WO2014065240A1 - 還元鉄の製造方法 - Google Patents

還元鉄の製造方法 Download PDF

Info

Publication number
WO2014065240A1
WO2014065240A1 PCT/JP2013/078484 JP2013078484W WO2014065240A1 WO 2014065240 A1 WO2014065240 A1 WO 2014065240A1 JP 2013078484 W JP2013078484 W JP 2013078484W WO 2014065240 A1 WO2014065240 A1 WO 2014065240A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
agglomerate
silicate mineral
solidus temperature
iron oxide
Prior art date
Application number
PCT/JP2013/078484
Other languages
English (en)
French (fr)
Inventor
卓 對馬
昌麟 王
紳吾 吉田
雅孝 立石
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/438,303 priority Critical patent/US20150292055A1/en
Publication of WO2014065240A1 publication Critical patent/WO2014065240A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0046Making spongy iron or liquid steel, by direct processes making metallised agglomerates or iron oxide
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/006Starting from ores containing non ferrous metallic oxides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/008Use of special additives or fluxing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for producing reduced iron by heating an agglomerate containing an iron oxide source such as iron ore or iron-making dust and a carbonaceous reducing agent such as a carbonaceous material.
  • the blast furnace-converter method is the mainstream in the iron making process using iron ore as a raw material.
  • it is necessary to pre-process the raw material, such as coal carbonization and iron ore sintering.
  • the raw material such as coal carbonization and iron ore sintering.
  • the tendency to enlarge a blast furnace and a converter is progressing, and the flexibility and production elasticity with respect to resources are falling.
  • the ironmaking process is required to reduce CO 2 gas emissions from the viewpoint of environmental conservation.
  • the above-mentioned blast furnace-converter method reduces iron ore in a blast furnace to produce high carbon hot metal.
  • the MIDREX method As a direct iron manufacturing method, the MIDREX method has been conventionally known. However, in the MIDREX method, a large amount of natural gas is used to reduce iron ore, so that there is a problem that the plant location conditions are limited to the natural gas production region.
  • the reduced iron obtained by the reduced iron production process has gangue components such as CaO, SiO 2 and Al 2 O 3 contained in an iron oxide source such as iron ore used as a raw material and a carbonaceous reducing agent such as coal. Since it mixes as slag, there exists a problem that the quality of reduced iron becomes low.
  • the reduced iron is required to have a low slag content and a high iron quality.
  • Patent Document 1 discloses a method for producing metal iron having extremely high iron purity as solid metal iron or molten metal iron not only from iron oxide having a high iron component content but also iron ore having a relatively low iron component content. Proposed. In this method, reduction is carried out by heating reduction until substantially no iron oxide is present in the interior, and the produced slag and metallic iron composed of a gangue component are agglomerated inside to melt and separate metallic iron and slag. Is.
  • Patent Document 2 has been proposed as a method for producing high-quality metallic iron by performing melt separation of metallic iron and slag in a short time.
  • the content ratio of CaO, SiO 2 , and Al 2 O 3 contained in the raw material for the carbonaceous iron-containing iron oxide compact is adjusted to lower the melting point of the generated slag composed of these gangue components to 1400 ° C.
  • a technique for promoting the melting and separation of metallic iron and slag is disclosed.
  • this document describes that CaSiO 3 is blended in order to adjust the content ratio of CaO, SiO 2 and Al 2 O 3 in the raw material to lower the melting point of the generated slag.
  • metallic iron with high iron purity can be obtained as solid metallic iron or molten metallic iron, but there is room for further improvement in improving the recovery rate (yield) of metallic iron.
  • Patent Document 2 it is described that CaSiO 3 is added to the agglomerate, but since the solidus temperature of CaSiO 3 is 1545 ° C., the effect of lowering the melting point of slag is weak. In some cases, melting and separation of metallic iron and slag were not sufficiently performed.
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is to provide a technique for increasing yield and improving productivity in producing reduced iron by heating agglomerates. It is in.
  • the method for producing reduced iron according to the present invention that has solved the above-mentioned problems includes a step of agglomerating a mixture containing an iron oxide source, a carbonaceous reducing agent, and a melting point regulator, and the obtained agglomerated product. And the step of reducing the iron oxide in the agglomerate, wherein the agglomerate contains 1% by mass or more of a silicate mineral having a solidus temperature of 1300 ° C. or lower. Has a gist.
  • the silicate mineral preferably contains a volatile component.
  • Representative examples of such minerals having a solidus temperature of 1300 ° C. or less and containing volatile components include amphibole groups such as Actinolite, Cummingtonite, and Grunerite. It is done.
  • the iron oxide source may include a silicate mineral having a solidus temperature of 1300 ° C. or lower, and the silicate mineral having a solidus temperature of 1300 ° C. or lower as the melting point modifier. May be used, or both may be used.
  • an agglomerate containing 1% by mass or more of a silicate mineral having a solidus temperature of 1300 ° C. or lower is used. Is formed quickly. As a result, agglomeration of reduced iron is promoted, yield is improved, and productivity is increased.
  • the inventors of the present invention have made extensive studies in order to improve the yield of reduced iron and increase the productivity of reduced iron when heating the agglomerate to produce reduced iron.
  • the agglomerate containing a silicate mineral having a solidus temperature of 1300 ° C. or lower is contained in an amount of 1% by mass or more, the silicate mineral is melted at an early stage, It has been found that the melting slag is rapidly formed because the melting of the flux proceeds at once. It has been found that since the molten slag promotes agglomeration of reduced irons, the yield of reduced irons and thus productivity can be improved, and the present invention has been completed.
  • Patent Document 2 describes that CaSiO 3 is blended in the agglomerate, but since the actual manufacturing process must be performed within a finite time, the amount of slag melted Not only the equilibrium melting point determined by the composition, but also the melting point modifier added to the agglomerate and the morphology of the mineral phase in the gangue contained in the raw material are greatly affected.
  • the dissolution of the gangue contained in the agglomerate proceeds at once when the starting melt is formed. Therefore, in order to form the molten slag early, the starting melt is rapidly formed. This is very important.
  • slag generally used is CaO—SiO 2 —FeO x , but among the mineral phases contained in the agglomerates, quartz (Quartz) typified by SiO 2 is used. Since the melting point is high and solid phase diffusion with CaO and FeO is difficult to occur, the melting is slow and the melting timing of the molten slag is often controlled by the melting of SiO 2 . For this reason, SiO 2 is preferably not a quartz but a mineral phase of another form, and it is considered desirable to be bonded to CaO, FeO or the like.
  • the present inventors studied to promote the melting of SiO 2 contained in the agglomerate, and an agglomerate containing 1% by mass or more of a silicate mineral having a solidus temperature of 1300 ° C. or lower was used. As a result, it became clear that melting of SiO 2 can be promoted.
  • the method for producing reduced iron according to the present invention includes: A process of agglomerating a mixture containing an iron oxide source, a carbonaceous reducing agent, and a melting point modifier (hereinafter, sometimes referred to as an agglomeration process); Heating the obtained agglomerate and including a step of reducing iron oxide in the agglomerate (hereinafter sometimes referred to as a heat reduction step),
  • the agglomerate is characterized in that a material containing 1% by mass or more of a silicate mineral having a solidus temperature of 1300 ° C. or lower is used.
  • agglomeration process In the agglomeration step, a mixture containing an iron oxide source, a carbonaceous reducing agent, and a melting point modifier is agglomerated to obtain an agglomerate containing 1% by mass or more of a silicate mineral having a solidus temperature of 1300 ° C. or lower. To manufacture.
  • the silicate mineral is a kind of rock-forming mineral and is a mineral containing SiO 2 .
  • silicate minerals there are various types of silicate minerals, but the present invention is characterized in that an agglomerate containing a silicate mineral having a solidus temperature of 1300 ° C. or lower is used among the silicate minerals. . Since SiO 2 contained in a silicate mineral having a solidus temperature of 1300 ° C. or less exists in a low-melting mineral phase, SiO 2 can be rapidly melted. As a result, since the melt is rapidly generated, the molten slag is quickly formed, the aggregation of the reduced iron is promoted, and the yield of the reduced iron is increased.
  • the reason why the upper limit of the solidus temperature of the silicate mineral is defined as 1300 ° C. is that the maximum temperature when the agglomerate is heated to reduce iron oxide in the agglomerate is about 1300 to 1500 ° C. This is because when the iron oxide is reduced, the silicate mineral is melted to form a melt.
  • the solidus temperature when the silicate mineral is a ternary or lower mineral phase is, for example, Verlag Stahlen GmbH, SLAG ATLAS 2nd Ed. (Germany, 1995) and Phase Diagram for Ceramists.
  • the silicate mineral is a quaternary or higher mineral phase
  • the solidus temperature can be calculated using thermodynamic software such as Fact Sage (Ver 6.3) using FT-OXIDE DB.
  • the agglomerate containing the silicate mineral whose solidus temperature is 1300 degrees C or less includes the low melting point silicate mineral whose solidus temperature is 1300 degrees C or less among various silicate minerals.
  • a silicate mineral may be included in the iron oxide source contained in the agglomerate, and silicic acid is used as a melting point modifier constituting the agglomerate.
  • a salt mineral may be used as long as a silicate mineral having a solidus temperature of 1300 ° C. or lower is present when the component composition of the agglomerate is measured.
  • the proportion of the silicate mineral having a solidus temperature of 1300 ° C. or less contained in the agglomerate is 1% by mass or more.
  • the proportion of the silicate mineral having a solidus temperature of 1300 ° C. or less is preferably 1.5% by mass or more, more preferably 2% by mass or more.
  • the upper limit of the ratio of the silicate mineral whose solidus temperature is 1300 degrees C or less is not specifically limited.
  • the ratio of the silicate mineral contained in an agglomerate becomes too high, the compounding quantity of the iron ore contained in an agglomerate Therefore, even if the iron content in the agglomerate is reduced and the yield is improved, the productivity is lowered.
  • the ratio of the silicate mineral having a solidus temperature of 1300 ° C. or lower among the silicate minerals may be 1% by mass or more.
  • the solidus temperature is 1300 ° C.
  • a silicate mineral having a solidus temperature exceeding 1300 ° C. may be contained in the agglomerate as long as the effects of the present invention are not impaired.
  • the ratio of the silicate mineral having a solidus temperature of 1300 ° C. or lower contained in the agglomerate can be measured by measuring components by X-ray diffraction (XRD) and analyzing by a semi-quantitative method.
  • XRD X-ray diffraction
  • the silicate mineral preferably contains a volatile component.
  • the volatile matter is liberated during the heating, and the silicate mineral becomes porous, thereby increasing the surface area and further improving the dissolution rate. For this reason, agglomeration of reduced iron particles is promoted, yield is increased, and productivity is improved.
  • the volatile component preferably contains at least one selected from the group consisting of a hydroxyl group, a carbonate group, and crystal water.
  • the solidus temperature of the residue after the volatile matter is volatilized and removed may be measured.
  • the solidus temperature in Al 4 Si 4 O 10 after removing this hydroxyl group is measured. do it.
  • the silicate mineral having a solidus temperature of 1300 ° C. or lower is preferably amphibole group, and the amphibole group includes actinolite [Actinolite, Ca 2 (Fe, Mg) 5 Si 8 O 22 (OH). 2 ], at least selected from the group consisting of Cummingtonite [Cummingtonite, (Fe, Mg) 7 Si 8 O 22 (OH) 2 ], and Gruenite [Grunerite, Fe 7 Si 8 O 22 (OH) 2 ] It is preferable to use one or more.
  • amphibole group actinolite, cumingtonite, and gruenelite are minerals in which SiO 2 is combined with FeO and CaO, and the solidus temperature is as low as 1300 ° C. or lower and has a hydroxyl group. For this reason, a hydroxyl group is liberated during heating, and it becomes porous and is more easily melted. For this reason, molten slag is formed at an early stage, the cohesiveness of metallic iron is improved, and as a result, the yield can be increased.
  • amphibole group is T.W. Since it is a mineral that is contained in a large amount of BIF (Banded Iron Formation) that has not been used much as an iron oxide source, the Fe content is easy to obtain.
  • BIF Bited Iron Formation
  • amphibole group is difficult only by X-ray diffraction (XRD), but can be determined by using both X-ray diffraction (XRD) and a scanning electron microscope (SEM). That is, amphibole is discriminated by the mapping function in SEM observation, and when CaO is detected when composition analysis is performed by EDS or the like attached to SEM, actinolite is not detected, but when MgO is detected, it is called Cumtonite. What is necessary is just to identify.
  • iron oxide-containing substances such as iron ore, iron sand, iron-making dust, non-ferrous refining residue, and iron-making waste can be used.
  • an iron oxide source containing a silicate mineral having a solidus temperature of 1300 ° C. or lower may be used.
  • carbonaceous reducing agent for example, coal or coke can be used.
  • the carbonaceous reducing agent only needs to contain an amount of carbon that can reduce the iron oxide contained in the iron oxide source.
  • the iron oxide contained in the iron oxide source is contained in a range of 0-5 mass% surplus or 0-5 mass% deficiency (ie, ⁇ 5 mass%) with respect to the amount of carbon that can be reduced. If you do.
  • the above-mentioned mixture containing the iron oxide source and the carbonaceous reducing agent needs to further contain a melting point adjusting agent.
  • the melting point modifier means a substance having an action of lowering the melting point of gangue in the iron oxide source and ash in the carbonaceous reducing agent. That is, by adding a melting point modifier to the above mixture, the melting point of components (particularly gangue) other than iron oxide contained in the agglomerate is affected, and for example, the melting point can be lowered. Thereby, the gangue is promoted to melt and forms molten slag. At this time, a part of the iron oxide is dissolved in the molten slag and reduced in the molten slag to become metallic iron.
  • the metallic iron produced in the molten slag is agglomerated as solid reduced iron by coming into contact with the metallic iron reduced in the solid state.
  • the melting point adjusting agent for example, a CaO supply material, a MgO supply material, an Al 2 O 3 supply material, a SiO 2 supply material, or the like can be used. Moreover, in this invention, you may use the silicate mineral whose solidus line temperature is 1300 degrees C or less as at least one part of melting
  • CaO supply substance for example, at least one selected from the group consisting of CaO (quick lime), Ca (OH) 2 (slaked lime), CaCO 3 (limestone), and CaMg (CO 3 ) 2 (dolomite) is used. be able to.
  • MgO feed materials for example, MgO powder, Mg-containing material to be extracted, such as from natural ore or seawater, may be blended at least one selected from the group consisting of MgCO 3.
  • Al 2 O 3 supply substance include Al 2 O 3 powder, bauxite, boehmite, gibbsite, and diaspore.
  • SiO 2 supply substance for example, SiO 2 powder or silica sand can be used.
  • the agglomerate may further contain a binder as a component other than the iron oxide source, the carbonaceous reducing agent, and the melting point adjusting agent.
  • polysaccharides eg, starch such as corn starch or wheat flour
  • starch such as corn starch or wheat flour
  • the iron oxide source, the carbonaceous reducing agent, and the melting point adjusting agent are preferably pulverized in advance before mixing. For example, it is recommended to grind the iron oxide source so that the average particle size is 10 to 60 ⁇ m, the carbonaceous reducing agent is 10 to 60 ⁇ m, and the melting point modifier is 5 to 90 ⁇ m. Is done.
  • the means for pulverizing the iron oxide source and the like is not particularly limited, and known means can be employed.
  • a vibration mill, a roll crusher, a ball mill or the like may be used.
  • the above raw materials are mixed in a rotating container type or a fixed container type mixer.
  • a rotating container type or a fixed container type mixer there are cases in which rotating blades such as a rotating cylinder, double cone, and V shape are provided.
  • the method is not particularly limited.
  • agglomerating machine for agglomerating the mixture for example, a dish granulator (disk granulator), a cylindrical granulator (drum granulator), a twin roll briquette molding machine or the like is used. be able to.
  • the shape of the agglomerate is not particularly limited, and the molding may be performed by any of pellets, briquettes, and extrusion.
  • Heat reduction process In the heat reduction step, the agglomerate obtained in the agglomeration step is heated to reduce the iron oxide in the agglomerate to produce reduced iron.
  • the heating of the agglomerate may be performed in, for example, an electric furnace or a moving hearth type heating furnace.
  • the moving hearth type heating furnace is a heating furnace in which the hearth moves in the furnace like a belt conveyor, and examples thereof include a rotary hearth furnace and a tunnel furnace.
  • the rotary hearth furnace is designed to have a circular (donut-shaped) hearth appearance so that the start point and end point of the hearth are in the same position, and is included in the agglomerate charged on the hearth.
  • the iron oxide produced is reduced by heating while making a round in the furnace to produce reduced iron. Therefore, the rotary hearth furnace is provided with charging means for charging the agglomerate into the furnace on the most upstream side in the rotation direction, and the most downstream side in the rotation direction (because of the rotating structure,
  • the discharge means is provided on the upstream side of the input means.
  • the tunnel furnace is a heating furnace in which the hearth moves in the furnace in a linear direction.
  • the agglomerate is preferably heated and reduced at 1300-1500 ° C.
  • the heating temperature is lower than 1300 ° C.
  • metallic iron and slag are difficult to melt, and high productivity cannot be obtained.
  • the heating temperature exceeds 1500 ° C., the exhaust gas temperature becomes high, so the exhaust gas treatment facility becomes large and the equipment cost increases.
  • a flooring material such as carbonaceous material or refractory ceramics for the purpose of protecting the hearth.
  • refractory particles can be used in addition to those exemplified as the carbonaceous reducing agent.
  • the particle size of the flooring material is preferably 3 mm or less so that the agglomerate and its melt do not sink. About the minimum of a particle size, it is preferable that it is 0.5 mm or more so that it may not be blown away with the combustion gas of a burner.
  • Reduced iron obtained in the heating reduction process is discharged from the furnace together with slag produced as a by-product or flooring material laid if necessary, and sorted using a sieve or a magnetic separator, etc. Collect it.
  • a mixture containing an iron oxide source, a carbonaceous reducing agent, and a melting point modifier was agglomerated to produce an agglomerate.
  • iron oxide source iron ores A to C having the composition shown in Table 1 below were used.
  • carbonaceous reducing agent a carbon material having a component composition shown in Table 2 below was used.
  • melting point adjusting agent limestone, dolomite, fluorite, quartz sand, and amphibole group mineral were used.
  • Fe 2 O 3 , Fe 3 O 4 , and ⁇ FeOOH are classified as iron ores, and are SiO 2 , Al 2 Si 2 O 5 (OH) 4 , Ca 2 (Mg, Fe) 5 Si 8 O 22 ( OH) 2 , (Fe, Mg) 7 Si 8 O 22 (OH) 2 , CaCO 3 , and Al (OH) 3 are classified as gangue.
  • SiO 2, Al 2 Si 2 O 5 (OH) 4, Ca 2 (Mg, Fe) 5 Si 8 O 22 (OH) 2, (Fe, Mg) 7 Si 8 O 22 (OH) 2 Is a silicate mineral.
  • the solidus temperature of each mineral phase is shown in Table 3 below. The solidus temperature of the mineral phase is Verlag Stahlen GmbH, SLAG ATLAS 2nd Ed. (Germany, 1995) was used, and quaternary systems and higher were calculated by Fact Sage (Ver 6.3) using FT-OXIDE DB.
  • iron ore A contains 4% by mass of a silicate mineral having a solidus temperature of 1300 ° C. or lower, but does not contain iron ores B and C.
  • the amphibole group contains 49% by mass of a silicate mineral having a solidus temperature of 1300 ° C. or lower.
  • a tire type granulator was prepared by blending an iron oxide source, a carbonaceous reducing agent, and a melting point regulator in the proportions shown in Table 4 below, and further adding about 1% by weight of wheat flour as a binder and an appropriate amount of water. Used to granulate raw pellets having an average diameter of 19 mm.
  • the obtained raw pellets were charged into a dryer and heated at 180 ° C. for 1 hour to remove adhering water and dried.
  • Silicate minerals contained in the dry pellets ie, silicate minerals contained in iron ore as gangue, silicate minerals with a solidus temperature of 1300 ° C or less, and amphibole group mineral content to be blended as a melting point modifier) ) And calculated and shown in Table 4 below.
  • the dried pellets were supplied to a heating furnace and heated at 1450 ° C., and reduced iron was produced by reducing and melting the iron oxide in the pellets.
  • a charcoal anthracite having a maximum particle size of 2 mm or less was laid on the hearth before the pellets were charged.
  • nitrogen gas was flowed into the furnace at a flow rate of 30 NL / min, and the inside of the furnace was in a nitrogen atmosphere.
  • a sample containing reduced iron was discharged from the furnace, and the discharged material was sieved.
  • a sieve having an opening of 3.35 mm was used, and the top of the sieve was collected.
  • the ratio of the mass on the sieve to the total mass of iron charged in the heating furnace is defined as the yield, and the calculation results are shown in Table 4 below.
  • Yield (%) (mass on sieve / total mass of iron charged in heating furnace) ⁇ 100
  • the yield may exceed 100%.
  • No. 1 is an example using iron ore A containing 4% by mass of a silicate mineral (specifically, actinolite and cumingtonite) having a solidus temperature of 1300 ° C. or lower as an iron oxide source.
  • a silicate mineral specifically, actinolite and cumingtonite
  • the ratio of the silicate mineral having a solidus temperature of 1300 ° C. or less to the mass of the whole agglomerate was 2.9% by mass.
  • the yield of reduced iron was 90% or more, and the productivity of reduced iron was improved.
  • No. 2 is an example in which an amphibole group mineral was blended as a melting point adjusting agent, and the proportion of the silicate mineral having a solidus temperature of 1300 ° C. or less in the mass of the whole agglomerate was 1.0% by mass. As a result, the yield of reduced iron became 90% or more, and the productivity of reduced iron was improved.
  • Examples 3 to 5 are examples that do not satisfy the requirements defined in the present invention, and are examples in which agglomerates containing no silicate mineral with a solidus temperature of 1300 ° C. or lower are used. As a result, the yield of reduced iron was less than 90%, and the productivity of reduced iron could not be improved.
  • No. 4 is an example in which silica sand is blended as a melting point modifier, and this silica sand contains silicon dioxide and is classified as a silicate mineral.
  • the solidus temperature of silicon dioxide exceeds 1300 ° C., the melting of the gangue component was not promoted even if silica sand was added, and the yield of reduced iron could not be increased.

Abstract

 塊成物を加熱して還元鉄を製造するにあたり、還元鉄の歩留まりを高めて還元鉄の生産性を向上できる還元鉄の製造方法を提供する。 酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化する工程と、得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程を含み、前記塊成物として、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有するものを用いる還元鉄の製造方法。

Description

還元鉄の製造方法
 本発明は、鉄鉱石や製鉄ダスト等の酸化鉄源と、炭材等の炭素質還元剤とを含む塊成物を加熱して還元鉄を製造する方法に関するものである。
 原料として鉄鉱石を用いた製鉄プロセスは高炉-転炉法が主流であるが、この方法では、石炭の乾留や鉄鉱石の焼結等、原料の事前処理を行う必要がある。また、スケールメリットを享受するため、近年では高炉や転炉を大型化する傾向が進んでおり、資源に対する柔軟性や生産弾力性が低下している。
 また、製鉄プロセスには、環境保全の観点からCO2ガスの排出量を抑制することが求められているが、上述した高炉-転炉法は、高炉で鉄鉱石を還元して高炭素の溶銑を製造し、得られた溶銑を転炉で脱炭して鋼を製造するという所謂間接製鉄法であるため、鉄鉱石を還元して直接鋼を製造する直接製鉄法と比べると、CO2ガスの発生量が多くなる。そこで近年では、CO2ガスの排出量を抑制する観点から、直接製鉄法が見直されてきている。
 直接製鉄法としては、従来からMIDREX法が知られている。しかしMIDREX法では、鉄鉱石の還元に天然ガスを大量に使用するため、プラントの立地条件が天然ガスの生産地域に限られるという問題があった。
 そこで最近では、天然ガスの代わりに、炭素質還元剤として入手が比較的容易な石炭を使用する還元鉄製造プロセスが注目されている。この還元鉄製造プロセスは、酸化鉄源、炭素質還元剤、および融点調整剤を含む塊成物を移動炉床式加熱炉(例えば、回転炉床炉)に装入し、炉内で加熱バーナーによるガス伝熱や輻射熱で加熱することによって酸化鉄を還元して塊状の金属鉄を得るというものである。この還元鉄製造プロセスは、石炭ベースであることの他にも粉状の鉄鉱石を直接利用できること、還元時には鉄鉱石と還元剤が近接配置されているため、鉄鉱石中の酸化鉄を高速還元できること、還元して得られる製品中の炭素含有量を容易に調整できるといった利点を有している。
 しかし上記還元鉄製造プロセスで得られる還元鉄には、原料として用いられる鉄鉱石等の酸化鉄源や石炭等の炭素質還元剤に含まれるCaO、SiO2、Al23といった脈石成分がスラグとして混入するため、還元鉄の品位は低くなるという問題がある。
 そのため得られた還元鉄は、例えば、電気炉で溶解し、スラグを分離除去する必要がある。しかし還元鉄に含まれるスラグ量が増加すると、精錬時の歩留まりを低下させるため、上記還元鉄としては、スラグ含有量が少なく、鉄品位が高いものが求められている。
 上記還元鉄の鉄品位を高めるには、原料として鉄品位の高い酸化鉄源を用いることが有効である。しかし鉄鋼の生産量は世界的に増大している一方で、高品位鉄鉱石の採掘量は減少の傾向にあるため、高品位鉄鉱石の価格上昇が予測される。そこで原料として鉄品位の低い酸化鉄源を用いる必要がある。
 ところが原料として低品位鉄鉱石を用いると、溶融スラグが増加するため、塊成物への伝熱が阻害され、金属鉄の生産性が低下する。そこで鉄成分含有量の高い酸化鉄はもとより鉄成分含有量の比較的低い鉄鉱石等からでも、鉄純度の極めて高い金属鉄を、固形金属鉄または溶融金属鉄として製造する方法が特許文献1に提案されている。この方法は、加熱還元により、内部に酸化鉄が実質的に存在しなくなるまで還元を進めると共に、内部に脈石成分からなる生成スラグおよび金属鉄を凝集させ、金属鉄とスラグとを溶融分離するものである。
 金属鉄とスラグとの溶融分離を短時間で行い、品位の高い金属鉄を製造する方法としては、特許文献2が提案されている。この文献には、炭材内装酸化鉄成形体の原料に含まれるCaO、SiO2、Al23の含有比率を調整してこれらの脈石成分からなる生成スラグの融点を1400℃以下に下げることによって、金属鉄とスラグの溶融分離を促進する技術が開示されている。また、この文献には、原料中のCaO、SiO2、Al23の含有比率を調整して生成スラグの融点を下げるために、CaSiO3を配合することが記載されている。
特開平9-256017号公報 特開平11-199911号公報
 上記特許文献1によれば、鉄純度の高い金属鉄を、固形金属鉄もしくは溶融金属鉄として得ることができるが、金属鉄の回収率(歩留まり)向上について更なる改善の余地があった。
 一方、上記特許文献2には、塊成物にCaSiO3を配合することが記載されているが、このCaSiO3の固相線温度は1545℃であるため、スラグの融点を降下させる効果は弱く、金属鉄とスラグの溶融分離が充分に行われないことがあった。
 本発明は上記の様な事情に着目してなされたものであり、その目的は、塊成物を加熱して還元鉄を製造するにあたり、歩留まりを高めて生産性を向上する手法を提供することにある。
 上記課題を解決することのできた本発明に係る還元鉄の製造方法とは、酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化する工程と、得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程を含み、前記塊成物として、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有するものを用いる点に要旨を有している。
 前記珪酸塩鉱物は、揮発分を含んでいることが好ましい。このような固相線温度が1300℃以下で、揮発分を含む鉱物の代表例としては、アクチノ閃石(Actinolite)、カミングトン閃石(Cummingtonite)、およびグリュネ閃石(Grunerite)等の角閃石族が挙げられる。
 本発明では、前記酸化鉄源として、固相線温度が1300℃以下の珪酸塩鉱物を含むものを用いてもよいし、前記融点調整剤として、固相線温度が1300℃以下の珪酸塩鉱物を用いてもよく、両方を用いてもよい。
 本発明によれば、塊成物を加熱して還元鉄を製造するにあたり、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有する塊成物を用いているため、溶融スラグが速やかに形成される。その結果、還元鉄の凝集が促進され、歩留まりが向上し、生産性が高くなる。
 本発明者らは、塊成物を加熱して還元鉄を製造するにあたり、還元鉄の歩留まりを向上させて、還元鉄の生産性を高めるために鋭意検討を重ねてきた。その結果、上記塊成物として、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有するものを用いれば、該珪酸塩鉱物が早期に溶融し、そこを起点として、脈石、フラックスの溶融が一気に進むため、溶融スラグが速やかに形成されることが分かった。この溶融スラグによって還元鉄同士の凝集が促進されるため、還元鉄の歩留まり、ひいては生産性を向上できることを見出し、本発明を完成した。
 以下、本発明を完成するに至った経緯について説明した後、本発明の特徴部分について説明する。
 上述したように、上記特許文献2には、塊成物にCaSiO3を配合することが記載されているが、実際の製造プロセスは有限時間内で行われなくてはならないため、スラグの溶融量は、組成から決まる平衡論的な融点のみならず、塊成物に添加した融点調整剤や、原料に含まれる脈石中の鉱物相の形態が大きく影響する。
 ここで、塊成物に含まれる脈石の溶解は、起点となる融液が形成されると一気に進むことから、溶融スラグを早期に形成させるには、起点となる融液を速やかに形成することが重要である。上記還元鉄製造プロセスにおいて、一般的に使用されるスラグは、CaO-SiO2-FeOx系であるが、塊成物に含まれる鉱物相のうち、SiO2を代表とする石英(Quartz)は融点が高い上に、CaO、FeOとの固相拡散が起き難い性質があるため、溶融が遅く、溶融スラグが形成されるタイミングは、SiO2の溶融が律速になることが多い。このためSiO2は、石英ではなく、他の形態の鉱物相であることが好ましく、中でもCaO、FeO等と結合していることが望ましいと考えられる。
 そこで本発明者らが、塊成物に含まれるSiO2の溶融を促進させるために検討したところ、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有する塊成物を用いれば、SiO2の溶融を促進できることが明らかになった。
 以下、本発明について説明する。
 本発明に係る還元鉄の製造方法は、
 酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化する工程(以下、塊成化工程ということがある)と、
 得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程(以下、加熱還元工程ということがある)を含み、
 前記塊成物として、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有するものを用いるところに特徴がある。
 [塊成化工程]
 塊成化工程では、酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化し、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有する塊成物を製造する。
 まず、本発明を特徴づける珪酸塩鉱物について説明する。珪酸塩鉱物とは、造岩鉱物の一種であり、SiO2を含む鉱物である。
 珪酸塩鉱物には、種々のものがあるが、本発明では、珪酸塩鉱物のうち、固相線温度が1300℃以下の珪酸塩鉱物を含有する塊成物を用いているところに特徴がある。固相線温度が1300℃以下の珪酸塩鉱物に含まれているSiO2は、低融点の鉱物相の中に存在しているため、SiO2を速やかに溶融させることができる。その結果、融液が速やかに生成するため、溶融スラグが素早く形成され、還元鉄の凝集が促進され、還元鉄の歩留まりが高くなる。
 珪酸塩鉱物の固相線温度の上限を1300℃と規定したのは、塊成物を加熱して塊成物中の酸化鉄を還元するときの最高温度が、約1300~1500℃であるからであり、酸化鉄の還元時には珪酸塩鉱物を溶融させて融液を生成させるためである。
 上記珪酸塩鉱物が3元系以下の鉱物相の場合における上記固相線温度は、例えば、Verlag Stahlen GmbH,SLAG ATLAS 2nd Ed.(Germany,1995)や、Phase Diagram for Ceramists等の文献に記載されている。一方、上記珪酸塩鉱物が4元系以上の鉱物相の場合における上記固相線温度は、FT-OXIDE DBを用いたFact Sage(Ver6.3)等の熱力学ソフトを用いて算出できる。
 なお、固相線温度が1300℃以下の珪酸塩鉱物を含有する塊成物とは、種々ある珪酸塩鉱物のうち、固相線温度が1300℃以下の低融点の珪酸塩鉱物を含んでいる塊成物を意味しており、後述するように、塊成物中に含まれる酸化鉄源中に珪酸塩鉱物を含んでいてもよいし、塊成物を構成している融点調整剤として珪酸塩鉱物を用いてもよく、塊成物の成分組成を測定したときに、固相線温度が1300℃以下の珪酸塩鉱物が存在していればよい。
 上記塊成物に含まれる、固相線温度が1300℃以下の珪酸塩鉱物の割合は、1質量%以上であることが重要である。固相線温度が1300℃以下の珪酸塩鉱物の割合が1質量%を下回ると、融液を速やかに生成させて還元鉄の歩留まりを高めることができない。従って固相線温度が1300℃以下の珪酸塩鉱物の割合は、好ましくは1.5質量%以上、より好ましくは2質量%以上である。固相線温度が1300℃以下の珪酸塩鉱物の割合の上限は特に限定されないが、塊成物に含まれる珪酸塩鉱物の割合が高くなり過ぎると、塊成物に含まれる鉄鉱石の配合量が減るため、塊成物中の鉄分が減少し、歩留まりが良くなっても生産性は低下するため、例えば、20質量%以下であることが好ましい。
 なお、本発明では、上述したように、珪酸塩鉱物のうち、固相線温度が1300℃以下の珪酸塩鉱物の割合が1質量%以上であればよく、例えば、固相線温度が1300℃以下の珪酸塩鉱物に加えて、更に、固相線温度が1300℃を超える珪酸塩鉱物が本発明の効果を損なわない範囲で塊成物に含まれていてもよい。
 上記塊成物に含まれる固相線温度が1300℃以下の珪酸塩鉱物の割合は、X線回折(XRD)により成分を測定し、半定量法で解析することによって測定できる。
 本発明では、上記珪酸塩鉱物は、揮発分を含んでいることが好ましい。揮発分を含む珪酸塩鉱物を加熱すると、加熱中に揮発分が遊離し、珪酸塩鉱物が多孔質化することによって、表面積が増大するため、溶解速度が更に向上する。このため、還元鉄粒子の凝集が促進されて歩留まりが高くなり、生産性が向上する。
 上記揮発分としては、水酸基、炭酸基、および結晶水よりなる群から選ばれる1種以上を含有していることが好ましい。
 揮発分を含む珪酸塩鉱物の固相線温度を測定する際には、揮発分を揮発させて除去した後の残留物の固相線温度を測定すればよい。例えば、カオリナイト[Al4Si410(OH)8]の場合は、揮発分として水酸基を含んでいるため、この水酸基を除去した後のAl4Si410における固相線温度を測定すればよい。
 上記固相線温度が1300℃以下の珪酸塩鉱物は、角閃石族であることが好ましく、上記角閃石族としては、アクチノ閃石[Actinolite、Ca2(Fe,Mg)5Si822(OH)2]、カミングトン閃石[Cummingtonite、(Fe,Mg)7Si822(OH)2]、およびグリュネ閃石[Grunerite、Fe7Si822(OH)2]よりなる群から選ばれる少なくとも1種以上を用いることが好ましい。
 角閃石族のうち、アクチノ閃石、カミングトン閃石、グリュネ閃石は、SiO2がFeOおよびCaOと結合した鉱物であり、固相線温度が1300℃以下と低く、しかも水酸基を有している。このため、加熱中に水酸基が遊離し、多孔質化することになり、より溶融しやすい。このため、早期に溶融スラグが形成され、金属鉄の凝集性が向上し、ひいては歩留まりを高めることができる。
 また、角閃石族は、T.Feの含有量が少なく、酸化鉄源としてあまり用いられてこなかったBIF(Banded Iron Formation:縞状鉄鉱層)に多く含まれる鉱物であるため、入手が容易である。
 上記角閃石族の判別は、X線回折(XRD)のみでは困難であるが、X線回折(XRD)と走査型電子顕微鏡(SEM)を併用することによって判別できる。すなわち、SEM観察におけるマッピング機能で角閃石を判別し、SEMに付属するEDS等で組成分析を実施する際にCaOが検出されたらアクチノ閃石、CaOは検出されないがMgOが検出されたらカミングトン閃石というように同定すればよい。
 次に、珪酸塩鉱物以外について説明する。
 上記酸化鉄源としては、具体的には、鉄鉱石、砂鉄、製鉄ダスト、非鉄精錬残渣、製鉄廃棄物などの酸化鉄含有物質を用いることができる。また、本発明では、固相線温度が1300℃以下の珪酸塩鉱物を含む酸化鉄源を用いてもよい。
 上記炭素質還元剤としては、例えば、石炭やコークスなどを用いることができる。
 上記炭素質還元剤は、上記酸化鉄源に含まれる酸化鉄を還元できる量の炭素を含有していればよい。具体的には、上記酸化鉄源に含まれる酸化鉄を還元できる炭素量に対して、0~5質量%の余剰または0~5質量%の不足の範囲(即ち、±5質量%)で含有していればよい。
 上記酸化鉄源および炭素質還元剤を含む上記混合物には、更に融点調整剤を配合する必要がある。
 上記融点調整剤とは、酸化鉄源中の脈石や、炭素質還元剤中の灰分の融点を下げる作用を有する物質を意味する。即ち、上記混合物に融点調整剤を配合することによって、塊成物に含まれる酸化鉄以外の成分(特に、脈石)の融点に影響を与え、例えばその融点を降下させることができる。それにより脈石は、溶融が促進され、溶融スラグを形成する。このとき酸化鉄の一部は溶融スラグに溶解し、溶融スラグ中で還元されて金属鉄となる。溶融スラグ中で生成した金属鉄は、固体のまま還元された金属鉄と接触することにより、固体の還元鉄として凝集する。
 上記融点調整剤としては、例えば、CaO供給物質、MgO供給物質、Al23供給物質、SiO2供給物質などを用いることができる。また、本発明では、融点調整剤の少なくとも一部として、固相線温度が1300℃以下の珪酸塩鉱物を用いてもよい。
 上記CaO供給物質としては、例えば、CaO(生石灰)、Ca(OH)2(消石灰)、CaCO3(石灰石)、およびCaMg(CO32(ドロマイト)よりなる群から選ばれる少なくとも一つを用いることができる。上記MgO供給物質としては、例えば、MgO粉末、天然鉱石や海水などから抽出されるMg含有物質、MgCO3よりなる群から選ばれる少なくとも一つを配合してもよい。上記Al23供給物質としては、例えば、Al23粉末、ボーキサイト、ベーマイト、ギブサイト、ダイアスポアなどを配合できる。上記SiO2供給物質としては、例えば、SiO2粉末や珪砂などを用いることができる。
 上記塊成物は、酸化鉄源、炭素質還元剤、および融点調整剤以外の成分として、バインダーなどが更に配合されていてもよい。
 上記バインダーとしては、例えば、多糖類など(例えば、コーンスターチや小麦粉等の澱粉など)を用いることができる。
 上記酸化鉄源、炭素質還元剤、および融点調整剤は、混合する前に予め粉砕しておくことが好ましい。例えば、上記酸化鉄源は平均粒径が10~60μm、上記炭素質還元剤は平均粒径が10~60μm、上記融点調整剤は平均粒径が5~90μmとなるように粉砕することが推奨される。
 上記酸化鉄源等を粉砕する手段は特に限定されず、公知の手段を採用できる。例えば、振動ミル、ロールクラッシャ、ボールミルなどを用いればよい。
 上記原料の混合は、回転容器形や固定容器形の混合機で実施される。混合機の型式としては、回転容器形としては、回転円筒形、二重円錐形、V形など、固定容器形には混合槽内に回転羽(例えば、鋤など)を設けたケースがあるが、特にその方式には限定されない。
 上記混合物を塊成化する塊成機としては、例えば、皿形造粒機(ディスク形造粒機)、円筒形造粒機(ドラム形造粒機)、双ロール型ブリケット成型機などを用いることができる。
 上記塊成物の形状は特に限定されず、成型はペレット、ブリケット、押し出しのどれで実施しても構わない。
 [加熱還元工程]
 加熱還元工程では、上記塊成化工程で得られた塊成物を加熱して、該塊成物中の酸化鉄を還元することによって還元鉄を製造する。
 上記塊成物の加熱は、例えば、電気炉や移動炉床式加熱炉で行えばよい。移動炉床式加熱炉とは、炉床がベルトコンベアのように炉内を移動する加熱炉であり、例えば、回転炉床炉やトンネル炉が挙げられる。
 上記回転炉床炉は、炉床の始点と終点が同じ位置になるように、炉床の外観形状が円形(ドーナツ状)に設計されており、炉床上に装入された塊成物に含まれる酸化鉄は、炉内を一周する間に加熱還元されて還元鉄を生成する。従って、回転炉床炉には、回転方向の最上流側に塊成物を炉内に装入する装入手段が設けられ、回転方向の最下流側(回転構造であるため、実際には装入手段の直上流側になる)に排出手段が設けられる。
 上記トンネル炉とは、炉床が直線方向に炉内を移動する加熱炉である。
 上記塊成物は、1300~1500℃で加熱して加熱還元することが好ましい。加熱温度が1300℃を下回ると、金属鉄やスラグが溶融しにくく、高い生産性が得られない。一方、加熱温度が1500℃を超えると、排ガス温度が高くなるため、排ガス処理設備が大掛かりなものとなって設備コストが増大する。
 上記電気炉や移動炉床式加熱炉に上記塊成物を装入するに先立ち、炉床保護のために炭素質、耐火セラミックス等の床敷材を敷くことが望ましい。
 上記床敷材としては、上記炭素質還元剤として例示したものの他、耐火性粒子を用いることができる。
 上記床敷材の粒径は、塊成物やその溶融物が潜り込まないように、3mm以下であることが好ましい。粒径の下限については、バーナーの燃焼ガスによって吹き飛ばされないように0.5mm以上であることが好ましい。
 [その他]
 上記加熱還元工程で得られた還元鉄は、副生したスラグや、必要に応じて敷かれた床敷材等と共に炉内から排出し、篩や磁選機等を用いて選別して還元鉄を回収すればよい。
 本願は、2012年10月26日に出願された日本国特許出願第2012-237276号に基づく優先権の利益を主張するものである。上記日本国特許出願第2012-237276号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化し、塊成物を製造した。上記酸化鉄源としては、下記表1に示す成分組成の鉄鉱石A~Cを用いた。上記炭素質還元剤としては、下記表2に示す成分組成の炭材を用いた。上記融点調整剤としては、石灰石、ドロマイト、蛍石、珪砂、角閃石族鉱物を用いた。
 鉄鉱石A~Cおよび角閃石族鉱物について、XRDを用いた半定量分析を行い、鉱物相の割合を測定し、その結果を下記表3に示す。下記表3において、Fe23はヘマタイト、Fe34はマグネタイト、αFeOOHは針鉄鉱、SiO2は石英、Al2Si25(OH)4はカオリナイト、Ca2(Mg,Fe)5Si822(OH)2はアクチノ閃石、(Fe,Mg)7Si822(OH)2はカミングトン閃石、CaCO3は方解石、Al(OH)3はギブス石を夫々示している。これらのうち、Fe23、Fe34、αFeOOHは、鉄鉱石に分類され、SiO2、Al2Si25(OH)4、Ca2(Mg,Fe)5Si822(OH)2、(Fe,Mg)7Si822(OH)2、CaCO3、Al(OH)3は脈石に分類される。脈石のうち、SiO2、Al2Si25(OH)4、Ca2(Mg,Fe)5Si822(OH)2、(Fe,Mg)7Si822(OH)2は、珪酸塩鉱物である。珪酸塩鉱物については、各鉱物相の固相線温度を下記表3に併せて示す。なお、鉱物相の固相線温度は、鉱物相が3元系以下のものについては、Verlag Stahlen GmbH,SLAG ATLAS 2nd Ed.(Germany,1995)を用いて調べ、4元系以上のものについては、FT-OXIDE DBを用いたFact Sage(Ver6.3)により算出した。
 下記表3から明らかなように、鉄鉱石Aは、固相線温度が1300℃以下の珪酸塩鉱物を4質量%含有しているが、鉄鉱石B、Cは含有していない。また、角閃石族は、固相線温度が1300℃以下の珪酸塩鉱物を49質量%含有している。
 酸化鉄源、炭素質還元剤、および融点調整剤を下記表4に示す割合で配合し、更にバインダーとして小麦粉を約1質量%と、適量の水を加えたものを、タイヤ型造粒機を用いて平均直径が19mmの生ペレットを造粒した。
 得られた生ペレットを乾燥機に装入し、180℃で1時間加熱して付着水を除去して乾燥した。乾燥ペレットに含まれる珪酸塩鉱物(即ち、鉄鉱石に脈石として含まれる珪酸塩鉱物のうち固相線温度が1300℃以下の珪酸塩鉱物量と、融点調整剤として配合する角閃石族鉱物量)の割合を算出し、下記表4に併せて示す。
 次に、乾燥ペレットを加熱炉に供給して1450℃で加熱し、ペレット中の酸化鉄を還元溶融させて還元鉄を製造した。なお、加熱炉の炉床保護のために、ペレットの投入に先立ち、炉床に最大粒径が2mm以下の炭材(無煙炭)を敷いた。
 また、加熱中は、炉内に30NL/分の流速で窒素ガスを流し、炉内は窒素雰囲気とした。
 還元終了後、炉内から還元鉄を含む試料を排出し、排出物を篩分けした。篩分けには、目開きが3.35mmの篩を用い、篩上を回収した。
 上記加熱炉に装入した鉄の合計質量に対して、篩上の質量の割合を歩留まりと定義し、算出結果を下記表4に示す。
歩留まり(%)=(篩上の質量/加熱炉に装入した鉄の合計質量)×100
 なお、篩上には、Fe以外に、C、Si、Mn等も存在しているため、歩留まりは100%を超えることもある。
 No.1と2は、本発明で規定している要件を満足している例である。
 No.1は、酸化鉄源として、固相線温度が1300℃以下の珪酸塩鉱物(具体的には、アクチノ閃石とカミングトン閃石)を4質量%含有している鉄鉱石Aを用いた例であり、塊成物全体の質量に占める固相線温度が1300℃以下の珪酸塩鉱物の割合は2.9質量%であった。その結果、還元鉄の歩留まりは90%以上となり、還元鉄の生産性が向上した。
 No.2は、融点調整剤として角閃石族鉱物を配合した例であり、塊成物全体の質量に占める固相線温度が1300℃以下の珪酸塩鉱物の割合は1.0質量%であった。その結果、還元鉄の歩留まりが90%以上となり、還元鉄の生産性は向上した。
 No.3~5は、本発明で規定している要件を満足しない例であり、固相線温度が1300℃以下の珪酸塩鉱物を含有しない塊成物を用いた例である。その結果、還元鉄の歩留まりは90%未満となり、還元鉄の生産性を向上させることができなかった。
 なお、No.4は、融点調整剤として珪砂を配合した例であり、この珪砂は、二酸化珪素を含んでおり、珪酸塩鉱物に分類される。しかし二酸化珪素は、固相線温度が1300℃を超えているため、珪砂を配合しても脈石成分の溶融は促進されず、還元鉄の歩留まりを高めることはできなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1.  酸化鉄源、炭素質還元剤、および融点調整剤を含む混合物を塊成化する工程と、
     得られた塊成物を加熱して、該塊成物中の酸化鉄を還元する工程を含み、
     前記塊成物として、固相線温度が1300℃以下の珪酸塩鉱物を1質量%以上含有するものを用いること特徴とする還元鉄の製造方法。
  2.  前記珪酸塩鉱物は、揮発分を含む請求項1に記載の製造方法。
  3.  前記珪酸塩鉱物は、角閃石族である請求項1または2に記載の製造方法。
  4.  前記角閃石族は、アクチノ閃石(Actinolite)、カミングトン閃石(Cummingtonite)、およびグリュネ閃石(Grunerite)よりなる群から選ばれる少なくとも1種以上である請求項3に記載の製造方法。
  5.  前記酸化鉄源として、固相線温度が1300℃以下の珪酸塩鉱物を含むものを用いる請求項1に記載の製造方法。
  6.  前記融点調整剤として、固相線温度が1300℃以下の珪酸塩鉱物を用いる請求項1に記載の製造方法。
PCT/JP2013/078484 2012-10-26 2013-10-21 還元鉄の製造方法 WO2014065240A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/438,303 US20150292055A1 (en) 2012-10-26 2013-10-21 Method for manufacturing reduced iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012237276A JP2014084526A (ja) 2012-10-26 2012-10-26 還元鉄の製造方法
JP2012-237276 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065240A1 true WO2014065240A1 (ja) 2014-05-01

Family

ID=50544620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078484 WO2014065240A1 (ja) 2012-10-26 2013-10-21 還元鉄の製造方法

Country Status (3)

Country Link
US (1) US20150292055A1 (ja)
JP (1) JP2014084526A (ja)
WO (1) WO2014065240A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109529A (zh) * 2014-12-24 2017-08-29 住友金属矿山株式会社 镍氧化物矿的冶炼方法
US10301704B2 (en) 2015-02-24 2019-05-28 Sumitomo Metal Mining Co., Ltd. Method for smelting saprolite ore

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118738A1 (ja) * 2010-03-25 2011-09-29 株式会社神戸製鋼所 炭材内装酸化鉄塊成化物およびその製造方法、ならびにそれを用いた還元鉄製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118738A1 (ja) * 2010-03-25 2011-09-29 株式会社神戸製鋼所 炭材内装酸化鉄塊成化物およびその製造方法、ならびにそれを用いた還元鉄製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOBUJI NOSAKA ET AL.: "Possibility of Sedimental Type Magnetite Ore Deposit in North America (Effective use of magnetite ore-4)", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 13, 2000, pages 39 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107109529A (zh) * 2014-12-24 2017-08-29 住友金属矿山株式会社 镍氧化物矿的冶炼方法
US10072313B2 (en) 2014-12-24 2018-09-11 Sumitomo Metal Mining Co., Ltd. Method for smelting nickel oxide ore
CN107109529B (zh) * 2014-12-24 2019-06-25 住友金属矿山株式会社 镍氧化物矿的冶炼方法
US10301704B2 (en) 2015-02-24 2019-05-28 Sumitomo Metal Mining Co., Ltd. Method for smelting saprolite ore

Also Published As

Publication number Publication date
US20150292055A1 (en) 2015-10-15
JP2014084526A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014021473A1 (ja) 金属鉄の製造方法
US10144981B2 (en) Process for manufacturing reduced iron agglomerates
WO2013161653A1 (ja) 金属鉄含有焼結体
WO2013179942A1 (ja) 還元鉄とスラグの混合物の製造方法
JP6294152B2 (ja) 粒状金属鉄の製造方法
WO2009125736A1 (ja) 粒状金属鉄の製造方法
WO2014080831A1 (ja) 還元鉄の製造方法
WO2013073471A1 (ja) 還元鉄とスラグの混合物の製造方法
WO2014065240A1 (ja) 還元鉄の製造方法
WO2014129282A1 (ja) 還元鉄の製造方法
JP6235439B2 (ja) 粒状金属鉄の製造方法
JP2014043646A (ja) 金属鉄の製造方法
JP6043271B2 (ja) 還元鉄の製造方法
JP2014043645A (ja) 金属鉄の製造方法
WO2014034589A1 (ja) 還元鉄塊成物の製造方法
JP6294135B2 (ja) 還元鉄の製造方法
US10017836B2 (en) Method for producing reduced iron
JP6250482B2 (ja) 粒状金属鉄の製造方法
JP5671426B2 (ja) 粒状金属鉄の製造方法
JP2015196900A (ja) 還元鉄の製造方法
JP2015209570A (ja) 還元鉄の製造方法
JP2015074809A (ja) 粒状金属鉄の製造方法
JP2015101740A (ja) 還元鉄の製造方法
JP2013142167A (ja) 粒状金属鉄の製造方法
WO2014132762A1 (ja) 還元鉄塊成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14438303

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13849072

Country of ref document: EP

Kind code of ref document: A1