 가스
111: (보충) 흡수액 113: 이산화탄소 함유 흡수액
115: 재생된 흡수액 117: 회수된 흡수액
121: 흡수탑 세정단 유입 세정수 122: 흡수탑 세정단 배출 세정수
123: 재생탑 세정단 유입 세정수 125: 재생탑 세정단 배출 세정수
127: 탈황 배출수 131: 탈황설비 배출수
133: 탈황 배출수 135; 배열 회수 스팀
137: 고상 (NH4)2SO4
이하, 본 발명의 일부 구현예에 대하여 실시예를 들어 보다 구체적으로 설명한다. 그러나, 이하의 실시예는 본 발명을 일예에 관한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다. 한편, 아래 참고예 1은 처리대상가스와 흡수액을 동일한 방향으로 유동시키는 것에 대하여는 본 발명의 실시예에 해당하는 것이나, 세정수 재이용의 측면에서 실시예 1 및 2와의 비교를 위해 나타낸 것으로서, 참고예에 기재된 구현예가 본 발명에서 제외되는 것은 아니다.
재생탑 세정단 배출 세정수를 흡수탑 세정단의 유입 세정수로 재이용하는 공정 변화에 따른 순환 수량 및 총 열 에너지를 측정하기 위해 공정 시뮬레이터인 Aspen Plus를 이용하여 하기와 같이 시뮬레이션을 실시하였다. 흡수액은 10중량%의 암모니아수를 사용하였다.
비교예 1
도 4에 나타낸 바와 같이, 흡수탑 세정단(16)의 유입 세정수(121)로서 새로운 세정수를 흡수탑 세정단(16)으로 유입되도록 설정한 것을 제외하고는 실시예 1과 동일하게 설정하고, 그 결과를 하기 표 1에 나타내었다
실시예 1
도 5에 나타낸 바와 같이, 흡수탑 세정단(16)의 유입 세정수(121)로서 재생탑 세정단(26)으로부터 배출되는 재생탑 세정단 배출 세정수(124)가 유입되도록 설정한 것을 제외하고는 실시예 1과 동일하게 공정을 설정하고, 흡수탑 세정단(16)으로부터 배출되는 배가스(105)의 성분을 분석하여 그 결과를 하기 표 1에 나타내었다.
실시예 2
도 6에 도시한 바와 같이, 흡수탑 세정단(16)의 유입 세정수(121)로서, 새로운 세정수와 함께, 재생탑 세정단(26)으로부터 배출되는 재생탑 세정단 배출 세정수(124)가 유입되도록 공정을 설정하고, 흡수탑 세정단(16)으로부터 배출되는 배가스(105)의 성분을 분석하여 그 결과를 하기 표 1에 나타내었다.
표 1
번호* 비교예 1 실시예 1 실시예 2
103 CO2/NH3 (몰 비) 0.79 0.5 0.53
107 CO2/NH3 (몰 비) 23.7 23.1 22.4
105 CO2 몰 농도 2.6% 2.8% 2.5%
122 CO2 몰 농도 0.7% 0.9% 0.9%
NH3 몰 농도 2.1% 3.0% 2.7%
124 CO2 몰 농도 0.9% 0.3% 0.9%
NH3 몰 농도 1.1% 0.3% 1.1%
113 순환수 량 100%(기준) 77% 81%
121 세정수 량 흡수탑 세정단 100%(기준) 100% 0%
123 재생탑 세정단 50% 50% 150%
CO2 포집율 90.1% 90.1% 90.6%
총 열에너지(재생탑/농축탑) 100% (기준) 92% 93%
번호*: 도 4 내지 6의 해당 스트림의 번호를 나타낸다.
상기 표 1에서 확인할 수 있는 바와 같이, 재생탑 세정단 배출 세정수(124)를 흡수탑(10)에서 유입 세정수(121)로 재이용하는 경우, 흡수탑 세정단(16)에서의 암모니아 제거 효율 및 이산화탄소 흡수 효율이 증가하며, 흡수탑(10)과 재생탑(20)을 순환하는 순환 수량을 기존 순환수량 대비 77%(실시예 1) 내지 81%(실시예 2)까지 감소시킬 수 있고, 재생탑(20) 및 농축탑(30)에서 사용되는 총 열에너지를 각각 8(실시예 1) 및 7%(실시예 2) 정도 감소시킬 수 있어, 공정 효율이 대폭 향상됨을 확인할 수 있다.

Claims (14)

  1. 이산화탄소 흡수제를 포함하는 흡수액 및 이산화탄소 함유 배가스가 각각 공급되되, 상기 흡수액 및 이산화탄소 함유 배가스가 동일한 방향으로 유동하도록 공급되며, 상기 흡수액으로 상기 이산화탄소 함유 배가스 중의 이산화탄소를 흡수하고, 상기 이산화탄소를 흡수한 이산화탄소 함유 흡수액 및 이산화탄소가 제거된 배가스를 각각 배출하는 흡수탑;
    상기 흡수탑 상부에 구비되며, 상기 흡수탑으로부터 배출되는 이산화탄소 제거 배가스로부터 세정수를 이용하여 상기 흡수액으로부터 휘발된 흡수제 및 상기 배가스 중에 잔존하는 이산화탄소를 흡수하는 흡수탑 세정단;
    상기 흡수탑으로부터 배출된 이산화탄소 함유 흡수액을 가열에 의해 이산화탄소를 기화시키고, 기상의 이산화탄소 및 흡수액을 각각 배출하여 흡수액을 재생하는 재생탑; 및
    상기 재생탑 상부에 구비되며, 상기 재생탑으로부터 배출되는 이산화탄소 및 상기 재생된 흡수액으로부터 세정수를 이용하여 휘발되는 흡수제를 흡수하는 재생탑 세정단
    을 포함하는 이산화탄소 포집 장치.
  2. 제 1항에 있어서, 상기 흡수탑은 하부에 상기 흡수액 및 이산화탄소 함유 배가스를 공급하는 흡수액 공급관 및 이산화탄소 함유 배가스 공급관을 각각 구비하며, 상기 각각의 공급관을 통해 공급된 흡수액 및 이산화탄소 함유 배가스가 하부에서 상부로 유동하는 이산화탄소 포집 장치.
  3. 제 1항에 있어서, 상기 흡수탑으로부터 배출되는 이산화탄소 함유 흡수액과 상기 재생탑으로부터 배출되는 재생된 흡수액간의 열교환을 위한 열교환기를 구비하는 이산화탄소 포집 장치.
  4. 제 1항에 있어서, 상기 흡수탑 세정단 및 재생탑 세정단 중 적어도 하나로부터 배출되는 세정수에 함유된 흡수제와 이산화탄소를 탈거하는 농축탑을 더 포함하는 이산화탄소 포집 장치.
  5. 제 1항에 있어서, 상기 재생탑 세정단으로부터 배출되는 재생탑 세정수가 흡수탑 세정단의 세정수로 유입되는 이산화탄소 포집 장치.
  6. 제 5항에 있어서, 상기 흡수탑 세정단으로부터 배출되는 흡수탑 세정수에 함유된 흡수제와 이산화탄소를 탈거하여 상기 세정수를 재생하는 농축탑을 더 포함하는 이산화탄소 포집 장치.
  7. 제 6항에 있어서, 상기 흡수탑 세정수로부터 탈거된 상기 흡수제를 상기 재생탑으로 공급하는 이산화탄소 포집 장치.
  8. 제 6항에 있어서, 상기 농축탑에서 재생된 세정수가 재생탑 세정단으로 공급되는 이산화탄소 포집 장치.
  9. 제 1항에 있어서, 이산화탄소 및 황산화물 함유 배가스가 공급되고, 상기 흡수탑 세정단 및 재생탑 세정단 중 적어도 하나로부터 배출되는 흡수제 및 이산화탄소를 함유하는 흡수탑 세정수 및 재생탑 세정수 중 적어도 하나가 공급되며, 상기 세정수에 의해 상기 이산화탄소 및 황산화물 함유 배가스로부터 황산화물을 흡수하여 제거하고, 황산화물이 제거된 이산화탄소 함유 배가스를 상기 흡수탑에 공급하는 탈황설비를 더 포함하는 이산화탄소 포집 장치.
  10. 제 9항에 있어서, 상기 탈황설비에서 배출된 황산화물을 흡수한 탈황 배출수로부터 고상의 (NH4)2SO4를 분리하는 고액분리기를 추가로 포함하는 이산화탄소 포집 장치.
  11. 제 10항에 있어서, 상기 고상의 (NH4)2SO4가 분리된 세정수는 상기 흡수탑 세정단 및 재생탑 세정단 중 어느 하나에 공급되는 이산화탄소 포집 장치.
  12. 제 9항에 있어서, 상기 이산화탄소 및 황산화물 함유 배가스와 스팀을 열교환하는 스팀 열교환기를 추가로 포함하는 이산화탄소 포집 장치.
  13. 제 12항에 있어서, 상기 스팀 열교환기에서 배출된 스팀이 공급되어 상기 재생탑에 열에너지를 공급하는 재비기를 추가로 포함하는 이산화탄소 포집 장치.
  14. 제 9항에 있어서, 상기 탈황설비에서 배출된 처리대상가스와 상기 흡수탑에서 배출된 배가스를 열교환하는 배가스 열교환기를 추가로 포함하는 이산화탄소 및 황산화물 제거 장치.
PCT/KR2013/003692 2012-10-26 2013-04-29 이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치 WO2014065477A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020120119942A KR20140056502A (ko) 2012-10-26 2012-10-26 이산화탄소 포집 공정에 있어서 흡수제의 휘발 방지 방법
KR10-2012-0119942 2012-10-26
KR10-2012-0152523 2012-12-24
KR1020120152523A KR101937801B1 (ko) 2012-12-24 2012-12-24 배기가스로부터 이산화탄소 및 황산화물을 제거하는 방법 및 제거 장치
KR10-2012-0153906 2012-12-26
KR1020120153906A KR20140085672A (ko) 2012-12-26 2012-12-26 암모니아수를 이용한 이산화탄소 포집 공정 내 재생탑 세정수의 재이용 장치

Publications (1)

Publication Number Publication Date
WO2014065477A1 true WO2014065477A1 (ko) 2014-05-01

Family

ID=50544831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/003692 WO2014065477A1 (ko) 2012-10-26 2013-04-29 이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치

Country Status (1)

Country Link
WO (1) WO2014065477A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018108588A1 (en) * 2016-12-16 2018-06-21 General Electric Technology Gmbh System and method for a chilled ammonia-based carbon dioxide removal process
CN109562318A (zh) * 2016-07-05 2019-04-02 英力士美国有限公司 用于回收酸性气体处理中的吸收剂的方法和设备
CN110115913A (zh) * 2019-06-20 2019-08-13 中国华能集团清洁能源技术研究院有限公司 一种抑制吸收剂挥发的二氧化碳捕集系统及方法
CN114534488A (zh) * 2022-03-22 2022-05-27 浙江浙能技术研究院有限公司 一种基于膜电渗析的co2捕集系统及方法
CN114950111A (zh) * 2022-06-08 2022-08-30 北京石大油源科技开发有限公司 一种二氧化碳捕集转化一体化验证装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980028707A (ko) * 1996-10-24 1998-07-15 손영목 연소배가스로부터 이산화탄소 회수용 2단식 흡착분리공정과 그 운전방법
JP2008238114A (ja) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2吸収液回収方法
US20090193970A1 (en) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. Co2 recovery system and method of cleaning filtration membrane apparatus
KR20110054397A (ko) * 2009-11-17 2011-05-25 주식회사 포스코 암모니아수를 이용한 이산화탄소 회수장치 및 이를 이용한 이산화탄소 회수방법
JP2011125824A (ja) * 2009-12-21 2011-06-30 Toshiba Corp 二酸化炭素分離回収システム
US20120167760A1 (en) * 2011-01-05 2012-07-05 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980028707A (ko) * 1996-10-24 1998-07-15 손영목 연소배가스로부터 이산화탄소 회수용 2단식 흡착분리공정과 그 운전방법
JP2008238114A (ja) * 2007-03-28 2008-10-09 Mitsubishi Heavy Ind Ltd Co2回収装置及びco2吸収液回収方法
US20090193970A1 (en) * 2008-02-01 2009-08-06 Mitsubishi Heavy Industries, Ltd. Co2 recovery system and method of cleaning filtration membrane apparatus
KR20110054397A (ko) * 2009-11-17 2011-05-25 주식회사 포스코 암모니아수를 이용한 이산화탄소 회수장치 및 이를 이용한 이산화탄소 회수방법
JP2011125824A (ja) * 2009-12-21 2011-06-30 Toshiba Corp 二酸化炭素分離回収システム
US20120167760A1 (en) * 2011-01-05 2012-07-05 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109562318A (zh) * 2016-07-05 2019-04-02 英力士美国有限公司 用于回收酸性气体处理中的吸收剂的方法和设备
KR20190044057A (ko) * 2016-07-05 2019-04-29 이네오스 아메리카스 엘엘씨 산성 가스 처리에서 흡수제를 회수하기 위한 방법 및 장치
EP3481536A4 (en) * 2016-07-05 2019-12-04 Ineos Americas, LLC METHOD AND DEVICE FOR RECOVERING ABSORBENTS IN ACID GAS TREATMENT
US10646818B2 (en) 2016-07-05 2020-05-12 Ineos Americas, Llc Method and apparatus for recovering absorbing agents in acid gas treatment
KR102406584B1 (ko) 2016-07-05 2022-06-08 이네오스 아메리카스 엘엘씨 산성 가스 처리에서 흡수제를 회수하기 위한 방법 및 장치
US11433347B2 (en) 2016-07-05 2022-09-06 Ineos Americas, Llc Method and apparatus for recovering absorbing agents in acid gas treatment
WO2018108588A1 (en) * 2016-12-16 2018-06-21 General Electric Technology Gmbh System and method for a chilled ammonia-based carbon dioxide removal process
CN110115913A (zh) * 2019-06-20 2019-08-13 中国华能集团清洁能源技术研究院有限公司 一种抑制吸收剂挥发的二氧化碳捕集系统及方法
CN114534488A (zh) * 2022-03-22 2022-05-27 浙江浙能技术研究院有限公司 一种基于膜电渗析的co2捕集系统及方法
CN114950111A (zh) * 2022-06-08 2022-08-30 北京石大油源科技开发有限公司 一种二氧化碳捕集转化一体化验证装置

Similar Documents

Publication Publication Date Title
WO2014065477A1 (ko) 이산화탄소 포집 공정에 있어서 흡수제의 휘발이 억제된 이산화탄소 포집장치
WO2016159525A1 (ko) 고농도 이산화탄소 포집 장치
RU2567965C1 (ru) Установка для производства железа прямого восстановления
US8080089B1 (en) Method and apparatus for efficient gas treating system
EP2578297B1 (en) Exhaust gas treatment system and method
WO2014046393A1 (ko) 황산화물 제거 기능이 장착된 연소가스 응축장치
WO2017111503A1 (ko) 제철 부생가스로부터 이산화탄소 포집, 수소 회수 방법 및 장치
RU2571671C1 (ru) Система для производства железа прямого восстановления
KR20130080476A (ko) 산화황의 도입에 의해 오염된 아민계 용매의 가공
JP6153258B2 (ja) セメントキルン抽気ガスの処理方法及び塩素バイパスシステム
JP2009126737A (ja) 高炉ガスからの二酸化炭素の分離回収方法
EP2754480B1 (en) Flue gas treatment method and system for removal of carbon dioxide, sulfure dioxide, particulate material and heavy metals
KR101652132B1 (ko) 고온 가스 정제
US20150224440A1 (en) Method for scrubbing sulfur-containing gases with a circulated ammoniacal scrubbing solution
KR20120080112A (ko) 염소 바이패스 시스템 및 염소 바이패스 추기 가스의 처리 방법
KR102148203B1 (ko) 이산화탄소 포집 공정에 있어서 흡수제의 휘발 방지 방법
WO2022092427A1 (ko) 선박의 온실가스 배출 저감장치 및 동 장치 구비한 선박
JP2013202476A (ja) セメントキルン燃焼排ガスの処理装置及び処理方法
WO2023121346A1 (ko) 황산나트륨을 함유하는 산업부산물로부터 탄산수소나트륨의 제조장치
JP4916397B2 (ja) セメントキルン抽気ガスの処理システム及び処理方法
US20160008755A1 (en) Method and device for the treatment of a gas stream, in particular for the treatment of a natural gas stream
KR20140056502A (ko) 이산화탄소 포집 공정에 있어서 흡수제의 휘발 방지 방법
US20150375164A1 (en) Process and apparatus for processing a gas stream and especially for processing a flue gas stream
RU2591908C2 (ru) Способ получения чугуна или жидких стальных полупродуктов
WO2020141867A1 (ko) 배기가스 처리장치 및 이를 포함하는 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849928

Country of ref document: EP

Kind code of ref document: A1