WO2014064889A1 - アルカリ乾電池 - Google Patents

アルカリ乾電池 Download PDF

Info

Publication number
WO2014064889A1
WO2014064889A1 PCT/JP2013/005879 JP2013005879W WO2014064889A1 WO 2014064889 A1 WO2014064889 A1 WO 2014064889A1 JP 2013005879 W JP2013005879 W JP 2013005879W WO 2014064889 A1 WO2014064889 A1 WO 2014064889A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
storage
electrode case
titanium
mass
Prior art date
Application number
PCT/JP2013/005879
Other languages
English (en)
French (fr)
Inventor
一洋 吉井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013554710A priority Critical patent/JPWO2014064889A1/ja
Publication of WO2014064889A1 publication Critical patent/WO2014064889A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • H01M6/085Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes of the reversed type, i.e. anode in the centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells

Definitions

  • the present invention relates to an alkaline battery, and more particularly to its positive electrode.
  • Alkaline batteries are inexpensive batteries that are used in a wide current range, and are widely used as power sources for various devices. In addition, it is used as an emergency power source due to recent anxiety about abnormal weather and increased awareness of disaster prevention. Therefore, one of the performances that should be improved is the discharge performance after storage.
  • the positive electrode case of a general alkaline battery is made from a nickel-plated steel plate.
  • the inner surface is nickel-plated to prevent corrosion of the base material iron and to maintain a stable electrical connection.
  • fine cracks in nickel plating may occur, and the base material iron may be exposed.
  • the corrosion of iron as a base material proceeds during storage, and the discharge performance after storage of the alkaline battery decreases.
  • a conductive coating film containing a carbon-based material is formed on the inner surface of the positive electrode case in order to keep the contact resistance with the positive electrode low.
  • Patent Document 1 discloses an oxide containing titanium, a hydroxide containing titanium, an oxide containing tin, a hydroxide containing tin, an oxide containing indium, and indium in order to improve discharge performance after storage. It is proposed to contain at least one selected from the group consisting of hydroxides containing as additives.
  • an oxidation-reduction reaction takes place between the iron exposed on the inner surface of the positive electrode case and the additive, and deposits on the exposed iron surface, so that the base material of the positive electrode case It is possible to suppress the corrosion of iron, which is an increase in the internal resistance of the battery. This is said to improve the discharge performance after storage.
  • Patent Document 1 the discharge performance is evaluated after being stored for 3 months in an environment of 45 ° C., and this storage condition is considered to correspond to that stored for 5 years at room temperature.
  • this storage condition is considered to correspond to that stored for 5 years at room temperature.
  • an object of the present invention is to provide an alkaline dry battery excellent in discharge performance after storage of the battery.
  • the present invention provides a positive electrode case made of a nickel-plated steel sheet, a hollow cylindrical positive electrode disposed inside the positive electrode case, and a hollow portion of the positive electrode via a separator.
  • the nickel plating amount on the inner surface of the positive electrode case is 50 to 800 ⁇ g / cm 2
  • the positive electrode contains manganese dioxide and a carbon material, and the total amount of the manganese dioxide and the carbon material It contains 0.1 to 1.0% by mass of titanium.
  • the present invention prevents nickel from being excessively exposed as a base material by making the amount of nickel plating applied to the positive electrode case in the range of 50 to 800 ⁇ g / cm 2 , and generates nickel oxide during storage of the battery. Suppresses the increase in Further, the iron exposed on the inner surface of the positive electrode case reacts with titanium contained in the positive electrode in a range of 0.1 to 1.0% by mass with respect to the mass of manganese dioxide and carbon material, thereby causing corrosion. Is suppressed. Thereby, there exists an effect that it has the outstanding discharge performance after storage of a battery.
  • a positive electrode case made of a nickel-plated steel plate, a hollow cylindrical positive electrode arranged inside the positive electrode case, and a negative electrode arranged via a separator in the hollow part of the positive electrode are provided.
  • the amount of nickel plating on the inner surface of the positive electrode case is 50 to 800 ⁇ g / cm 2
  • the positive electrode contains manganese dioxide and a carbon material, and 0.1 to 1.0 relative to the mass of the manganese dioxide and the carbon material.
  • the titanium is preferably included in the positive electrode as a titanium compound.
  • the titanium compound includes at least one selected from the group consisting of anatase titanium dioxide, rutile titanium dioxide, metatitanic acid, and titanium sulfate. Good to include. Among these, anatase type titanium dioxide is more preferable because of its high reactivity with iron.
  • the carbon material is preferably excellent in electrical conductivity, and specifically includes at least one selected from the group consisting of graphite, carbon black, and carbon fiber. Among these, graphite is more preferable because it is inexpensive.
  • Patent Document 1 is based on the technical idea that titanium covers the surface of iron exposed on the inner surface of the positive electrode case to prevent corrosion. Therefore, the present inventors have studied to reduce the exposure of iron as a base material by increasing the amount of nickel plating in order to further improve the discharge performance after storage.
  • a positive electrode case used for a general alkaline battery is subjected to nickel plating of about 1200 ⁇ g / cm 2 .
  • This plating amount generally corresponds to a thickness of 1.3 ⁇ m. Therefore, as a conventional example, 1200 [mu] g / cm 2, to prepare a battery using a positive electrode case plated with nickel of 2000 [mu] g / cm 2 as a comparative example was evaluated for discharge performance after storage.
  • FIG. 1 is a front view of a cross section of a part of an alkaline battery as one embodiment.
  • Graphite, carbon black, PVB (polyvinyl butyral) as an adhesive, and methyl ethyl ketone as a solvent were mixed to obtain a mixture for a conductive coating film.
  • the mixing mass ratio of graphite, carbon black, adhesive, and solvent was 18: 8: 4: 70.
  • the mixture of flaky positive electrodes was pulverized into granules, which were classified by a sieve, and those having a size of 10 to 100 mesh were pressed into hollow cylinders to obtain positive electrodes 2.
  • the alkaline electrolyte used the aqueous solution containing 34.5 mass% potassium hydroxide and 2.0 mass% zinc oxide.
  • (Procedure 3) Assembly of alkaline dry battery Four positive electrodes 2 obtained as described above are inserted into the positive electrode case 1 obtained above, and the positive electrode 2 is reshaped by a pressure jig to form the inner surface of the positive electrode case 1 The conductive coating film 10 was closely attached. Then, a bottomed cylindrical separator 4 was disposed at the center of the positive electrode 2 disposed inside the positive electrode case 1, and a predetermined amount of the alkaline electrolyte was injected into the separator 4. After a predetermined time, the negative electrode 3 was filled into the separator 4.
  • the negative electrode 3 was prepared by mixing sodium polyacrylate as a gelling agent, an alkaline electrolyte, and zinc alloy powder as a negative electrode active material in a mass ratio of 1:35:64.
  • the zinc alloy powder used was Al, Bi, and In containing 30, 150, and 200 ppm, respectively.
  • a nonwoven fabric mainly composed of polyvinyl alcohol fiber and rayon fiber was used.
  • the negative electrode current collector 6 was inserted into the center of the negative electrode 3.
  • the negative electrode current collector 6 was integrated with a gasket 5 and a bottom plate 7 that also serves as a negative electrode terminal to form a sealing unit 9.
  • the opening edge part in the positive electrode case 1 was crimped to the peripheral part of the bottom plate 7 via the edge part of the gasket 5, and the opening part of the positive electrode case 1 was sealed.
  • the outer surface of the positive electrode case 1 was covered with the exterior label 8 to obtain an alkaline dry battery. (Procedure 4) Evaluation of discharge performance after storage of alkaline dry battery
  • the produced alkaline dry battery is stored for 3 months in an environment of 45 ° C. and for 5 weeks in an environment of 60 ° C. did.
  • the storage conditions are considered to correspond to storage for 5 years at room temperature and for 10 years at room temperature, respectively.
  • the alkaline battery stored under the above conditions was continuously discharged at 1000 mA, and the discharge duration until the closed circuit voltage reached 0.9 V was measured to evaluate the discharge performance.
  • the discharge was performed in an environment of 20 ⁇ 2 ° C.
  • Table 1 shows the manufacturing conditions and evaluation results of the conventional and comparative batteries.
  • Nickel was originally thought to be able to prevent corrosion of iron as a base material and maintain a stable electrical connection by forming a non-conductive coating in an alkaline electrolyte.
  • nickel oxidation progresses and nickel oxide is produced by coexisting with a strong oxidizing compound such as manganese dioxide for a long time. Since this nickel oxide is insulative, it is assumed that the electrical resistance of the positive electrode case increases.
  • Examples 1 to 4 and Comparative Examples 7 and 8 shown below a positive electrode case having a nickel plating amount of 400 ⁇ g / cm 2 was used, and the titanium content was expressed with respect to the total mass of manganese dioxide and graphite. Except for the change as shown in Fig. 2, an alkaline dry battery was produced by the same method as in the above-described conventional example, and the battery was evaluated. The results are shown in Table 2. Moreover, FIG. 2 is a comparison diagram between the example of the present invention and the conventional example in the discharge performance after storage for 3 months in a 45 ° C. environment.
  • the nickel plating amount was set to 400 ⁇ g / cm 2, and titanium was added to 0.1 to 1.0 with respect to the total amount of manganese dioxide and carbon material in the positive electrode. It was found that the discharge performance after storage for 3 months in an environment of 45 ° C. was improved when contained in a mass% range. Furthermore, it has been confirmed that the battery has excellent discharge performance even after storage for 5 weeks in an environment at 60 ° C., which is a storage condition in view of long-term storage than before. Since the discharge performance after storage for 3 months at 45 ° C. in Conventional Examples 1 to 4 in Table 1 is less than 40 minutes, a battery whose discharge performance after storage for 5 weeks in an environment at 60 ° C. exceeds 40 minutes. Judged to be excellent.
  • the nickel plating amount of the positive electrode case was 400 ⁇ g / cm 2 , it was considered that the production of nickel oxide in the positive electrode case after storage was suppressed to a small amount.
  • the base material iron
  • titanium contained in the positive electrode in a range of 0.1 to 1.0 mass% with respect to the mass of manganese dioxide and carbon material.
  • a complex oxide film is formed by reacting with. It was speculated that this suppressed the continuous corrosion of iron exposed on the inner surface of the positive electrode case.
  • the titanium content in the positive electrode is 0.05% by mass or less based on the total amount of manganese dioxide and carbon material because the effect of suppressing iron corrosion is not sufficient.
  • Example 5 to 9 and Comparative Examples 9 and 10 shown below the nickel plating amount was changed as shown in Table 3, and the titanium in the positive electrode was 0.5% by mass with respect to the total of manganese dioxide and carbon material. Except for the above, an alkaline dry battery was produced by the same method as in the conventional example, and the battery was evaluated. The results are shown in Table 3.
  • Table 4 shows the results of manufacturing and evaluating the battery by changing the nickel plating amount applied to the positive electrode case and the content of titanium with respect to the mass of manganese dioxide and graphite in the positive electrode.
  • the amount of nickel plating applied to the positive electrode case in the range of 50 to 800 ⁇ g / cm 2 , it is possible to prevent excessive exposure of iron as a base material and to prevent nickel oxide during storage. Suppress the increase. Furthermore, the iron exposed on the inner surface of the positive electrode case reacts with titanium contained in the positive electrode in the range of 0.1 to 1.0% by mass with respect to the mass of manganese dioxide and carbon material, thereby suppressing corrosion. The Thus, the increase in the electrical resistance of the positive electrode case could be suppressed, and the discharge performance could be improved after storage.
  • anatase-type titanium oxide was used as the titanium source, but the same effects as described above were obtained even when metatitanic acid, rutile-type titanium oxide, and titanium sulfate were used.
  • the mixed acid used here is a liquid in which hydrochloric acid, nitric acid, and distilled water are mixed at a mass ratio of 1: 1: 2. Then, after insoluble matter is filtered off, ICP emission spectroscopic analysis is performed using iCAP6300 manufactured by Thermo Fisher, and nickel in the solution may be quantified.
  • titanium contained in the positive electrode from an alkaline battery for example, it can be quantified by the following procedure.
  • the positive electrode is taken out, the electrolytic solution is washed with distilled water and dried. 1.00 g of this is precisely weighed, mixed with the mixed acid, and the mixture is heated at 200 ° C. for 1 hour using a hot plate to perform heating and dissolution. Thereafter, insoluble matter is filtered off, ICP emission spectroscopic analysis is performed using iCAP6300 manufactured by Thermo Fisher, and titanium in the solution is quantified to obtain the mass T of titanium.
  • the positive electrode when quantifying manganese dioxide contained in the positive electrode from an alkaline battery, it can be quantified, for example, by the following procedure.
  • the positive electrode is taken out, the electrolytic solution is washed with distilled water and dried. 1.00 g of this is precisely weighed, mixed with the mixed acid, and the mixture is heated at 200 ° C. for 1 hour using a hot plate to perform heating and dissolution. Then, after insoluble matter is filtered off, ICP emission spectroscopic analysis is performed using iCAP6300 manufactured by Thermo Fisher, and manganese in the solution is quantified. Next, the quantitative value of manganese may be multiplied by 1.58 and converted to the mass M of manganese dioxide.
  • the carbon material contained in the positive electrode from the alkaline dry battery it can be quantified by the following procedure, for example.
  • the positive electrode is taken out, the electrolytic solution is washed with distilled water and dried. 1.00 g of this is precisely weighed, mixed with the mixed acid, and the mixture is heated at 200 ° C. for 1 hour using a hot plate to perform heating and dissolution. Thereafter, the insoluble matter is filtered off, washed with distilled water, dried and weighed. Next, the insoluble matter is ignited, and the mass decrease may be the mass C of the carbon material.
  • the alkaline dry battery of the present invention has excellent discharge performance after storage, and can be suitably used as an emergency power source for natural disasters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 鋼板からなる正極ケース1と、正極ケース1の内部に配置された中空円筒状の正極2と、正極2の中空部に、セパレータ4を介して配置された負極3とを備えたアルカリ乾電池であって、正極ケース1の内表面は、50~800μg/cmの範囲の量のニッケルでメッキされており、正極2は、二酸化マンガン、炭素材料、及び二酸化マンガン及び炭素材料の質量に対し、0.1~1.0質量%の範囲の量のチタンを含む。

Description

アルカリ乾電池
 本発明はアルカリ乾電池に関し、特にその正極に関する。
 アルカリ乾電池は、幅広い電流域で使用される安価な電池であり、さまざまな機器の電源として広く用いられている。また、昨今の異常気象に対する不安や防災意識の高まりから、非常用電源として用いられる。そのため、改良すべき性能の一つとして保存後の放電性能が挙げられる。
 一般的なアルカリ乾電池の正極ケースは、ニッケルメッキ鋼板から製缶される。その内表面には、母材である鉄の腐食を防止し、安定な電気的接続を保持するためにニッケルメッキが施されている。しかし、正極ケースの製缶時にニッケルメッキの微細なクラックが生じ、母材の鉄が露出する場合がある。このような正極ケースを用いたアルカリ乾電池では、保存中に母材である鉄の腐食が進行して、アルカリ乾電池の保存後の放電性能が低下してしまうという問題があった。
 また、一般的には、正極ケースの内表面には、正極との接触抵抗を低く保つために、炭素系材料を含む導電性塗膜が形成されている。
 特許文献1は、保存後の放電性能を改良するために、チタンを含む酸化物、チタンを含む水酸化物、錫を含む酸化物、錫を含む水酸化物、インジウムを含む酸化物、およびインジウムを含む水酸化物からなる群より選択された少なくとも一種を添加剤として含むことを提案している。前記添加物を正極に添加することで、正極ケースの内表面で露出した鉄と前記添加物との間で酸化還元反応が起こり、露出した鉄の表面に析出することにより、正極ケースの母材である鉄の腐食を抑制することができ、電池の内部抵抗の増大が抑制される。これにより、保存後の放電性能が向上すると述べられている。
特開2005-166419号公報
 特許文献1の発明にあっては、放電性能の評価を45℃の環境下で3ヶ月間保存した後に行っており、この保存条件は常温で5年間保存したものに相当すると考えられる。ところが、昨今の防災意識の高まりから、さらに長期的な保存後の放電性能の向上が求められるようになりつつある。
 本発明は、上記課題を鑑み、電池の保存後の放電性能に優れたアルカリ乾電池を提供することを目的とする。
 上記目的を達成するために、本発明は、ニッケルメッキ鋼板からなる正極ケースと、前記正極ケースの内部に配置された中空円筒状の正極と、前記正極の中空部に、セパレータを介して配置された負極と、を備えたアルカリ乾電池において、前記正極ケース内表面のニッケルメッキ量を50~800μg/cmとし、前記正極が二酸化マンガン及び炭素材料を含み、前記二酸化マンガン及び炭素材料の合計に対し0.1~1.0質量%のチタンを含むことを特徴とする。
 本発明は、正極ケースに施されるニッケルメッキ量を50~800μg/cmの範囲にすることで、母材である鉄の過度な露出を防ぐとともに、電池の保存中に生成するニッケル酸化物の増加を抑制する。さらに、正極ケースの内表面に露出した鉄は、正極中に二酸化マンガン及び炭素材料の質量に対し、0.1~1.0質量%の範囲で含有されたチタンと反応することで、その腐食が抑制される。これにより、電池の保存後において優れた放電性能を有するという効果を奏するものである。
本発明の一実施の形態としてのアルカリ乾電池の半断面図である。 45℃の環境下で3ヶ月間保存後の放電性能における本発明の実施例と従来例との比較図である。
 本発明によれば、ニッケルメッキ鋼板からなる正極ケースと、前記正極ケースの内部に配置された中空円筒状の正極と、前記正極の中空部にセパレータを介して配置された負極と、を備えたアルカリ乾電池において前記正極ケース内表面のニッケルメッキ量を50~800μg/cmとし、前記正極が二酸化マンガン及び炭素材料を含み、前記二酸化マンガン及び炭素材料の質量に対し、0.1~1.0質量%のチタンを含む構成とすることで、電池の保存後において優れた放電性能を有するという効果を奏するものである。
 前記チタンは、チタン化合物として正極に含むことが好ましく、具体的には、チタン化合物として、アナターゼ型二酸化チタン、ルチル型二酸化チタン、メタチタン酸および、硫酸チタンからなる群から選択された少なくとも1つを含むと良い。これらの中でも、アナターゼ型二酸化チタンは、鉄との反応性が高いため、さらに好ましい。
 前記炭素材料は、電気伝導性に優れることが好ましく、具体的には、黒鉛、カーボンブラックおよび、炭素繊維からなる群から選択された少なくとも1つを含むと良い。中でも黒鉛は安価であるため、さらに好ましい。
 本発明を詳細に説明する前に、本発明を想到するに至った経緯を先ず説明する。
 特許文献1の発明にあっては、正極ケースの内表面に露出した鉄の表面をチタンが覆ってその腐食を防ぐ技術思想に基づいていた。そこで、本発明者らは、さらに保存後の放電性能を向上させるために、ニッケルメッキを増量することで、母材である鉄の露出を減少させる検討を行った。
 一般的なアルカリ乾電池に用いられる正極ケースには、約1200μg/cmのニッケルメッキが施されている。なお、このメッキ量は、一般的には1.3μmの厚み相当する。そこで、従来例として、1200μg/cm、比較例として2000μg/cmのニッケルメッキを施した正極ケースを用いて電池を作製し、保存後の放電性能の評価を行った。
 以下に示す手順1~4に従って、図1に示す構造と同様の単3形のアルカリ乾電池を作製、評価した。図1は、一実施の形態としてのアルカリ乾電池の一部を断面とした正面図である。
 従来例と比較例の電池の作製と評価に関しては、以下の手順1~4および図1を援用して説明する。
(手順1)正極ケースの作製及び、その内表面における導電性塗膜の形成
 所定量のニッケルメッキを施したニッケルメッキ鋼板を、有底の円筒形にプレス絞りしごき加工して、正極ケース1を成型した。
 黒鉛、カーボンブラック、接着剤であるPVB(ポリビニルブチラール)、および溶剤であるメチルエチルケトンを混合し、導電性塗膜用混合物を得た。なお、黒鉛、カーボンブラック、接着剤、および溶剤の混合質量比は、18:8:4:70とした。
 正極ケース1を回転させながら、この導電性塗膜用混合物を正極ケース1の内表面に塗布した後、200℃で30秒間乾燥し、溶剤を蒸発させて正極ケース1の内表面に導電性塗膜10を成膜した。このときの塗布量は0.35mg/cmとした。
(手順2)正極の作製
 正極活物質である二酸化マンガン、炭素材料である黒鉛、およびアルカリ電解液を質量比94:6:1.5の割合で混合し、さらに、二酸化マンガンと黒鉛の質量の合計に対して、所定量のアナターゼ型酸化チタンを添加して十分に混合した後、フレーク状に圧縮成形した。
 ついでフレーク状の正極の混合物を粉砕して顆粒状とし、これを篩によって分級し、10~100メッシュのものを中空円筒状に加圧成形して正極2を得た。
 なお、アナターゼ型酸化チタン中は、58.7質量%のチタンが含まれているものを用いた。
 また、アルカリ電解液は、34.5質量%の水酸化カリウムおよび2.0質量%の酸化亜鉛を含む水溶液を用いた。
(手順3)アルカリ乾電池の組み立て
 上記で得られた正極ケース1内に、上記で得られた正極2を4個挿入し、加圧治具により正極2を再成形して正極ケース1の内表面の導電性塗膜10に密着させた。そして、正極ケース1の内部に配置された正極2の中央に有底円筒形のセパレータ4を配置し、セパレータ4内へ、上記アルカリ電解液を所定量注入した。所定時間経過した後、負極3をセパレータ4内へ充填した。
 なお、負極3には、ゲル化剤であるポリアクリル酸ナトリウム、アルカリ電解液、および負極活物質である亜鉛合金粉末を、質量比1:35:64の割合で混合したものを用いた。
 上記亜鉛合金粉末は、Al、Bi、およびInをそれぞれ30、150、および200ppm含むものを用いた。
 セパレータ4には、ポリビニルアルコール繊維とレーヨン繊維を主体として混抄した不織布を用いた。
 続いて、負極集電子6を負極3の中央に挿入した。なお、負極集電子6には、ガスケット5および負極端子を兼ねる底板7を一体化させ、封口ユニット9とした。そして、正極ケース1内の開口端部を、ガスケット5の端部を介して、底板7の周縁部にかしめつけ、正極ケース1の開口部を封口した。最後に、外装ラベル8で正極ケース1の外表面を被覆して、アルカリ乾電池を得た。
(手順4)アルカリ乾電池の保存後の放電性能の評価
 作製したアルカリ乾電池を、45℃の環境下で3ヶ月間、および60℃の環境下で5週間保存し、放電性能の評価用の電池とした。なお、前記の保存条件はそれぞれ、常温で5年間及び、常温で10年間の保存に相当すると考えられる。
 上記の条件で保存したアルカリ乾電池を、1000mAで連続放電し、その閉回路電圧が0.9Vに達するまでの放電持続時間を測定して、放電性能の評価を行った。なお、放電は20±2℃の環境で行った。
 以上による従来例と比較例の電池の作製条件および評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1~6ではニッケルメッキ量を増加したところ、45℃の環境下で3ヶ月間保存後の放電性能が、従来例1~6よりも低下した。さらに、従来よりも長期的な保存を鑑みた保存条件である60℃の環境下で5週間の保存後でも、放電性能が著しく低下してしまった。
 このように、ニッケルメッキを増量することによって、母材である鉄の露出が減少するが、保存後の放電性能は低下してしまった。
 ニッケルは本来、アルカリ電解液中で、不導体被膜を形成することで、母材である鉄の腐食を防止し、安定な電気的接続を保持することができると考えられていた。
 しかしながら、この結果に基づいて、二酸化マンガンのような酸化力の強い化合物と長時間に渡り共存することで、ニッケルの酸化が進行し、ニッケル酸化物が生じてしまうと考えた。このニッケル酸化物は絶縁性のため、正極ケースの電気抵抗が上昇すると推察した。
 すなわち、ニッケルメッキを増量した比較例1~6では、従来例1~6で用いた正極ケースよりも母材である鉄の露出は少ないものの、保存中に多量のニッケル酸化物が生じ、正極ケースの内表面を覆ってしまうと考えた。このような正極ケースは電気抵抗が増大し、保存後の放電性能が低下すると推察した。
 また、保存後のニッケル酸化物の生成を抑制するために、ニッケルメッキを減量した場合は、母材である鉄の露出が増加し、腐食しやすくなるため好ましくない。
 これに対し、ニッケルメッキを従来よりも減量させ、鉄の露出が増えた場合でも、正極にチタンを含有させた構成とすることで、鉄の腐食を抑制できると考えた。すなわち、保存中の、ニッケル酸化物の生成を抑制するとともに、鉄の腐食も抑制することが可能であると考えた。このように、正極ケースの電気抵抗の増大が抑制され、保存後において放電性能を向上できるという効果を奏するものであると考えた。
 そこで、以下に示す実施例1~4、比較例7および8ではニッケルメッキ量が400μg/cmである正極ケースを用い、二酸化マンガンと黒鉛の質量の合計に対して、チタンの含有率を表2に示すように変化させた以外は、上記の従来例と同様の方法によりアルカリ乾電池を作製し、電池の評価を行った。その結果を表2に示す。また、図2は、45℃の環境下で3ヶ月間保存後の放電性能における本発明の実施例と従来例との比較図である。
Figure JPOXMLDOC01-appb-T000002
 表2および図2に示すように、実施例1~4では、ニッケルメッキ量を400μg/cmとするとともに、正極中の二酸化マンガン及び炭素材料の合計に対しチタンを0.1~1.0質量%の範囲で含むとき、45℃の環境下で3ヶ月保存後の放電性能が向上することがわかった。さらに、従来よりも長期的な保存を鑑みた保存条件である、60℃の環境下で5週間保存後においても優れた放電性能を有することが確認された。なお、表1の従来例1~4の45℃で3ヶ月保存後の放電性能が40分弱であることから、60℃の環境下で5週間保存後の放電性能が40分を越える電池を優れていると判断した。
 正極ケースのニッケルメッキ量を400μg/cmとすると、保存後の正極ケースにおけるニッケル酸化物の生成は少量に抑制されていると考えた。
 一方、正極ケースの内表面には母材である鉄が露出しているが、正極中に二酸化マンガン及び炭素材料の質量に対し、0.1~1.0質量%の範囲で含有されたチタンと反応することで複合酸化物の被膜が形成される。これにより正極ケースの内表面に露出した鉄の連続的な腐食が抑制されると推察した。
 すなわち、保存中に、ニッケル酸化物の生成を抑制するとともに、鉄の腐食も抑制することが可能であった。このように、正極ケースの電気抵抗の増大が抑制され、保存後において優れた放電性能を有するという効果を奏するものである。
 比較例7の結果から、正極中のチタンが二酸化マンガン及び炭素材料の合計に対して0.05質量%以下であるときは、鉄の腐食を抑制する効果が十分でないため、好ましくない。
 一方、比較例8の結果から、正極中のチタンが二酸化マンガン及び炭素材料の合計に対し1.5質量%以上であるときは、正極の抵抗が増大してしまうため、保存前から放電性能が悪化して好ましくない。
 次に、ニッケルメッキ量ついて、さらに検討を行った。以下に示す実施例5~9、比較例9および10では、ニッケルメッキ量を表3の様に変化させ、正極中のチタンを二酸化マンガン及び炭素材料の合計に対して0.5質量%とした以外は、前記の従来例と同様の方法によりアルカリ乾電池を作製し、電池の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例5~9およびでは、ニッケルメッキ量を50~800μg/cmのとき、保存後の放電性能を向上させることができた。
 一方、比較例9の結果から、ニッケルメッキ量が25μg/cm以下であるときは、母材である鉄が過度に露出してしまい、腐食を抑制することができないため、充分な保存後の放電性能の向上が得られずに好ましくない。
 比較例10の結果から、ニッケルメッキ量が1200μg/cm以上であるときは、保存後において、正極ケースの内表面では多量のニッケル酸化物が生じてしまうため、充分な保存後の放電性能の向上が得られずに好ましくない。
 最後に、正極ケースに施されるニッケルメッキ量と、正極中の二酸化マンガン及び黒鉛の質量に対するチタンの含有率を変化させて、電池を作製、評価した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、正極ケースに施されるニッケルメッキ量を50~800μg/cmの範囲にすることで、母材である鉄の過度な露出を防ぐとともに、保存中のニッケル酸化物の増加を抑制する。さらに、正極ケースの内表面に露出した鉄は、正極に二酸化マンガン及び炭素材料の質量に対し0.1~1.0質量%の範囲で含有されたチタンと反応することで、腐食が抑制される。このように、正極ケースの電気抵抗の増大を抑制することができ、保存後において放電性能を向上させることができた。
 従来は、母材である鉄の腐食が保存後の放電性能に悪影響を及ぼすため、ニッケルメッキを減量させることは好ましくないと考えられていた。しかしながら、本発明では驚くべきことに、従来よりもニッケルメッキを減量させるとともに、正極にチタンを含有させた構成とすることで、ニッケル酸化物の生成および、鉄の腐食を抑制するので、従来よりも長期的な保存後の放電性能を大幅に向上させることができた。
 上記の実施例では、チタン源としてアナターゼ型酸化チタンを用いたが、メタチタン酸、ルチル型酸化チタン、および硫酸チタンを用いた場合でも上記と同様の効果が得られた。
 なお、正極ケースのニッケルメッキを定量する場合は、例えば、以下の手順で定量することができる。正極ケースを1cm切り取り、蒸留水で正極を洗浄した後、ビーカーに移して混酸と混合して、ホットプレートを用いて200℃で1時間混合物を加熱し、加熱溶解を行う。なお、ここで用いた混酸は塩酸、硝酸、および蒸留水を1:1:2の質量比で混合した液体である。その後、不溶分を濾別した後、サーモフィッシャー社製のiCAP6300を用いてICP発光分光分析を行い、溶液中のニッケルを定量すればよい。
 アルカリ乾電池から正極中に含有されたチタンを定量する場合は、例えば、以下の手順で定量することができる。正極を取り出し、蒸留水を用い電解液を洗浄し、乾燥させる。これを1.000g精秤し、前記混酸と混合して、ホットプレートを用いて200℃で1時間混合物を加熱し、加熱溶解を行う。その後、不溶分を濾別した後、サーモフィッシャー社製のiCAP6300を用いてICP発光分光分析を行い、溶液中のチタンを定量して、チタンの質量Tとすればよい。
 また、アルカリ乾電池から正極中に含有された二酸化マンガンを定量する場合は、例えば、以下の手順で定量することができる。正極を取り出し、蒸留水を用い電解液を洗浄し、乾燥させる。これを1.000g精秤し、前記混酸と混合して、ホットプレートを用いて200℃で1時間混合物を加熱し、加熱溶解を行う。その後、不溶分を濾別した後、サーモフィッシャー社製のiCAP6300を用いてICP発光分光分析を行い、溶液中のマンガンを定量する。ついで、前記マンガンの定量値に1.58を乗じ、二酸化マンガンの質量Mに換算すればよい。
 また、アルカリ乾電池から正極中に含有された炭素材料を定量する場合は、例えば、以下の手順で定量することができる。正極を取り出し、蒸留水を用い電解液を洗浄し、乾燥させる。これを1.000g精秤し、前記混酸と混合して、ホットプレートを用いて200℃で1時間混合物を加熱し、加熱溶解を行う。その後、不溶分を濾別し、蒸留水を用いて洗浄し、乾燥させ不溶分を秤量する。ついで、前記不溶物を強熱し、質量減少分を炭素材料の質量Cとすればよい。
 そして、計算式:T/(M+C)×100によって、上述した二酸化マンガン及び炭素材料の質量に対するチタンの含有率を算出することができる。
 以上のように、本発明のアルカリ乾電池は保存後の放電性能に優れており、自然災害等に備える非常用電源として好適に用いることができる。
  1   正極ケース
  2   正極
  3   負極
  4   セパレータ
  5   ガスケット
  6   負極集電子
  7   底板
  8   外装ラベル
  9   封口ユニット
  10  導電性塗膜

Claims (2)

  1.  鋼板からなる正極ケースと、
     前記正極ケースの内部に配置された中空円筒状の正極と、
     前記正極の中空部に、セパレータを介して配置された負極と、
    を備え、
     前記正極ケースの内表面は、50~800μg/cmの範囲の量のニッケルでメッキされており、
     前記正極は、二酸化マンガン、炭素材料、及び該二酸化マンガン及び炭素材料の質量に対し、0.1~1.0質量%の範囲の量のチタンを含む、アルカリ乾電池。
  2.  前記正極は、アナターゼ型二酸化チタンを含む、請求項1記載のアルカリ乾電池。
PCT/JP2013/005879 2012-10-24 2013-10-02 アルカリ乾電池 WO2014064889A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013554710A JPWO2014064889A1 (ja) 2012-10-24 2013-10-02 アルカリ乾電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012234396 2012-10-24
JP2012-234396 2012-10-24

Publications (1)

Publication Number Publication Date
WO2014064889A1 true WO2014064889A1 (ja) 2014-05-01

Family

ID=50544275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005879 WO2014064889A1 (ja) 2012-10-24 2013-10-02 アルカリ乾電池

Country Status (2)

Country Link
JP (1) JPWO2014064889A1 (ja)
WO (1) WO2014064889A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005166419A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2005322613A (ja) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd アルカリ電池
WO2008001813A1 (fr) * 2006-06-28 2008-01-03 Panasonic Corporation Pile sèche alcaline
JP2008135400A (ja) * 2001-11-01 2008-06-12 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2009146710A (ja) * 2007-12-13 2009-07-02 Panasonic Corp アルカリ一次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135400A (ja) * 2001-11-01 2008-06-12 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2005166419A (ja) * 2003-12-02 2005-06-23 Matsushita Electric Ind Co Ltd アルカリ乾電池
JP2005322613A (ja) * 2004-04-09 2005-11-17 Hitachi Maxell Ltd アルカリ電池
WO2008001813A1 (fr) * 2006-06-28 2008-01-03 Panasonic Corporation Pile sèche alcaline
JP2009146710A (ja) * 2007-12-13 2009-07-02 Panasonic Corp アルカリ一次電池

Also Published As

Publication number Publication date
JPWO2014064889A1 (ja) 2016-09-08

Similar Documents

Publication Publication Date Title
JP4007455B2 (ja) ボタン形アルカリ電池の製造方法
US8153298B2 (en) Positive electrode for alkaline battery and alkaline battery using the same
Pan et al. Synthesis, characterization and electrochemical performance of battery grade NiOOH
JP2005322613A (ja) アルカリ電池
JP4222488B2 (ja) アルカリ電池
WO2018163485A1 (ja) アルカリ乾電池
JP3215447B2 (ja) 亜鉛アルカリ電池
EP2768048B1 (en) Alkaline cell
JP2021180064A (ja) リチウム一次電池
JP2003017077A (ja) 密閉型アルカリ亜鉛一次電池
JP2005056733A (ja) アルカリ電池、ならびにアルカリ電池用正極活物質の製造方法
JP2007227011A (ja) アルカリ電池
JPH0222984B2 (ja)
WO2014064889A1 (ja) アルカリ乾電池
JP2015076151A (ja) アルカリ乾電池
JP5234272B2 (ja) 全固体リチウム二次電池
JP2013161650A (ja) アルカリ乾電池
JP2013246958A (ja) アルカリ乾電池
WO2019181538A1 (ja) アルカリ電池
JP2009043547A (ja) 電池用電解二酸化マンガン、正極合剤およびアルカリ電池
JPH0317181B2 (ja)
JP2004139909A (ja) 密閉型ニッケル亜鉛一次電池
JP2011243367A (ja) アルカリ電池
JP3178160B2 (ja) ボタン形アルカリ電池用負極の製造法およびボタン形アルカリ電池
JP2006012733A (ja) アルカリ乾電池およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554710

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848365

Country of ref document: EP

Kind code of ref document: A1