WO2014064812A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2014064812A1
WO2014064812A1 PCT/JP2012/077641 JP2012077641W WO2014064812A1 WO 2014064812 A1 WO2014064812 A1 WO 2014064812A1 JP 2012077641 W JP2012077641 W JP 2012077641W WO 2014064812 A1 WO2014064812 A1 WO 2014064812A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
heat transfer
heat
heat exchanger
transfer means
Prior art date
Application number
PCT/JP2012/077641
Other languages
English (en)
French (fr)
Inventor
冨田翔
黒木錬太郎
平井琢也
北山武志
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2014543086A priority Critical patent/JP6075381B2/ja
Priority to PCT/JP2012/077641 priority patent/WO2014064812A1/ja
Priority to EP12886912.0A priority patent/EP2913616A4/en
Priority to US14/437,956 priority patent/US20150292812A1/en
Priority to CN201280076564.2A priority patent/CN104736959B/zh
Publication of WO2014064812A1 publication Critical patent/WO2014064812A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone

Definitions

  • the present invention relates to a heat exchanger.
  • Patent Document 1 a first fluid circulation part formed by a honeycomb structure having a plurality of cells through which a heating body as a first fluid circulates, and an outer peripheral part of the first fluid circulation part are provided.
  • a heat exchanger having a second fluid circulation part is disclosed. The refrigerant flows through the second fluid circulation portion, takes heat from the heating body that circulates in the first fluid circulation portion, and cools the heating body.
  • Patent Document 2 discloses an air-cooled semiconductor heat sink that includes a radial cooling surface and a cooling surface that is integrated with the radial cooling surface and that is concentric with respect to an axis.
  • the radial cooling surface and the concentric cooling surface disclosed in Patent Document 2 are easy to secure a heat radiation area, and it is considered effective to be used in combination with the heat exchanger disclosed in Patent Document 1.
  • the combination of the radial cooling surface and the concentric cooling surface has room for further improvement in terms of heat transfer efficiency (thermal conductivity) in consideration of the arrangement of the refrigerant and the heating object to be cooled. It was.
  • an object is to obtain good thermal conductivity in the heat exchanger disclosed in this specification.
  • the heat exchanger disclosed in the present specification is provided in at least one of a heat exchanger through which a fluid to be cooled passes, a center portion and an outer peripheral portion of the heat exchanger, A refrigerant passage through which a refrigerant that exchanges heat with the heat exchange body flows, the heat exchange body extending from a central portion toward an outer peripheral portion, a circumferential direction, and the first heat transfer means.
  • a second heat transfer means that intersects with the first heat transfer means.
  • the heat transfer efficiency of the first heat transfer means is higher than the heat transfer efficiency of the second heat transfer means.
  • the heat transfer efficiency is understood as a value obtained by multiplying the thermal conductivity, which is a physical property value of the material forming the heat exchanger, by the thickness per partition.
  • the heat transfer efficiency toward the refrigerant passage is improved by setting the heat flow efficiency in the radial direction, that is, the heat transfer path toward the refrigerant passage provided at the center or outer periphery of the heat exchanger. Thereby, the favorable heat conductivity in a heat exchanger can be obtained and the cooling object can be cooled effectively.
  • the first heat transfer means is a first partition that extends radially from the center of the heat exchanger to the outer periphery
  • the second heat transfer means is a concentric second partition
  • the first The thickness of the partition may be set larger than the thickness of the second partition.
  • the concentric partition wall that is, the second partition wall
  • the heat transfer efficiency of such a concentric partition wall must be lower than the heat transfer efficiency of the radially extending partition wall, that is, the first partition wall. Therefore, by setting the thickness of the first partition to be greater than the thickness of the second partition, the heat transfer efficiency of the first partition serving as the first heat transfer means is made higher than that of the second partition.
  • the first heat transfer means is a first partition that extends radially from the center of the heat exchanger to the outer periphery
  • the second heat transfer means is a concentric second partition
  • the first The thermal conductivity of the partition wall material may be higher than the thermal conductivity of the second partition wall material.
  • the concentric partition wall that is, the second partition wall
  • the heat transfer efficiency of such a concentric partition wall must be lower than the heat transfer efficiency of the radially extending partition wall, that is, the first partition wall.
  • the first partition is made of a material having a thermal conductivity higher than that of the material forming the second partition, so that the heat transfer efficiency of the first partition serving as the first heat transfer means can be increased. Higher than that.
  • the thermal conductivity can be made different between the material forming the first partition and the material forming the second partition. That is, the first partition can be formed of a material having a thermal conductivity higher than that of the material forming the second partition.
  • the first heat transfer means is a first partition extending from an inlet side to an outlet side of a fluid to be cooled in the heat exchange body
  • the second heat transfer means is a cooling object in the heat exchange body.
  • a second partition extending from the inlet side to the outlet side of the fluid, and at least one of the thickness of the first partition and the second partition is made thinner as the thickness goes from the inlet side to the outlet side May be provided.
  • the temperature of the fluid to be cooled is higher as it is closer to the inlet of the heat exchanger. Therefore, by increasing the thickness of the first partition and the second partition toward the side closer to the inlet, heat can be easily conducted to the refrigerant passage side, and temperature efficiency is increased.
  • the first heat transfer means is a first partition extending from an inlet side to an outlet side of a fluid to be cooled in the heat exchange body
  • the second heat transfer means is a cooling object in the heat exchange body.
  • a second partition that extends from the inlet side to the outlet side of the fluid, and at least one of the thickness of the first partition and the second partition is made thicker as the thickness goes from the inlet side to the outlet side May be provided.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a heat exchanger according to the first embodiment.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an explanatory view showing the thicknesses of the first partition and the second partition.
  • FIG. 4 is an explanatory view showing a modification in which the density of the second partition is changed.
  • FIG. 5 is an explanatory view showing the arrangement of the second partition walls in the modification shown in FIG.
  • FIG. 6 is an explanatory view showing a heat exchanger according to the second embodiment.
  • FIGS. 7A to 7C are explanatory views showing a heat exchanger according to the third embodiment.
  • FIGS. 8A to 8C are explanatory views showing a heat exchanger according to the fourth embodiment.
  • FIG. 9 is an explanatory view showing an example in which the cross-sectional shape of the second partition is rectangular.
  • FIG. 10 is an explanatory diagram showing an example in which the cross-sectional shape of the second partition wall is a spiral shape.
  • FIG. 11 is an explanatory view showing an example in which the cross-sectional shape of the second partition is an elliptical shape.
  • FIG. 12 is an explanatory view showing an example in which refrigerant passages are provided in the center portion and the outer peripheral portion of the heat exchanger.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a heat exchanger 1 of the first embodiment.
  • 2 is a cross-sectional view taken along line AA in FIG.
  • FIG. 3 is an explanatory view showing the thickness of the partition provided in the heat exchanger 1.
  • the heat exchanger 1 includes an EGR pipe 2 through which EGR gas flows.
  • the EGR pipe is a stainless steel (SUS) pipe material.
  • the EGR pipe 2 can also use other materials such as aluminum.
  • the heat exchanger 1 includes a housing member 3 that joins an end 3 a to an end 2 a of the EGR pipe 2 and forms a refrigerant passage 4 on the outer periphery of the EGR pipe 2.
  • the housing member 3 is also made of stainless steel (SUS).
  • the housing member 3 includes a refrigerant inlet 3b1 for introducing the refrigerant into the refrigerant passage 4 and a refrigerant outlet 3b2 for discharging the refrigerant in the refrigerant passage 4.
  • cooling water is used.
  • a stay 3 c is provided on the outer wall of the housing member 3.
  • a heat exchange element 5 arranged in contact with the inner peripheral wall surface 2b of the EGR pipe 2 is accommodated.
  • a fluid to be cooled that is, EGR gas in the present embodiment, passes through the heat exchanger 5.
  • the heat exchanger 5 is made of silicon carbide (SiC) ceramic.
  • the ceramic material has efficient heat conduction and can exhibit high corrosion resistance. For this reason, the ceramic material which has high heat conductivity is suitable as a material of the heat exchange body and coating
  • the heat exchange element 5 is formed in a cylindrical shape, and a passage is formed so that EGR gas can pass therethrough.
  • the heat exchanger 5 can exchange heat with the refrigerant flowing through the refrigerant passage 4 via the EGR pipe 2. That is, when the EGR gas passes through the heat exchanger 5, the EGR gas exchanges heat with the refrigerant via the heat exchanger 5 and the EGR pipe 2 and is cooled.
  • the heat exchanger 5 includes first partition walls 5a extending radially from the center 6 toward the outer periphery as first heat transfer means extending from the center 6 toward the outer periphery. Moreover, the heat exchanger 5 is provided with concentric 2nd partition 5b as a 2nd heat transfer means extended along the circumferential direction and cross
  • the central portion 6 is not required to be completely at the center of the heat exchange element 5.
  • the 1st partition 5a should just form the heat transfer path
  • the shape of the 2nd partition 5b should just be provided with the part continued in the circumferential direction.
  • the second partition wall 5b may be circular, elliptical, or rectangular in a cross section orthogonal to the fluid flow direction. Moreover, it is not calculated
  • Such a 2nd partition 5b can improve the intensity
  • the thickness T1 of the first partition 5a is thicker than the thickness T2 of the second partition 5b.
  • the heat transfer efficiency of the first heat transfer means that is, the first partition wall 5a is changed to the second heat transfer efficiency.
  • Means that is, higher than the heat transfer efficiency of the second partition wall 5b.
  • the second partition wall 5b since the second partition wall 5b is thin, pressure loss can be reduced, which contributes to improvement in thermal efficiency.
  • the second partition walls 5b can reduce the thickness of each sheet and increase the number of sheets. If the number of the second partition walls 5b increases, the contact area with the fluid can be further increased. As a result, the temperature efficiency is further improved. Even if the number of the second partition walls 5b is increased, an increase in pressure loss can be suppressed by reducing the thickness of the second partition walls 5b.
  • reducing the thickness of each second partition 5b as the number of second partitions 5b increases satisfies the relationship between the thickness of the first partition 5a and the thickness of the second partition 5b. But it ’s convenient. Further, reducing the thickness of the second partition wall 5b is advantageous in securing the EGR gas channel area.
  • the comparison between the thickness of the first partition 5a and the thickness of the second partition 5b will be described in more detail. Even if the first partition wall 5a is locally thin and the thickness of the portion may be smaller than the thickness of an arbitrary position on the second partition wall 5b, the average of the first partition wall 5a The thickness should just be thicker than the average thickness of the 2nd partition 5b.
  • Such a heat exchanger 1 includes cone members 8 on the upstream side and the downstream side of the EGR pipe 2.
  • the upstream cone member 8 is a member that serves as an introduction part for introducing EGR gas into the EGR pipe 2
  • the downstream cone member 8 is a member that serves as an EGR gas discharge part within the EGR pipe 2.
  • the cone member 8 is joined to the housing member 3 by brazing so that the larger diameter side covers the end 3 a of the housing member 3.
  • a flange member 9 is joined to the tip of the cone member 8 by brazing.
  • the heat exchanger 1 is connected to the exhaust manifold of the engine by a flange member 9 on the upstream side.
  • the heat exchanger 1 is connected to the intake pipe on the downstream side.
  • the heat exchanger 1 is attached to the engine body by a stay 3c provided on the outer wall of the housing member 3.
  • FIG. 4 is an explanatory view showing a modification in which the density of the second partition is changed.
  • FIG. 5 is an explanatory view showing the arrangement of the second partition walls in the modification shown in FIG.
  • a plurality of second partition walls 5b are arranged concentrically.
  • the distance between the adjacent second partition walls 5b is expressed as Ln.
  • n is a natural number that increases from the center 6 toward the outer periphery.
  • the distance Ln increases toward the outer periphery. That is, the second partition walls 5 b are arranged more densely as the distance from the center portion 6 is closer.
  • the fluid, that is, the EGR gas easily flows as it approaches the outer peripheral portion side.
  • the refrigerant path 4 is provided in the outer peripheral part. For this reason, in order to cool EGR gas efficiently, it is desirable to distribute a large amount of EGR gas through the outer peripheral portion close to the refrigerant passage 4. Therefore, by arranging the second partition walls 5b densely on the side closer to the central portion 6, more EGR gas can be flowed to the outer peripheral portion than the central portion, and the temperature efficiency can be improved.
  • the arrangement of the distance Ln does not have to be Ln ⁇ 1 ⁇ Ln in the entire region. In short, it is only necessary that a portion where the second partition walls 5b are densely arranged is formed in a region close to the central portion 6.
  • FIG. 6 is an explanatory view showing the heat exchanger 20 of the second embodiment.
  • FIG. 6 corresponds to FIG. 2 for explaining the first embodiment.
  • the heat exchanger 20 of the second embodiment differs from the heat exchanger 1 of the first embodiment in the following points. That is, the thermal conductivity of the material of the first partition 25a is higher than the thermal conductivity of the material of the second partition 5b. Moreover, the thickness of the 1st partition 25a and the thickness of the 2nd partition 25b are made the same. Since other components are the same, common components are denoted by the same reference numerals in the drawings, and detailed description thereof is omitted.
  • the first partition wall 25a is made of high thermal conductive ceramic.
  • the second partition wall 25b is formed of a normal ceramic, that is, a ceramic whose thermal conductivity (thermal conductivity) is inferior to the material of the first partition wall 25a.
  • the heat exchanger 20 of the second embodiment can have the same thickness as the first partition wall 25a and the second partition wall 25b. For this reason, pressure loss can be reduced.
  • FIG. 7A is an explanatory view of the heat exchanger 30 of the third embodiment as viewed from the inlet side.
  • FIG. 7B is a cross-sectional view taken along line BB in FIG.
  • FIG. 7C is an explanatory view of the heat exchanger 30 of the third embodiment viewed from the outlet side.
  • the first partition wall 35a corresponding to the first heat transfer means extends from the EGR gas inlet side to the outlet side of the heat exchanger 35. And the thickness is made thin as it goes to the exit side from the entrance side. That is, the thickness Tin on the inlet side> the thickness Tout on the outlet side.
  • the EGR gas flowing into the heat exchanger 35 is higher toward the inlet side. Therefore, on the inlet side, the thickness Tin on the inlet side is made larger than the thickness Tout on the outlet side in order to transfer more heat toward the refrigerant passage 4. Thereby, EGR gas can be cooled efficiently.
  • the thickness of the first partition wall 35a is changed.
  • the thickness of the second partition wall 35b extending from the EGR gas inlet side to the outlet side of the heat exchanger 35 is changed from the first partition wall 35a toward the outlet side with the first partition wall 35a. You can also make it thinner.
  • FIG. 8A is an explanatory view of the heat exchanger 40 of the fourth embodiment as viewed from the inlet side.
  • FIG. 8B is a cross-sectional view taken along the line CC in FIG.
  • FIG. 8C is an explanatory view of the heat exchanger 40 of the fourth embodiment viewed from the outlet side.
  • the first partition 45a corresponding to the first heat transfer means extends from the EGR gas inlet side to the outlet side of the heat exchanger 45.
  • the thickness is increased from the entrance side toward the exit side. That is, the thickness on the inlet side Tin ⁇ the thickness Tout on the outlet side.
  • entrance can be reduced.
  • the temperature of the EGR gas is high and the volume of the EGR gas is large. Therefore, if the flow path area is narrow, the influence on the pressure loss increases, and the pressure loss increases. Therefore, the thickness Tin on the inlet side is made thinner than the thickness Tout on the outlet side. Thereby, the fluid can be cooled efficiently. Moreover, the fall of temperature efficiency is suppressed because the exit side is made thick.
  • the thickness of the first partition 45a is changed.
  • the thickness of the second partition wall 45b extending from the EGR gas inlet side to the outlet side in the heat exchanger 45 is changed from the first partition wall 45a to the outlet side from the inlet side to the outlet side. It can also be thickened according to
  • the fourth embodiment is contrary to the third embodiment, but can be selected depending on which one is important.
  • FIG. 9 shows the heat exchanger 50 in which the second partition wall 55b has a rectangular cross-sectional shape.
  • the heat exchanger 50 includes an EGR pipe 52, a housing 53, and a refrigerant passage 54, all of which have a rectangular cross section.
  • the heat exchange body 55 provided with the 1st partition 55a and the 2nd partition 55b is provided.
  • FIG. 10 shows a heat exchanger 60 in which the cross-sectional shape of the second partition wall is a spiral shape.
  • the heat exchanger 60 includes the EGR pipe 2, the housing 3, and the refrigerant passage 4 as in the first embodiment. And the heat exchange body 65 provided with the 1st partition 65a which cross
  • the same configuration as that of the first to third embodiments can be employed.
  • FIG. 11 shows a heat exchanger 70 in which the cross-sectional shape of the second partition is an ellipse.
  • the heat exchanger 70 includes an EGR pipe 72, a housing 73, and a refrigerant passage 74, all of which have an elliptical cross section.
  • the heat exchange body 75 provided with the 1st partition 75a and the 2nd partition 75b is provided. In this way, even when the cross section is elliptical, the same configuration as in the first to third embodiments can be adopted.
  • FIG. 12 shows a heat exchanger 80 in which refrigerant passages are provided at the center and the outer periphery of the heat exchanger.
  • the heat exchanger 80 includes a refrigerant passage 11 disposed in the center portion in addition to the refrigerant passage 4 disposed in the outer peripheral portion. Even in such a case, the same configuration as in the first to third embodiments can be employed. Thereby, heat can be efficiently transmitted to the refrigerant passage 4 and the refrigerant passage 11, and the EGR gas can be cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 熱交換器は、冷却対象となる流体が通過する熱交換体と、前記熱交換体の中心部と外周部の少なくとも一方に設けられ、前記熱交換体と熱交換する冷媒が流通する冷媒通路と、を備え、前記熱交換体は、中心部から外周部に向かって延びる第1伝熱手段と、周方向に沿って延び、前記第1伝熱手段と交差する第2伝熱手段と、を備え、前記第1伝熱手段の伝熱効率が前記第2伝熱手段の伝熱効率よりも高い。これにより、外周部へ中心部に配置された冷媒通路に向かって効率的に熱伝達することができ、熱交換器における良好な熱伝導性を得て、冷却効率を向上することができる。

Description

熱交換器
 本発明は、熱交換器に関する。
 従来、種々の熱交換器が知られている。例えば、特許文献1には、第一の流体である加熱体が流通する複数のセルを有するハニカム構造体によって形成された第一流体流通部と、この第一流体流通部の外周部に設けられた第二流体流通部を備えた熱交換器が開示されている。第二流体流通部には、冷媒が流通し、第一流体流通部内を流通する加熱体から熱を奪い、加熱体を冷却する。また、特許文献2には、放射状の冷却面と、この放射状の冷却面と一体化され、軸に対して同心円状の冷却面を具備した空冷式半導体ヒートシンクが開示されている。特許文献2に開示された放射状の冷却面と同心円状の冷却面は、放熱面積を確保し易く、特許文献1に開示された熱交換器に組み合わせて用いることも有効であると考えられる。
国際公開2011/071161号公報 特開2003-100974号公報
 しかしながら、上記放射状の冷却面と同心円状の冷却面との組み合わせは、冷媒と、冷却対象となる加熱体の配置を考慮すると、伝熱効率(熱伝導性)の点でさらなる改良の余地を有していた。
 そこで、本明細書開示の熱交換器における良好な熱伝導性を得ることを課題とする。
 かかる課題を解決するために、本明細書に開示された熱交換器は、冷却対象となる流体が通過する熱交換体と、前記熱交換体の中心部と外周部の少なくとも一方に設けられ、前記熱交換体と熱交換する冷媒が流通する冷媒通路と、を備え、前記熱交換体は、中心部から外周部に向かって延びる第1伝熱手段と、周方向に沿って延び、前記第1伝熱手段と交差する第2伝熱手段と、を備えている。そして、前記第1伝熱手段の伝熱効率が前記第2伝熱手段の伝熱効率よりも高い。ここで、伝熱効率は、熱交換体を形成する材料の物性値である熱伝導率に1隔壁あたりの厚みを掛けた値として理解される。
 半径方向の熱の流れ、すなわち、熱交換体の中心部や外周部に設けられた冷媒通路に向かう伝熱経路の伝熱効率を高く設定し、冷媒通路へ向かう熱伝導性を向上させる。これにより、熱交換器における良好な熱伝導性を得て、冷却対象を効果的に冷却することができる。
 前記第1伝熱手段は、前記熱交換体の中心部から外周部に向かって放射状に延びる第1隔壁であり、前記第2伝熱手段は、同心状の第2隔壁であり、前記第1隔壁の厚みは、前記第2隔壁の厚みよりも厚く設定してもよい。同心状の隔壁、すなわち、第2隔壁は、冷却対象となる流体との接触面積を拡大することができる。その一方で、このような同心状の隔壁の伝熱効率は、放射状に延びる隔壁、すなわち、第1隔壁の伝熱効率よりも低くなければならない。そこで、第1隔壁の厚みを第2隔壁の厚みよりも厚く設定することにより、第1伝熱手段となる第1隔壁の伝熱効率を第2隔壁よりも高くしている。
 前記第1伝熱手段は、前記熱交換体の中心部から外周部に向かって放射状に延びる第1隔壁であり、前記第2伝熱手段は、同心状の第2隔壁であり、前記第1隔壁の材料の熱伝導性は、前記第2隔壁の材料の熱伝導性よりも高くしてもよい。上述のように、同心状の隔壁、すなわち、第2隔壁は、冷却対象となる流体との接触面積を拡大することができる。その一方で、このような同心状の隔壁の伝熱効率は、放射状に延びる隔壁、すなわち、第1隔壁の伝熱効率よりも低くなければならない。そこで、第1隔壁を、第2隔壁を形成する材料の熱伝導性よりも高い熱伝導性を有する材料によって形成することにより、第1伝熱手段となる第1隔壁の伝熱効率を第2隔壁よりも高くしている。熱伝導性に違いを持たせるためには、第1隔壁を形成する材料と第2隔壁を形成する材料との間で熱伝導率を異ならせることができる。すなわち、第1隔壁を、第2隔壁を形成する材料の熱伝導率よりも高い熱伝導率である材料により形成することができる。
 前記第1伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第1隔壁であり、前記第2伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第2隔壁であり、前記第1隔壁の厚みと前記第2隔壁の少なくとも一方は、その厚みが前記入口側から出口側に向かうに従って薄くされた部分を備えていてもよい。冷却対象となる流体の温度は、熱交換体の入口に近い程、温度が高い。そこで、第1隔壁や第2隔壁の厚みを、入口に近い側程厚くすることにより、冷媒通路側へ熱を伝導し易くし、温度効率を高める。
 前記第1伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第1隔壁であり、前記第2伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第2隔壁であり、前記第1隔壁の厚みと前記第2隔壁の少なくとも一方は、その厚みが前記入口側から出口側に向かうに従って厚くされた部分を備えていてもよい。圧力損失の低減を優先する形態である。熱交換体の入口近傍では、流体の温度が高く、その体積が大きい。このため、流路面積が狭いと圧力損失への影響が大きくなり、圧力損失が高くなる。そこで、第1隔壁や第2隔壁の厚みを、入口に近い側程薄くすることにより、圧力損失を低減し、出口に近い側程厚くすることによって温度効率の低下を防ぐ。
 本明細書開示の熱交換器によれば、良好な熱伝導性を得ることができる。
図1は第1実施形態の熱交換器の概略構成を示す説明図である。 図2は図1におけるA-A線断面図である。 図3は第1隔壁及び第2隔壁の厚みを示す説明図である。 図4は第2隔壁の密度を変化させた変形例を示す説明図である。 図5は図4に示す変形例における第2隔壁の配置を示す説明図である。 図6は第2実施形態の熱交換器を示す説明図である。 図7(A)~(C)は第3実施形態の熱交換器を示す説明図である。 図8は(A)~(C)は第4実施形態の熱交換器を示す説明図である。 図9は第2隔壁の断面形状を矩形とした例を示す説明図である。 図10は第2隔壁の断面形状を螺旋形状とした例を示す説明図である。 図11は第2隔壁の断面形状を楕円形状とした例を示す説明図である。 図12は冷媒通路を熱交換体の中心部と外周部とに設けた例を示す説明図である。
 以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。
(第1実施形態)
 まず、図1乃至3を参照して、第1実施形態の熱交換器1について説明する。熱交換器1は、種々の流体を冷却対象とすることができるが、第1実施形態では、内燃機関に装備される排気再循環装置に組み込まれ、EGR(Exhaust Gas Recirculation)ガスを冷却するEGRクーラとして用いられる。図1は第1実施形態の熱交換器1の概略構成を示す説明図である。図2は図1におけるA-A線断面図である。図3は熱交換器1が備える隔壁の厚みを示す説明図である。
 熱交換器1は、内部にEGRガスが流通するEGR配管2を備える。EGR配管は、ステンレス(SUS)製の管材である。EGR配管2はアルミ等、他の材料を用いることもできる。熱交換器1は、端部3aをEGR配管2の端部2aに接合し、EGR配管2の外周部に冷媒通路4を形成するハウジング部材3を備えている。ハウジング部材3もステンレス(SUS)製である。ハウジング部材3には、冷媒通路4に冷媒を導入する冷媒入口3b1と冷媒通路4内の冷媒を排出する冷媒出口3b2を備えている。冷媒はどのようなものであってもよいが、本実施形態では、冷却水を用いている。ハウジング部材3の外壁にはステー3cが設けられている。
 EGR配管2内には、EGR配管2の内周壁面2bに当接させて配置された熱交換体5が収容されている。熱交換体5には、冷却対象となる流体、すなわち、本実施形態では、EGRガスが通過する。熱交換体5は、炭化ケイ素(SiC)セラミック製である。セラミック材料は、効率的な熱伝導を有するとともに、高い耐蝕性を発揮することができる。このため、高熱伝導率を有するセラミック材料は、EGR配管内に配置される熱交換体や被覆部材の材料として好適である。熱交換体5は、筒状に成形されており、EGRガスが通過できるように通路が形成されている。熱交換体5は、EGR配管2を介して冷媒通路4内を流通する冷媒と熱交換することができる。すなわち、EGRガスは熱交換体5を通過する際に熱交換体5及びEGR配管2を介して冷媒と熱交換され、冷却される。
 図2を参照すると、熱交換体5は、その中心部6から外周部に向かって延びる第1伝熱手段として、中心部6から外周部に向かって放射状に延びる第1隔壁5aを備える。また、熱交換体5は、周方向に沿って延び、第1隔壁5aと交差する第2伝熱手段として、同心状の第2隔壁5bを備える。ここで、中心部6は、熱交換体5の完全に中心であることは求められない。第1隔壁5aは、熱交換体5の内側から外側に向かう熱伝達経路を形成するものであればよい。すなわち、半径方向に延びるものであれば良く、途中で波状になっていたり、湾曲していたりしてもよい。一方、第2隔壁5bの形状は、周方向に連なる部分を備えていればよい。第2隔壁5bは、流体の流通方向に直交する断面において円形であったり、楕円形であったり、矩形であってもよい。また、完全な環状を備えていることは求められず、環状が開放された形状のものであってもよい。このような第2隔壁5bは、第1隔壁5aと交差することで、熱交換体5の強度を向上させることができる。また、第2隔壁5bを設けることにより、流体との接触面積を増大することができ、温度効率を向上させることができる。
 ここで、図2及び図3を参照すると、第1隔壁5aの厚みT1は第2隔壁5bの厚みT2よりも厚い。このように、第1実施形態では、第1隔壁5aと第2隔壁5bの厚みに変化を持たせることにより、第1伝熱手段、すなわち、第1隔壁5aの伝熱効率を、第2伝熱手段、すなわち、第2隔壁5bの伝熱効率よりも高くしている。このように、第1隔壁5aの厚みを厚くして、冷媒通路4へ向かう熱伝導経路を太くすることによって伝熱効率を高くすることができる。また、第2隔壁5bを厚くしてしまうと、その分、圧力損失が増大する。しかしながら、第1実施形態では、第2隔壁5bは薄いので、圧力損失を低減することができ、熱効率の向上に寄与している。ここで、第2隔壁5bは、一枚一枚の厚みを薄くするとともに、枚数を増加させることができる。第2隔壁5bの枚数が増加すれば、流体との接触面積をより増大することができる。その結果、温度効率がさらに向上する。第2隔壁5bの枚数を増加させても、第2隔壁5bの厚みを薄くすれば圧力損失の増大が抑制される。このように第2隔壁5bの枚数の増加に伴って一枚一枚の第2隔壁5bの厚みを薄くすることは、第1隔壁5aの厚みと第2隔壁5bの厚みとの関係を満たす上でも都合がよい。また、第2隔壁5bを薄くすることは、EGRガスの流路面積を確保する上でも有利となる。
 ここで、第1隔壁5aの厚みと第2隔壁5bの厚みの比較についてより詳細に説明する。仮に、第1隔壁5aが局所的に薄くなっており、その箇所の厚みが、第2隔壁5b上の任意の位置の厚みよりも薄くなっていることがあっても、第1隔壁5aの平均厚みが、第2隔壁5bの平均厚みよりも厚くなっていればよい。
 なお、仮に、正方形のセルを備えた熱交換体を円筒状のEGR配管に収納すると、EGR配管近傍で、セルは正方形を維持することが困難となったり、セルの寸法も小さくなったりしてしまう。この結果、目詰まりが起こり易く、また、最外周部のセル内を流通するEGRガス量が低下して、冷却効率が低下する可能性がある。放射状に延びる第1隔壁5aと同心状の第2隔壁5bとを組み合わせたことにより、正方形のセルを採用した場合に懸念される不都合を解消することができる。
 このような熱交換器1は、EGR配管2の上流側及び下流側にコーン部材8を備えている。上流側のコーン部材8は、EGR配管2内にEGRガスを導入する導入部となる部材であり、下流側のコーン部材8はEGR配管2内のEGRガスの排出部となる部材である。コーン部材8は、径の大きい側がハウジング部材3の端部3aを覆うようにしてハウジング部材3にろう付けにより接合される。コーン部材8の先端部には、フランジ部材9がろう付けにより接合されている。熱交換器1は、その上流側においてフランジ部材9により、エンジンのエキゾーストマニホールドへ接続される。また、熱交換器1は、その下流側において、吸気管に接続される。なお、熱交換器1は、ハウジング部材3の外壁に設けられたステー3cによってエンジン本体に取り付けられている。
 ここで、第1実施形態の変形例について図4、図5を参照しつつ説明する。図4は第2隔壁の密度を変化させた変形例を示す説明図である。図5は図4に示す変形例における第2隔壁の配置を示す説明図である。
 第2隔壁5bは、同心状に複数、配置されている。ここで、隣接する第2隔壁5b間の距離をLnと表示することとする。nは、中心部6から外周部に向かって増加する自然数である。距離Lnは、外周部に向かうに従って大きくなる。すなわち、第2隔壁5bは、中心部6に近いほど密に配置されている。これにより、外周部側に近づくにつれて流体、すなわちEGRガスが流れ易くなる。第1実施形態では、冷媒通路4は外周部に設けられている。このため、効率的にEGRガスを冷却するためには、冷媒通路4に近い外周部により大量のEGRガスを流通させることが望ましい。そこで、中心部6に近い側に第2隔壁5bを密に配置することにより、中心部よりも外周部へより多くのEGRガスを流し、温度効率を向上させることができる。
 なお、距離Lnの並びは、全域において、Ln-1<Lnとなっていなくてもよい。要は、中心部6に近い領域に第2隔壁5bが密に配置された部分が形成されていればよい。
(第2実施形態)
 つぎに、第2実施形態について、図6を参照しつつ説明する。図6は第2実施形態の熱交換器20を示す説明図である。図6は、第1実施形態を説明する図2に対応する。第2実施形態の熱交換器20と第1実施形態の熱交換器1とは、以下の点で異なる。すなわち、第1隔壁25aの材料の熱伝導性が、第2隔壁5bの材料の熱伝導性よりも高い。また、第1隔壁25aの厚みと第2隔壁25bの厚みは、同一とされている。他の構成要素については、同一であるので、共通する構成要素については図面中、同一の参照番号を付し、その詳細な説明は省略する。
 第1隔壁25aは高熱伝導のセラミックによって形成されている。一方、第2隔壁25bは通常のセラミック、すなわち、第1隔壁25aの材料と比較してその熱伝導性(熱伝導率)が劣るセラミックによって形成されている。これにより、第1隔壁25a及び第2隔壁25bが流体から奪った熱は、第1隔壁25aを通じて冷媒通路4へ向かって伝達され易くなる。第2実施形態の熱交換器20は、第1実施形態と異なり、第1隔壁25aの厚みと第2隔壁25bの厚みと同じにすることができる。このため、圧力損失を低減することができる。
(第3実施形態)
 つぎに、第3実施形態の熱交換器30について図7(A)~(C)を参照しつつ説明する。図7(A)は第3実施形態の熱交換器30を入口側から観た説明図である。図7(B)は、図7(A)におけるB―B線断面図である。図7(C)は第3実施形態の熱交換器30を出口側から観た説明図である。
 第1伝熱手段に相当する第1隔壁35aは、熱交換体35におけるEGRガスの入口側から出口側に向かって延びている。そして、その厚みは、入口側から出口側に向かうに従って薄くされている。すなわち、入口側の厚みTin>出口側の厚みToutとされている。熱交換体35に流入するEGRガスは、入口側ほど高い。そこで、入口側において、より多くの熱を冷媒通路4に向かって伝達すべく、入口側の厚みTinを出口側の厚みToutよりも厚くしている。これにより、効率よく、EGRガスを冷却することができる。なお、図7(A)~(C)に示す例では、第1隔壁35aの厚みを変化させている。ここで、熱交換体35におけるEGRガスの入口側から出口側に向かって延びる第2隔壁35bの厚みを、第1隔壁35aに代えて、又は、第1隔壁35aとともに入口側から出口側に向かうに従って薄くすることもできる。
(第4実施形態)
 つぎに、第4実施形態の熱交換器40について図8(A)~(C)を参照しつつ説明する。図8(A)は第4実施形態の熱交換器40を入口側から観た説明図である。図8(B)は、図8(A)におけるC―C線断面図である。図8(C)は第4実施形態の熱交換器40を出口側から観た説明図である。
 第1伝熱手段に相当する第1隔壁45aは、熱交換体45におけるEGRガスの入口側から出口側に向かって延びている。そして、その厚みは、入口側から出口側に向かうに従って厚くされている。すなわち、入口側の厚みTin<出口側の厚みToutとされている。これにより、入口における圧力損失を低下させることができる。入口近傍では、EGRガスの温度が高く、EGRガスの体積も大きいことから、流路面積が狭いと圧力損失への影響が大きくなり、圧力損失が高くなる。そこで、入口側の厚みTinを出口側の厚みToutよりも薄くしている。これにより、効率よく、流体を冷却することができる。また、出口側が厚くされていることにより温度効率の低下が抑制されている。なお、図8(A)~(C)に示す例では、第1隔壁45aの厚みを変化させている。ここで、熱交換体45におけるEGRガスの入口側から出口側に向かって延びる第2隔壁45bの厚みを、第1隔壁45aに代えて、又は、第1隔壁45aとともに入口側から出口側に向かうに従って厚くすることもできる。
 なお、第4実施形態は、第3実施形態とは背反となるが、いずれを重視するかによって選択することができる。
(変形例)
 つぎに、各種変形例について説明する。
 図9は第2隔壁55bの断面形状を矩形とした熱交換器50を示している。熱交換器50は、第1実施形態と同様に、EGR配管52、ハウジング53、冷媒通路54を備えるが、これらはいずれも断面矩形とされている。また、第1隔壁55aと第2隔壁55bを備えた熱交換体55を備えている。このように、断面矩形とした場合であっても、第1実施形態~第4実施形態と同様の構成を採用することができる。
 つぎに、図10は第2状隔壁の断面形状を螺旋形状とした熱交換器60を示している。熱交換器60は、第1実施形態と同様に、EGR配管2、ハウジング3、冷媒通路4を備える。そして、螺旋形状の第2隔壁65bと交差する第1隔壁65aを備えた熱交換体65を備える。このように、第2隔壁65bの断面形状を螺旋形状とした場合であっても、第1実施形態~第3実施形態と同様の構成を採用することができる。
 つぎに、図11は第2隔壁の断面形状を楕円形状とした熱交換器70を示している。熱交換器70は、第1実施形態と同様に、EGR配管72、ハウジング73、冷媒通路74を備えるが、これらはいずれも断面楕円形とされている。また、第1隔壁75aと第2隔壁75bを備えた熱交換体75を備えている。このように、断面楕円形とした場合であっても、第1実施形態~第3実施形態と同様の構成を採用することができる。
 つぎに、図12は冷媒通路を熱交換体の中心部と外周部とに設けた熱交換器80を示している。熱交換器80は、外周部に配置された冷媒通路4に加え、中心部に配置された冷媒通路11を備える。このような場合であっても第1実施形態~第3実施形態と同様の構成を採用することができる。これにより、効率よく冷媒通路4及び冷媒通路11に熱を伝達することができ、EGRガスを冷却することができる。
 上記実施例は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。例えば、EGRクーラ以外の用途にも用いることができる。
 1、20、30、40、50、60、70 熱交換器
 2 EGR配管
 3、53、73 ハウジング
 4、54、74 冷媒通路
 5、25、55、65、75 熱交換体
 5a、25a、55a、65a、75a 第1隔壁
 5b、25b、55b、65b、75b 第2隔壁

Claims (5)

  1.  冷却対象となる流体が通過する熱交換体と、
     前記熱交換体の中心部と外周部の少なくとも一方に設けられ、前記熱交換体と熱交換する冷媒が流通する冷媒通路と、を備え、
     前記熱交換体は、中心部から外周部に向かって延びる第1伝熱手段と、周方向に沿って延び、前記第1伝熱手段と交差する第2伝熱手段と、を備え、前記第1伝熱手段の伝熱効率が前記第2伝熱手段の伝熱効率よりも高い熱交換器。
  2.  前記第1伝熱手段は、前記熱交換体の中心部から外周部に向かって放射状に延びる第1隔壁であり、
     前記第2伝熱手段は、同心状の第2隔壁であり、
     前記第1隔壁の厚みは、前記第2隔壁の厚みよりも厚い請求項1に記載の熱交換器。
  3.  前記第1伝熱手段は、前記熱交換体の中心部から外周部に向かって放射状に延びる第1隔壁であり、
     前記第2伝熱手段は、同心状の第2隔壁であり、
     前記第1隔壁の材料の熱伝導性は、前記第2隔壁の材料の熱伝導性よりも高い請求項1又は2に記載の熱交換器。
  4.  前記第1伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第1隔壁であり、前記第2伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第2隔壁であり、前記第1隔壁の厚みと前記第2隔壁の少なくとも一方は、その厚みが前記入口側から出口側に向かうに従って薄くされた部分を備える請求項1乃至3のいずれか一項に記載の熱交換器。
  5.  前記第1伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第1隔壁であり、前記第2伝熱手段は、前記熱交換体における冷却対象となる流体の入口側から出口側に向かって延びる第2隔壁であり、前記第1隔壁の厚みと前記第2隔壁の少なくとも一方は、その厚みが前記入口側から出口側に向かうに従って厚くされた部分を備える請求項1乃至3のいずれか一項に記載の熱交換器。
PCT/JP2012/077641 2012-10-25 2012-10-25 熱交換器 WO2014064812A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014543086A JP6075381B2 (ja) 2012-10-25 2012-10-25 熱交換器
PCT/JP2012/077641 WO2014064812A1 (ja) 2012-10-25 2012-10-25 熱交換器
EP12886912.0A EP2913616A4 (en) 2012-10-25 2012-10-25 Heat Exchanger
US14/437,956 US20150292812A1 (en) 2012-10-25 2012-10-25 Heat exchanger
CN201280076564.2A CN104736959B (zh) 2012-10-25 2012-10-25 热交换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/077641 WO2014064812A1 (ja) 2012-10-25 2012-10-25 熱交換器

Publications (1)

Publication Number Publication Date
WO2014064812A1 true WO2014064812A1 (ja) 2014-05-01

Family

ID=50544209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077641 WO2014064812A1 (ja) 2012-10-25 2012-10-25 熱交換器

Country Status (5)

Country Link
US (1) US20150292812A1 (ja)
EP (1) EP2913616A4 (ja)
JP (1) JP6075381B2 (ja)
CN (1) CN104736959B (ja)
WO (1) WO2014064812A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016125797A (ja) * 2015-01-08 2016-07-11 東京窯業株式会社 ハニカム構造体
EP3150949A4 (en) * 2014-05-26 2017-05-17 Calsonic Kansei Corporation Exhaust heat recovery device and manufacturing method for same
JP2019120488A (ja) * 2018-01-04 2019-07-22 日本碍子株式会社 熱交換部材及び熱交換器
JP2019184224A (ja) * 2018-03-30 2019-10-24 日本碍子株式会社 熱交換器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201807177VA (en) * 2016-04-13 2018-10-30 Applied Materials Inc Apparatus for exhaust cooling
DE102016210857A1 (de) * 2016-06-17 2017-12-21 Robert Bosch Gmbh Elektrischer Achsantrieb für ein Fahrzeug
JP2019060304A (ja) * 2017-09-27 2019-04-18 トヨタ自動車株式会社 排熱回収器
DE112018000203T5 (de) 2018-01-05 2019-09-05 Ngk Insulators, Ltd. Wärmeaustauschelement, Wärmetauscher und Wärmetauscher mit Reinigungseinrichtung
CN110314708B (zh) * 2018-03-30 2024-05-14 日本碍子株式会社 热交换器
BE1027057B1 (fr) * 2019-02-18 2020-09-14 Safran Aero Boosters Sa Échangeur de chaleur air-huile
US11920874B2 (en) * 2021-02-09 2024-03-05 Ngk Insulators, Ltd. Heat exchange member, heat exchanger and heat conductive member
DE112021000675T5 (de) 2021-03-11 2023-12-07 Ngk Insulators, Ltd. Wärmetauschelement, wärmetauscher, der das wärmetauschelement verwendet, und verfahren zum herstellen des wärmetauschelements

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159111U (ja) * 1984-09-26 1986-04-21
JPS61149790A (ja) * 1984-12-24 1986-07-08 Isuzu Motors Ltd 車両暖房用熱交換器
JPS63150584A (ja) * 1986-12-16 1988-06-23 Dai Ichi High Frequency Co Ltd 縦フインチユ−ブ
JPH04356689A (ja) * 1991-05-31 1992-12-10 Kazumi Seisakusho:Kk 自然対流式熱交換器用の放熱管およびその製造方法
JP2003100974A (ja) 2001-09-25 2003-04-04 Tdk Corp 空冷式半導体ヒートシンク
JP2008292017A (ja) * 2007-05-22 2008-12-04 Toyota Motor Corp 熱交換器
JP2011075216A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 熱交換器
WO2011071161A1 (ja) 2009-12-11 2011-06-16 日本碍子株式会社 熱交換器
JP2011518303A (ja) * 2008-04-16 2011-06-23 ウルバリン チューブ,インコーポレイテッド 羽根を有するフィンを備える管
JP2012189229A (ja) * 2011-03-08 2012-10-04 Ngk Insulators Ltd 熱交換部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB911987A (en) * 1959-09-14 1962-12-05 Alfa Romeo Spa Improvements in and relating to heat-exchangers
US4373577A (en) * 1980-07-21 1983-02-15 International Harvester Co. Heat exchanger assembly
US6419009B1 (en) * 1997-08-11 2002-07-16 Christian Thomas Gregory Radial flow heat exchanger
US7128136B2 (en) * 1998-08-10 2006-10-31 Gregory Christian T Radial flow heat exchanger
US6471392B1 (en) * 2001-03-07 2002-10-29 Holl Technologies Company Methods and apparatus for materials processing
CN2469395Y (zh) * 2001-03-07 2002-01-02 李劲松 一种新型导热管
US7440280B2 (en) * 2006-03-31 2008-10-21 Hong Kong Applied Science & Technology Research Institute Co., Ltd Heat exchange enhancement
US20120199326A1 (en) * 2011-02-03 2012-08-09 Visteon Global Technologies, Inc. Internal heat exchanger
US20140090818A1 (en) * 2011-05-23 2014-04-03 Ramot At Tel-Aviv University Ltd. Heat exchanger device
EP2821745A4 (en) * 2012-02-17 2015-11-11 Obschestvo S Ogranichennoi Otvetstvennostju Proryvnye Innovatsionnye T HEAT EXCHANGER DEVICE

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6159111U (ja) * 1984-09-26 1986-04-21
JPS61149790A (ja) * 1984-12-24 1986-07-08 Isuzu Motors Ltd 車両暖房用熱交換器
JPS63150584A (ja) * 1986-12-16 1988-06-23 Dai Ichi High Frequency Co Ltd 縦フインチユ−ブ
JPH04356689A (ja) * 1991-05-31 1992-12-10 Kazumi Seisakusho:Kk 自然対流式熱交換器用の放熱管およびその製造方法
JP2003100974A (ja) 2001-09-25 2003-04-04 Tdk Corp 空冷式半導体ヒートシンク
JP2008292017A (ja) * 2007-05-22 2008-12-04 Toyota Motor Corp 熱交換器
JP2011518303A (ja) * 2008-04-16 2011-06-23 ウルバリン チューブ,インコーポレイテッド 羽根を有するフィンを備える管
JP2011075216A (ja) * 2009-09-30 2011-04-14 Daikin Industries Ltd 熱交換器
WO2011071161A1 (ja) 2009-12-11 2011-06-16 日本碍子株式会社 熱交換器
JP2012189229A (ja) * 2011-03-08 2012-10-04 Ngk Insulators Ltd 熱交換部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2913616A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150949A4 (en) * 2014-05-26 2017-05-17 Calsonic Kansei Corporation Exhaust heat recovery device and manufacturing method for same
JP2016125797A (ja) * 2015-01-08 2016-07-11 東京窯業株式会社 ハニカム構造体
JP2019120488A (ja) * 2018-01-04 2019-07-22 日本碍子株式会社 熱交換部材及び熱交換器
US11555661B2 (en) 2018-01-04 2023-01-17 Ngk Insulators, Ltd. Heat exchanging member and heat exchanger
JP2023041735A (ja) * 2018-01-04 2023-03-24 日本碍子株式会社 熱交換部材及び熱交換器
JP7250514B2 (ja) 2018-01-04 2023-04-03 日本碍子株式会社 熱交換部材及び熱交換器
JP7448698B2 (ja) 2018-01-04 2024-03-12 日本碍子株式会社 熱交換部材及び熱交換器
JP2019184224A (ja) * 2018-03-30 2019-10-24 日本碍子株式会社 熱交換器
JP7184629B2 (ja) 2018-03-30 2022-12-06 日本碍子株式会社 熱交換器

Also Published As

Publication number Publication date
CN104736959B (zh) 2017-07-11
EP2913616A1 (en) 2015-09-02
EP2913616A4 (en) 2015-12-02
JP6075381B2 (ja) 2017-02-08
JPWO2014064812A1 (ja) 2016-09-05
US20150292812A1 (en) 2015-10-15
CN104736959A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
JP6075381B2 (ja) 熱交換器
EP3415854B1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US10739077B2 (en) Heat exchanger including furcating unit cells
US8069905B2 (en) EGR gas cooling device
JP5193310B2 (ja) 内燃機関用再循環排気ガス冷却器
JP5967300B2 (ja) 熱交換器
US6170568B1 (en) Radial flow heat exchanger
US10202880B2 (en) Exhaust heat exchanger
JP2018503792A (ja) 円弧状板型熱交換器
JP5420970B2 (ja) 熱交換器
US10545001B2 (en) Heat exchanger with adjacent inlets and outlets
JP2010223508A (ja) 車両用エンジンのインタークーラ
KR20170047997A (ko) 배기가스 쿨러
JP2011047542A (ja) Egrクーラー用扁平伝熱管およびこの扁平伝熱管を使用したegrクーラー
JP2008232142A (ja) クールドegrシステム及び該システム用熱交換器
EP2990749B1 (en) Heat exchanger
JP6104107B2 (ja) 熱交換器
JP2007225137A (ja) 排気ガス冷却装置用多管式熱交換器および伝熱管
CN104981678B (zh) 气体热交换器,特别是用于发动机的排气的气体热交换器
CN213066174U (zh) 一种换热器
JP2001248980A (ja) 多管式熱交換器
KR20140005216A (ko) 유체 흐름 제어장치를 갖는 유체 흐름 혼합박스
TW201520501A (zh) 用於熱交換器設備的收集管、熱交換器設備、和清空熱交換器設備的方法
JP7469177B2 (ja) 熱交換構造
JP7311655B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886912

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012886912

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014543086

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14437956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE