WO2014063584A1 - Méthode et dispositif de transmission de paramètres de correction de retard ionosphérique et satellite de navigation - Google Patents

Méthode et dispositif de transmission de paramètres de correction de retard ionosphérique et satellite de navigation Download PDF

Info

Publication number
WO2014063584A1
WO2014063584A1 PCT/CN2013/085303 CN2013085303W WO2014063584A1 WO 2014063584 A1 WO2014063584 A1 WO 2014063584A1 CN 2013085303 W CN2013085303 W CN 2013085303W WO 2014063584 A1 WO2014063584 A1 WO 2014063584A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionospheric delay
delay correction
correction parameter
navigation
parameter sets
Prior art date
Application number
PCT/CN2013/085303
Other languages
English (en)
Chinese (zh)
Inventor
黄河
马志锋
魏林辉
马子江
刘红军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014063584A1 publication Critical patent/WO2014063584A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/072Ionosphere corrections

Definitions

  • the present invention relates to the field of communications, and in particular to a method, device, and navigation satellite for transmitting ionospheric delay correction parameters.
  • BACKGROUND OF THE INVENTION The BeiDou (COMPASS) Navigation Satellite System is a self-developed, independently operating global satellite navigation system being implemented in China. Beidou satellite navigation system is committed to providing high quality positioning, navigation and timing services to users around the world, including open service and authorized service.
  • the open service provides free positioning, speed measurement and timing service to the world.
  • the positioning accuracy is 10 meters, the speed measurement accuracy is 0.2 m/s, and the timing accuracy is 10 nanoseconds.
  • the Authorized Service provides positioning, speed measurement, timing and communication services, and system integrity information for users with high-precision, highly reliable satellite navigation needs.
  • the Beidou satellite navigation system consists of three parts: the space segment, the ground segment and the user segment.
  • the space segment includes five geostationary orbit satellites and 30 non-geostationary orbit satellites.
  • the ground segment includes several ground stations, such as the main control station, the injection station and the monitoring station.
  • the user segment includes a Beidou user terminal and a terminal compatible with other satellite navigation systems. Satellite navigation system is an important spatial information infrastructure. It has been widely used in many fields such as surveying and mapping, telecommunications, water conservancy, fishery, transportation, forest fire prevention, disaster reduction and public security, and military. It is closely related to national security.
  • ionospheric delay is one of the serious error sources of satellite navigation technology. Can it effectively eliminate or reduce the accuracy and reliability of ionospheric delay error related to satellite navigation terminal positioning.
  • navigation satellite systems such as GPS and Galileo broadcast ionospheric delay correction parameters in navigation messages for ionospheric delay correction.
  • the ionospheric delay correction parameters are valid for all users (all regions) in the world.
  • Embodiments of the present invention provide a method, a device, and a navigation satellite for transmitting ionospheric delay correction parameters, so as to at least solve the positioning accuracy caused by using the same ionospheric model and ionospheric delay correction parameters in the related art in the related art. Low problem.
  • a method for transmitting an ionospheric delay correction parameter comprising: acquiring, by a navigation satellite, a plurality of ionospheric delay correction parameter sets, wherein each of the ionospheric delay correction parameter sets corresponds to a applicable region Range; the navigation satellite broadcasts a plurality of the above-mentioned ionospheric delay correction parameter sets through a navigation message.
  • the navigation satellite acquires a plurality of the ionospheric delay correction parameter sets by at least one of: the navigation satellite acquires a plurality of the ionospheric delay correction parameter sets from the ground control station; and the navigation satellites are from the navigation satellites except The other navigation satellites acquire a plurality of the above-mentioned ionospheric delay correction parameter sets, wherein the navigation satellites and the other navigation satellites belong to the same navigation system.
  • the acquiring, by the navigation satellite, the plurality of ionospheric delay correction parameter sets from the ground control station comprises: acquiring, by the navigation satellites, different sets of ionospheric delay correction parameters from the same or different ground control stations, wherein the ionospheric delay is The modified parameter set is obtained by the above ground control station by detecting the ionosphere and/or analyzing historical data of the ionosphere.
  • the ground control station is a station located on the ground and communicating with the navigation satellite, wherein the ground control station comprises: a main control station, an injection station, and a monitoring station.
  • the navigation message further includes at least one of the following: an applicable region range information corresponding to each of the ionospheric delay correction parameter sets, and an ionospheric model applicable to each of the ionospheric delay correction parameter sets, wherein different ionizations
  • the layer model corresponds to different ionospheric delay calculation methods.
  • the navigation satellite determines the applicable region range information and the applicable ionospheric model corresponding to each of the ionospheric delay correction parameter sets by the following steps: the navigation satellite is configured in the navigation message according to each of the above-mentioned ionospheric delay correction parameter sets.
  • the different ionospheric delay correction parameter sets have at least one of the following characteristics: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionospheric delay correction parameter sets include the same number of parameters or Different; the parameters of different ionospheric delay correction parameter sets are the same or different.
  • the navigation satellite broadcasts the plurality of the ionospheric delay correction parameter sets by using the navigation message: the navigation satellite broadcasts the plurality of the ionospheric delay correction parameter sets to the terminal by using the navigation message, and/or is in the same navigation as the navigation satellite.
  • Other navigation satellites in the system Preferably, when the navigation satellite broadcasts a plurality of the above-mentioned ionospheric delay correction parameter sets to other navigation satellites in the same navigation system as the navigation satellite by using a navigation message, the navigation satellite is a geostationary satellite, and the navigation Other navigation satellites of the satellite in the same navigation system are non-geostationary orbit satellites.
  • the navigation satellite broadcasts a plurality of the ionospheric delay correction parameter sets by: the navigation satellite encrypts and then broadcasts part or all of the ionospheric delay correction parameter sets of the plurality of ionospheric delay correction parameter sets.
  • the navigation satellite broadcasts the plurality of the ionospheric delay correction parameter sets by using the navigation message: the navigation satellite broadcasts different ionospheric delay correction parameter sets in the same or different broadcast channels, wherein different broadcast channels correspond to different Frequency point.
  • an apparatus for transmitting ionospheric delay correction parameters comprising: an acquisition module configured to acquire a plurality of ionospheric delay correction parameter sets, wherein each of said ionospheric delay correction parameter sets Corresponding to the applicable area range; the broadcast module is configured to broadcast a plurality of the above-mentioned ionospheric delay correction parameter sets by the navigation message.
  • a navigation satellite comprising any of the above-described ionospheric delay correction parameter transfer means.
  • the navigation satellite acquires a plurality of ionospheric delay correction parameter sets, wherein each ionospheric delay correction parameter set in the plurality of ionospheric delay correction parameter sets corresponds to an applicable regional range, and the navigation satellite And broadcasting the plurality of ionospheric delay correction parameter sets by using a navigation message, so that the ionospheric delay correction parameter set adapted to the geographical area can be selected for different geographical regions to correct the ionospheric delay, thereby reflecting different geographical regions.
  • the ionospheric delay characteristics improve positioning accuracy.
  • FIG. 1 is a flow chart of a method for transmitting ionospheric delay correction parameters according to an embodiment of the present invention
  • 2 is a schematic diagram of a network structure of a method for transmitting ionospheric delay parameters according to an embodiment of the present invention
  • FIG. 1 is a flow chart of a method for transmitting ionospheric delay correction parameters according to an embodiment of the present invention
  • 2 is a schematic diagram of a network structure of a method for transmitting ionospheric delay parameters according to an embodiment of the present invention
  • FIG. 1 is a flow chart of a method for transmitting ionospheric delay correction parameters according to an embodiment of the present invention
  • 2 is a schematic diagram of a network structure of a method for transmitting ionospheric delay parameters according to an embodiment of the present invention
  • FIG. 1 is a flow chart of a method for transmitting ionospheric delay correction parameters according to an embodiment of the present invention
  • 2 is
  • FIG. 3 is a schematic diagram of a network structure of a method for transmitting ionospheric delay parameters according to an embodiment of the present invention
  • FIG. FIG. 5 is a block diagram showing the structure of another apparatus for transmitting ionospheric delay correction parameters according to an embodiment of the present invention
  • FIG. 6 is an ionosphere according to an embodiment of the present invention.
  • FIG. 7 is still another processing flowchart of the method for transmitting the ionospheric delay correction parameter according to an embodiment of the present invention.
  • a method for transmitting an ionospheric delay correction parameter includes steps S102 to S104.
  • Step S102 The navigation satellite acquires a plurality of ionospheric delay correction parameter sets, where each ionospheric delay correction parameter set corresponds to an applicable region range.
  • Step S104 The navigation satellite broadcasts a plurality of ionospheric delay correction parameter sets through the navigation message.
  • the navigation satellite acquires a plurality of ionospheric delay correction parameter sets, wherein each ionospheric delay correction parameter set of the plurality of ionospheric delay correction parameter sets corresponds to a applicable region range, and the navigation satellite passes the navigation message Broadcasting the plurality of ionospheric delay correction parameter sets to enable the ionospheric delay correction parameter set to be adapted to different geographical regions to correct the ionospheric delay, thereby embodying the ionospheric delay characteristics of different geographical regions. , thereby improving the positioning accuracy.
  • the navigation satellite may be any type of satellite in the navigation system, for example, it may be a geostationary satellite or a non-stationary orbit satellite.
  • the navigation satellite may acquire a plurality of the ionospheric delay correction parameter sets by at least one of the following: the navigation satellite acquires a plurality of the ionospheric delays from the ground control station. Correcting the parameter set; the above navigation satellites are from other navigational satellites other than the navigation satellite The star acquires a plurality of the above-described ionospheric delay correction parameter sets, wherein the navigation satellite and the other navigation satellites belong to the same navigation system.
  • the network structure diagram 1 of the method for transmitting the ionospheric delay parameter shown in FIG. 2 the network entity involved in the preferred embodiment may include: a navigation satellite, a ground control station, and a terminal.
  • the navigation satellites obtain the ionospheric delay correction parameter set from the ground control station, and the navigation satellite may be a geostationary orbit satellite or a non-geostationary orbit satellite, and the acquired ionospheric delay correction parameter set is sent to the terminal.
  • the acquiring, by the navigation satellite, the plurality of ionospheric delay correction parameter sets from the ground control station comprises: acquiring, by the navigation satellites, different ionospheric delay correction parameter sets from the same or different ground control stations.
  • the ionospheric delay correction parameter set is obtained by the ground control station by detecting the ionosphere and/or analyzing historical data of the ionosphere. That is, the ground control station obtains a plurality of the above-mentioned ionospheric delay correction parameter sets by detecting the ionosphere and/or analyzing historical data of the ionosphere (which can update the ionospheric delay correction parameter set of the navigation satellite broadcast).
  • the uplink channel transmits a plurality of the above-described ionospheric delay correction parameter sets to the navigation satellite.
  • the ground control station is a station located on the ground and communicating with the navigation satellite, wherein the ground control station may include but is not limited to the following types of stations: a main control station, an injection station, and a monitoring station.
  • the navigation message may further include at least one of the following: applicable region range information corresponding to each of the ionospheric delay correction parameter sets, and each of the ionospheric delay correction parameter sets.
  • a suitable ionospheric model in which different ionospheric models correspond to different ionospheric delay calculation methods. That is, in the above navigation message, the applicable region range and the applicable ionospheric model corresponding to each ionospheric delay correction parameter set are indicated, so that the terminal can accurately and conveniently correct the parameters and the ionospheric model according to the corresponding ionospheric delay in the geographical region. The ionospheric delay is calculated to further improve the positioning accuracy of different geographical regions.
  • the navigation satellite determines the applicable region range information and the applicable ionospheric model corresponding to each of the above-mentioned ionospheric delay correction parameter sets by the following steps: the navigation satellite is configured according to each ionospheric delay correction parameter set in the navigation message
  • the sequence or location protocol in the convention stipulates the applicable region range information and the applicable ionospheric model corresponding to each of the above-mentioned ionospheric delay correction parameter sets.
  • the order of the number set in the above navigation message is to agree on the applicable area range information and the applicable ionospheric model corresponding to each of the above-mentioned ionospheric delay correction parameter sets, and the first ionosphere in the order of appearance in the above navigation message is agreed upon.
  • the delay correction parameter set is globally applicable and uses the KLOBUCHAR model.
  • the second ionospheric delay correction parameter set is applicable to the Asian range and uses the enhanced KLOBUCHAR model.
  • different ionospheric delay correction parameter sets correspond to the same or different applicable regions. range. That is, different ionospheric delay correction parameter sets correspond to the same or different applicable region ranges.
  • the two ionospheric delay correction parameter sets can adopt different ionospheric models. To perform ionospheric delay correction in a targeted manner by different ionization delay calculation methods.
  • different ionospheric delay correction parameter sets may have at least one of the following features: different ionospheric delay correction parameter sets correspond to the same or different ionospheric models; different ionization
  • the layer delay correction parameter set contains the same or different number of parameters; the parameters of different ionospheric delay correction parameter sets are the same or different. That is, the plurality of ionospheric delay correction parameter sets may correspond to one ionospheric model or respectively correspond to different ionospheric models, or may include the same or different parameters, and the parameter values may be the same or different.
  • the ionospheric model described above may include, but is not limited to, the following models: for example, a KLOBUCHAR model, a NeQuick model, and an enhanced KLOBUCHAR model.
  • the navigation satellite broadcasts the plurality of ionospheric delay correction parameter sets by using the navigation message: the navigation satellite delays the plurality of ionospheric delay correction parameters by using the navigation message.
  • the set is broadcast to the terminal and/or other navigation satellites in the same navigation system as the navigation satellite described above.
  • FIG. 3 is a schematic diagram of a network structure of a method for transmitting an ionospheric delay parameter according to an embodiment of the present invention.
  • the network entity involved in this embodiment may include: a navigation satellite, a ground control station, and a terminal. .
  • the navigation satellite that broadcasts the plurality of ionospheric delay correction parameter sets is a geostationary orbit satellite, and the geostationary orbit satellite acquires an ionospheric delay correction parameter set from a ground control station and forwards it to a non-stationary orbital satellite.
  • Star and terminal There may be multiple ground control stations, and multiple sets of ionospheric delay correction parameters saved by the navigation satellite may come from different ground control stations.
  • the navigation satellite may broadcast a plurality of the above-mentioned ionospheric delay correction parameter sets by using different security policies.
  • the navigation satellite broadcasts a plurality of the above-mentioned ionospheric delay correction parameter sets by: The navigation satellite encrypts and then broadcasts part or all of the ionospheric delay correction parameter sets in the plurality of ionospheric delay correction parameter sets.
  • different security policies may be used to broadcast a plurality of the above-mentioned ionospheric delay correction parameter sets according to different needs, and the partial ionospheric delay correction parameter sets of the plurality of ionospheric delay correction parameter sets are not encrypted, and are freely used by all users; Another part of the ionospheric delay correction parameter set in the above-mentioned ionospheric delay correction parameter set is encrypted for use by some privileged users to obtain higher positioning accuracy.
  • the navigation satellite broadcasts the plurality of ionospheric delay correction parameter sets by using the navigation message: the navigation satellite broadcasts different ionospheric delay correction parameter sets in the same or different broadcast channels, Among them, different broadcast channels correspond to different frequency points. That is, different ionospheric delay correction parameter sets can be broadcast in the same satellite broadcast channel (same frequency point) or in different satellite broadcast channels (different frequency points).
  • the above navigation satellite may belong to, but is not limited to, the following navigation systems: for example, Beidou satellite navigation system, Global Position System (GPS), GALILEO, GLONASS (Global Satellite Navigation System in Russian, Global Naviga Tion Satellite Syste) and other navigation systems.
  • the ionospheric delay correction parameter transfer device includes: an acquisition module 402 configured to acquire a plurality of ionospheric delay corrections. a parameter set, wherein each of the ionospheric delay correction parameter sets corresponds to a applicable region range; the broadcast module 404 is coupled to the acquisition module 402, and configured to broadcast a plurality of the ionospheric delay correction parameter sets by using a navigation message.
  • the obtaining module 402 acquires a plurality of ionospheric delay correction parameter sets, wherein each ionospheric delay correction parameter set in the plurality of ionospheric delay correction parameter sets corresponds to a applicable area range, and the broadcast module 404
  • the plurality of ionospheric delay correction parameter sets are broadcasted by the navigation message, so that the ionospheric delay correction parameter set adapted to the geographical area can be selected for different geographical regions to correct the ionospheric delay, thereby reflecting the ionization of different geographical regions. Layer delay characteristics, which improve positioning accuracy.
  • the acquiring module 402 may obtain multiple sets of the ionospheric delay correction parameters by using at least one of the following methods: acquiring a plurality of the ionospheric delay correction parameters from the ground control station. Set; from a navigation satellite other than broadcasting a plurality of the above-described ionospheric delay correction parameter sets The other navigation satellites acquire a plurality of the above-mentioned ionospheric delay correction parameter sets, wherein the navigation satellites and the other navigation satellites belong to the same navigation system.
  • the obtaining module 402 obtains different sets of ionospheric delay correction parameters from the same or different ground control stations, wherein the ionospheric delay correction parameter set is that the ground control station passes the ionosphere Detection and/or analysis of historical data from the ionosphere.
  • the navigation message broadcast by the broadcast module 404 may further include at least one of the following: applicable area range information corresponding to each of the ionospheric delay correction parameter sets, each of the above ionizations.
  • the ionospheric model is applicable to the layer delay correction parameter set, wherein different ionospheric models correspond to different ionospheric delay calculation methods. That is, in the above navigation message, the applicable region range and the applicable ionospheric model corresponding to each ionospheric delay correction parameter set are indicated, so that the terminal can accurately and conveniently correct the parameters and the ionospheric model according to the corresponding ionospheric delay in the geographical region.
  • the ionospheric delay is calculated to further improve the positioning accuracy of different geographical regions. In order to improve the flexibility of the preferred embodiment to meet the requirements of different application scenarios, in the preferred embodiment, as shown in FIG.
  • the apparatus for transmitting the ionospheric delay correction parameter further includes: an appointment module 406, configured to pass The following steps determine the applicable region range information and the applicable ionospheric model corresponding to each of the above-mentioned ionospheric delay correction parameter sets: each of the above ionosphere is defined according to the sequence or position protocol of each ionospheric delay correction parameter set in the above navigation message The applicable region range information corresponding to the delay correction parameter set and the applicable ionosphere model.
  • the applicable area range information corresponding to each of the above-mentioned ionospheric delay correction parameter sets and the applicable ionospheric model are exemplified by the order of each ionospheric delay correction parameter set in the above-mentioned navigation message, and the navigation is as follows.
  • the first ionospheric delay correction parameter set in the order of appearance is applicable to the global scale and adopts the KLOBUCHAR model.
  • the second ionospheric delay correction parameter set is applicable to the Asian scope and adopts the enhanced KLOBUCHAR model.
  • the broadcast module 404 is further configured to broadcast, by using the navigation message, a plurality of the ionospheric delay correction parameter sets to the terminal and/or to broadcast the navigation message. Satellites are other navigation satellites in the same navigation system. Preferably, in the preferred embodiment, the broadcast module 404 broadcasts, by using the navigation message, a plurality of the ionospheric delay correction parameter sets to other navigation satellites in the same navigation system as the navigation satellites that broadcast the navigation message.
  • the navigation satellite is a geostationary orbit satellite, and the other navigation satellites in the same navigation system as the navigation satellite are non-stationary orbit satellites.
  • a plurality of the above-mentioned ionospheric delay correction parameter sets may be broadcasted by using different security policies.
  • the above broadcast module 404 broadcasts a plurality of the above-mentioned ionospheric delay repairs in the following manner.
  • Positive parameter set Some or all of the ionospheric delay correction parameter sets in the above-mentioned ionospheric delay correction parameter set are encrypted and then broadcast.
  • the broadcast module 404 is further configured to broadcast different sets of ionospheric delay correction parameters in the same or different broadcast channels, wherein different broadcast channels correspond to different frequency points.
  • FIG. 6 is another processing flowchart of the ionospheric delay correction parameter transmission method according to an embodiment of the present invention. As shown in FIG.
  • Step S602 The ground control station calculates the ionospheric delay correction parameter set of different regions by detecting the ionosphere and analyzing the historical data of the ionosphere, and The ionospheric delay correction parameter set is uploaded to the navigation satellite through the uplink channel.
  • Step S604 The navigation satellite broadcasts a plurality of ionospheric delay correction parameter sets in the navigation message, and defines and applies a range of ionization delay correction parameter sets by a protocol, and the first ionospheric delay correction parameter set in the navigation message includes The 8 parameters corresponding to the KLOBUCHAR model are applicable to the global scope; the second ionospheric delay correction parameter set contains 14 parameters corresponding to the enhanced KLOBUCHAR model for the Asian region.
  • Step S606 After receiving the navigation message, the terminal determines that it is in the Asian region according to the protocol agreement and the user setting, and selects the second ionospheric delay correction parameter set and uses the enhanced KLOBUCHAR model to calculate the ionospheric delay; If the user is not in the Asia-Pacific region, the terminal selects the first ionospheric delay correction parameter set and uses the KLOBUCHAR model to calculate the ionospheric delay.
  • the first ionospheric delay correction parameter set and the second ionospheric delay correction parameter set may be provided by different ground control stations.
  • the second ionospheric delay correction parameter set may be transmitted in an encrypted manner for use by an authorized user.
  • the first ionospheric delay correction parameter set may also be based on Different requirements are selected to be transmitted in encrypted or unencrypted mode.
  • different sets of ionospheric delay correction parameters may be broadcast in the same satellite broadcast channel (same frequency point) or in different satellite broadcast channels (different frequency points).
  • the use range of different ionospheric delay correction parameter sets is determined by a protocol convention, and FIG.
  • Step S702 The ground control station calculates the ionospheric delay correction parameter set in different regions by detecting the ionosphere and analyzing the historical data of the ionosphere, and The ionospheric delay correction parameter set is uploaded to the navigation satellite through the uplink channel.
  • Step S704 The navigation satellite broadcasts a plurality of ionospheric delay correction parameter sets in the navigation message, and also indicates the applicable range (applicable region range) of each ionospheric delay correction parameter set and the corresponding ionospheric model in the navigation message.
  • the ionospheric delay correction parameter set A (including 8 parameters) and its corresponding model are the KLOBUCHAR model, and the ionospheric delay correction parameter set A corresponds to the applicable range indication information, indicating that the applicable area range is global.
  • the ionospheric delay correction parameter set B (including 14 parameters) and its corresponding model are enhanced KLOBUCHAR models, and the ionospheric delay correction parameter set B corresponding to the applicable range indication information, indicating that the applicable area range is the Asia- Pacific region; S706: After receiving the navigation message, the terminal determines, according to the applicable area range and user setting corresponding to the ionospheric delay correction parameter set in the navigation message, that the location is in the Asian region, and selects the ionospheric delay correction parameter set B and uses the enhanced type.
  • the KLOBUCHAR model calculates the ionospheric delay; if the terminal determines that it is not in the Asia-Pacific region, the terminal selects the ionospheric delay correction parameter set A and uses the KLOBUCHAR model to calculate the ionospheric delay.
  • the first ionospheric delay correction parameter set and the second ionospheric delay correction parameter set may be provided by different ground control stations.
  • the ionospheric delay correction parameter set A related information is broadcasted in the satellite channel 1, the satellite channel 1 is not encrypted; the ionospheric delay correction parameter set B related information is broadcast in the satellite channel 2, the satellite Channel 2 is encrypted.
  • the above preferred embodiment achieves the following technical effects: acquiring a plurality of ionospheric delay correction parameter sets, wherein each ionospheric delay correction parameter set in the plurality of ionospheric delay correction parameter sets Corresponding to different applicable area ranges, and broadcasting the plurality of ionospheric delay correction parameter sets by navigation message, so that the ionospheric delay correction parameter set adapted to the geographical area can be selected for different geographical regions to calculate the ionospheric delay, and then It reflects the ionospheric delay characteristics of different geographical regions, thus improving the positioning accuracy.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

L'invention concerne une méthode et un dispositif de transmission de paramètres de correction de retard ionosphérique et un satellite de navigation. La méthode comprend les étapes suivantes : un satellite de navigation acquiert une pluralité d'ensembles de paramètres de correction de retard ionosphérique, chaque ensemble de paramètres de correction de retard ionosphérique correspondant à une zone d'application (S102) ; et le satellite de navigation diffuse la pluralité d'ensembles de paramètres de correction de retard ionosphérique grâce à des messages de navigation (S104). La méthode résout le problème de faible précision de localisation de l'état de la technique provoqué par le fait que les mêmes modèles ionosphériques et les mêmes paramètres de correction de retard ionosphérique sont utilisés dans le monde entier, ce qui améliore la précision de localisation.
PCT/CN2013/085303 2012-10-22 2013-10-16 Méthode et dispositif de transmission de paramètres de correction de retard ionosphérique et satellite de navigation WO2014063584A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210405494.2A CN103777211B (zh) 2012-10-22 2012-10-22 电离层延迟修正参数的传递方法、装置及导航卫星
CN201210405494.2 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014063584A1 true WO2014063584A1 (fr) 2014-05-01

Family

ID=50544003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085303 WO2014063584A1 (fr) 2012-10-22 2013-10-16 Méthode et dispositif de transmission de paramètres de correction de retard ionosphérique et satellite de navigation

Country Status (2)

Country Link
CN (1) CN103777211B (fr)
WO (1) WO2014063584A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370466A1 (en) * 2015-06-19 2016-12-22 Centre National D'etudes Spatiales Gnss receiver with an on-board capability to implement an optimal error correction mode
EP3575831A1 (fr) * 2018-05-31 2019-12-04 Novatel, Inc. Système et procédé de transformation de corrections atmosphériques entre systèmes de correction
CN112444823A (zh) * 2019-08-29 2021-03-05 新纳传感系统有限公司 电离层延迟模型系统和建模方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038337A (zh) * 2006-03-14 2007-09-19 联发科技股份有限公司 储存全球导航卫星系统的辅助校正数据的方法、装置及全球导航卫星系统接收器
CN101893714A (zh) * 2010-07-09 2010-11-24 中国科学院测量与地球物理研究所 全球卫星导航系统广播电离层时延修正方法
CN102007425A (zh) * 2008-04-14 2011-04-06 诺基亚公司 提供定位辅助数据
CN102323572A (zh) * 2011-06-14 2012-01-18 北京航空航天大学 一种卫星导航信号电离层差分改正数估计方法
WO2012130252A1 (fr) * 2011-03-25 2012-10-04 European Space Agency (Esa) Procédé, appareil et système pour déterminer une position d'un objet ayant un récepteur de géolocalisation et navigation par un système de satellites par traitement de mesures de phase de porteuse de type données non différenciées et de données d'ionosphère de type produits externes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038337A (zh) * 2006-03-14 2007-09-19 联发科技股份有限公司 储存全球导航卫星系统的辅助校正数据的方法、装置及全球导航卫星系统接收器
CN102007425A (zh) * 2008-04-14 2011-04-06 诺基亚公司 提供定位辅助数据
CN101893714A (zh) * 2010-07-09 2010-11-24 中国科学院测量与地球物理研究所 全球卫星导航系统广播电离层时延修正方法
WO2012130252A1 (fr) * 2011-03-25 2012-10-04 European Space Agency (Esa) Procédé, appareil et système pour déterminer une position d'un objet ayant un récepteur de géolocalisation et navigation par un système de satellites par traitement de mesures de phase de porteuse de type données non différenciées et de données d'ionosphère de type produits externes
CN102323572A (zh) * 2011-06-14 2012-01-18 北京航空航天大学 一种卫星导航信号电离层差分改正数估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GAO, Y ET AL.: "Precise ionosphere modeling using regional GPS network data.", JOURNAL OF GLOBAL POSITIONING SYSTEMS., vol. 1, no. 1, 2002, pages 18 - 24 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160370466A1 (en) * 2015-06-19 2016-12-22 Centre National D'etudes Spatiales Gnss receiver with an on-board capability to implement an optimal error correction mode
EP3115807A3 (fr) * 2015-06-19 2017-04-05 Centre National d'Etudes Spatiales Récepteur gnss avec une capacité embarquée afin de mettre en oeuvre un mode de correction d'erreur optimale
EP3608690A1 (fr) * 2015-06-19 2020-02-12 Centre National D'etudes Spatiales Récepteur gnss avec une capacité embarquée afin de mettre en uvre un mode de correction d'erreur optimale
US10782414B2 (en) 2015-06-19 2020-09-22 Centre National D'etudes Spatiales GNSS receiver with an on-board capability to implement an optimal error correction mode
EP3575831A1 (fr) * 2018-05-31 2019-12-04 Novatel, Inc. Système et procédé de transformation de corrections atmosphériques entre systèmes de correction
US10895647B2 (en) 2018-05-31 2021-01-19 Novatel Inc. System and method for transforming atmospheric corrections between correction systems
CN112444823A (zh) * 2019-08-29 2021-03-05 新纳传感系统有限公司 电离层延迟模型系统和建模方法
CN112444823B (zh) * 2019-08-29 2023-06-27 新纳传感系统有限公司 电离层延迟模型系统和建模方法

Also Published As

Publication number Publication date
CN103777211A (zh) 2014-05-07
CN103777211B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
CN106569239B (zh) 一种广播式网络rtk定位技术
CN102272618B (zh) 分集时间和频率定位接收机
US7236126B2 (en) AGPS system using NTP server and method for determining the location of a terminal using a NTP server
JP3794413B2 (ja) 測位システムおよび測位端末
CN107861131B (zh) 一种斜路径电离层延迟的获取方法及系统
US20170192102A1 (en) eLORAN POSITIONING VIA CROWDSOURCING
CA2828323A1 (fr) Amelioration d'un systeme de correction differentielle agissant sur des recepteurs itinerants actives pour un signal pn&t secondaire non-gps pour caracteriser des erreurs loca les
US8462045B2 (en) Satellite based position of a cellular terminal
US20070120737A1 (en) Method and system for providing location assistance information to a mobile station
US9562974B2 (en) Multiple content message base-rover architecture
CN113791431B (zh) 基于p2p技术构建的对等安全卫星高精度增强网络方法
CN114501313A (zh) 终端定位的方法、装置、电子设备及存储介质
GB2513582A (en) A device and methods for processing encrypted navigation signals
WO2014063573A1 (fr) Méthode, dispositif et terminal utilisant des paramètres de correction de retard ionosphérique
WO2014063584A1 (fr) Méthode et dispositif de transmission de paramètres de correction de retard ionosphérique et satellite de navigation
US11320541B1 (en) Georeferencing certification method and system for mobile devices
CN115774278A (zh) 一种可信空间定位标定服务系统及其操作方法
US11686850B2 (en) Ionosphere grid history and compression for GNSS positioning
KR20190130398A (ko) Gps 보정 데이터 제공 방법 및 시스템
WO2014063617A1 (fr) Procédé, dispositif et système pour la configuration de paramètres de correction du retard ionosphérique
Liang et al. Experimental research on BeiDou time transfer using the NIM made GNSS time and frequency receivers at the BIPM in Euro-Asia link
CN116931027B (zh) 一种基于sbas的动态高精度卫星共视算法系统
Kumari et al. Metropolitan Beacon System with Efficient Encryption Bit for Payload.
CN117890944A (zh) 一种数据处理方法、计算机设备和存储介质
CN201403099Y (zh) 卫星定位网络校时系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848988

Country of ref document: EP

Kind code of ref document: A1