CN102272618B - 分集时间和频率定位接收机 - Google Patents

分集时间和频率定位接收机 Download PDF

Info

Publication number
CN102272618B
CN102272618B CN2010800038070A CN201080003807A CN102272618B CN 102272618 B CN102272618 B CN 102272618B CN 2010800038070 A CN2010800038070 A CN 2010800038070A CN 201080003807 A CN201080003807 A CN 201080003807A CN 102272618 B CN102272618 B CN 102272618B
Authority
CN
China
Prior art keywords
receiver
signal
time
gnss
subsystem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010800038070A
Other languages
English (en)
Other versions
CN102272618A (zh
Inventor
杰弗里·F·布尔
本杰明·H·科恩
亚当·W·诺加德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Skyhook Holding Inc
Original Assignee
Trueposition Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trueposition Inc filed Critical Trueposition Inc
Publication of CN102272618A publication Critical patent/CN102272618A/zh
Application granted granted Critical
Publication of CN102272618B publication Critical patent/CN102272618B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0215Interference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • G01S5/02216Timing or synchronisation of the receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Transmission System (AREA)

Abstract

公开了一种广域传感器网络(WASN),其利用宽带软件定义无线电装置(SDR)来提供监控在宽频率范围上的空气波、检测何时临界频率被人为干扰或以其它方式被干扰并定位干扰的源以使干扰能够被消除的能力。另外,分集接收机被公开。分集接收机生成在定位和同步WLS的传感器平台时使用的位置、时间和频率基准。在例证性实施方式中,分集接收机包括包含陆地广播接收机的第一接收机子系统以及经由第一链路装置耦合到第一接收机子系统的公共处理器平台(CPP)。第一接收机子系统经由第一链路装置将稳定的时间基准和位置信息提供到CPP。另外,分集接收机包括用于将分集接收机耦合到传感器平台并将时间和频率基准以及位置数据提供到传感器平台的第二链路装置。

Description

分集时间和频率定位接收机
交叉引用
本申请要求2009年7月24日提交的题为“Diversity Time and FrequencyLocation Receiver”的美国申请序列号12/509391的利益,该申请是2008年12月30日提交的题为“Interference Detection,Characterization andLocation in a Wireless Communications or Broadcast System”的美国申请序列号12/346598的部分继续,这两个申请通过引用被全部并入。
技术领域
本申请的一个方面大致涉及在无线通信和广播网络的地理覆盖区域内特别使用基于网络的无线定位系统(WLS)的干扰发射机的检测和定位。除此之外,本申请描述了该申请的图4以及以上所引用的申请序列号12/346598中所示的分集定时接收机的改进,包括用于定时和位置生成的分集接收机的使用。
背景技术
在存在噪声的情况下无线电信号的辨别是典型的无线电问题。通常称为“同信道”或“相邻信道”干扰的乱真信号被视为接收机在正常操作的过程中必须处理的部分无线电噪声。
由于无线通信的使用从传统的无线电和电视广播增加到双向陆地无线通信和卫星无线通信,无线电传输的价值被增加。以及由于无线电传输的价值被增加,有意干扰的问题例如服务攻击的拒绝也被增加。
干扰无线电信号的检测和干扰无线电信号的辨别在本领域中被熟知。创建了一种地理定位技术,其适合于主要在美国(US)联邦通信委员会(FCC)增强9-1-1训令的支持下的广域部署。例如,几个实验在1995年和1996年的几个月期间在城市费城和巴尔的摩进行以检验系统在大的城市环境中缓解多路径的能力。在1996年,TruePosition在德克萨斯州的休斯顿创建了第一个商业系统,其被用于在那个区域测试技术的有效性及其直接地通过接口与E9-1-1系统连接的能力。在1997年,定位系统在新泽西州的350平方英里的区域内被测试并被用于定位来自处于困境的真人的真实的9-1-1呼叫。
以下为可应用于在广阔区域上定位一般干扰无线电信号的基于网络的地理定位技术的概述。
地理定位技术
地理定位是通过利用无线电波传播的特征来确定射频(RF)信号源的过程。当无线电波从它们的起源点传播时,波作为球面波在各方向上发出。波展示时间延迟,因为它们以固定的速度传播,且由于球面扩展而有明显的功率减少。因此,在相对于固定的起源点固定的接收点处,RF信号表现为源于特定的方向,展示与起源点和接收点之间的距离成比例的时间延迟,以及功率减少了与起源点和接收点之间的距离成比例的数量。
利用时间延迟的地理定位技术被称为到达时间(TOA)和到达时间差(TDOA)技术。利用无线电波特征的功率变化的地理定位技术被称为到达功率(POA)和到达功率差(PDOA)技术。到达角(AoA)地理定位技术测量RF的源看起来所起源于的方向。当源正移动或接收源的传感器正移动时,无线电波也经历频率的明显变化,作为多普勒效应的结果。频移的数量取决于源的中心频率,以及在源和接收传感器之间的相对速率。利用RF信号传播的该特征的地理定位技术被称为到达频率差(FDOA)技术。
每种地理定位技术依照定位精确度提供不同水平的性能,并在广域传感器网络(WASN)中对传感器(也就是,软件定义无线电装置(SDR))强加不同的要求。WASN的主要益处是传感器平台,其在功率上被校准以及在时间和频率上被同步,以允许利用无线电波传播的全部特征来确定RF信号的起源。SDR的多信道RF到IF级允许SDR利用测向天线阵列来确定入射的RF能量的AoA。每种方法可被单独地利用或与其它技术组合,也就是,混合地理定位。
基于到达时间(TOA)的地理定位:
基于网络的TOA定位使用在基于网络的接收机处的无线电广播的相对到达时间。该技术要求在单独的接收机站点(SDR)之间的距离和单独的接收机定时的任何差异(布线延迟、SDR设计的差异或无线电组延迟)是已知的。无线电信号到达时间可然后在接收机站点被标准化,仅留下设备和每个接收机之间的飞行时间。因为无线电信号以已知的速率传播,距离可从在接收机处的导出标准化到达时间计算出。从三个或多个接收机收集的到达时间数据可被用于分辨精确位置。
基于到达时间差(TDOA)的地理定位:
TDOA是用于没有合作的发射器的最准确和有用的基于时间的地理定位技术。TDOA要求在WASN中的SDR之间的紧密时间同步。当两个传感器同时接收RF信号以及在这两个所接收的信号之间的时间延迟被确定时,在焦点处具有两个传感器的双曲线描述原始信号的可能的位置是公知的。增加与其它两个传感器再次时间同步并同时接收相同的信号的第三个传感器提供另一双曲线。这两个双曲线的交叉点展现作为RF能量源的唯一位置。增加甚至更多的传感器使用由多因素确定的解决方案产生更高的定位准确度。TDOA定位准确度取决于正被定位的信号的带宽以及许多其它因素,例如积分时间以及信噪比。关于使用TDOA来定位发射机(例如,移动电话)的另外的细节可在共同转让的美国专利号5327144-“Cellulartelephone location system”和6047192-“Robust,efficient,localization system”中找到。
关于使用TDOA混合技术来定位发射机(例如,移动电话)的另外的细节可在共同转让的美国专利号6108555-“Enhanced time differencelocalization system”和6119013-“Enhanced time-difference localizationsystem”中找到。
基于到达角(AoA)的地理定位:
WASN的SDR拥有多信道相位和频率相干电路,允许用于确定RF信号的到达角(AoA)的相位干涉仪天线阵列的使用。实际上,AoA指向RF能量所起源的方向。唯一的位置可通过在两个或多个几何分开的站点确定AoA来估计。唯一的位置由两个或多个方位线的交叉点表示。AoA不要求在站点之间的精确的时间或频率同步,并将AoA信息提供到系统控制器/中央处理器。此外,如同UTDOA一样,AoA精确度不取决于发射器的带宽,提供在窄带信号上进行地理定位的能力。关于使用AoA来定位发射机(移动电话)的另外的细节可在共同转让的美国专利号4728959-“Direction finding localization system”中找到。关于使用AoA/TDOA混合技术来定位发射机(移动电话)的另外的细节可在共同转让的美国专利号6119013-“Enhanced time-difference localization system”中找到。
基于到达功率(POA)和到达功率差(PDOA)的地理定位:
发射器的近似位置可通过在不同位置处测量其功率来确定。测量可以同时使用多个传感器来执行或通过将单个传感器移动到发射器的几个位置以时间复用方式执行,该发射器在相当大的时间长度内发射恒定功率。基于功率的地理定位技术没有与以上讨论的其它地理定位技术一样严格的时间和频率同步要求。然而,快速衰减和遮蔽衰减可能限制该方法的准确性。
由于无线电信号的功率随着距离增加,作为由于大气和自由空间损耗、地平面损耗以及衍射损耗的组合效应使无线电波衰减的结果,该距离的估计可从所接收的信号来确定。简言之,当发射机和接收机之间的距离增加时,所辐射的无线电能量被模拟为如同在球的表面上散布。该球状模型意味着在接收机处的无线电功率减少了至少距离的平方。
POA
到达功率是在单个网络节点(SDR)和发射机之间使用的近似测量。POA定位使用在基于网络的SDR处的无线电广播的相对到达功率。
使用信号传播建模和历史校准数据,无线电信号到达功率可在接收机站点被标准化,在设备和每个接收机之间仅留下路径损耗。从三个或更多接收机收集的到达功率数据可被用于分辨近似位置。
PDOA
PDOA使用在多个接收机处接收的无线电功率的绝对差来计算位置。PDOA定位技术要求接收机位置是事先已知的。信号传播建模和/或历史校准数据可被使用来提高位置估计。从使用公共时基的三个或更多接收机收集的功率数据可被用于分辨近似位置。
到达频率差(FDOA)
使用FDOA来确定发射器的近似位置通过在不同位置处测量信号的频率来执行。测量同时使用多个传感器来执行或通过将单个传感器移动到发射器的几个位置以时间复用方式执行,该发射器在相当大的时间长度内发射。
到达频率差使用如在多个接收机处接收的信号频率偏移的测量。由于不同的多普勒引起的频率偏移,FDOA提供移动的发射机的速度和航向。为了使用用于位置估计的FDOA,发射机或接收机的任一个或两个必须在运动中。
由于FDOA和TDOA技术都要求精确的定时源(公共时钟和公共频率基准),这两种技术都可同时用于定位,如在共同转让的美国专利号6876859-“Method for estimating TDOA and FDOA in a wireless locationsystem”中描述的。
混合地理定位技术:
通过使用诸如加权最小平方算法或约束最小平方算法的技术,所有描述的定位技术可用于发射器的定位,约束最小平方算法允许每种定位技术为所使用的技术或技术的混合提供最佳位置估计的附加概率。
现代社会对无线系统的大的依赖性造成对无线系统的易破坏性。无线设备对由于无意的或有意的人为干扰和干扰产生的破坏是相对无保护的。能够部署在广阔区域上的检测、分类和定位无线信号的系统对于为对临界无线信号的干扰监控空气波将是有用的。在广域传感器网络中使用一个或多个以上的地理定位技术以在所关注的地理区域上识别和定位有意的和无意的干扰源应是有利的。
另外,由在此描述的解决方法处理的另一个问题涉及对用于确定WLS的一个或多个定位传感器的精确位置的改进的方法和系统的需求。特别是,利用传感器网络的使用TOA或TDOA技术的地理定位要求传感器的位置(也被称为定位确定实体(PDE)、信号收集系统(SCS)或定位测量单元(LMU))是已知的,以及传感器在时间上互相紧密地同步。使用传感器网络的到达频率差(FDOA)地理定位技术要求传感器位置是已知的,以及传感器在频率上互相紧密地同步。利用在静态传感器中的GNSS接收机提供了确定传感器的位置以及获得高水平的时间和频率同步性能的方便方式。然而,当GNSS接收机具有无障碍的天空视野时,GNSS接收机仅能提供该水平的定位和同步性能。在许多操作部署场景中,天空的空旷视野或甚至天空的相当一部分的视野不是可用的。因此,有利的是,将混合技术或后退技术包含到传感器平台中,用于确定传感器的位置以及用于在时间和频率上同步到在WLS中的其它传感器,实际上,提供用于使传感器同步并确定它们的位置的分集。
发明内容
以下概要提供本公开的示例性实施方式的各种方面的概述。该概要不是用来提供所公开的主题的所有重要方面的详尽描述,或限定所公开的范围。更确切地,该概要旨在用作对例证性实施方式的以下描述的介绍。
公开了广域传感器网络,其利用宽带软件定义无线电装置(SDR)来提供监控在宽的频率范围上的空气波、检测何时临界频率被人为干扰或以其他方式被干扰、以及定位干扰的源以使干扰可被消除的能力。WASN可使用一种或多种以上描述的地理定位技术。另外,WASN可检测和定位未授权的发射机以及估计经授权的发射机的发射功率以确保它们没有比被授权时发射更多的功率。
另外,分集接收机(时间和频率同步单元)被公开。该分集接收机生成在定位和同步WLS的传感器平台时使用的位置、时间和频率基准。在例证性实施方式中,分集接收机包括第一接收机子系统,该子系统包括陆地广播接收机以及公共处理器平台(CPP),该公共处理器平台经由第一链路装置耦合到第一接收机子系统。第一接收机子系统经由第一链路装置将稳定的时间基准和位置信息提供到CPP。另外,分集接收机包括第二链路装置,该第二链路装置用于将分集接收机耦合到传感器平台并将时间和频率基准以及位置数据提供到传感器平台。
在分集接收机的更具体的例证性实施方式中,陆地广播接收机包括HDTV接收机。陆地广播接收机可包括用于接收传递辅助信息的辅助信号的天线,该辅助信息包括广播装置位置、信道分配以及定时特征和参数。可选地,或另外地,陆地广播接收机可包括用于接收辅助信息的辅助信息接口,该辅助信息包括广播装置位置、信道分配以及定时特征和参数。在该实例中,辅助信息接口被配置成将所述陆地接收机耦合到陆侧辅助服务器或网络。
在另一例证性实施方式中,分集接收机还包括第二接收机子系统,其包括经由第三链路装置操作地耦合到CPP的GNSS接收机。第二接收机子系统经由第三链路装置将第二稳定时间和频率基准以及位置信息提供到CPP。GNSS接收机可包括用于接收GNSS辅助信号的辅助信息接口,GNSS辅助信号传递卫星星座轨道信息以及用于校正时钟漂移、大气信号延迟以及电离层延迟的其它信息,该辅助信息接口用于增强GNSS接收机的位置估计的准确度以及时间和频率基准。另外,GNSS接收机可包括辅助信息接口,其用于从陆侧辅助服务器或网络接收辅助信息。此外,GNSS接收机可被配置成在静态定时模式中操作,在该模式中时间和频率基准在有限的(至少一个)GNSS信号为可用的时被提供。假定GNSS接收机的位置、高度以及速率是已知的,GNSS静态定时模式在至少一个GNSS卫星信号(或当定时广播例如广域增强系统(WAAS)来自陆地源或卫星源时)可被接收时被启用。在静态定时模式下,GNSS接收机将以足够的精确度提供每秒1脉冲(PPS)定时信号,以使LMU能够给待定位的进入的信号加时间戳。如果多于一个的GNSS卫星信号或WAAS广播可被接收,则定时准确度提高。一般,定时准确度是100纳秒(ns)均方根(RMS),在视野内的单个GNSS卫星使用静态定时模式。由于另外的卫星被接收到,定时准确度可提高到20ns RMS。CPP可被配置成基于定位时间、信号质量或操作者偏好来指定主和次接收机子系统。
在又一个例证性实施方式中,分集接收机包括基准振荡器,其操作地耦合到CPP,以及CPP被配置成与第一和第二接收机子系统通信,以从接收机子系统接收稳定的时间信号,并使用至少一个时间信号来训练(discipline)基准振荡器。另外,CPP还被配置成选择第一和第二接收机子系统中的一个或混合由接收机子系统提供的信息以创建将被提供到传感器平台的优化的时间基准、频率基准和时间戳。
公开了一种第一定位传感器,其用在包括定位传感器的网络的无线定位系统(WLS)中,所述第一定位传感器包括:
第一接收机子系统,其包括HDTV接收机;
公共处理器平台(CPP),其经由第一链路装置耦合到所述第一接收机子系统,其中所述第一接收机子系统经由所述第一链路装置将稳定的时间基准和位置信息提供到所述CPP;
第二链路装置,其用于将所述第一定位传感器耦合到传感器平台并将时间和频率基准以及位置数据提供到所述传感器平台;
第二接收机子系统,其包括经由第三链路装置操作地耦合到所述CPP的GNSS接收机,其中所述第二接收机子系统经由所述第三链路装置将第二稳定的时间基准和位置信息提供到所述CPP;
基准振荡器,其操作地耦合到所述CPP;
其中所述CPP被配置成经由所述第一链路装置和所述第三链路装置与所述第一接收机子系统和所述第二接收机子系统通信,以从所述接收机子系统接收稳定的时间信号,并使用所述时间信号的至少一个训练所述基准振荡器,以及其中所述基准振荡器将稳定的频率基准提供到所述CPP。
在公开的第一定位传感器中,所述HDTV接收机可包括用于接收传递辅助信息的辅助信号的天线,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
在公开的第一定位传感器中,所述HDTV接收机还可包括用于接收辅助信息的辅助信息接口,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
在公开的第一定位传感器中,所述辅助信息接口可被配置成将所述HDTV接收机耦合到陆侧辅助服务器或网络。
在公开的第一定位传感器中,所述GNSS接收机可包括用于接收GNSS辅助信号的辅助信息接口,所述辅助信号传递卫星星座轨道信息以及用于校正时钟漂移、大气信号延迟以及电离层延迟的其它信息,由此GNSS接收机的位置估计以及所述时间和频率基准的准确度能够被增强。
在公开的第一定位传感器中,所述GNSS接收机还可包括用于从陆侧辅助服务器或网络接收辅助信息的辅助信息接口。
在公开的第一定位传感器中,所述GNSS接收机可被配置成在静态定时模式中操作,在所述静态定时模式中,时间和频率基准在没有GNSS信号是可用的时被提供。
在公开的第一定位传感器中,所述CPP可被配置成基于定位时间、信号质量或操作者偏好指定主接收机子系统和次接收机子系统。
在公开的第一定位传感器中,所述CPP还可被配置成选择所述第一接收机子系统和所述第二接收机子系统中的一个或混合由所述接收机子系统提供的信息以创建将被提供到所述传感器平台的优化的时间基准、频率基准和时间戳。
公开了一种用于确定无线定位系统(WLS)的定位传感器的位置的系统,包括:
用于获取粗定时信息的装置;
用于获取陆地信号的校正因子的装置;
用于获取陆地广播信号的装置;以及
用于使用所述陆地信号和所述校正因子来计算所述传感器的位置并用于改进所计算的位置直到它在限定的公差内的装置;
其中所计算的位置可用在所述WLS的随后操作中。
在用于确定无线定位系统(WLS)的定位传感器的位置的系统中,所述粗定时信息可精确到国际原子钟时间(IAT)的10ms内。
公开了一种用于确定无线定位系统(WLS)的定位传感器的位置的方法,其中所述定位传感器不能接收GNSS信号,所述方法包括:
获取粗定时信息;
获取陆地信号的校正因子;
使用所述陆地信号和所述校正因子来获取陆地广播信号并计算所述传感器的位置;
改进所计算的位置直到它在限定的公差内;以及
存储所计算的位置供在所述WLS的随后操作中使用。
在公开的用于确定无线定位系统(WLS)的定位传感器的位置的方法中,所述粗定时信息可精确到国际原子钟时间(IAT)的10ms内。
除了上文之外,其他方面在权利要求、附图以及形成本公开的一部分的正文中被描述。本领域技术人员可认识到,本公开的一个或多个不同的方面可包括但不限制于用于实现本公开的在此引用的方面的电路和/或程序编制;电路和/或程序编制根据系统设计者的设计选择实质上可以是配置成实现在此引用的方面的硬件、软件和/或固件的任何组合。
附图的简要说明
当结合附图阅读时,上文的概要以及以下详细的描述可被更好地理解。为了说明本发明的目的,在附图中示出了本发明的示例性构造;然而,本发明不限于所公开的具体方法和手段。在附图中:
图1示意性地描述了广域传感器网络的主要功能节点。
图2示意性地描述了分布式传感器网络接收机的主要功能节点。
图3示意性地描述了由分布式传感器网络接收机使用的软件定义无线电装置(SDR)的主要功能节点。
图4示意性地描述了分布式传感器网络接收机的时间基准子系统的主要功能节点。
图5描述了用于广域传感器网络的示例性用户接口。
图6描述了用于广域传感器网络的另外的示例性用户接口。
图7说明了在检测和定位全球导航卫星系统(GNSS)干扰发射台时WASN的示例性使用。
图8说明了在检测和定位恶意基站(rogue base station)时WASN的示例性使用。
图9a说明了在检测和定位间歇无意干扰源时WASN的示例性使用。
图9b说明了当检测和定位间歇无意干扰源时WASN用户接口的示例性可视化。
图10描述了可被配置成执行图1-9b的方面的计算系统的实例。
图11示意性地描述了定位的例证性实施方式的功能组件,定时和频率分集接收机以及其与传感器平台的互连(LMU、PDE或SCS)。
图12说明了在服务区域上部署的一组传感器。
图13说明了解决确定LMU的精确位置的问题的示例性方法,该LMU不使用GPS信号但具有从地理上多样的方向接收多个陆地广播(例如,HDTV信号)的能力。
例证性实施方式的详细描述
某些具体细节在以下描述和附图中被阐述以提供对本发明的各种实施方式的彻底理解。通常与信号处理、计算和软件技术相关的某些公知的细节没有在以下公开中被阐述以避免不必要地使本发明的各种实施方式难理解。另外,相关领域的普通技术人员将理解,他们可在没有以下所述的细节的一个或多个的情况下实践本发明的其它实施方式。最后,当参考在以下公开中的步骤和顺序描述各种方法时,描述因此是用于提供本发明的实施方式的清楚的实现,以及步骤和步骤的顺序不应被理解为对实践该发明是必要的。
我们现在将描述本发明的例证性实施方式。首先,我们提供问题的详细的概述以及然后提供我们的解决方案的更多详细的描述。
无线系统遍及世界的许多区域。我们的现代生活的每个方面被无线技术明显地影响。不论它是移动电话的“任何时间、任何地点”方便性还是由卫星电视提供的娱乐,无线技术都很大地影响现代社会的生产力及福利。最近,大多数现代社会的重要基础设施变得依赖于卫星导航系统。卫星导航系统被用于确定重要资产的去向,帮助飞行器导航——包括从机场起飞和着陆,以及为我们的电信基础设施提供定时信息。现代社会对无线系统的大的依赖造成对无线系统的易破坏性。
无线设备对由于无意的或有意的人为干扰和干扰产生的破坏是相对无保护的。能够部署在广阔区域上的检测、分类和定位无线信号的系统对于监控为对临界无线信号的干扰监控空气波将是有用的。另外地,这样的系统可被用作为了许多其它目的而包括无线服务质量的优化的工具。系统可使用许多公知的基于网络的地理定位技术的任一个来估计所关注的发射器的位置。
此外,这样的系统可通过测量作为频率和时间的函数的RF功率来确定RF信道的有效利用。由于即将转换到空中下载(OTA)TV的数字TV格式,这种能力也可允许确定未许可的“白空间”发射机可被定位在哪里以及在没有干扰数字OTATV服务的情况下它们可发射多少功率。
广域传感器网络(WASN)可以是具有在宽频带和大的地理区域上检测和定位对临界无线信号的人为干扰和干扰的能力的被动接收系统。示例性WASN在图1中示出。WASN包括能够具有宽的瞬时带宽的软件定义无线电装置(SDR)102的网络、系统控制器/中央处理器105以及使系统控制器/中央处理器105与SDR 102互连的回程通信网络103。另外,数据库106可为系统的组件并连接到控制器/中央处理器105以及一个或多个用户接口终端107。WASN可利用用于存储被允许的发射机特征以及用于给各种活动的结果存档的数据库106。数据库106也可被用于具有多层地理、地形、无线电建模以及地名信息的地图存储器。
系统控制器/中央处理器105也可具有到外部通信网络109例如互联网的接口,以及到提供粗略的时间信息的NTP时间服务器108的连接。通常,SDR 102可为时间和频率同步的以允许各种地理定位技术定位无线信号。
WASN可包括可变数量的SDR。时间和位置复用WASN可包括单个SDR,该单个SDR在待监控的地理区域上以连续的方式从一个位置移动到另一位置。该配置代表适合于在长时间段内发射的物理上固定的发射机的检测、分类以及位置确定的最小成本配置。WASN也可包括大量的固定SDR,其分布在待监控的地理区域上,类似于无线蜂窝系统的基站的网络。该配置更适合于仅在短时间段内传输的瞬态信号的检测、分类和定位。
WASN的基本组件为包括它的SDR。示例性SDR的方框图在图2和图3中被示出。SDR的主要优点是在接口上通过对其可编程逻辑重新编程来改变其配置的能力。SDR可包括一个或多个多信道RF到中频(IF)级、开关矩阵、一组模数(A/D)转换器、可编程逻辑、可编程数字信号处理器、控制处理器、存储器、同步单元以及通信接口。多信道RF到IF级用以获取通过它们连接的天线接收的RF信号的波段,以及过滤信号以限制它们的带宽,放大信号,并将信号转换到IF。SDR可包括提供频率相干性的单个多信道RF到IF级的所有信道的公共局部振荡器。多个多信道RF到IF级可使用不同的局部振荡器,但共同的时间和频率基准可由时间和频率同步单元提供。开关矩阵用于从大量多信道RF到IF级选择特定的信道,并将信道提供到A/D。A/D以指定的采样率将多信道的模拟信号转换到数字格式。
一旦转换到数字格式,信号就可通过可编程逻辑级来操作。可编程逻辑的主要特征是在接口上对逻辑重新编程以改变其能力的能力。可编程逻辑的典型的操作是I和Q检测、还有带通滤波以及采样率的骤减、特定信号检测以及存储器存储。可编程数字信号处理(DSP)级可包括若干可编程数字信号处理器,其可从可编程逻辑级进一步处理信号。由数字信号处理器执行的信号处理的例子是检测、解调、均衡以及定位处理。控制处理器可控制和协调SDR的所有资源。通信接口提供在SDR外部的接口以允许通过系统控制器/中央处理器和数据的传送对SDR进行控制。
WASN可在SDR之间提供时间和频率同步。SDR的同步允许信号和事件的非常精确的时间标记以及实现各种地理定位能力的能力。用于使两个或多个几何分开的站点时间和频率同步的典型的技术是通过GPS定时接收机。当在WASN中的每个GPS定时接收机可从四个或更多GPS卫星接收信号时,GPS定时接收机可提供非常好的时间和频率同步性能。GPS信号被设计成在近似130dBm的功率电平处照亮地球。该功率电平非常低并可通过周围的事物和环境被进一步衰减。因此,存在许多环境,其中充足数量的GPS卫星信号不能被接收,以及因此,在WASN中的一个或多个SDR可能与其它SDR不是时间和频率同步的。这种情况可通过多个信号和技术的使用来避免以提供时间和频率同步。图4说明了利用不同技术的SDR的时间和频率同步单元。每个定时接收机从其各自的信号提供非常准确的时间时钟。在该实例中,信号是提供每秒急速上升沿的周期性波形。时间和频率同步单元的处理器接收这些1PPS信号,明智地组合它们,或简单地选择一个(如果仅有一个是可用的),以及然后对信号训练基准振荡器。
信号控制器/中央处理器可控制WASN的资源,监控每个资源的状况和状态,以及使用由SDR提供的信息确定信号的位置。系统控制器/中央处理器可命令SDR调谐到频率和频段以及在这些频率和频段处何时收集数据和收集数据多长时间。另外地,系统控制器/中央处理器可命令SDR执行特定的功能,例如信号检测、信号辨别以及信号分类。系统控制器/中央处理器也可确定将被存储在中央数据库的数据。
干扰检测
同步广域传感器网络可提供监控在广阔的区域上的干扰的临界频道、检测何时干扰发生、辨别干扰以及定位干扰源的能力。GPS频道为临界频率的实例。来自GPS卫星的信号被用于大量临界应用,这些应用从同步电信网络到为国家空中交通系统提供导航,包括商用飞机的自动着陆和起飞。因此GPS信号对监控和确保它们没有被无意的或有意的干扰损害是重要的。WASN可提供检测和定位在时间上连续的和在本质上瞬变的这样的干扰的能力。
干扰检测和定位可开始于信号或关注的信号的先验知识。先验知识可包括信号占据的频道以及其它特征,例如它的频谱特征(例如,谱密度函数)。用于监控对干扰的临界频率频道、检测与WASN的干扰以及定位干扰的示例性过程如下:
●同时为一组SDR在所关注的带宽上在预先确定的持续时间内捕获和存储时域数据
●通过在SDR的可编程逻辑中实现的数字下变频器传递所捕获的数据以进行I/Q检测、频带限制、提高位分辨率、以及骤减,即,减少时域数据的采样率。
●将因而生成的数据分成相等的时间块
●将每个时间块转换成复频域
●确定每个频率窗口(bin)的功率统计
●应用合法信号的频谱屏蔽
●通过识别功率明显地偏离频率屏蔽的频率窗口来识别干扰
●如果信号拥有充足的带宽则利用TDOA来定位干扰,如果信号没有拥有充足的带宽并且AoA天线阵列在所需的SDR处是可用的则利用AoA或利用PDOA来定位干扰
●在数据库中为将来的检索存储结果
以上过程可以在整个WASN中以持续的方式或在要求时实现以监控对干扰的临界频率,以及如果干扰存在就定位和辨别干扰。
信号检测
WASN可被用于在其被部署的广阔区域上检测、辨别和定位信号。该能力允许在SDR的频率范围上对所有信号进行测量和分类。WASN可对合法信号进行测量和分类以确保它们的特征在所需要的规范内。合法信号的数据库可与WASN的结果比较以识别潜在的非法信号,例如,没有授权的FM无线电站和视频信号。WASN的信号检测能力可提供地图,其中未经许可的“白空间”发射机可被定位以及用户可发射的发射功率将不会干扰合法的数字TV信号。
示例性信号检测过程如下:
●同时为一组SDR在所关注的带宽上在预先确定的持续时间内捕获和存储时域数据
●通过在SDR的可编程逻辑中实现的数字下变频器传递所捕获的数据以进行I/Q检测、频带限制、提高位分辨率、以及骤减,即,减少时域数据的采样率。
●将因而生成的数据分成相等的时间块
●将每个时间块转换成复频域
●确定每个频率窗口(bin)的功率统计
●使用在本底噪声处的功率识别频率窗口
●辨别在本底噪声之上的频率窗口内的信号
●如果信号拥有充足的带宽则利用TDOA来定位所检测的信号,如果信号没有拥有充足的带宽并且AoA天线阵列在所需的SDR处是可用的则利用AoA或利用PDOA来定位所检测的信号
●在数据库中为将来的检索存储结果
信号分类:
WASN可允许比以前可用的更高级别的信号分类,因为WASN包括分散在广阔的地理区域周围的时间和频率同步传感器的网络。这可提供确定信号起源的位置的能力。另外地,一旦位置被确定,环境的容易可用的传播模型就可被利用以提供估计由信号发射的绝对功率的能力。因此,WASN可提供在它被部署的地理区域上对大多数或所有信号分类的能力。信号特征可包括:
●中心频率
●带宽
●调制类型
●符号率(如果数字地调制)
●二维位置(纬度和经度)
●绝对功率
图1示意性地描述了WASN的主要功能节点。地理上分布的接收机网络101被示出。具有代表性天线的三个或更多接收机102的每个经由有线的或无线的数据回程网络103连接到控制器105。控制器105是具有定制软件的通用计算机处理服务器,以执行任务分配、日程安排、信号检测、信号辨别和位置估计。控制器105由数据库系统106服务,该数据库系统允许校准数据、历史定位数据、地理数据以及传播模型被使用在位置估计处理中。控制器105也经由数字数据链路(例如,内部数据总线、局域网或广域数据网络)连接到用户接口107,该用户接口充当与广域传感器网络的人机接口。各种操作、管理、供应以及维修操作可经由用户接口107完成。在该实例中的用户接口107被实现为运行在客户端处理器平台上的软件应用。
NTP 108(网络时间协议)节点经由基于TCP/IP的数字数据链路将稳定的时间基准提供到控制器105。NTP的操作细节可在RFC 778、RFC 891、RFC 956、RFC 958以及RFC 1305中找到。网络109代表外部网络,例如互联网,其将辅助信息提供到WASN,例如GPS辅助数据或合法发射器的列表。
图2说明了在图1中示出的软件定义无线电(SDR)接收机102的更加详细的描述。如所示,第一天线结构201允许使SDR网络101同步所需的公共系统时间基准的空中确定。在该实例中的系统时间和频率基准通过内部模拟和数字总线206从定时接收机203分布到可调谐宽带数字接收机204和通信接口205。
第二组天线202服务于可调谐宽带数字接收机204。第二天线结构202可包括用于到达角信号位置确定的专用定向天线。
可调谐宽带数字接收机204优选地实现为软件定义无线电装置(SDR)。通信接口205用于通过回程网络103将位置相关信息和定时信息路由并桥接到控制器105。
图3示意性地描述了多频段可调谐多信道宽带软件定义无线电装置(SDR)的功能级。天线结构302允许多个接收天线被用于单个SDR以及多个时间和频率同步源。天线被连接到RF级301,在该级,放大、滤波以及转换到所关注的带宽的中频(IF)被执行。多个RF到IF级301被用于支持所关注的频段的接收,因此克服在非常宽的带宽被需要时出现的在放大器和滤波器中固有的限制。
各种RF到IF级301馈送模拟开关矩阵303,允许SDR选择待观察的频段。多信道输出被传送到模数转换器(A/D)304,在该转换器中,频段限制的信号的多个信道被转换为数字表示。SDR的逻辑305和数字信号处理器307级处理滤波、下变频、解调以及数字基带信号分析。控制段308设置采样率的动态控制、所关注的带宽、所接收的信号选择存储以及到由SDR和各种管理任务服务的实体的互连。SDR存储器306由RAM、ROM以及SDR的控制和所接收的信号的存储都需要的高速RAM构成。
图4提供分集定时接收机400以及服务于SDR作为时间和频率基准的相关天线结构的更详细的视图。在定时接收机400中,第一定时接收机401和第二定时接收机402被使用。双定时接收机401、402允许在一个接收机被阻碍的情况下确定时钟和频率基准。双定时接收机401、402布置也允许在一个接收机被暂时阻碍的情况下增加延期(holdover)。
第一定时接收机401经由数字数据链路405和模拟定时链路407连接到中央处理器,允许操作消息发送和定时相关的消息在接收机和处理器之间传送,以及允许模拟定时信号从第一定时接收机401传送到处理器。
第二定时接收机402经由数字数据链路406和模拟定时链路408连接到中央处理器,允许操作消息发送和定时相关的消息在接收机和处理器之间传送,以及允许模拟定时信号从第一个第二定时接收机403传送到处理器。
处理器403经由数据反馈控制链路409和模拟定时链路410连接到基准振荡器404,允许振荡器的频率的精确控制,以及允许模拟定时信号从基准振荡器404传送到处理器。
处理器403可为任一定时接收机训练基准振荡器404以为SDR提供时间和频率基准,取决于哪个定时接收机具有对它们的信号的更好的接收。
SDR经由模拟定时信号411提供时间和频率基准,经由数字链路412和模拟频率基准413提供定时消息发送。
用户接口:
WASN可提供在广阔区域上在多维中测量和辨别无线信号的能力。这些维的几个为:
●时间
●频率
●功率
●位置
WASN的用户接口可提供其资源的用户控制以及其结果的显示。以上四维数据可以按两种形式显示。第一种在图5中被示为对于如由时间滑块所示的特定时间以及由频率和带宽滑块所示的特定频率和带宽,在适当位置上在纬度和经度的范围上的功率的等值线图表。另一形式为时间和频率相对于功率的3-D图,2D位置通过如图6中示出的在纬度和经度范围上放置光标来限定。
图5描述了具有WASN的用户接口的实例。所示的为显示示例性活动的用户接口的示例性屏幕截图501。3-D地图501显示发射器经由纬度503轴和经度502轴的位置,如在所检查的带宽上由定位处理器和所计算的绝对辐射功率503所确定的。所检查的带宽506在条显示器505上被示出。所检查的带宽的中心频率508在频率条显示器507上被描绘。频谱检查的时间可在时间条509上被选择。
在该实例中的用户接口500提供输入和输出并使用WASN的数据库设施来随着时间的过去存储信号和位置数据。每个条显示器允许用户使用鼠标驱动的即指即点接口来为可调节带宽、中心频率和时间跨度确定信号功率和位置。
图6说明了另外的图形用户接口实例,在其中功率602、时间603,以及频率604的3维图601与在此示出的地理图如2维街道图一起使用。位置确定可包括高度或海拔。使用持久的数据库来存储信号和位置信息,用户接口可用于示出实时活动数据以及过去的定位和信号数据。
应用:
应用可存在于系统控制器/中央处理器上并控制WASN执行若干操作的能力。WASN应用可包括:
干扰检测和定位
干扰检测和定位应用利用WASN监控用户定义的临界频段、信道和频率以检测将被定义为“干扰”的未授权信号的存在的能力。授权信号的先验特征被利用以帮助检测干扰。一旦被检测到,干扰的位置就被确定。干扰检测和定位活动的结果被存储到数据库和/或被显示在用户接口上。
信号测量
信号测量应用利用WASN在WASN被部署的区域上确定所有信号的特征和位置的信号检测能力。信号测量活动的结果被存储在数据库和/或被显示在用户接口上。
未授权的发射机检测和定位
未授权的发射机应用比较信号测量活动的输出与授权信号的列表以识别潜在的非法发射机。
欺骗检测
欺骗信号是试图伪装为有效信号以便迷惑或欺骗一个或多个用户的信号。例如,欺骗全球导航卫星系统(GNSS)信号将试图欺骗GNSS接收机,以使接收机确定它在它并不在的位置上。WASN通过获取和辨别欺骗信号来检测和定位欺骗信号。欺骗信号的特征与合法信号的特征比较,且当存在明显的偏差时WASN记下。使用欺骗GNSS信号的实例,该信号的绝对功率电平可被确定,且如果它比合法的GNSS信号大得多,则信号被识别为欺骗信号。识别欺骗GNSS信号的另一方法是确定使用当前是不可用的(例如,在地平线上)的卫星来识别所接收的信号。GNSS系统的当前的实例是美国导航星(NavStar)全球定位系统(GPS)。
频谱利用
频谱利用应用在相当大的时间长度上监控来自所检测的信号的传输以确定RF能量正被传输的时间百分比,该时间百分比提供占有率度量。另外地,RF能量被传输的时间百分比量化该特定的发射机提供的地理覆盖范围。频谱利用活动的结果被存储在用于存档的数据库和/或被显示在用户接口上。
未许可的“白空间”发射机功率和放置
未许可的“白空间”应用利用WASN信号检测能力以识别和定位数字TV发射机以及估计发射机发射的功率。使用该信息,WASN确定“白空间”发射机可发射的功率电平,而不干扰在WASN的地理区域上的经授权和许可的数字TV发射机。
例证性实例-GNSS干扰发射机检测和定位
在该例证性实例中,具有定位测量单元(LMU)网络的所部署的无线定位系统(WLS)被使用,该定位测量单元网络具有宽带软件接收机的地理上分布的网络。此外,全球导航卫星系统(GNSS)被描述为美国导航星全球定位系统(GPS)。其它GNSS系统(Galileo、GLONASS、Compass等)或来自多个GNSS系统的卫星的组合可与GPS系统一起使用或代替GPS系统来使用。
当前的LMU网络配备有用于上行链路和下行链路定位的不同的宽带接收机以及用于接收公共时钟基准的GPS接收机。LMU网络本身相对地保护低功率GPS干扰发射机并理想地定位成检测和定位干扰发射机。LMUGPS接收机通常安装有最小的附近障碍物以及理想地在附近的结构上的高度处。
GPS宽带CDMA信号是微弱的并在地球两极轨道中从太空交通工具发射。在户外的GPS接收机天线处,GPS信号强度范围从130到160dbm或大约1×10-16瓦。给定所使用的波长,从地面和周围结构的反射甚至进一步衰减。每单位带宽的信号功率与噪声功率的比率确定跟踪和使用每个卫星的能力。因此,GPS干扰发射机(甚至无意的干扰发射机)一般发射宽频段白/灰噪声以增加局部本底噪声,以及因此破坏任何局部GPS接收机。为了定位干扰发射机,问题是首先检测干扰发射机,以及其次定位干扰发射机。
如在图7中所示的,无线通信系统701包括分布成提供在地理服务区上的覆盖的小区。用于通信网络的无线电设备被容纳在与SDR接收机协同定位的小区站点704中,给SDR网络提供地理分布和共享的设施及天线安装。GNSS系统(在该实例中为GPS系统)与附随的无线电广播在705中示出。
GPS干扰发射机702发射在区域703上传播的干扰无线电信号,该信号由发射功率和地面杂乱回波确定。传播模式703也可由定向发射天线成形。
使用已知方法,GPS接收机子系统可检测干扰的存在并警告外部方。这样的干扰可被限制到单个LMU或一组LMU。已知的非军用GNSS干扰发射机具有从10米到10公里的范围,但可能是相对低功率的便携式设备。
为了检测有意的或无意的GNSS干扰发射机的源,LMU可在可视GPS卫星的完整周期上保持基线信噪比(SNR)。当SNR的阈值被越过时,干扰发射机定位事件可开始。
对于小功率和/或低功率的GNSS干扰发射机,GNSS干扰发射机的位置可使用技术例如基于到达时间(TOA)或到达功率(POA)的测距或根据发射功率、RF环境以及信号持续时间的TDOA或AOA来确定。当前的LMU GPS接收机天线的修改或通过宽带SDR的GPS接收机的替换可被用于实现GPS干扰发射机接收机。对于大规模GNSS干扰事件,受影响的LMU可被绘制并且LMU覆盖区域的重力中心可被确定为干扰发射机位置。可根据基于初步TOA或POA的定位对TDOA和/或AOA位置确定选择LMU。LMU还可基于所使用的定位技术和干扰信号的功率和带宽来选择以提供干扰发射机的更准确的定位。
如果LMU被定位在干扰发射机附近并丢失其GPS信号,LMU仍然可潜在地用于收集干扰发射机发射的基准信号,即使LMU不能用作合作者。为了粗略定时对来自网络的定时或消息发送使用下行链路信标监控,基准信号可被收集、压缩并分配到具有好的定时基准的合作的LMU。
对于一般呼叫位置确定,使用没有准确定时的LMU的用于检测和解调基准信号的技术仍然可被使用。这样的LMU将不被用作合作者,因为它的定时对于定位处理不够准确。然而,通过下行链路监控和/或网络定时,LMU可用于干扰发射机发射的基准信号的检测和解调。
在定位GNSS干扰源的情况下,TDOA或AOA定位可被执行。假设GNSS干扰信号是一种改变和一直存在的噪声源,LMU或类似的设备可按特定的时间间隔收集信号的样本。数据可被压缩并发送到合作的LMU以执行关联并确定位置。
在系统定位干扰源(其为干净的音调或一系列音调且不随时间改变)的情况下,来自在所有合作的LMU处的其基线SNR的GPS信号的SNR的改变可被用于基于在每个受影响的LMU站点处的SNR的功率电平影响来计算位置,类似于计算TDOA位置的过程。代替到达时间差,干扰信号的功率梯度(POA或PDOA)可被使用。
例证性实例-GNSS欺骗设备检测和定位
在另一例证性实例中,具有协同定位的宽带和GPS接收机的地理上分布的LMU网络可被用于依照本公开定位GNSS欺骗设备。
GNSS欺骗大致地涉及模仿一般在较高功率处的GNSS卫星发射的发射机,该较高的功率然后由在接收机的海拔处的太空交通工具传递。在一些情况下,太空交通工具不在接收机的视野(例如,在地平线上)内的识别信息可被用于模仿太空交通工具用于欺骗。
当欺骗设备模仿GNSS卫星发射时,分布式接收机网络允许通过增加欺骗信号的信号功率来检测欺骗发射机。
在太空交通工具不在接收机的视野内的识别信息被用于模仿太空交通工具的情况下,可检测到由于轨道力学,卫星的添加没有被预测为可用的。
在这两种情况下,宽带欺骗信号可被用于经由PDOA、TOA、TDOA、AoA或混合技术来确定欺骗发射机的位置。
例证性实例-IMSI捕捉器检测
如在本文通过引用并入的共同转让的美国专利申请号11/948244“Autonomous Configuration of a Wireless Location System”中描述的,LMU网络的宽带下行链路接收机可被用于经由基站信标发射来检测、识别并定位GSM、CDMA、CDMA-2000以及UMTS无线通信系统。在自主配置应用中,新的基站可被确定以及可改变为基站识别和频率分配。
恶意基站收发信台(BTS)(也称为IMSI捕捉器)在欧洲专利EP1051053“Method for identifying a mobile phone user or for eavesdropping onoutgoing calls”以及在美国专利申请号11/996230“Acquiring IdentityParameters by Emulating Base Stations”中被描述。如所描述的,恶意BTS通过发射属于已经存在的基站的信标来冒充无线网络并模仿属于局部无线通信网络的基站。使用地理上分布的接收机的LMU网络的检测、识别和定位能力以及服务移动定位中心(SMLC)作为控制器,复制的模拟基站信标可被检测到、识别和定位。
图8说明了根据本公开的基于分布式网络的IMSI捕捉器恶意BTS定位器的实例。低功率IMSI捕捉器802收集关于局部信标807、808、809的信息,包括功率、标识以及邻居列表。IMSI捕捉器802然后广播它自己的在地理区域803上传播的模拟信标。目标移动/用户装备801执行对IMSI捕捉器的仿真网络的位置更新。
在该实例中的SDR接收机在接近的小区804、邻近的小区805以及最近的小区806中被协同定位。在过去已经被检测到、识别出、定位并存储接近的小区804、邻近的小区805以及最近的小区806后,SDR接收机可检测模拟信标803并识别恶意BTS。SDR网络被调谐以定位恶意BTS,且关于恶意BTS的信息被传递到用户接口用于分析和行动。
在图9a中,WASN的示例性使用被描述。在该实例中,传感器接收机901、902、903被分布在由无线通信或广播系统服务的地理区域上。在不同的时间,干扰信号904、905、906被检测和定位。图9b描述了因而生成的用户接口显示。在地图显示器907上,干扰信号904、905、906的源在地理上被显示为908、909、910。干扰的时间和持续时间被显示在时间条显示器911上,干扰事件904、905、906被图解地显示为912、913、914。频谱条915对事件904显示功率在频率上的分布。罗盘916灰掉,表明没有方向对于事件904是可用的。速度指示器917指示零的速度,其与罗盘图一起指示事件904在时间持续时间912上是静止的。
分集时间和频率定位接收机
使用利用传感器网络的TOA或TDOA技术的地理定位要求传感器的位置(也被称为定位确定实体(PDE)、信号收集系统(SCS)或定位测量单元(LMU))是已知的,以及传感器在时间上互相紧密地同步。使用传感器网络的到达频率差(FDOA)地理定位技术要求传感器位置是已知的,以及传感器在频率上互相紧密地同步。利用在静态传感器中的GPS/GNSS定时接收机提供了确定传感器的位置以及获得高水平的时间和频率的同步性能的方便的方式。然而,当GPS/GNSS定时接收机具有天空的无阻碍视野时,GPS/GNSS定时接收机仅可提供该水平的定位和同步性能。如在2002年2月26日(被转让给TruePosition公司)的美国专利号6351235“Method and System for Synchronizing Receiver Systems of a WirelessLocation System”中描述的,GPS接收机被用于为每个LMU(以及因此通常为WLS)提供用于上行链路TOA和TDOA(U-TDOA)定位的公共高精度定时基准并为下行链路技术例如增强观测时间差(EOTD)、高级前向链路三边测量(AFLT)、增强前向链路三边测量(EFLT)、到达观测时间差(OTDOA)以及辅助GNSS(A-GNSS)(如在2005年12月29日提交的(被转让给TruePosition公司)美国专利申请11/321893“GPSSynchronization For Wireless Communications Stations”中描述的)创建辅助消息发送。
如在2007年11月30日提交的美国专利申请序列号11/948244“Automated Configuration of a Wireless Location System”中提到的,GPS定时信号也产生非常精确的频率基准信号。其它GNSS系统被预期在操作时提供类似的频率精度。
除GNSS系统之外,陆地无线电广播系统也可被用于通过TOA或TDOA技术提供定时基准、频率基准以及LMU定位。这样提供的定位为是陆地无线电广播接收机天线的定位,该定位然后可通过接收机、天线以及相关的电缆针对信号延迟被校准。
在许多操作部署场景中,天空的空旷视野或甚至天空的相当大一部分的视野是不可用的。因此,有用的是,将混合技术或后退技术包含到传感器平台中,用于确定传感器的位置以及用于在时间和频率上同步到在WLS中的其它传感器,实际上,提供用于使传感器同步和确定它们的位置的分集。
基于已知位置的陆地广播发射机来确定接收机的位置的技术最近被开发。(见在2001年6月21日提交的U.S.美国专利申请序列号09/887158“Position Location using Broadcast Digital Television Signals”;2003年5月6日的美国专利号6559800“Position Location Using Broadcast AnalogTelevision Signals”;2005年4月12日的美国专利号6879286“PositionLocation Using Ghost Canceling Reference Television Signals”;以及1996年4月23日的美国专利号5510801“Location Determination System AndMethod Using Television Broadcast Signals”。)另外,陆地(下行链路)广播可被传感器使用以在时间和频率上同步传感器,这对于无线电信号的TOA、TDOA和/或FDOA处理是必要的。
与在波形范围内传输信息用于定位并同步传感器的GPS不同,这些技术需要用于从外部服务器传递这样的信息的通信链路。总的结果是传感器的网络,其可确定它们的位置以及在大得多的环境范围上——包括室内——在时间和频率上彼此同步。
包括GNSS接收机和陆地广播接收机的位置分集方案的使用允许后退(其中双接收机作为主接收机和作为备用接收机操作)并作为混合,其中GNSS信令与陆地广播信令组合。2005年7月12日的美国专利号6917328“Radio Frequency Device for Receiving TV Signals and GPS Satellite Signalsand Performing Positioning”描述了用于定位的一种这样的混合。
一旦定时接收机的位置通过时间和频率同步单元的分集定位接收机获得,且任何偏移校准被执行以定位传感器的接收天线,以及任何定时基准信号延迟被调整以减轻在定时接收机中固有的信号延迟和到传感器的布线(如在美国专利申请11/948244中描述的),所计算的位置、频率基准以及调整的定时信号就可被用在TOA或U-TDOA位置估计中或为各种基于移动设备的定位技术创建辅助消息。
例证性实例
在密集的城市中,传感器的安装(也被称为LMU或PDE)是有问题的,因为结构在许多部署区域中挡住了天空的视线。因为LMU一般与BTS(或可被集成到BTS电路中)共享无线电天线和布线,站点选择被进行以优化BTS覆盖,而不是使LMU安装容易。克服GPS/GNSS接收机的预期故障的分集定位和定时资源的添加允许LMU位置被自动确定以及定时基准信号从次级陆地广播网络被获得。自动位置确定可被用于自动地填充LMU位置数据库或检查或替代LMU站点的手动输入的测量数据。如果站点具有GPS星座的充足视野以甚至在一天的小的百分比内从GPS接收机得到良好的定时,该时间可被用于确定数字TV信号的校准因子,以使当GPS在那个站点是不可用的时,TV信号可被使用。这并不说明当接收机没有看到GPS时在TV信号中的漂移,但它仍将增强定时接收机的延期性能。
图11示意性地描述了位置、时间和频率同步单元1101的功能组件以及其与传感器平台的互连1105(也被称为LMU、PDE或SCS)。分集接收机1101包括两个或多个接收机子系统1102、1103,其经由数字数据链路1109、1112连接到公共处理器平台1104。在该实例中,接收机子系统1102、1103被视为主接收机1102和次接收机1103,但实际上,公共处理器平台1104将基于定位时间、信号质量或操作者偏好来指定主和次接收机(或备用接收机)。当接收机1102、1103被用在混合配置中时,这两个接收机都是主接收机。
公共处理器平台互连到传感器平台1105用于经由定时链路1113(例如1PPS信号)传递定时基准、经由频率接口1114传递频率基准(通常为10MHz)以及经由数据互连1115使用误差估计传递以纬度、经度以及高度格式的时间戳和位置数据。
在该实例中,第一接收机子系统1102为GNSS接收机。GNSS接收机配备有GPS天线1107,并可以可选地配备有第二天线1108用于GNSS辅助信号的接收。被称为校正信息的辅助信号信息包括卫星星座轨道信息、时钟漂移、大气信号延迟以及电离层延迟。在辅助信令的一些实现中,GPS(或GNSS)天线1107可与辅助信号天线1108组合。
被称为校正信息的辅助信号信息包括卫星星座轨道信息、时钟漂移、大气信号延迟以及电离层延迟。在辅助信令的一些宽带实现中,GPS(或GNSS)天线可与辅助信号天线组合;否则单独的天线可被使用。
GPS辅助无线电信号系统包括在美国的广域增强系统(WAAS)、在欧盟的欧洲同步卫星导航覆盖服务(EGNOS)、在日本的多功能卫星增强系统(MSAS)、在印度的GPS辅助型静地轨道增强导航(GAGAN)以及各种商业差分GPS(D-GPS)系统,例如Starfire、Starfix、Quasi-Zenith以及OMNISTAR。
WAAS是对于GPS(GNSS系统的主要实例)的基于卫星的增强系统(SBAS)的功能实例。WAAS从地球同步卫星发射信号,该信号类似于GPS信号,因此可被多信道GPS接收机处理以增强GPS接收机的位置估计的准确度以及当结合GPS卫星信号被使用时其提供的时间和频率基准。该更高的准确度通过在GPS/WAAS接收机中的多种因素决定的导航解决方法的使用而出现,这提供精确度的提高,因为被多信道接收机处理的GPS/WAAS信号的数量增加了。如果没有GPS信号是可用的,则仅来自WAAS的信号可提供时间和频率基准,如果GPS/WAAS接收机是静止的以及它的三维位置是已知的。这被称为操作的“静态定时模式”。因此,在该“静态定时模式”中,定时基准冗余被提供。该能力在密集城市环境中尤其有用,在密集城市环境中天空的空旷视野在接收天线位置处不可用来为了良好性能而接收充足数量的GPS卫星,但WAAS卫星的空旷视野存在。因为WAAS卫星是地球同步的,定向天线可以是用于进一步增强所接收的信号电平的辅助信号天线1108。
第一接收机子系统1102可以可选地配备有辅助信号连接1116,其经由有线连接将辅助信息提供到陆侧辅助服务器或网络。第一接收机子系统1102经由接口1119将稳定的时间基准(通常为1PPS信号)输出到CPP1104并经由数据链路1109将包含所计算的位置和一天的时间的串行数据流输出到CPP 1104。
在该实例中,第二接收机子系统1103是HDTV广播接收机。在此被使用的HDTV涉及无线电信号广播以及编码协议,该协议包括在美国以及几个北美和亚洲国家的ATSC(先进电视制式委员会)标准;在欧洲的DVB(数字视频广播)标准,以及在日本的ISDB(集成服务数字广播)。陆地广播接收机可包括用于DVB-H或T-DMB的移动TV接收机,其可被用于提供同步定时。
HDTV接收机103配备有天线(或天线阵列)1110,并可以可选地配备有第二天线1111用于辅助信号的接收。在HDTV接收机的情况下,辅助信息将包含广播装置位置、信道分配以及定时特征和参数。
第二接收机子系统1103可以可选地配备有辅助信号连接1117,其经由有线连接将辅助信息提供到陆侧辅助服务器或网络。第二接收机子系统1103经由接口1118将稳定的时间基准(通常为1PPS信号)输出到CPP1104并经由数据链路1112将包含所计算的位置和一天的时间的串行数据流输出到CPP 1104。
公共处理器平台(CPP)1104是在为特定目的建造的高性能计算机服务器硬件上运行的软件应用。CPP 1104在双工数据链路1112、1109上接收并发送数据到无线电信号接收机子系统1102、1103。第一和第二接收机1102、1103经由第一和第二信令接口1118、1119将稳定的定时信号(通常为1PPS定时信号)传递到公共处理器平台1104。CPP 1104使用定时信号来经由链路1120训练基准振荡器1106。基准振荡器1106通常为具有锁相环(PPL)的炉控制晶体振荡器(OXCO),但可在较长的延期时间内可以是铷或铯振荡器。基准振荡器1106经由链路1121将稳定的频率基准(通常为10MHz正弦波)输出到CPP 1104。
使用时间、频率基准和时间戳信息以及开发的误差估计,公共处理器平台1104选择最佳接收机或混合(使用例如,Kalman滤波)进入的信息以创建优化的时间、频率基准和时间戳。公共处理器平台1104对每种类型的信息利用到传感器1105的单独的馈送。第一接口1113被用于传递定时脉冲,而第二接口1114被用于传递频率基准信号;以及第三接口1115传递时间戳信息、接收机位置以及定位误差参数。
可选的实施方式
使用时间和频率同步单元来提供在广域传感器布署中的分集定时和定位接收,可实现成本节约。使用配备有分集定时和定位接收机模块的总传感器组的子集,传感器的剩余部分(尤其那些安装在室内或在GPS/GNSS覆盖是间歇或不存在的区域中的传感器)可仅使用HTDV接收机子系统用于传感器位置、定时和频率基准的计算。
如在图12中所示,一组传感器1204、1205部署在在服务区域1201上。这些传感器通常与现有的无线电系统天线1206例如蜂窝塔协同定位,但可被布署作为独立的单元。
总传感器组的子集1205被安装在GPS/GNSS受挑战的区域中或没有配备有GNSS接收机。传感器的这个子集1205仅配备有陆地广播(例如,HTDV)接收机子系统用于位置、定时以及频率基准的生成。GNSS卫星1202提供一组用于定时、频率基准生成以及接收机定位的定时信号,而陆地广播系统塔1203提供第二组信号,定时、频率基准生成以及接收机定位可从该第二组信号确定。
使用分集定时和定位接收机模块增强的传感器的子组1204为所述传感器生成最佳传感器位置、定时和频率基准。另外,这些增强的(例如,配备有GPS和HDTV分集定时和定位接收机)传感器1204用以将信令提供到中央服务器1207然后到非增强的或信号缺乏的传感器1205。
为了实现在LMU UTDOA、AOA或混合(UTDOA/AoA、UTDOA/A-GPS等)接收机中的位置分集退回,或实现具有陆地广播接收机但没有GNSS接收机的低成本LMU安装,使用多个地理上分布的传感器收集GNSS和陆地广播定时信号以及然后将信号发送到集中式SMLC1207以用于分析和转发的能力。
图13示出了用以解决确定LMU的精确位置的问题,该LMU不访问GPS信号,但具有从地理上不同的方向接收多个陆地广播(例如,HDTV信号)的能力。
第一步骤1301是分集时间、位置和频率基准接收机子系统的初始化。如果定时不能经由GNSS接收机子系统获取(或如果LMU平台没有安装GNSS接收机子系统),然后该可选的时间、位置和频率基准程序被输入。在第二步骤1302中,粗定时(gross timing)经由LMU回程获取。该初始定时仅需要精确到小于国际原子钟时间(IAT)的10ms内。从数字陆地运输得到的网络定时(例如,T1/E1或以太网)是足够精确的。该粗定时将在从可视的陆地广播发射机获取精确定时时被使用。
第三步骤1303是获取来自中央服务器(名义上,SMLC服务作为在无线定位系统中的定时服务器)的陆地信号的校正因子。校正因子从配备有GNSS和陆地广播信号接收机的LMU获得。在步骤1303中,具有对GNSS和陆地广播信号的可视性的所有的或选择的LMU用于从几个陆地广播信号确定来自在定时上的偏移。除了关于报告LMU和陆地广播信号发射机的准确位置的信息外,该偏移允许定时校正因子的计算。所计算的定时偏移和信号广播的特征被转发到中央服务器用于存储和转发到其它LMU。
在下一个步骤1304中,没有访问GNSS信令(包括那些在没有GNSS接收机的情况下被布署的信令)的这组LMU从所有可视的(对每个LMU)陆地广播发射机的中央服务器要求每个LMU的定时偏移和发射机位置。这组LMU的每个然后使用陆地广播信号、转发的发射机位置以及转发的对自定位的定时校正来执行信号收集和约束最小平方位置计算。
在下一个步骤1305中,没有GNSS信号的LMU将陆地广播得到的位置结果插入到平均功能中。如果每个位置的平均功能调整(收敛)在要求的公差范围内,则LMU存储其计算的位置。如果位置不在公差范围内,则附加的定时的迭代过程和定时偏移信息的计算开始于1306。
在步骤1306开始的递归运算的另一种潜在的方法是,对于缺乏GNSS可视性的LMU在1小时内执行每秒每发射机1次陆地广播信号获取,使用转发的校正因子计算LMU位置,以及取平均结果。这将产生3600个样本以及非常精确的定位。在该过程期间每5分钟获取辅助数据应是足够的。一旦在定时模式下,每30分钟获取校正因子作为辅助数据对保持精确的定时应是足够的。
结论
以上提到的方面的任何一个都可在方法、系统、计算机可读介质或任何类型的产品中实现。在本公开中始终使用的术语“电路”可包括专用硬件组件。在同一或其它实施方式中,电路可包括配置成通过固件或开关执行功能的微处理器。在同一或其它示例性实施方式中,电路可包括一个或多个通用处理单元和/或多核处理单元等,其可在体现可操作来执行功能的逻辑的软件指令被载入存储器例如RAM和/或虚拟存储器中时被配置。在电路包括硬件和软件的组合的示例性实施方式中,实现者可写体现逻辑的源代码,以及源代码可被编译为可被通用处理单元处理的机器可读代码。
图10描述了关于本发明的方面配置的计算系统的实例。计算系统可包括计算机1020或类似物,包括处理单元1021、系统存储器1022以及系统总线1023,系统总线1023将各种系统组件——包括系统存储器——耦合到处理单元1021。系统总线1023可以是几种类型的总线结构的任一种,包括存储器总线或存储器控制器、外围总线、以及使用各种总线体系结构的任一种的局部总线。系统存储器包括只读存储器(ROM)1024和随机存取存储器(RAM)1025。基本输入/输出系统1026(BIOS)存储在ROM1024中,基本输入/输出系统1026包括例如在启动期间帮助在计算机1020内的元件之间传输信息的基本例程。计算机1020还可包括:硬盘驱动器1027,其用于从没有示出的硬盘读取或写到硬盘;磁盘驱动器1028,其用于从可移动磁盘1029读取或写到可移动磁盘;以及光盘驱动器1030,其用于从可移动光盘1031读取或写到可移动光盘,例如CD ROM或其它光学介质。在一些示例性实施方式中,体现本发明的方面的计算机可执行指令可被存储在ROM 1024、硬盘(没有示出)、RAM 1025、可移动磁盘1029、光盘1031和/或处理单元1021的缓存器中。硬盘驱动器1027、磁盘驱动器1028以及光盘驱动器1030分别通过硬盘驱动接口1032、磁盘驱动接口1033以及光盘驱动接口1034被连接到系统总线1023。驱动器和它们相关的计算机可读介质提供计算机可读指令、数据结构、程序模块以及用于计算机1020的其它数据的非易失存储。虽然在此描述的环境使用硬盘、可移动磁盘1029和可移动光盘1031,本领域技术人员应理解,可存储计算机可访问的数据的其它类型的计算机可读介质也可在操作环境中被使用,计算机可读介质例如是盒式磁带、闪存卡、数字视频光盘、伯努利暗盒、随机存取存储器(RAM)、只读存储器(ROM)以及类似物。
若干程序模块可被存储在硬盘、磁盘1029、光盘1031、ROM 1024或RAM 1025中,包括操作系统1035,一个或多个应用程序1036、其它程序模块1037和程序数据1038。用户可通过输入设备例如键盘1040和指示设备1042将命令和信息输入到计算机1020中。其它输入设备(没有示出)可包括麦克风、操纵杆、游戏垫、卫星碟、扫描仪或类似物。这些和其它输入设备通常通过耦合到系统总线的串行端口接口1046连接到处理单元1021,但可通过其它接口例如并行端口、游戏端口或通用串行总线(USB)被连接。显示器1047或其它类型的显示设备也可经由接口例如视频适配器1048和电缆1057连接到系统总线1023。除显示器1047之外,计算机一般包括其它外围输出设备(没有示出),例如扬声器和打印机。图10的系统也包括主机适配器1055、小型计算机系统接口(SCSI)总线1056以及连接到SCSI总线1056的外部存储设备1062。
计算机1020可使用到一个或多个远程计算机例如远程计算机1049的逻辑连接来在联网环境中操作。远程计算机1049可为另一计算机、服务器、路由器、网络PC、对等设备或其它公共网络节点、虚拟机,并一般可包括以上描述的涉及计算机1020的许多或所有元件,虽然只有存储器存储设备1050在图10中被示出。在图10中描述的逻辑连接可包括局域网(LAN)1051和广域网(WAN)1052。这样的联网环境在办公室、企业宽计算机网络、公司内部网以及互联网中是普通的。
当在LAN联网环境中使用时,计算机1020可通过网络接口或适配器1053连接到LAN 1051。当在WAN联网环境中使用时,计算机1020可一般包括调制解调器1054或用于在广域网1052例如互联网上建立通信的其它装置。可以是内部的或外部的调制解调器1054可经由串行端口接口1046连接到系统总线1023。在联网环境中,关于计算机1020描述的程序模块或其部分可被存储在远程存储器存储设备中。应认识到,所示出的网络连接是实例,以及在计算机之间建立通信链路的其它装置可被使用。此外,虽然设想本发明的很多实施方式特别地适合于计算机系统,但在该文件中没有任何内容旨在将本公开限制到这样的实施方式。
上文的详细的描述通过实例和/或操作图阐述了各种系统和/或过程的实施方式。在包含一个或多个功能和/或操作的这样的方框图和/或实例的范围内,本领域技术人员应理解,在这样的方框图或实例内的每个功能和/或操作可通过各种硬件、软件、固件或实质上其任何组合来单独地和/或共同地实现。
虽然在此描述的本发明的特定方面和实施方式被示出和描述,对本领域技术人员应明显,基于在此的教导,可进行改变和修改,因此,所附的权利要求将在其范围内包含如在此描述的本发明的真实精神和范围内的所有这样的改变和修改。

Claims (25)

1.一种分集接收机,其用于生成在对无线定位系统(WLS)的传感器平台进行定位和同步时使用的位置、时间和频率基准,所述分集接收机包括:
第一接收机子系统,其包括陆地广播接收机;
公共处理器平台(CPP),其经由第一链路装置耦合到所述第一接收机子系统,其中所述第一接收机子系统经由所述第一链路装置将稳定的时间基准和位置信息提供到所述公共处理器平台;以及
第二链路装置,其用于将所述分集接收机耦合到传感器平台并将时间和频率基准以及位置数据提供到所述传感器平台。
2.根据权利要求1所述的分集接收机,其中所述陆地广播接收机包括HDTV接收机。
3.根据权利要求1所述的分集接收机,其中所述陆地广播接收机包括用于接收传递辅助信息的辅助信号的天线,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
4.根据权利要求1所述的分集接收机,其中所述陆地广播接收机包括用于接收辅助信息的辅助信息接口,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
5.根据权利要求4所述的分集接收机,其中所述辅助信息接口被配置成将所述陆地广播接收机耦合到陆侧辅助服务器或网络。
6.根据权利要求1所述的分集接收机,还包括第二接收机子系统,所述第二接收机子系统包括经由第三链路装置操作地耦合到所述公共处理器平台的GNSS接收机,其中所述第二接收机子系统经由所述第三链路装置将第二稳定的时间基准和位置信息提供到所述公共处理器平台。
7.根据权利要求6所述的分集接收机,其中所述GNSS接收机包括用于接收GNSS辅助信号的辅助信息接口,所述辅助信号传递卫星星座轨道信息以及用于校正时钟漂移、大气信号延迟以及电离层延迟的其它信息,由此GNSS接收机的位置估计以及所述时间和频率基准的准确度能够被增强。
8.根据权利要求6所述的分集接收机,其中所述GNSS接收机包括用于从陆侧辅助服务器或网络接收辅助信息的辅助信息接口。
9.根据权利要求7或权利要求8所述的分集接收机,其中所述GNSS接收机被配置成在静态定时模式中操作,在所述静态定时模式中,时间和频率基准在没有GNSS信号是可用的时被提供。
10.根据权利要求6所述的分集接收机,其中所述公共处理器平台被配置成基于定位时间、信号质量或操作者偏好指定主接收机子系统和次接收机子系统。
11.根据权利要求6所述的分集接收机,还包括操作地耦合到所述公共处理器平台的基准振荡器,其中所述公共处理器平台被配置成经由所述第一链路装置和所述第三链路装置与所述第一接收机子系统和所述第二接收机子系统通信,以从所述接收机子系统接收稳定的时间信号,并使用所述时间信号的至少一个来训练所述基准振荡器,以及其中所述基准振荡器将稳定的频率基准提供到所述公共处理器平台。
12.根据权利要求11所述的分集接收机,其中所述公共处理器平台还被配置成选择所述第一接收机子系统和所述第二接收机子系统中的一个或混合由所述接收机子系统提供的信息以创建将被提供到所述传感器平台的优化的时间基准、频率基准和时间戳。
13.一种第一定位传感器,其用在包括定位传感器的网络的无线定位系统(WLS)中,所述第一定位传感器包括:
第一接收机子系统,其包括HDTV接收机;
公共处理器平台(CPP),其经由第一链路装置耦合到所述第一接收机子系统,其中所述第一接收机子系统经由所述第一链路装置将稳定的时间基准和位置信息提供到所述公共处理器平台;
第二链路装置,其用于将所述第一定位传感器耦合到传感器平台并将时间和频率基准以及位置数据提供到所述传感器平台;
第二接收机子系统,其包括经由第三链路装置操作地耦合到所述公共处理器平台的GNSS接收机,其中所述第二接收机子系统经由所述第三链路装置将第二稳定的时间基准和位置信息提供到所述公共处理器平台;
基准振荡器,其操作地耦合到所述公共处理器平台;
其中所述公共处理器平台被配置成经由所述第一链路装置和所述第三链路装置与所述第一接收机子系统和所述第二接收机子系统通信,以从所述接收机子系统接收稳定的时间信号,并使用所述时间信号的至少一个训练所述基准振荡器,以及其中所述基准振荡器将稳定的频率基准提供到所述公共处理器平台。
14.根据权利要求13所述的第一定位传感器,其中所述HDTV接收机包括用于接收传递辅助信息的辅助信号的天线,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
15.根据权利要求13所述的第一定位传感器,其中所述HDTV接收机包括用于接收辅助信息的辅助信息接口,所述辅助信息包括广播装置位置、信道分配以及定时特征和参数。
16.根据权利要求15所述的第一定位传感器,其中所述辅助信息接口被配置成将所述HDTV接收机耦合到陆侧辅助服务器或网络。
17.根据权利要求13所述的第一定位传感器,其中所述GNSS接收机包括用于接收GNSS辅助信号的辅助信息接口,所述辅助信号传递卫星星座轨道信息以及用于校正时钟漂移、大气信号延迟以及电离层延迟的其它信息,由此GNSS接收机的位置估计以及所述时间和频率基准的准确度能够被增强。
18.根据权利要求13所述的第一定位传感器,其中所述GNSS接收机包括用于从陆侧辅助服务器或网络接收辅助信息的辅助信息接口。
19.根据权利要求17或权利要求18所述的第一定位传感器,其中所述GNSS接收机被配置成在静态定时模式中操作,在所述静态定时模式中,时间和频率基准在没有GNSS信号是可用的时被提供。
20.根据权利要求13所述的第一定位传感器,其中所述公共处理器平台被配置成基于定位时间、信号质量或操作者偏好指定主接收机子系统和次接收机子系统。
21.根据权利要求13所述的第一定位传感器,其中所述公共处理器平台还被配置成选择所述第一接收机子系统和所述第二接收机子系统中的一个或混合由所述接收机子系统提供的信息以创建将被提供到所述传感器平台的优化的时间基准、频率基准和时间戳。
22.一种用于确定无线定位系统(WLS)的定位传感器的位置的系统,包括:
用于获取粗定时信息的装置;
用于获取陆地广播信号的校正因子的装置;
用于获取陆地广播信号的装置;以及
用于使用所述陆地广播信号和所述校正因子来计算所述传感器的位置并用于改进所计算的位置直到它在限定的公差内的装置;
其中所计算的位置可用在所述无线定位系统的随后操作中。
23.根据权利要求22所述的系统,其中所述粗定时信息精确到国际原子钟时间(IAT)的10ms内。
24.一种用于确定无线定位系统(WLS)的定位传感器的位置的方法,其中所述定位传感器不能接收GNSS信号,所述方法包括:
获取粗定时信息;
获取陆地广播信号的校正因子;
获取陆地广播信号,并使用所获取的陆地广播信号和所述校正因子来计算所述传感器的位置;
改进所计算的位置直到它在限定的公差内;以及
存储所计算的位置供在所述无线定位系统的随后操作中使用。
25.根据权利要求24所述的方法,其中所述粗定时信息精确到国际原子钟时间(IAT)的10ms内。
CN2010800038070A 2009-07-24 2010-06-08 分集时间和频率定位接收机 Expired - Fee Related CN102272618B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/509,391 US8436768B2 (en) 2008-12-30 2009-07-24 Diversity time and frequency location receiver
US12/509,391 2009-07-24
PCT/US2010/037709 WO2011011118A1 (en) 2009-07-24 2010-06-08 Diversity time and frequency location receiver

Publications (2)

Publication Number Publication Date
CN102272618A CN102272618A (zh) 2011-12-07
CN102272618B true CN102272618B (zh) 2013-07-03

Family

ID=43499337

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800038070A Expired - Fee Related CN102272618B (zh) 2009-07-24 2010-06-08 分集时间和频率定位接收机

Country Status (11)

Country Link
US (1) US8436768B2 (zh)
EP (1) EP2387725A4 (zh)
JP (1) JP5468135B2 (zh)
KR (1) KR20120037362A (zh)
CN (1) CN102272618B (zh)
AU (1) AU2010274965B2 (zh)
BR (1) BRPI1006052A2 (zh)
CA (1) CA2746413C (zh)
IL (1) IL213100A (zh)
MX (1) MX2011006510A (zh)
WO (1) WO2011011118A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10917163B2 (en) 2014-08-15 2021-02-09 SEAKR Engineering, Inc. Integrated mixed-signal RF transceiver with ADC, DAC, and DSP and high-bandwidth coherent recombination
US8138975B2 (en) 2008-12-30 2012-03-20 Trueposition, Inc. Interference detection, characterization and location in a wireless communications or broadcast system
JP5402771B2 (ja) * 2010-03-25 2014-01-29 ソニー株式会社 管理サーバ、基地局、通信システム、および通信方法
US8503368B2 (en) 2011-02-08 2013-08-06 Walter Rausch Macro-network location determination, local-oscillator stabilization, and frame-start synchronization based on nearby FM radio signals
US9844014B2 (en) * 2010-06-11 2017-12-12 Sprint Spectrum L.P. Alternatives to satellite signals for synchronization in macro network
US9674807B2 (en) 2010-06-11 2017-06-06 Clearwire IP Holdings, LLC Subcarrier signal for synchronization in macro network
KR101422044B1 (ko) * 2010-09-27 2014-07-23 엘지전자 주식회사 무선랜(Wireless Local Area Network: WLAN) 시스템의 화이트 스페이스 맵 정보의 전송 방법 및 장치
JP5796325B2 (ja) 2011-03-31 2015-10-21 ソニー株式会社 通信制御装置、通信制御方法及び通信制御システム
JP5926371B2 (ja) * 2011-04-26 2016-05-25 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 基地局同期
US8774795B2 (en) * 2011-05-20 2014-07-08 Honeywell International Inc. Reconfigurable satcom avionics radio
US9007262B1 (en) * 2011-05-25 2015-04-14 Leidos, Inc. Diversified doppler for single platform geolocation
US8903304B2 (en) * 2011-06-23 2014-12-02 Talpha Technologies, Inc. Systems and methods for radio frequency hopping communications jamming utilizing software defined radio platforms
KR20130064545A (ko) * 2011-12-08 2013-06-18 현대자동차주식회사 위치 정보 처리 장치 및 위치 정보 처리 방법
US11140645B2 (en) 2012-03-29 2021-10-05 Sulu Networks Ltd. Localization, synchronization and navigation using passive sensor networks
CN102638847B (zh) * 2012-04-11 2014-06-18 苏州英菲泰尔电子科技有限公司 蜂窝式自生长无线通信系统
US9185516B2 (en) * 2012-05-21 2015-11-10 Qualcomm Incorporated Radio frequency interference awareness assistance data
US9065699B2 (en) 2012-11-30 2015-06-23 Cognosos, Inc. Methods and systems for a distributed radio communications network
US10451706B1 (en) * 2013-03-15 2019-10-22 Wiser Systems, Inc. Methods and systems for selecting the shortest path in a multi-path environment
CN105282698B (zh) * 2014-07-10 2020-11-03 中兴通讯股份有限公司 获取gps信号的方法及系统
US9535155B2 (en) * 2015-02-04 2017-01-03 Cognitive Systems Corp. Locating the source of a wireless signal
KR101551395B1 (ko) * 2015-05-12 2015-09-08 한국해양과학기술원 해상 무선통신을 이용한 해상 위치 및 시각정보 제공시스템
US10575235B2 (en) 2015-06-10 2020-02-25 At&T Intellectual Property I, L.P. Facilitation of network resource routing and resource optimization
US9880259B2 (en) * 2015-10-29 2018-01-30 The United States of America as represented by Scretary of the Navy Method for estimating the position of a mobile station using TOA, AOA, and doppler-shift
RU172333U1 (ru) * 2016-07-26 2017-07-04 федеральное государственное автономное образовательное учреждение высшего образования "Самарский национальный исследовательский университет имени академика С.П. Королева" Программно-аппаратный комплекс для измерения метрик производительности IP-сетей
US10422846B2 (en) * 2017-01-30 2019-09-24 Rohde & Schwarz Gmbh & Co. Kg Method for calibrating a radio frequency test instrument and radio frequency test instrument
CN108254733B (zh) * 2018-01-16 2021-01-01 上海兰宝传感科技股份有限公司 多个环境感知系统同时使用的防对射干扰方法
US10972191B2 (en) * 2018-05-22 2021-04-06 Asia Satellite Telecommunications Company Limited Uplink interference geolocation method and system for high throughput satellite
US10637563B2 (en) 2018-08-06 2020-04-28 At&T Intellectual Property I, L.P. Dynamic adjustment of integrated access and backhaul link partition for emergency communications
CN110018441A (zh) * 2019-04-12 2019-07-16 相维(北京)科技有限公司 一种toa的评估方法
US11082853B2 (en) * 2019-08-07 2021-08-03 At&T Intellectual Property I, L.P. System and method for avoiding signal spoofing attacks in wireless broadband networks
TWI767144B (zh) * 2019-09-27 2022-06-11 財團法人資訊工業策進會 用於無線通訊系統之威脅偵測裝置及其威脅偵測方法
US12114176B2 (en) * 2019-10-04 2024-10-08 Nippon Telegraph And Telephone Corporation Propagation characteristic estimation device, propagation characteristic estimation method, and propagation characteristic estimation program
US11675318B2 (en) * 2019-12-31 2023-06-13 Continental Automotive Systems, Inc. Multi-interface GPS time synchronization
CN111953398A (zh) * 2020-07-07 2020-11-17 上海利正卫星应用技术有限公司 面向微纳卫星的测控数传一体化系统
US11937108B2 (en) 2020-11-23 2024-03-19 Arris Enterprises Llc Detection and mitigation of wide band signal jamming
CN112532307B (zh) * 2020-11-30 2022-07-29 中国空间技术研究院 一种高通量卫星有效载荷在轨测试系统及方法
US11381266B1 (en) * 2020-12-31 2022-07-05 Iridium Satellite Llc Wireless communication with interference mitigation
CN113281787B (zh) * 2021-05-07 2022-06-10 中国电子科技集团公司第五十四研究所 一种gnss信号干扰监测与干扰源定位方法
CN115685274B (zh) * 2022-11-11 2024-04-26 国网思极位置服务有限公司 信号处理装置及方法、定位项圈、计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625696A (zh) * 2002-04-12 2005-06-08 阿尔卡特公司 用于增强卫星定位系统的系统和方法
CN101438512A (zh) * 2006-02-28 2009-05-20 天宝导航有限公司 Gnss/gps特定位置连接系统

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728959A (en) 1986-08-08 1988-03-01 Ventana Sciences Inc. Direction finding localization system
US5327144A (en) 1993-05-07 1994-07-05 Associated Rt, Inc. Cellular telephone location system
US5510801A (en) 1994-03-01 1996-04-23 Stanford Telecommunications, Inc. Location determination system and method using television broadcast signals
US5828336A (en) 1996-03-29 1998-10-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Robust real-time wide-area differential GPS navigation
US6047192A (en) 1996-05-13 2000-04-04 Ksi Inc. Robust, efficient, localization system
US6108555A (en) 1996-05-17 2000-08-22 Ksi, Inc. Enchanced time difference localization system
US5936571A (en) 1997-01-31 1999-08-10 Lockheed Martin Corporation Integrated GPS/interference location system
US6184829B1 (en) 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
DE19920222C5 (de) 1999-05-03 2017-03-02 Rohde & Schwarz Gmbh & Co. Kg Verfahren und Anordnung zum Identifizieren des Benutzers eines Mobiltelefons oder zum Mithören der abgehenden Gespräche
US6559800B2 (en) 2001-02-02 2003-05-06 Rosum Corporation Position location using broadcast analog television signals
US6522297B1 (en) 2001-02-02 2003-02-18 Rosum Corporation Position location using ghost canceling reference television signals
US6876859B2 (en) 2001-07-18 2005-04-05 Trueposition, Inc. Method for estimating TDOA and FDOA in a wireless location system
US6917328B2 (en) 2001-11-13 2005-07-12 Rosum Corporation Radio frequency device for receiving TV signals and GPS satellite signals and performing positioning
EP1573353A2 (en) * 2002-12-16 2005-09-14 Matsushita Electric Industrial Co., Ltd. Using multiple receive antennas to determine the location of a transmitter with respect to a receiver in ultra wideband systems
US7026987B2 (en) 2004-02-10 2006-04-11 Thales Navigation, Inc. Asynchronous assisted GPS position determination
US7339525B2 (en) 2004-07-30 2008-03-04 Novariant, Inc. Land-based local ranging signal methods and systems
US7095368B1 (en) 2005-03-18 2006-08-22 Global Locate, Inc. Method and apparatus for combining measurements and determining clock offsets between different satellite positioning systems
US7427952B2 (en) * 2005-04-08 2008-09-23 Trueposition, Inc. Augmentation of commercial wireless location system (WLS) with moving and/or airborne sensors for enhanced location accuracy and use of real-time overhead imagery for identification of wireless device locations
ATE424702T1 (de) 2005-07-22 2009-03-15 M M I Res Ltd Beschaffung von identitätsparametern durch emulieren von basisstationen
US7471241B1 (en) 2005-07-25 2008-12-30 Chun Yang Global navigation satellite system (GNSS) receivers based on satellite signal channel impulse response
US7280810B2 (en) 2005-08-03 2007-10-09 Kamilo Feher Multimode communication system
US7593738B2 (en) 2005-12-29 2009-09-22 Trueposition, Inc. GPS synchronization for wireless communications stations
US7471236B1 (en) 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7511662B2 (en) 2006-04-28 2009-03-31 Loctronix Corporation System and method for positioning in configured environments
US7551126B2 (en) 2007-03-08 2009-06-23 Trimble Navigation Limited GNSS sample processor for determining the location of an event
US20080252518A1 (en) * 2007-03-21 2008-10-16 Yerachmiel Yeshayahu Method and apparatus for determining location using a hybrid solution
US8548488B2 (en) 2007-11-30 2013-10-01 Trueposition, Inc. Automated configuration of a wireless location system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1625696A (zh) * 2002-04-12 2005-06-08 阿尔卡特公司 用于增强卫星定位系统的系统和方法
CN101438512A (zh) * 2006-02-28 2009-05-20 天宝导航有限公司 Gnss/gps特定位置连接系统

Also Published As

Publication number Publication date
IL213100A0 (en) 2011-07-31
EP2387725A4 (en) 2015-07-01
JP5468135B2 (ja) 2014-04-09
CA2746413C (en) 2014-09-16
US20120256789A1 (en) 2012-10-11
KR20120037362A (ko) 2012-04-19
IL213100A (en) 2016-03-31
EP2387725A1 (en) 2011-11-23
JP2013500623A (ja) 2013-01-07
BRPI1006052A2 (pt) 2018-04-24
AU2010274965B2 (en) 2013-06-20
CN102272618A (zh) 2011-12-07
WO2011011118A1 (en) 2011-01-27
AU2010274965A1 (en) 2011-01-27
CA2746413A1 (en) 2011-01-27
US8436768B2 (en) 2013-05-07
MX2011006510A (es) 2011-07-12

Similar Documents

Publication Publication Date Title
CN102272618B (zh) 分集时间和频率定位接收机
CN102272617B (zh) 在无线通信或广播系统中的干扰检测、表征以及定位
US11709274B2 (en) Determining correct location in the presence of GNSS spoofing
US12038515B2 (en) GNSS spoofing detection and recovery
AU2011258643B2 (en) Network location and synchronization of peer sensor stations in a wireless geolocation network
US11395103B2 (en) Positioning system and method
US20180284290A1 (en) Cooperative receiver system with mobile to mobile assistance
Deshpande TerraPoiNT-An Advanced Terrestrial Technology to Enhance Navigation in a GNSS-Denied Environments

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130703

Termination date: 20160608

CF01 Termination of patent right due to non-payment of annual fee