WO2014065023A1 - 尿素水溶液配管の冷却構造 - Google Patents

尿素水溶液配管の冷却構造 Download PDF

Info

Publication number
WO2014065023A1
WO2014065023A1 PCT/JP2013/073945 JP2013073945W WO2014065023A1 WO 2014065023 A1 WO2014065023 A1 WO 2014065023A1 JP 2013073945 W JP2013073945 W JP 2013073945W WO 2014065023 A1 WO2014065023 A1 WO 2014065023A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous solution
urea aqueous
piping
pipe
cooling
Prior art date
Application number
PCT/JP2013/073945
Other languages
English (en)
French (fr)
Inventor
克弘 堤
博史 宮本
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to EP13849921.5A priority Critical patent/EP2821608B1/en
Priority to CN201380017388.XA priority patent/CN104204435B/zh
Priority to US14/414,640 priority patent/US9394817B2/en
Publication of WO2014065023A1 publication Critical patent/WO2014065023A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/0205Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust using heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/06Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/10Guiding or ducting cooling-air, to, or from, liquid-to-air heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/001Gas flow channels or gas chambers being at least partly formed in the structural parts of the engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • F01N13/141Double-walled exhaust pipes or housings
    • F01N13/143Double-walled exhaust pipes or housings with air filling the space between both walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/08Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/11Adding substances to exhaust gases the substance or part of the dosing system being cooled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • F01N3/055Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air without contact between air and exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P2001/005Cooling engine rooms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an improved cooling structure for urea aqueous solution piping.
  • PM Particulate Matter
  • DPF Diesel Particulate Filter
  • an ammonia obtained from an aqueous urea solution is used as a reducing agent.
  • Ammonia is pumped from the tank to the injector in the form of an aqueous urea solution, and injected from the injector into the exhaust pipe (mixing pipe) on the upstream side of the reduction catalyst.
  • the injected urea water is thermally decomposed by the heat of the exhaust gas, and ammonia obtained by the thermal decomposition is supplied to the reduction catalyst.
  • the urea aqueous solution stored in the tank is pumped to the injector through the urea aqueous solution piping.
  • the urea aqueous solution piping is routed in the engine compartment, the urea aqueous solution deteriorates due to the thermal influence from the engine. I have it.
  • the exterior cover may be partitioned into an engine room and a heat exchanger room in which a radiator or the like is disposed. In such a case, the cooling air supplied from the cooling fan to the radiator or the like Does not flow into the room. Therefore, the temperature rise of the engine compartment becomes more remarkable, and there is a concern about the promotion of deterioration.
  • An object of the present invention is to provide a cooling structure for a urea aqueous solution pipe that can suppress the manufacturing cost, reliably suppress the deterioration of the urea aqueous solution, and suppress noise to the surroundings.
  • the urea aqueous solution pipe cooling structure includes an exhaust gas aftertreatment device installed in an engine room adjacent to a cooling fan for supplying cooling air to a heat exchanger, and the exhaust gas aftertreatment device includes: And a selective reduction catalyst device using ammonia obtained from the urea aqueous solution as a reducing agent, and the urea aqueous solution pipe for supplying the urea aqueous solution is routed through the engine chamber in the selective reduction catalyst device.
  • the engine chamber is provided with a piping path forming member having a piping path for arranging the urea aqueous solution piping, and the cooling air drawn in by the cooling fan flows through the piping path. It is characterized by.
  • the urea aqueous solution pipe cooling structure includes an exhaust gas aftertreatment device and a cooling fan installed in the engine chamber, and the exhaust gas aftertreatment device is selected using ammonia obtained from the urea aqueous solution as a reducing agent.
  • a reduction catalyst device wherein the selective reduction catalyst device includes a urea aqueous solution piping cooling structure in which a urea aqueous solution pipe for supplying the urea aqueous solution is routed through the engine chamber, and the engine chamber includes the urea aqueous solution piping.
  • a piping path forming member having a piping path for arranging the aqueous solution piping is provided, and the piping path forming member includes a heat insulating space arranged in parallel with the piping path, and at least one of the piping path and the heat insulating space.
  • the cooling air drawn in by the cooling fan circulates.
  • the urea aqueous solution piping cooling structure includes an exhaust gas aftertreatment device and a cooling fan installed in the engine chamber, and the exhaust gas aftertreatment device is selected using ammonia obtained from the urea aqueous solution as a reducing agent.
  • a reduction catalyst device wherein the selective reduction catalyst device includes a urea aqueous solution piping cooling structure in which a urea aqueous solution pipe for supplying the urea aqueous solution is routed through the engine chamber, and the engine chamber includes the urea aqueous solution piping.
  • a piping path forming member having a piping path for disposing the aqueous solution piping is provided, the piping path forming member includes a heat insulating space arranged in parallel with the piping path, and the cooling water is provided in the piping path and the heat insulating space. The cooling air drawn in by the fan circulates.
  • the piping path forming member is provided at a position close to or in contact with the inside of the exterior cover that covers the engine chamber.
  • An air intake port that communicates with the outside of the engine compartment is provided.
  • the portion of the exterior cover where the pipe line forming member is located is detachably attached to another part, and the pipe line forming member is the other part. It is attached to the side.
  • a piping path forming member is provided in the engine chamber, the urea aqueous solution piping is installed in the piping path of this member, and the cooling air is circulated in the piping path. Even if the structure is not adopted, the urea aqueous solution piping can be effectively cooled, and the deterioration of the urea aqueous solution can be reliably suppressed at a low manufacturing cost. In addition, since an air intake having a large opening area for communicating the engine room and the outside is unnecessary, sound loss to the surroundings can be reduced.
  • the pipe line forming member has a heat insulating space
  • the cooling air is circulated through the heat insulating space and / or the pipe line.
  • the outside air can be reliably introduced into the piping forming member as cooling air through the air intake port provided in the exterior cover.
  • the air intake port communicates with the outside (the outside of the engine compartment) and the pipe line forming member, and the inside and outside of the engine compartment do not communicate with each other through the air intake port. There is no worry of loud sounds.
  • a part of the exterior cover provided with the pipe line forming member is provided so as to be openable and closable, and the pipe line forming member itself is attached to a part excluding such a part. Even if the pipe is opened, the urea aqueous solution piping is not pulled out from the engine chamber together with the piping passage forming member, and the maintenance of the piping passage forming member that will be left on the engine chamber side and the urea aqueous solution piping piped there is easy. Can be.
  • the disassembled perspective view which shows a part of work vehicle provided with the cooling structure of urea aqueous solution piping which concerns on one Embodiment of this invention.
  • the perspective view which shows the ventilation structure of the said engine compartment.
  • the perspective view which shows the principal part of the ventilation structure of the said engine compartment from diagonally downward.
  • the perspective view which shows the principal part of the ventilation structure of the said engine compartment.
  • the perspective view which shows the cooling structure of urea aqueous solution piping of the said working vehicle.
  • the cross-sectional perspective view which shows the principal part of the cooling structure of the said urea aqueous solution piping.
  • FIG. 1 is an exploded perspective view showing a part of a work vehicle 1 having a cooling structure for an engine compartment 4 according to the present embodiment.
  • a work vehicle 1 is configured as a wheel loader that includes a front frame (not shown) and a rear frame 2 that is articulated to the front frame. Therefore, the front frame of the work vehicle 1 is provided with a work machine including a boom, a bell crank, a bucket, and a hydraulic actuator that drives them.
  • a working machine since it is not a structure directly related to this invention, those illustration and description here are abbreviate
  • an engine room 4 and a heat exchanger room 5 covered with an exterior cover 3 are arranged side by side on the rear side of a cab (not shown).
  • the front and rear of the engine room 4 and the heat exchanger room 5 are partitioned by a first partition wall 6.
  • the first partition wall 6 partitions the engine chamber 4 and the heat exchanger chamber 5 from above and below, and the outer periphery of the first partition wall 6 is close to or in contact with the inner surface of the exterior cover 3.
  • the exterior cover 3 is attached via a support frame or the like standing on the rear frame 2.
  • the outer cover 3 includes left and right side covers 31 and 31 that form the side walls of the engine chamber 4 and the heat exchanger chamber 5, a front cover 32 that forms the front side wall of the engine chamber 4, and heat exchange.
  • a rear grill (not shown) that is attached to a frame-like frame 56 (see FIG. 4) at the rear of the chamber 5 so as to be openable and closable, and a hood 33 that forms a ceiling portion across the engine chamber 4 and the heat exchanger chamber 5.
  • the side cover 31 further includes a front first side cover 34 and a rear second side cover 35 with the first partition wall 6 as a boundary.
  • the bonnet 33 includes a first upper cover 36 that covers the upper front part of the engine chamber 4, a second upper cover 37 that covers the upper rear part, and a third upper cover 38 that covers the upper part of the entire heat exchanger chamber 5.
  • the first to third upper covers 36 to 38 are detachably attached to the side cover 31 and the front cover 32 by appropriate fastening means such as bolts.
  • an engine (not shown) mounted on the rear frame 2, an exhaust turbocharger 41 mounted on the engine, an EGR device, an exhaust gas aftertreatment device 42, and their piping and other supplements are provided. Machines are housed.
  • Such an engine compartment 4 is partitioned forward and backward by a second partition wall 7 above the engine. That is, the left and right side edges of the second partition wall 7 are close to or in contact with the vertical surface of the ventilation duct 8 to be described later, and the upper edge is close to or in contact with the lower surface of the second upper cover 37, thereby causing the engine compartment 4 to move forward and backward.
  • the lower end of the second partition wall 7 does not reach the left and right sides of the engine, and the engine room 4 communicates with the front and rear under the second partition wall 7.
  • An exhaust gas aftertreatment device 42 is disposed in the space on the front side of the second partition wall 7, and other devices including the exhaust turbocharger 41 are disposed in the space on the rear side of the second partition wall 7. Has been placed.
  • a radiator 51 that cools engine cooling water, an aftercooler 52 that cools intake air (supplied air) supercharged by the exhaust turbocharger 41, and a rear side of the radiator 51 are arranged.
  • a fan shroud 53 (FIG. 3), an electric or hydraulically driven cooling fan 54 (FIG. 3) that is rotationally driven in a state where a part thereof protrudes from the fan shroud 53, and their piping are housed.
  • a condenser for an air conditioner installed in the cab can be provided in the heat exchanger chamber 5.
  • a rectangular frame-shaped plate 55 is provided in plan view, and the third upper cover 38 is attached above the frame-shaped plate 55. Further, the piping of the radiator 51 and the aftercooler 52 is routed between the engine compartment 4 through the first partition wall 6. As with the rear grill, the cooling fan 54 can be rotated rearward together with the frame that supports it. By rotating the cooling fan 54 away from the heat radiating surface of the radiator 51, maintenance for clogging of the radiator 51 and the like can be performed.
  • the outside air passes through the air inlet 39 provided in the side cover 31 and the third upper cover 38 and the gap provided in the lower rear frame 2, and the outside air serves as cooling air in the heat exchanger chamber. 5 flows in.
  • the inflowing cooling air passes through the aftercooler 52 and the radiator 51 to cool the intake air and the engine cooling water, and then is discharged from the rear grill through the cooling fan 54.
  • the driving of the cooling fan 54 causes the air in the engine room 4 to be actively sucked to the cooling fan 54 side through the ventilation duct 8 constituting the ventilation structure of the present invention, and is discharged from the rear grill through the cooling fan 54. While the air in the engine room 4 continues to be sucked, outside air flows into the engine room 4 as fresh air for ventilation through the gap in the lower rear frame 2 and is sucked through the ventilation duct 8. This is repeated and the engine room 4 is ventilated.
  • FIG. 2 is a perspective view showing the ventilation structure of the engine compartment 4, and FIG. 2 also shows a cooling structure of the urea aqueous solution pipe 47 connected to the exhaust gas aftertreatment device 42.
  • the exhaust gas aftertreatment device 42 is disposed between a pair of DPF (diesel particulate filter) devices 43 and 43 disposed on the left and right sides and a pair of DPF devices 43 and 43 on the front side of the engine chamber 4.
  • SCR (selective reduction catalyst) devices 44, 44 arranged side by side.
  • the exhaust pipe connected to the turbine outlet of the exhaust turbocharger 41 wraps around the side of the engine chamber 4, and the tip of the exhaust pipe extends to the vicinity of the front of the engine and is bifurcated.
  • One of the branched exhaust pipes is connected to the front portion of the DPF device 43 disposed on the left side of the engine chamber 4, and the exhaust gas flows into the DPF device 43 from here.
  • the inflowing exhaust gas flows backward in the cylindrical DPF device 43 along the longitudinal direction of the vehicle, and particulate matter is collected by an internal filter, and thereafter, the mixing pipe 45 connected to the rear part. Flows in.
  • the mixing pipe 45 is extended to the front side, and the tip thereof is connected to the front part of the left SCR device 44. That is, the exhaust gas flows forward in the mixing pipe 45.
  • an injector for injecting an aqueous urea solution is attached to the base end side (DPF device 43 side) of the mixing pipe 45.
  • the urea aqueous solution injected from the injector into the mixing pipe 45 is thermally decomposed into ammonia by the heat of the exhaust gas, and this ammonia flows into the SCR device 44 together with the exhaust gas.
  • Exhaust gas and ammonia flowing into the SCR device 44 flow backward in the cylindrical SCR device 44 along the longitudinal direction of the vehicle, and are supplied to the reduction catalyst in the SCR device 44 to oxidize nitrogen in the exhaust gas. Purify things.
  • the exhaust gas from which nitrogen oxides have been purified is exhausted to the outside through a tail pipe 46 connected to the rear part of the SCR device 44.
  • the other exhaust pipe branched is routed to the right side of the engine through the front side of the engine and connected to the front part of the DPF device 43 disposed on the right side.
  • the subsequent flow and post-processing of the exhaust gas flowing into the DPF device 43 are the same as those on the left side, and can be understood from the above description, so the description thereof is omitted here.
  • a pair of SCR devices 44, 44 are disposed in the upper center of the engine, and the pair of DPF devices 43, 43 are disposed at the left and right shoulder portions of the engine. It is disposed at a position one step lower than 44. Therefore, the side cover 31 shown in FIG. 1 is provided with an inclined surface 31A that is inclined downward from the center side of the vehicle toward the left and right sides in accordance with the arrangement positions of the DPF device 43 and the SCR device 44. ing. By providing the inclined surface 31A, visibility to the left and right sides of the rear portion of the vehicle from the cab is improved.
  • a ventilation duct 8 is provided inside the left and right side covers 31 from the middle of the engine room 4 to the rear part of the heat exchanger room 5.
  • the inclined surface 31A described above is provided on the upper side of the side cover 31 in the front-rear direction, and a reinforcing member 81 is attached to the inner surface of the side cover 31 substantially corresponding to the inclined surface 31A.
  • the reinforcing member 81 is illustrated in a solid line, and is drawn in a state where it is removed from the side cover 31 for convenience.
  • the reinforcing member 81 is attached for the purpose of improving the rigidity of the side cover 31.
  • the reinforcing member 81 is provided on the first side cover 34 and provided on the second side cover 35 and the first reinforcing member 82 located in the engine compartment 4.
  • a second reinforcing member 83 on the rear side located in the heat exchanger chamber 5.
  • Each of the first and second reinforcing members 82 and 83 has an L-shaped cross section.
  • the ventilation duct 8 is formed using the inner surface of the reinforcing member 81 (the surface facing the side cover 31) and the inner surface of the side cover 31, and the internal space functions as an air passage for the ventilation duct 8.
  • the first and second reinforcing members 82 and 83 are partitioned by an installation frame 61 (see also FIGS. 3 and 4) installed between the left and right second side covers 31 (second reinforcing members 83). Therefore, the ventilation duct 8 is partitioned by the end portion of the installation frame 61 in the middle of the front-rear direction.
  • the communication portion 62 is provided in the partition portion, and the space between the first and second reinforcing members 82 and 83 is provided. Air circulation is ensured.
  • Such an installation frame 61 is provided corresponding to the upper part of the first partition wall 6, and the front side frame portion of the frame-like plate 55 is supported by the upper surface thereof.
  • the front end of the ventilation duct 8 is located in the vicinity of the second partition wall 7 of the engine room 4 and opens toward the exhaust gas aftertreatment device 42 disposed on the front side of the second partition wall 7.
  • air heated by the heat of the exhaust gas aftertreatment device 42 is actively sucked. Further, the air heated by the engine and the exhaust turbocharger 41 is sucked into the ventilation duct 8 from below the second partition wall 7 from the space behind the second partition wall 7.
  • the ventilation duct 8 has a so-called tapered shape in which the cross-sectional area of the air passage gradually decreases from the front end toward the rear end. For this reason, at the rear end where the cross-sectional area is reduced, the negative pressure generated by the rotation of the cooling fan 54 can be applied satisfactorily, and a pressure gradient can be formed in a long region extending in the front-rear direction of the ventilation duct 8. It is possible to reliably suck the air 4 backward.
  • FIG. 3 is a perspective view of the exterior cover 3 provided with the ventilation structure of the present invention as viewed from below.
  • FIG. 4 is a perspective view of the main part of the ventilation structure as viewed from the rear. 3, illustration of the 1st partition wall 6 and the 2nd partition wall 7 is abbreviate
  • a gate-shaped frame 56 erected on the rear frame 2 (FIGS. 1 and 2) is attached to the rear end of the exterior cover 3.
  • the portal frame 56 includes a pair of left and right vertical frames 57 and 57 attached to a vertical rear edge portion of the second side cover 35, a horizontal frame 58 spanned between the upper ends of the vertical frames 57 and 57, and a horizontal frame 58. And an intermediate frame 59 that spans between the vertical frames 57 and 57.
  • the vertical frame 57 has an L-shaped cross section and is erected so that the corner portion faces the inward side of the vehicle.
  • each piece forming an L-shape is provided with a communication opening 57A.
  • the portion provided with the communication opening 57A is covered with upper and lower ribs and a cover 57B welded from the side.
  • the horizontal frame 58 is made of a channel material having a concave cross section, and is installed with the opening portion facing upward.
  • the horizontal frame 58 functions as an air passage in the left-right direction by the upper opening portion being covered with the third upper cover 38.
  • a plurality of communication openings 58A are provided on the bottom surface of the horizontal frame 58 along the longitudinal direction thereof. Further, on both sides in the longitudinal direction of the horizontal frame 58, cutout portions 58B are formed by cutting out the front web portion.
  • the rear end of the second reinforcing member 83 constituting the reinforcing member 81 is connected to the notch 58B, and the ventilation duct 8 communicates with the air passage inside the horizontal frame 58.
  • the intermediate frame 59 is formed of a long plate. Both sides in the longitudinal direction of the intermediate frame 59 are bent downward and joined to the vertical frame 57. Such an intermediate frame 59 is also provided with a similar communication opening 59A at a position substantially corresponding to each communication opening 58A of the horizontal frame 58.
  • the space surrounded by the upper part of the vertical frame 57, the horizontal frame 58, and the intermediate frame 59 is closed by front and rear plates 56A.
  • the space closed by the plate 56A communicates with the upper air passage through the communication opening 58A of the lateral frame 58, and communicates with the inner space surrounded by the gate-shaped frame 56 through the communication opening 59A of the intermediate frame 59. Therefore, the ventilation duct 8 communicates with the space inside the portal frame 56 through the space surrounded by the frames 57 to 59.
  • the substantially triangular space formed by inclining both sides of the intermediate frame 59 and the space closed by the cover 57B at the upper part of the vertical frame 57 are provided on the vertical frame 57.
  • the communication opening 57A communicates.
  • a communication opening 83 ⁇ / b> A is provided on the bottom surface of the second reinforcing member 83.
  • a corner member 84 that covers the other communication opening 57A and the communication opening 83A is provided at a corner formed by the vertical frame 57 and the second reinforcing member 83. Therefore, the ventilation duct 8 communicates with the space inside the portal frame 56 through the corner member 84, the upper portion of the vertical frame 57, and the space surrounded by the frames 57 to 59.
  • a fan shroud 53 configured as a substantially octagonal frame body is accommodated. Inside the fan shroud 53, the cooling fan 54 rotates. The upper side of the fan shroud 53 is close to the intermediate frame 59. In the upper part of the fan shroud 53, a communication opening 53A is provided at a position corresponding to the communication opening 59A of the intermediate frame 59. That is, the communication opening 53 ⁇ / b> A is open toward the outer peripheral side of the cooling fan 54, more specifically, a position close to the outermost rotation locus, and a position where negative pressure is generated by the rotation of the cooling fan 54.
  • the part in which the negative pressure is generated in the fan shroud 53 and the engine room 4 include the fan shroud 53, the interior of the portal frame 56 surrounding the fan shroud 53, and the exterior.
  • the structure communicates with the cover 3 through a ventilation duct 8 integral with the cover 3.
  • the inspection hatch 31 ⁇ / b> B provided on the right side cover 31 so as to be openable and closable is shown as being opened.
  • a portion corresponding to the inspection hatch 31 is an opening / closing portion 81A that is opened and closed together with the inspection hatch 31.
  • the cooling fan 54 when the cooling fan 54 is driven, the negative pressure generated by the cooling fan 54 starts to be sucked from the side close to the position where the negative pressure is generated, such as air in the portal frame 56, and gradually the engine chamber 4 The air inside is sucked into the duct 8.
  • the sucked air passes through the ventilation duct 8 and passes through the heat exchanger chamber 5 to flow backward. Since the ventilation duct 8 is shielded from the heat exchanger chamber 5, air does not enter from the heat exchanger chamber 5, and the air in the engine chamber 4 is reliably sucked.
  • Part of the air flowing through the ventilation duct 8 flows into the lateral frame 58 of the gate-shaped frame 56 from the rear end of the ventilation duct 8, and is sucked out to the inside of the fan shroud 53 through the space surrounded by the frames 57 to 59. .
  • the remaining air flowing through the ventilation duct 8 flows into the upper part of the vertical frame 57 of the portal frame 56 from the rear end of the ventilation duct 8 via the corner member 84, and is similarly surrounded by the frames 57 to 59. The air is sucked out into the fan shroud 53 through the space.
  • the sucked air is discharged to the outside by the rotation of the cooling fan 54.
  • the amount discharged from the engine room 4 is taken as fresh air from the outside through the lower part of the engine room 4 and is sucked from the ventilation duct 8 again.
  • the engine compartment 4 is ventilated. Thereby, even when the exhaust gas aftertreatment device 42 is disposed in the engine compartment 4, an excessive temperature rise in the engine compartment can be reliably suppressed.
  • FIG. 2 [Cooling structure of urea aqueous solution piping] As shown in FIG. 2, an injector (not shown) is attached to the rear portion of the mixing pipe 45 of the exhaust gas aftertreatment device 42, and a urea aqueous solution pipe 47 is connected to the injector.
  • the urea aqueous solution piping 47 enters the engine chamber 4 from the urea aqueous solution tank installed below the heat exchanger chamber 5 through the heat exchanger chamber 5 and is connected to the injector.
  • a supply module is provided in the middle of the urea aqueous solution pipe 47, and the urea aqueous solution is pumped from the urea aqueous solution tank to the injector through the urea aqueous solution pipe 47 by this supply module.
  • FIG. 5 is a perspective view showing the cooling structure of the present embodiment
  • FIG. 6 is a cross-sectional perspective view showing the main part of the cooling structure.
  • a pipe line forming member 10 to which a urea aqueous solution pipe 47 is piped is disposed.
  • the pipe line forming member 10 is also located immediately below the second upper cover 37 of the bonnet 33 and is in contact with the lower surface of the second upper cover.
  • the pipe line forming member 10 has a T-shape in a plan view having a first pipe line 11 as a cup line extending in the front-rear direction and a second pipe line 12 as a cup line extending in the left-right direction. It is.
  • Both the first and second piping paths 11 and 12 are provided as grooves made of a partition wall having a concave cross section, and the upper side is open.
  • the rear end of the first piping path 11 penetrates the first partition wall 6 and expands in a funnel shape, and opens as an opening 11 ⁇ / b> A in the heat exchanger chamber 5.
  • the urea aqueous solution pipe 47 to be used is also two at the stage of being piped by the pipe line forming member 10.
  • the two urea aqueous solution pipes 47 that have passed through the heat exchanger chamber 5 are piped from the opening 11 ⁇ / b> A through the first pipe line 11, and are divided into left and right ones in the second pipe line 12.
  • Each urea aqueous solution pipe 47 is piped forward from the end of the second pipe line 12 through the second partition wall 7 and connected to the injector.
  • the pipe line forming member 10 is provided with an air flow path 13 as a heat insulating space which is adjacent to the first and second pipe lines 11 and 12 and has a T shape in plan view.
  • the air flow passage 13 includes a first flow passage 14 provided side by side on the side of the first piping passage 11 and a second flow passage 15 provided in parallel on the rear side of the second piping passage 12. These first and second flow passages 14 and 15 also open upward.
  • the first flow passage 14 is formed by a partition wall of the first piping path 11 and an outer partition wall covering the partition wall, and cooling air flows through a space between the inner and outer partition walls, as will be described later.
  • the first flow passage 14 reaches the lower part of the first piping path 11 in the cross-sectional view. That is, the first piping path 11 is covered with each first flow path 14 from the side to the bottom in a cross-sectional view.
  • the rear end of the first flow passage 14 passes through the first partition wall 6 and opens into the heat exchanger chamber 5. This opening portion faces the bracket 63 that supports the piping in the heat exchanger chamber 5.
  • the bracket 63 is attached to the first partition wall 6 and opens downward.
  • the second flow passage 15 is provided as a groove formed of a partition wall having a concave cross section, and is attached to the side surface of the second piping path 12.
  • the pipe path forming member 10 described above is supported at the rear end side by the first partition wall 6 and at the front end side by the right and left side covers 31 via appropriate brackets. Further, the upper opening of the pipe line forming member 10 is closed by the second upper cover 37. Since the upper opening is closed, the first and second piping paths 11 and 12 and the first and second flow paths 14 and 15 are formed in a tunnel shape.
  • the second upper cover 37 is provided with a pair of left and right oblong air inlets 37 ⁇ / b> A and 37 ⁇ / b> A corresponding to the upper side of the second piping path 12, and corresponds to the upper side of the second flow passage 15.
  • a pair of similar air intake ports 37B, 37B are provided, and a plurality of similar air intake ports 37C are provided along the front-rear direction so as to correspond to the upper side of the first flow passage 14.
  • the outside air serves as cooling air and each air in the second upper cover 37. It flows into the inside through the intake ports 37A, 37B, and 37C.
  • the cooling air flowing in from the air intake port 37B flows from the second piping path 12 to the rear side through the first piping path 11, and by this flow, the urea aqueous solution piping 47 and the first and second containing the urea aqueous solution piping 47 are accommodated.
  • the pipelines 11 and 12 are cooled.
  • the flow of the cooling air at this time is opposite to the urea aqueous solution flowing through the urea aqueous solution pipe 47. Thereafter, the cooling air flows into the heat exchanger chamber 5 from the expanded opening portion 11A.
  • the cooling air flowing in from the air intake ports 37B and 37C flows through the first and second flow passages 14 and 15 to the rear side, and heat from the engine or the like in the engine chamber 4 is transferred to the first and second piping paths 11 and 12. And the urea aqueous solution pipe 47 is shut off. Thereafter, the cooling air flows into the heat exchanger chamber 5 from an opening (not shown) provided in the first partition wall 6, and is rectified to flow downward by the bracket 63, along the first partition wall 6. Flowing.
  • the cooling air flowing into the heat exchanger chamber 5 is sent to the after cooler 52 and the radiator 51 together with other cooling air drawn in by the cooling fan 54, and then passes through the cooling fan 54 to the rear grille. Is exhaled from.
  • the urea aqueous solution pipe 47 piped in the engine chamber 4 passes through the pipe line forming member 10, and is positively generated by the cooling air flowing in the pipe line forming member 10. Therefore, it is difficult to be affected by heat in the engine compartment 4 and deterioration of the urea aqueous solution can be suppressed.
  • the urea aqueous solution piping 47 can block heat by the partition walls of the first and second piping passages 11 and 12, and also by cooling air flowing through the first and second flow passages 14 and 15 on the outer side and the partition walls thereof. Heat can be cut off, making it less susceptible to heat.
  • the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
  • the pipe line forming member 10 is provided directly below the second upper cover 37 of the bonnet 33, but may be provided inside a side cover or the like.
  • a part of the side cover where the pipe line forming member is provided is provided as a hatch that can be opened and closed with respect to other parts around the side cover, and the pipe line forming member is attached to the other part. Is desirable.
  • the pipe line forming member 10 is in contact with the lower surface of the second upper cover 37, and the first and second pipe paths 11 and 12 and the first and second flow paths 14 and 15 are formed in a groove shape. And the outside of the engine chamber 4 communicated with each other through air intake ports 37A, 37B, and 37C provided in the second upper cover 37.
  • the pipe line forming member does not necessarily have to be in contact with an exterior cover such as the second upper cover 37, and may be close to each other with a predetermined interval.
  • a communication portion that communicates the piping path and the flow path with the air intake port.
  • a communication portion is preferably configured to be attachable / detachable to either the exterior cover side or the pipe line forming member.
  • the cooling air is circulated through the first and second piping paths 11 and 12 and the first and second flow paths 14 and 15 of the piping path forming member 10. Even if the cooling air is allowed to flow only in the flow passage, heat from the engine or the exhaust gas aftertreatment device can be blocked from the urea aqueous solution piping in the piping passage, so that it may be used. Conversely, by allowing cooling air to flow only through the pipeline, the flow passage may function as a heat insulating space. Even in such a case, substantially the same effect can be obtained.
  • the pipe line forming member 10 has the air circulation portion including the first and second flow passages 14 and 15.
  • an air circulation portion takes into account the degree of temperature rise in the engine compartment. If it is sufficient to distribute the cooling air only to the pipe line where the urea aqueous solution pipe is provided, the air circulation part may not be provided.
  • the present invention can be used for urea aqueous solution piping of an exhaust gas aftertreatment device mounted on a wheel loader, as well as urea aqueous solution piping in various work vehicles such as other construction machines such as bulldozers and hydraulic excavators and agricultural machines such as tractors. Furthermore, it can be used for urea aqueous solution piping in a portable engine generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

 熱交換器に冷却空気を供給する冷却ファンが隣設されたエンジン室(4)に排気ガス後処理装置が設置されるとともに、排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、選択還元触媒装置には、尿素水溶液を供給する尿素水溶液配管(47)がエンジン室(4)を通って取り回される作業車両(1)において、エンジン室(4)には、尿素水溶液配管(47)を配管する配管路(11,12)を有した配管路形成部材(10)が設けられ、前記配管路(11,12)には、冷却ファンによって引き込まれた冷却空気が流通する。

Description

尿素水溶液配管の冷却構造
 本発明は、尿素水溶液配管の冷却構造の改良に関する。
 ディーゼルエンジン等の内燃機関からの排気ガス中に含まれる粒子状物質(PM:Particulate Matter;パーティキュレート・マター)を、専用のフィルタ(DPF:Diesel particulate filter;ディーゼル・パーティキュレート・フィルタ)にて捕集することが知られている。また、排気ガスに対する規制がより厳しくなっている昨今では、排気ガスをさらに浄化することが要求される。このため、排気ガス後処理装置としては、DPFに加えて排気ガス中の窒素酸化物を浄化する還元触媒を備えて構成することが望まれる。
 このような還元触媒としては、尿素水溶液から得られるアンモニアを還元剤としたものが用いられる。アンモニアは、尿素水溶液の状態でタンクからインジェクタまで圧送され、インジェクタから還元触媒の上流側の排気管(ミキシング配管)内に噴射される。噴射された尿素水は排気ガスの熱によって熱分解し、熱分解によって得られるアンモニアが還元触媒に供給される。
 ところで、タンク内に貯留された尿素水溶液は、尿素水溶液配管を通してインジェクタまで圧送されるが、そのような尿素水溶液配管はエンジン室内を取り回されるため、エンジンからの熱影響によって尿素水溶液が劣化するおれがある。特に作業車両によっては、外装カバー内をエンジン室と、ラジエー等が配置された熱交換器室とに仕切る場合があり、このような場合では、冷却ファンからラジエータ等へ供給される冷却空気がエンジン室へ流入しない。従って、エンジン室の温度上昇がさらに顕著となり、劣化の促進が懸念される。
 このため従来では、供給管に冷却装置を設けたり、あるいはインジェクタからタンクへ尿素水溶液を戻す返戻管に冷却装置を設けたりすることが提案されている(例えば、特許文献1の図1、図2参照)。
特開2011-214580号公報
 しかしながら、特許文献1のように、供給管や戻し管に冷却装置を設けると、構造が複雑になるうえ、製造コストが嵩むという問題がある。
 また、エンジン室に冷却空気を流入させる流入口の開口面積を大きくし、大量の冷却空気をエンジン室に供給して供給管の冷却作用を向上させることも考えられるが、流入口の開口面積を大きくすると、周囲への損音が大きくなって好ましくない。
 本発明の目的は、製造コストを抑制できるとともに、尿素水溶液の劣化を確実に抑制でき、かつ周囲への騒音も抑えることができる尿素水溶液配管の冷却構造を提供することにある。
 第1発明に係る尿素水溶液配管の冷却構造は、熱交換器に冷却空気を供給する冷却ファンが隣設されたエンジン室に排気ガス後処理装置が設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、前記配管路には、前記冷却ファンによって引き込まれた冷却空気が流通することを特徴とする。
 第2発明に係る尿素水溶液配管の冷却構造は、エンジン室に排気ガス後処理装置と冷却ファンが設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、前記配管路形成部材は、前記配管路に並設された断熱空間を備え、前記配管路および前記断熱空間のうちの少なくともいずれか一方には、前記冷却ファンによって引き込まれた冷却空気が流通することを特徴とする。
 第3発明に係る尿素水溶液配管の冷却構造は、エンジン室に排気ガス後処理装置と冷却ファンが設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、前記配管路形成部材は、前記配管路に並設された断熱空間を備え、前記配管路および前記断熱空間には、前記冷却ファンによって引き込まれた冷却空気が流通することを特徴とする。
 第4発明に係る尿素水溶液配管の冷却構造では、前記配管路形成部材は、前記エンジン室を覆う外装カバーの内側に近接または当接する位置に設けられ、前記外装カバーには、前記配管路と前記エンジン室の外部とを連通させる空気取入口が設けられることを特徴とする。
 第5発明に係る尿素水溶液配管の冷却構造では、前記外装カバーの前記配管路形成部材が位置する部分は、他の部分に対して着脱自在に設けられ、前記配管路形成部材は前記他の部分側に取り付けられていることを特徴とする。
 第1発明によれば、エンジン室内に配管路形成部材を設け、この部材の配管路に尿素水溶液配管を設置するとともに、配管路内に冷却空気を流通させるため、従来のような複雑な装置や構造を採用しなくとも、尿素水溶液配管を効果的に冷却でき、安価な製造コストで尿素水溶液の劣化確実に抑制できる。また、エンジン室と外部とを連通させる大きな開口面積の空気取入口などは不要であるから、周囲への損音も低減できる。
 第2発明および第3発明によれば、第1発明の構成に加えて、配管路形成部材が断熱空間を有しているため、この断熱空間または配管路、あるいはそれらの両方に冷却空気を流通させることで、第1発明と同様な作用効果を得ることができ、本発明の目的を達成できる。
 第4発明によれば、配管路形成部材に対しては外装カバーに設けられた空気取入口を介して、外気を冷却空気として確実に流入させることができる。この際、空気取入口が外部(エンジン室の外部)と配管路形成部材とを連通することになり、エンジン室の内部と外部とは当該空気取入口を介して連通することはないため、損音が大きくなる心配もない。
 第5発明によれば、外装カバーのうち、配管路形成部材が設けられる一部分を開閉自在に設けるうえ、配管路形成部材自身はそのような一部分を除く部分に取り付けておくため、外装カバーの一部分を開けても、尿素水溶液配管が配管路形成部材ごとエンジン室から引き出されることがなく、エンジン室側に残されることになる配管路形成部材や、そこに配管される尿素水溶液配管のメンテナンスを容易にできる。
本発明の一実施形態に係る尿素水溶液配管の冷却構造を備えた作業車両の一部を示す分解斜視図。 前記エンジン室の換気構造を示す斜視図。 前記エンジン室の換気構造の要部を斜め下方から示す斜視図。 前記エンジン室の換気構造の要部を示す斜視図。 前記作業車両の尿素水溶液配管の冷却構造を示す斜視図。 前記尿素水溶液配管の冷却構造の要部を示す断面斜視図。
 以下、本発明の一実施形態を図面に基づいて説明する。
 図1は、本実施形態に係るエンジン室4の冷却構造を備えた作業車両1の一部を示す分解斜視図である。
[車両全体の説明]
 図1において、作業車両1は、図示しないフロントフレームと、フロントフレームに対してアーティキュレート可能に連結されたリアフレーム2とを備えるホイールローダとして構成される。このため、作業車両1のフロントフレームには、ブーム、ベルクランク、バケット、およびこれらを駆動する油圧アクチュエータで構成される作業機が設けられる。なお、作業機については、本発明に直接関係する構成ではないため、ここでのそれらの図示および説明を省略する。
 作業車両1のリアフレーム2上には、図示しないキャブの後方側において、外装カバー3で覆われたエンジン室4および熱交換器室5が前後をなして並設されている。エンジン室4および熱交換器室5の前後間は、第1仕切壁6によって仕切られている。第1仕切壁6は、エンジン室4および熱交換器室5をその上下にわたって仕切っており、第1仕切壁6の外周は外装カバー3の内面と近接または接触している。
 外装カバー3は、リアフレーム2に立設された支柱フレーム等を介して取り付けられる。具体的に外装カバー3は、エンジン室4および熱交換器室5にわたってそれらの側壁を形成する左右のサイドカバー31,31と、エンジン室4の前側の側壁を形成するフロントカバー32と、熱交換器室5後部の枠状フレーム56(図4参照)に開閉自在に取り付けられる図示略のリアグリルと、エンジン室4および熱交換器室5にわたってそれらの天井部分を形成するボンネット33とを備える。
 サイドカバー31はさらに、第1仕切壁6を境にして前側の第1サイドカバー34、後側の第2サイドカバー35を有する。
 ボンネット33は、エンジン室4の前部上方を覆う第1アッパーカバー36、後部上方を覆う第2アッパーカバー37、熱交換器室5全体の上方を覆う第3アッパーカバー38を有する。これらの第1~第3アッパーカバー36~38は、サイドカバー31、フロントカバー32などに対してボルト等の適宜な締結手段によって着脱自在に取り付けられる。
 エンジン室4内には、リアフレーム2にマウントされた図示略のエンジン、エンジンに搭載された排気ターボ過給機41、EGR装置、排気ガス後処理装置42、およびそれらの配管類やその他の補機類が収容される。このようなエンジン室4は、エンジンの上方において、第2仕切壁7にて前後に仕切られている。つまり第2仕切壁7の左右の側縁は、後述する換気ダクト8の鉛直面と近接または接触し、上縁は第2アッパーカバー37の下面に近接または接触し、これによりエンジン室4が前後に仕切られる。
 ただし、エンジンの左右側方まででは第2仕切壁7の下端が及んでおらず、エンジン室4が第2仕切壁7の下方で前後に連通している。そして、第2仕切壁7の前側の空間には、排気ガス後処理装置42が配置され、第2仕切壁7の後側の空間には、排気ターボ過給機41を含むその他の機器類が配置されている。
 熱交換器室5内には、エンジン冷却水を冷却するラジエータ51、排気ターボ過給機41で過給された吸気(給気)を冷却するアフタークーラ52、ラジエータ51の後方側に配置されるファンシュラウド53(図3)、ファンシュラウド53内から一部がはみ出した状態で回転駆動される電動または油圧駆動の冷却ファン54(図3)、およびそれらの配管類が収容される。また、キャブ内に設置される空調装置用のコンデンサを熱交換器室5に設けることもできる。
 このような熱交換器室5の上方には、平面視で矩形の枠状プレート55が設けられ、この枠状プレート55の上方に第3アッパーカバー38が取り付けられる。また、ラジエータ51およびアフタークーラ52の配管などは、第1仕切壁6を貫通してエンジン室4との間で取り回される。冷却ファン54は、リアグリルと同様、これを支持するフレームごと後方側に回動させることが可能である。冷却ファン54を回動させてラジエータ51の放熱面から離間させることにより、ラジエータ51の目詰まり等に対するメンテナンスを行うことができる。
 冷却ファン54が回転駆動されると、サイドカバー31および第3アッパーカバー38に設けられた流入口39や、下方のリアフレーム2に設けられた空隙を通し、外気が冷却空気として熱交換器室5内に流入する。流入した冷却空気は、アフタークーラ52およびラジエータ51を通過することで、吸気およびエンジン冷却水を冷却し、この後、冷却ファン54を通ってリアグリルから吐き出される。
 一方、冷却ファン54の駆動によりエンジン室4の空気は、本発明の換気構造を構成する換気ダクト8を通して冷却ファン54側に積極的に吸引され、冷却ファン54を通ってリアグリルから吐き出される。エンジン室4の空気が吸引され続けている間は、下方のリアフレーム2の空隙を通して、外気が換気用の新鮮空気としてエンジン室4に流入し、また換気ダクト8を通して吸引される。このことが繰り返されて、エンジン室4の換気が行われる。
 図2は、エンジン室4の換気構造を示す斜視図であり、この図2には併せて、排気ガス後処理装置42に接続された尿素水溶液配管47の冷却構造も示されている。
 ここで、排気ガス後処理装置42は、エンジン室4の前側において、左右両側に配置された一対のDPF(ディーゼル・パーティキュレート・フィルタ)装置43,43と、一対のDPF装置43,43間に左右に並設されたSCR(選択還元触媒)装置44,44とを備える。
 排気ターボ過給機41のタービン出口に接続された排気管は、エンジン室4内の側方に回り込んでおり、その先端がエンジンの前方付近まで延びて二股に分岐される。分岐された一方の排気管は、エンジン室4の左側に配置されたDPF装置43の前部に接続され、ここから排気ガスがDPF装置43内に流入する。流入した排気ガスは、車両の前後方向に沿った筒状のDPF装置43内を後方側に流れ、内部のフィルタにて粒子状物質が捕集され、この後、後部に接続されたミキシング配管45内に流入する。
 ミキシング配管45は前方側に延設されており、その先端が左側のSCR装置44の前部に接続されている。すなわち排気ガスは、ミキシング配管45内を前方に流れる。この際、ミキシング配管45の基端側(DPF装置43側)には、尿素水溶液を噴射するためのインジェクタが取り付けられている。インジェクタからミキシング配管45内に噴射された尿素水溶液は、排気ガスの熱によってアンモニアに熱分解され、このアンモニアが排気ガスと共にSCR装置44内に流入する。
 SCR装置44内に流入した排気ガスおよびアンモニアは、車両の前後方向に沿った筒状のSCR装置44内を後方側に流れ、SCR装置44内の還元触媒に供給され、排気ガス中の窒素酸化物を浄化する。窒素酸化物が浄化された排気ガスは、SCR装置44の後部に接続されたテール管46から外部に排気される。
 なお、分岐された他方の排気管は、エンジンの前側を通ってエンジンの右側まで取り回され、右側に配置されたDPF装置43の前部に接続されている。このDPF装置43に流入する排気ガスのその後の流れや後処理については、左側の場合と同じであり、上述したことで理解できるため、ここでの説明は省略する。
 また、本実施形態の排気ガス後処理装置42では、一対のSCR装置44,44がエンジンの上部中央に配置され、一対のDPF装置43,43がエンジンの左右両肩部分において、SCR装置44,44よりも一段低い位置に配置されている。このため、図1で示したサイドカバー31には、DPF装置43およびSCR装置44の配置位置に合わせて、車両の中央側から左右の外方に向かうに従って下方に傾斜した傾斜面31Aが設けられている。傾斜面31Aが設けられることで、キャブ内からの車両後部の左右両側に対する視界性を向上させている。
[エンジン室の換気構造の説明]
 図1、図2において、左右のサイドカバー31の内部には、エンジン室4の中ほどから熱交換器室5の後部にかけて換気ダクト8が設けられている。サイドカバー31の上部には、前述した傾斜面31Aが前後にわたって設けられており、傾斜面31Aに略対応して、サイドカバー31の内面に補強部材81が取り付けられている。なお、図2では、補強部材81を実線にて図示するため、便宜上サイドカバー31から外した状態で描いてある。
 補強部材81は、サイドカバー31の剛性を向上させる目的で取り付けられており、第1サイドカバー34に設けられてエンジン室4内に位置する第1補強部材82と、第2サイドカバー35に設けられて熱交換器室5内に位置する後方側の第2補強部材83とで構成される。第1、第2補強部材82,83はそれぞれ、断面L字形状とされている。このような補強部材81の内面(サイドカバー31側に臨む面)とサイドカバー31の内面とを利用して換気ダクト8が形成され、その内部空間が換気ダクト8の空気通路として機能する。
 第1、第2補強部材82,83の間は、左右の第2サイドカバー31(第2補強部材83)間に架設された架設フレーム61(図3、図4をも参照)により仕切られる。従って、換気ダクト8は、前後方向の途中において、架設フレーム61の端部により仕切られるが、この仕切部分には、連通部62が設けられており、第1、第2補強部材82,83間の空気の流通が確保される。そのような架設フレーム61は、第1仕切壁6の上部に対応して設けられ、その上面により枠状プレート55の前方側の枠部分が支持されている。
 換気ダクト8の前端は、エンジン室4の第2仕切壁7近傍に位置し、第2仕切壁7の前側に配置された排気ガス後処理装置42に向けて開口している。このような換気ダクト8には、エンジンの熱によって加熱された空気に加えて、排気ガス後処理装置42の熱によって加熱された空気が積極的に吸引される。また、換気ダクト8には、第2仕切壁7の後側の空間からも、エンジンや排気ターボ過給機41によって加熱された空気が第2仕切壁7の下方を通して吸引される。
 この際、換気ダクト8は、前端から後端に向かうに従って空気通路の断面積が徐々に小さくなっており、所謂先細りの形状をなしている。このため、断面積が絞られた後端では、冷却ファン54の回転によって生じる負圧を良好に作用させることができるうえ、換気ダクト8の前後方向にわたる長い領域で圧力勾配を形成でき、エンジン室4の空気を後方に確実に吸引することが可能である。
 図3は、本発明の換気構造が設けられた外装カバー3を下方から見た斜視図である。図4は、該換気構造の要部を後方から見た斜視図である。なお、図3においては、第1仕切壁6および第2仕切壁7の図示が省略されており、図4においては、第2仕切壁7の図示が省略されている。
 図3、図4において、外装カバー3の後端には、リアフレーム2(図1、図2)上に立設される門形フレーム56が取り付けられている。門形フレーム56は、第2サイドカバー35の鉛直な後縁部分に取り付けられる左右一対の縦フレーム57,57と、縦フレーム57,57の上端間に架け渡される横フレーム58と、横フレーム58の下方において、縦フレーム57,57間に架け渡される中間フレーム59とを有する。
 縦フレーム57は、断面L字形状とされ、コーナー部分が車両の内方側に向くように立設されている。縦フレーム57の上部側において、L字形状を形成している各片には、連通開口57Aが設けられている。連通開口57Aが設けられた部分は、上下のリブや、側方から溶接等されるカバー57Bによって覆われる。
 横フレーム58は断面凹状のチャンネル材からなり、開口部分を上方にして設置されている。横フレーム58は、その上方の開口部分が第3アッパーカバー38で覆われることで、左右方向の空気通路として機能する。横フレーム58の底面には、その長手方向に沿って複数の連通開口58Aが設けられている。また、横フレーム58の長手方向の両側には、前側のウェブ部分を切り欠いた切欠部58Bが設けられている。この切欠部58Bには、補強部材81を構成する第2補強部材83の後端が接続され、換気ダクト8が横フレーム58内部の空気通路と連通している。
 中間フレーム59は、長尺なプレートで形成されている。中間フレーム59の長手方向の両側は、下方に折曲して縦フレーム57に接合されている。このような中間フレーム59にも、横フレーム58の各連通開口58Aに略対応した位置に同様な連通開口59Aが設けられている。
 縦フレーム57の上部、横フレーム58、および中間フレーム59で囲まれた空間は、前後のプレート56Aにて塞がれている。プレート56Aによって塞がれた空間は、横フレーム58の連通開口58Aを通して上方の空気通路と連通し、中間フレーム59の連通開口59Aを通して門形フレーム56で囲われた内側の空間と連通する。従って、換気ダクト8は、各フレーム57~59によって囲われた空間を通して、門形フレーム56の内側の空間と連通する。
 また、中間フレーム59の両側が傾斜していることで形成される略三角形状の空間と、縦フレーム57の上部にてカバー57Bによって塞がれた空間とは、縦フレーム57に設けられた一方の連通開口57Aを通して連通する。さらに、第2補強部材83の底面には、連通開口83Aが設けられている。縦フレーム57と第2補強部材83とで形成される角部には、他方の連通開口57Aおよび連通開口83Aを覆うコーナー部材84が設けられている。従って、換気ダクト8は、コーナー部材84、縦フレーム57の上部、および各フレーム57~59で囲われた空間を通しても、門形フレーム56の内側の空間と連通する。
 このような門形フレーム56の内側の空間には、略8角形状の枠体として構成されるファンシュラウド53が収容される。ファンシュラウド53の内部では、冷却ファン54が回転する。ファンシュラウド53の上部側は、中間フレーム59と近接している。ファンシュラウド53の上部には、中間フレーム59の連通開口59Aに対応した位置に連通開口53Aが設けられている。つまり連通開口53Aは、冷却ファン54の外周側、より具体的には最外周の回転軌跡に近接した位置であって、冷却ファン54の回転によって負圧が生じる位置に向けて開口している。
 以上のことから、本実施形態のエンジン室の換気構造としては、ファンシュラウド53内で負圧が生じる部分とエンジン室4とが、ファンシュラウド53、これを囲う門形フレーム56の内部、および外装カバー3と一体の換気ダクト8を介して連通する構造である。なお、図4では、右側のサイドカバー31に開閉自在に設けられた点検ハッチ31Bが開けられた状態として示されている。補強部材81(第1補強部材82)のうち、この点検ハッチ31に対応した部分は該点検ハッチ31と共に開閉される開閉部81Aとなっている。
 本実施形態によれば、冷却ファン54が駆動されると、それによって生じる負圧により、門形フレーム56内の空気など、負圧が生じる位置に近い側から吸引され始め、徐々にエンジン室4内の空気がダクト8内に吸い込まれる。吸い込まれた空気は、換気ダクト8内を通ることで熱交換器室5を通り越して後方側に流れる。換気ダクト8が熱交換器室5に対して遮蔽されていることから、熱交換器室5から空気が入り込むことはなく、エンジン室4の空気を確実に吸引する。
 換気ダクト8を流れる空気の一部は、換気ダクト8の後端から門形フレーム56の横フレーム58に流入し、各フレーム57~59で囲まれた空間を通してファンシュラウド53の内側に吸い出される。また、換気ダクト8を流れる残りの空気は、換気ダクト8の後端からコーナー部材84を介して門形フレーム56の縦フレーム57の上部に流入し、同様に各フレーム57~59で囲まれた空間を通してファンシュラウド53の内側に吸い出される。
 吸い出された空気は、冷却ファン54の回転によって外部に吐き出される。エンジン室4から吐き出された分は、エンジン室4の下方を通して外部からの新鮮な空気として取り込まれ、再び換気ダクト8から吸引される。これを繰り返すことで、エンジン室4の換気が行われる。このことにより、エンジン室4内に排気ガス後処理装置42が配置されている場合でも、エンジン室の過度の温度上昇を確実に抑制できる。
[尿素水溶液配管の冷却構造]
 図2に示すように、排気ガス後処理装置42のミキシング配管45の後部には、図示略のインジェクタが取り付けられ、このインジェクタには尿素水溶液配管47が接続されている。尿素水溶液配管47は、熱交換器室5の下方に設置された尿素水溶液タンクから、熱交換器室5を通ってエンジン室4内に入り込み、インジェクタに接続されている。熱交換器室5内では、尿素水溶液配管47の途中にサプライモジュールが設けられ、このサプライモジュールにより尿素水溶液が尿素水溶液配管47を通して尿素水溶液タンクからインジェクタへ圧送される。
 図5は、本実施形態の冷却構造を示す斜視図であり、図6は、該冷却構造の要部を示す断面斜視図である。
 図5、図6において、エンジン室4内の第2仕切壁7の背面側には、尿素水溶液配管47が配管される配管路形成部材10が配置されている。配管路形成部材10はまた、ボンネット33の第2アッパーカバー37の直下に位置し、第2アッパーカバーの下面に当接されている。配管路形成部材10は、前後方向に延びた杯管路としての第1配管路11と、左右方向に延びた杯管路としての第2配管路12とを有した平面視にてT状形状である。第1、第2配管路11,12は共に、断面凹状の隔壁からなる溝として設けられ、上方側が開口している。また、第1配管路11の後端は、第1仕切壁6を貫通しているとともに、ロート状に拡開しており、熱交換器室5に開口部11Aとして開口している。
 ミキシング配管45が左右に2本配置される本実施形態では、用いられる尿素水溶液配管47も、配管路形成部材10にて配管される段階では2本である。熱交換器室5内を通った2本の尿素水溶液配管47は、開口部11Aから第1配管路11を通って配管され、第2配管路12にて左右1本ずつに分かれる。各尿素水溶液配管47は、第2配管路12の端部から第2仕切壁7を貫通して前方に配管され、インジェクタに接続される。
 さらに、配管路形成部材10は、第1、第2配管路11,12に隣接して、平面視にてT字形状とされた断熱空間としての空気流通路13を備える。空気流通路13は、第1配管路11の側方に並設された第1流通路14と、第2配管路12の後側に並設された第2流通路15とを有する。これらの第1、第2流通路14,15も上方に開口している。
 第1流通路14は、第1配管路11の隔壁とこれを覆う外側の隔壁とにより形成され、後述するように、内外の隔壁間の空間を冷却空気が流通する。第1流通路14は、その断面視において、第1配管路11の下方まで達している。すなわち第1配管路11は、断面視において、その側方から下方にかけて各第1流通路14で覆われている。
 第1流通路14の後端は、第1仕切壁6を貫通して熱交換器室5に開口している。この開口部分は熱交換器室5内での配管類を支持するブラケット63と対向している。ブラケット63は第1仕切壁6に取り付けられ、下方に開口している。なお、第2流通路15は、断面凹状の隔壁からなる溝として設けられ、第2配管路12の側面に取り付けられている。
 以上に説明した配管路形成部材10は、その後端側が第1仕切壁6に支持され、前端側が適宜なブラケットを介して左右のサイドカバー31に支持される。また、配管路形成部材10の上方の開口は、第2アッパーカバー37で塞がれる。上方の開口が塞がれることで、第1、第2配管路11,12および第1、第2流通路14,15はトンネル状に形成される。
 この際、第2アッパーカバー37には、第2配管路12の上方に対応して、左右一対の長孔状の空気取入口37A,37Aが設けられ、第2流通路15の上方に対応して、一対の同様な空気取入口37B,37Bが設けられ、第1流通路14の上方に対応して、複数の同様な空気取入口37Cが前後方向に沿って設けられている。
 後端が熱交換器室5と連通している配管路形成部材10では、熱交換器室5内の冷却ファン54が回転駆動されると、外気が冷却空気として第2アッパーカバー37の各空気取入口37A,37B,37Cから内部に流入する。
 空気取入口37Bから流入した冷却空気は、第2配管路12から第1配管路11を通って後方側に流れることになり、この流れによって尿素水溶液配管47およびこれを収容する第1、第2配管路11,12を冷却する。この時の冷却空気の流れは、尿素水溶液配管47を流れる尿素水溶液とは逆向きとなる。その後に冷却空気は、拡開した開口部11Aから熱交換器室5に流入する。
 空気取入口37B,37Cから流入した冷却空気は、第1、第2流通路14,15を後方側に流れ、エンジン室4のエンジンなどからの熱を、第1、第2配管路11,12および尿素水溶液配管47に対して遮断する。その後に冷却空気は、第1仕切壁6に設けられた図示略の開口部から熱交換器室5に流入し、ブラケット63にて下方側への流れに整流され、第1仕切壁6に沿って流れる。
 そして、熱交換器室5内に流入した冷却空気は、冷却ファン54で引き込まれる他の冷却空気と一緒になってアフタークーラ52およびラジエータ51側に送られた後、冷却ファン54を通ってリアグリルから吐き出される。
 このような本実施形態の冷却構造によれば、エンジン室4に配管された尿素水溶液配管47は、配管路形成部材10内を通ることで、その配管路形成部材10内を流れる冷却空気によって積極的に冷却されるため、エンジン室4での熱影響を受け難くでき、尿素水溶液の劣化を抑制できる。しかも、尿素水溶液配管47は、第1、第2配管路11,12の隔壁によって熱を遮断できるうえ、さらにその外側の第1、第2流通路14,15を流れる冷却空気やその隔壁によっても熱を遮断でき、熱影響を一層受け難くできる。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 例えば、前記実施形態では、配管路形成部材10がボンネット33の第2アッパーカバー37の直下に設けられていたが、サイドカバー等の内側に設けられていてもよい。この際、サイドカバーのうち、配管路形成部材が設けられる部分を、その周囲の他の部分に対して開閉自在なハッチなどとして設けるとともに、当該他の部分に対して配管路形成部材を取り付けることが望ましい。こうすることで、ハッチを開けても尿素水溶液配管がハッチ側に引っ張られて引き出されることがなく、配管路形成部材をエンジン室に残した状態で尿素水溶液配管のメンテナンスを実施できる。
 前記実施形態では、配管路形成部材10が第2アッパーカバー37の下面と当接しており、溝状とされた第1、第2配管路11,12および第1、第2流通路14,15と、エンジン室4の外部とが、第2アッパーカバー37に設けられた空気取入口37A,37B,37Cを介して連通していた。しかしながら、本発明において、配管路形成部材は、第2アッパーカバー37のような外装カバーに対して必ずしも当接されている必要はなく、所定間隔を空けて近接されていてもよい。
 ただし、このような場合には、外装カバーに空気取入口を設けただけでは、冷却ファンを回転駆動させても、配管路や流通路に外気を効率よく引き込むことができない可能性がある。このため、それら配管路や流通路を溝状ではなく筒状に設けるとともに、配管路や流通路と空気取入口とを連通させる連通部を設けることが好ましい。また、外装カバーが着脱されることを勘案し、そのような連通部は、外装カバー側か配管路形成部材かのいずれかに対して着脱可能に構成することがよい。
 前記実施形態では、配管路形成部材10の第1、第2配管路11,12および第1、第2流通路14,15に対して冷却空気を流通させる構成になっていたが、そのような流通路にのみ冷却空気を流しても、エンジや排気ガス後処理装置からの熱を配管路内の尿素水溶液配管に対して遮断できる効果があるため、そうしてもよい。また逆に、配管路にのみ冷却空気を流通させることで、流通路を断熱空間として機能させてもよく、このような場合でも、略同様な効果を得ることができる。
 前記実施形態では、配管路形成部材10が第1、第2流通路14,15からなる空気流通部を有していたが、そのような空気流通部はエンジン室の温度上昇の度合を考慮して適宜設けられればよく、尿素水溶液配管が配管される配管路のみに冷却空気を流通するだけで十分な場合には、空気流通部を設けなくともよい。
 本発明は、ホイールローダに搭載された排気ガス後処理装置の尿素水溶液配管に利用できる他、ブルドーザや油圧ショベルといった他の建設機械やトラクター等の農業機械など、様々な作業車両での尿素水溶液配管に利用でき、さらには、可搬型エンジン発電機での尿素水溶液配管にも利用できる。
 1…作業車両、3…外装カバー、4…エンジン室、11…配管路である第1配管路、12…配管路である第2配管路、13…断熱空間である空気流通路、37…第2アッパーカバー、37A,37B37C…空気取入口、42…排気ガス後処理装置、43…触媒装置であるSCR装置、47…尿素水溶液配管、51…熱交換器であるラジエータ、52…熱交換器であるアフタークーラ、54…冷却ファン。

Claims (5)

  1.  熱交換器に冷却空気を供給する冷却ファンが隣設されたエンジン室に排気ガス後処理装置が設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、
     前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、
     前記配管路には、前記冷却ファンによって引き込まれた冷却空気が流通する
     ことを特徴とする尿素水溶液配管の冷却構造。
  2.  エンジン室に排気ガス後処理装置と冷却ファンが設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、
     前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、
     前記配管路形成部材は、前記配管路に並設された断熱空間を備え、
     前記配管路および前記断熱空間のうちの少なくともいずれか一方には、前記冷却ファンによって引き込まれた冷却空気が流通する
     ことを特徴とする尿素水溶液配管の冷却構造。
  3.  エンジン室に排気ガス後処理装置と冷却ファンが設置されるとともに、前記排気ガス後処理装置は、尿素水溶液から得られるアンモニアを還元剤とする選択還元触媒装置を備え、前記選択還元触媒装置には、前記尿素水溶液を供給する尿素水溶液配管が前記エンジン室を通って取り回される尿素水溶液配管の冷却構造において、
     前記エンジン室には、前記尿素水溶液配管を配置する配管路を有した配管路形成部材が設けられ、
     前記配管路形成部材は、前記配管路に並設された断熱空間を備え、
     前記配管路および前記断熱空間には、前記冷却ファンによって引き込まれた冷却空気が流通する
     ことを特徴とする尿素水溶液配管の冷却構造。
  4.  請求項1から請求項3のいずれかに記載の尿素水溶液配管の冷却構造において、
     前記配管路形成部材は、前記エンジン室を覆う外装カバーの内側に近接または当接する位置に設けられ、
     前記外装カバーには、前記配管路と前記エンジン室の外部とを連通させる空気取入口が設けられる
     ことを特徴とする尿素水溶液配管の冷却構造。
  5.  請求項4に記載の尿素水溶液配管の冷却構造において、
     前記外装カバーの前記配管路形成部材が位置する部分は、他の部分に対して着脱自在に設けられ、
     前記配管路形成部材は前記他の部分側に取り付けられている
     ことを特徴とする尿素水溶液配管の冷却構造。
PCT/JP2013/073945 2012-10-25 2013-09-05 尿素水溶液配管の冷却構造 WO2014065023A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13849921.5A EP2821608B1 (en) 2012-10-25 2013-09-05 Cooling structure for urea aqueous solution conduit
CN201380017388.XA CN104204435B (zh) 2012-10-25 2013-09-05 尿素水溶液配管的冷却结构
US14/414,640 US9394817B2 (en) 2012-10-25 2013-09-05 Cooling structure for urea aqueous solution conduit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012235913A JP5799001B2 (ja) 2012-10-25 2012-10-25 尿素水溶液配管の冷却構造
JP2012-235913 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014065023A1 true WO2014065023A1 (ja) 2014-05-01

Family

ID=50544404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073945 WO2014065023A1 (ja) 2012-10-25 2013-09-05 尿素水溶液配管の冷却構造

Country Status (5)

Country Link
US (1) US9394817B2 (ja)
EP (1) EP2821608B1 (ja)
JP (1) JP5799001B2 (ja)
CN (1) CN104204435B (ja)
WO (1) WO2014065023A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079773A1 (ja) * 2014-11-21 2016-05-26 株式会社Kcm 産業用車両

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9631342B2 (en) * 2014-08-19 2017-04-25 Komatsu Ltd. Work vehicle
JP6438341B2 (ja) * 2014-10-15 2018-12-12 ヤンマー株式会社 作業車両
WO2016092868A1 (ja) 2014-12-12 2016-06-16 株式会社小松製作所 作業車両
JP6295195B2 (ja) * 2014-12-26 2018-03-14 株式会社Kcm 作業機械
WO2015137354A1 (ja) * 2015-03-10 2015-09-17 株式会社小松製作所 作業車両
JP5890591B1 (ja) * 2015-03-10 2016-03-22 株式会社小松製作所 作業車両
US10100579B2 (en) * 2015-06-04 2018-10-16 The Charles Machine Works, Inc. Exhaust assembly cooling system
JP6549455B2 (ja) * 2015-09-24 2019-07-24 住友建機株式会社 ショベル
US10207577B2 (en) 2015-10-23 2019-02-19 Komatsu Ltd. Tractor
JP6548224B2 (ja) * 2016-03-29 2019-07-24 日立建機株式会社 作業機械
JP6284281B2 (ja) * 2016-04-07 2018-02-28 ヤンマー株式会社 トラクタ
US10975879B2 (en) 2018-07-18 2021-04-13 The Charles Machine Works, Inc. Centrifugal fan
DE102018213895A1 (de) * 2018-08-17 2020-02-20 Robert Bosch Gmbh Anordnung zur Nachbehandlung des Abgases einer Brennkraftmaschine und Verfahren zum Betreiben einer solchen
US11767780B2 (en) 2020-02-13 2023-09-26 The Charles Machine Works, Inc. Engine cooling system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618619U (ja) * 1992-08-20 1994-03-11 株式会社小松製作所 内燃機関の消音器
JP2002503783A (ja) * 1998-02-16 2002-02-05 シーメンス アクチエンゲゼルシヤフト 配量装置
JP2002221110A (ja) * 2001-01-22 2002-08-09 Nec Eng Ltd ディーゼルエンジン発電機システムにおける燃料凍結防止方法
JP2003020936A (ja) * 2001-07-03 2003-01-24 Komatsu Ltd NOx還元触媒用液体還元剤タンクの配置構造
JP2007283801A (ja) * 2006-04-12 2007-11-01 Hitachi Constr Mach Co Ltd 建設機械
JP2008101535A (ja) * 2006-10-19 2008-05-01 Denso Corp エンジンの排気浄化装置
JP2008156835A (ja) * 2006-12-21 2008-07-10 Shin Caterpillar Mitsubishi Ltd 排ガス後処理装置を設けた建設機械
JP2009117127A (ja) * 2007-11-05 2009-05-28 Toyota Motor Corp 管加熱装置
JP2010261373A (ja) * 2009-05-08 2010-11-18 Kobelco Contstruction Machinery Ltd 作業機械
JP2010285814A (ja) * 2009-06-12 2010-12-24 Kobelco Contstruction Machinery Ltd 作業機械
JP2011214580A (ja) 2011-08-01 2011-10-27 Toyota Motor Corp 内燃機関の排気浄化装置
JP2012082796A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 舶用scr還元剤供給システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728908Y2 (ja) * 1991-03-28 1995-07-05 株式会社新潟鉄工所 排ガス還元剤の噴霧装置
JP4450298B2 (ja) 2000-01-12 2010-04-14 株式会社小松製作所 建設機械のエンジン冷却風路
EP1691046B1 (en) * 2003-09-19 2013-04-24 Nissan Diesel Motor Co., Ltd. Exhaust emission purification apparatus for an internal combustion engine
JP5273933B2 (ja) * 2007-03-28 2013-08-28 株式会社小松製作所 建設車両
JP2008303786A (ja) * 2007-06-07 2008-12-18 Toyota Motor Corp 内燃機関の排気浄化装置
EP2159389B1 (en) * 2008-08-29 2012-01-25 Caterpillar Inc. Ventilation system for after-treatment compartment
US20100186381A1 (en) * 2009-01-26 2010-07-29 Caterpillar Inc Exhaust system thermal enclosure
US9132385B2 (en) * 2009-11-05 2015-09-15 Johnson Matthey Inc. System and method to gasify aqueous urea into ammonia vapors using secondary flue gases
US8206476B2 (en) * 2010-04-01 2012-06-26 Deere & Company Cover for a diesel particulate filter
US8919469B2 (en) * 2010-08-26 2014-12-30 Caterpillar Inc. Ventilation system for engine and aftertreatment compartments and components
JP5649463B2 (ja) * 2011-01-14 2015-01-07 日立建機株式会社 建設機械
US20130014496A1 (en) * 2011-07-15 2013-01-17 Caterpillar Inc. Cooling system for engine aftertreatment system
US20130291523A1 (en) * 2012-05-02 2013-11-07 Caterpillar, Inc. Cooling System for Diesel Emissions Fluid Injector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618619U (ja) * 1992-08-20 1994-03-11 株式会社小松製作所 内燃機関の消音器
JP2002503783A (ja) * 1998-02-16 2002-02-05 シーメンス アクチエンゲゼルシヤフト 配量装置
JP2002221110A (ja) * 2001-01-22 2002-08-09 Nec Eng Ltd ディーゼルエンジン発電機システムにおける燃料凍結防止方法
JP2003020936A (ja) * 2001-07-03 2003-01-24 Komatsu Ltd NOx還元触媒用液体還元剤タンクの配置構造
JP2007283801A (ja) * 2006-04-12 2007-11-01 Hitachi Constr Mach Co Ltd 建設機械
JP2008101535A (ja) * 2006-10-19 2008-05-01 Denso Corp エンジンの排気浄化装置
JP2008156835A (ja) * 2006-12-21 2008-07-10 Shin Caterpillar Mitsubishi Ltd 排ガス後処理装置を設けた建設機械
JP2009117127A (ja) * 2007-11-05 2009-05-28 Toyota Motor Corp 管加熱装置
JP2010261373A (ja) * 2009-05-08 2010-11-18 Kobelco Contstruction Machinery Ltd 作業機械
JP2010285814A (ja) * 2009-06-12 2010-12-24 Kobelco Contstruction Machinery Ltd 作業機械
JP2012082796A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 舶用scr還元剤供給システム
JP2011214580A (ja) 2011-08-01 2011-10-27 Toyota Motor Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2821608A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079773A1 (ja) * 2014-11-21 2016-05-26 株式会社Kcm 産業用車両
CN107002532A (zh) * 2014-11-21 2017-08-01 株式会社Kcm 产业用车辆
JPWO2016079773A1 (ja) * 2014-11-21 2017-08-31 株式会社Kcm 産業用車両
US9945099B2 (en) 2014-11-21 2018-04-17 Kcm Corporation Industrial vehicle
EP3222830A4 (en) * 2014-11-21 2018-12-12 KCM Corporation Industrial vehicle

Also Published As

Publication number Publication date
JP2014084832A (ja) 2014-05-12
EP2821608A1 (en) 2015-01-07
CN104204435B (zh) 2016-11-16
US20150176451A1 (en) 2015-06-25
EP2821608B1 (en) 2016-05-25
JP5799001B2 (ja) 2015-10-21
EP2821608A4 (en) 2015-10-28
CN104204435A (zh) 2014-12-10
US9394817B2 (en) 2016-07-19

Similar Documents

Publication Publication Date Title
JP5799001B2 (ja) 尿素水溶液配管の冷却構造
JP5591303B2 (ja) エンジン室の換気構造
JP5635694B1 (ja) 作業車両、及びホイールローダ
JP5905997B2 (ja) 作業車両
EP3009759B1 (en) Utility vehicle
JP5635695B1 (ja) 作業車両、及びホイールローダ
EP3239411B1 (en) Operation machine
JPWO2014069026A1 (ja) 排気ガス後処理装置を搭載した建設車両
US10487476B2 (en) Construction machine
WO2017168915A1 (ja) 作業機械
JP5710848B1 (ja) 作業車両
JP6253158B2 (ja) 建設機械における還元剤タンクの配設構造
JP5890591B1 (ja) 作業車両
JP7195245B2 (ja) 作業車
WO2016125201A1 (ja) 産業用車両
JPWO2015045023A1 (ja) 作業車両
JP7227115B2 (ja) 導入部材及び作業車
JP4384776B2 (ja) エンジンルームの冷却構造
JP2024055193A (ja) ショベル
JP2015197041A (ja) 作業車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13849921

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013849921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14414640

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE