WO2014063574A1 - 用于组织工程的可控液压生物反应器 - Google Patents

用于组织工程的可控液压生物反应器 Download PDF

Info

Publication number
WO2014063574A1
WO2014063574A1 PCT/CN2013/085134 CN2013085134W WO2014063574A1 WO 2014063574 A1 WO2014063574 A1 WO 2014063574A1 CN 2013085134 W CN2013085134 W CN 2013085134W WO 2014063574 A1 WO2014063574 A1 WO 2014063574A1
Authority
WO
WIPO (PCT)
Prior art keywords
top cover
pipe
controllable hydraulic
bioreactor
tissue engineering
Prior art date
Application number
PCT/CN2013/085134
Other languages
English (en)
French (fr)
Inventor
刘海蓉
戴瑶
周征
夏磊磊
周广东
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2014063574A1 publication Critical patent/WO2014063574A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue

Definitions

  • the present invention relates to a tissue engineering bioreactor; and more particularly to a controllable hydraulic bioreactor for tissue engineering having an independent pressurized chamber.
  • Mechanical stimulation can significantly improve the mechanical properties of engineered cartilage by enhancing chondrocyte proliferation, differentiation, and extracellular matrix synthesis.
  • the most widely used bioreactors currently have two types of shear and compressive stress bioreactors. However, the two reactors are mainly based on the unequal pressure application mode. Because the direction of the force application is single, the non-stressed surface of the cartilage lacks the corresponding mechanical stimulation, and the mechanical properties of the cartilage in vitro are not uniform. Large volume, special form of cartilage (such as auricular cartilage) for mechanical properties and precise shape requirements. Therefore, the development of a bioreactor that can apply pressure uniformly from all directions without causing changes in cartilage morphology is essential for the construction of engineered cartilage in vitro.
  • the technical problem to be solved by the present invention is to overcome the above drawbacks and to provide a controllable hydraulic bioreactor for tissue engineering which can uniformly press the culture in all directions.
  • a controllable hydraulic bioreactor for tissue engineering comprising a tank body, wherein the tank body is provided with a top cover, wherein: the upper end of the top cover is provided with a controllable hydraulic system, and the lower part of the tank body is provided with Circulating perfusion system - the can body is provided with a flexible diaphragm, and the flexible diaphragm separates the cavity formed by the can body and the top cover into a culture chamber and a pressurized chamber: the lower portion of the culture chamber is provided with a perforated plate, and the porous shelf is used To place the culture;
  • the controllable hydraulic system includes a pipe running through the top cover at one end, and the other end of the pipe is equipped with a hydraulic device;
  • the circulating perfusion system includes two pipes respectively installed on the tank; two pipes
  • the road is in an up and down position relationship: the pipeline at the top is a liquid outlet pipe, the liquid outlet pipe is connected with a liquid storage device, the pipe at the lower side is a liquid inlet pipe, and the liquid inlet pipe is connected with a liquid storage device;
  • a power unit is disposed between the liquid storage devices.
  • the top cover is further provided with two pipelines, and the lower end of the pipeline runs through and is installed on the top cover, and the upper ends are respectively installed with a wide safety and a wide pressure relief.
  • the lower part of the tank body is provided with a pipeline, one end of the pipeline runs through and is installed on the tank body, and the other end is provided with a pressure gauge.
  • a control valve is mounted on the liquid inlet pipe; a control valve is mounted on the liquid discharge pipe.
  • the power device is a peristaltic pump, and the peristaltic pump is in communication with the liquid storage bottle; the hydraulic device is a high pressure gas cylinder.
  • the can body is fixed to the top cover by bolts.
  • the advantages of the present invention are compared with the prior art: it adopts a hydraulic pressure method, which can provide uniform pressure stimulation to the respective force receiving surfaces of the culture in the reactor and does not cause culture. Mechanical deformation of the material; Separating the pressurized system from the culture system by means of a flexible membrane, on the basis of not affecting the pressure effect, it can effectively prevent pollutants and pressurized gas from entering the culture system; using gas pressure method and controllable unloading Pressure technology can realize real-time and precise regulation of key parameters such as pressure stimulation intensity, frequency and action time, and realize the conversion of various stimulation modes; introduce culture fluid into and out of the culture system to realize cyclic perfusion culture, ⁇ and greatly Simplify the complexity of basic operations such as changing fluids during the construction of engineered cartilage, and reduce the possibility of contamination caused by repeated opening operations.
  • Figure ⁇ is a schematic structural view of an embodiment of the present invention.
  • Figure ⁇ 1-tank: 2 top cover; 3-bolt; 4-pipe; 5 - safety valve; 6-pipe: 7-pressure relief valve: 8-pipe; 9-hydraulic M; 11; control valve; 12-reservoir bottle; 13-pressure gauge; 14-line; 15-porous shelf; 16-flexible diaphragm; 17-culture chamber; 18-pressure chamber; 19-inlet tube; 20-Inlet valve: 21-peristaltic pump.
  • a controllable hydraulic bioreactor for tissue engineering includes a tank body 1 .
  • the tank body 1 is provided with a top cover 2 , and the upper end portion of the top cover 2 is provided with a controllable hydraulic system.
  • a lower portion of the can body 1 is provided with a circulation perfusion system. Cultures placed in the tank provide the required hydraulic stimulation through a controlled hydraulic system during pressurized stimulation. During the culture, the perfusion system supplies fresh culture to the culture and exchanges the old culture.
  • the can body 1 is provided with a flexible diaphragm 16, and the flexible diaphragm 16 separates the cavity formed by the can body 1 and the top cover 2 into a culture chamber 17 and a pressurizing chamber 18.
  • the flexible membrane 16 can also be replaced by other separators having the same function, so that any substituent having a flexible barrier effect is within the scope of the present invention.
  • the lower portion of the culture chamber 17 is provided with a perforated plate 15 for placing the culture.
  • the controllable hydraulic system includes a pipe 8 that is inserted through one end and mounted on the top cover 2, and the other end of the pipe 8 is equipped with a hydraulic device.
  • the hydraulic device, the line 8 and the flexible diaphragm 16 together achieve hydraulic controllability.
  • the hydraulic unit uses a high pressure gas cylinder 9 of 15Mp a compressed air specification.
  • top cover 2 is also provided with two pipes 4, 6.
  • the lower ends of the pipes 4, 6 are penetrated and mounted on the top cover 2, and the upper end is respectively provided with a safety valve 5 and a pressure relief valve 7.
  • the opening pressure of the safety valve 5 is lOMpa, and the pressure relief valve 7 is a gas pressure reduction.
  • the can body 1 can be fixed to the top cover 2 by bolts 3.
  • the tank body is made of 316L stainless steel, the inner cavity diameter is 100mm, the height is 100mm, the thickness is 7mm, the tank flange is 40mm thick; the top cover is made of 316L stainless steel.
  • the shackle between the tank and the top cover is made of 304 stainless steel and the cap is M22.
  • the circulation perfusion system includes two pipes respectively installed on the tank body, and the two pipes are in an up-and-down positional relationship.
  • the upper line is the liquid outlet pipe 10
  • the liquid discharge pipe 10 is connected with the liquid storage device
  • the lower pipe is the liquid inlet pipe.
  • the liquid inlet pipe 19 is connected with a liquid storage device.
  • a power unit is disposed between the inlet pipe 19 and the liquid storage device.
  • the liquid storage device is a liquid storage bottle 12.
  • the power unit is a peristaltic pump 21, and the peristaltic pump 2 is in communication with the reservoir.
  • the individual lines in the circulation perfusion system are made of silicone rubber tubing, taking into account the actual needs.
  • a pipe is provided at a lower portion of the tank body 1, one end of the pipe is penetrated and mounted on the tank body 1, and the other end is provided with a pressure gauge.
  • the pressure gauge 13 uses a 316L stainless steel pressure gauge.
  • a control valve is mounted on the inlet pipe
  • control pipe is installed with a control width 11.
  • the piping of each of the above components is made of a silicone tube.
  • Step 1 Close the control raft on the inlet pipe and the control valve on the outlet pipe, place the culture on the porous shelf and pour the cell culture solution into the culture chamber to cover the culture with the liquid surface, and place the flexible membrane.
  • the top cover is tightly fixedly connected to the tank body between the culture chamber and the pressure chamber.
  • Step 2 Open the control valve on the inlet pipe, the control valve on the outlet pipe, and the peristaltic pump, and inject the culture solution in the liquid storage bottle into the culture chamber, and the culture liquid flows out from the liquid discharge pipe, that is, the flexible membrane is tight.
  • the control valve on the inlet pipe Opens the control valve on the inlet pipe, the control valve on the outlet pipe, and the peristaltic pump, and inject the culture solution in the liquid storage bottle into the culture chamber, and the culture liquid flows out from the liquid discharge pipe, that is, the flexible membrane is tight.
  • Step 3 Close the pressure relief, open the hydraulic bottle, adjust the output pressure of the hydraulic bottle to 5Mpa.
  • the pressure gauge on the tank shows that the pressure in the culture chamber is 5MPa, and the pressure is 30 minutes:
  • Step 4 After the pressure is maintained, close the hydraulic bottle, open the pressure relief pottery, and adjust the output pressure of the pressure relief valve to O. lMPa. After a period of time, the pressure drop in the culture chamber is zero.
  • Step 5 After the hydraulic stimulation process is finished, open the control raft on the inlet pipe, the control valve on the outlet pipe, and the peristaltic pump to achieve cyclic perfusion culture of the reactants in the reactor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了用于组织工程的可控液压生物反应器,包括罐体和顶盖。所述顶盖上部设置有可控液压系统;所述罐体下部设置有循环灌注系统;所述罐体内设置有柔性隔膜,柔性隔膜将罐体和顶盖形成的腔体分隔成培养腔和加压腔;所述培养腔的下部设置有多孔隔板。

Description

用于组织工程的可控液压生物反应器 技术领域
本发明涉及一种组织工程生物反应器; 特别是涉及一种具备独立加压腔体的用于组织工 程的可控液压生物反应器。
背景技术
先天性小耳畸形、 创伤等因素造成的耳缺损在整形外科中很常见, 但取自体骨雕刻修复 创伤大, 利用组织工程学方法在体外构建出具有精确耳廓形态的软骨将成为修复耳缺损的重 要医疗新方案。 但目前体外构建的人耳廓软骨力学性能较差, 植入到皮下组织后尚达不到重 建耳廓形态稳定性的临床要求。 因此必须在体外构建时提高工程化软骨的力学性能。
力学剌激可通过增强软骨细胞增殖、 分化、 胞外基质合成等途径显著提高工程化软骨力 学性能。 目前应用最广泛的生物反应器主要有两种 剪切力及压应力生物反应器。 然而这 两种反应器主要以不等压施力模式为主, 因为施力方向单一, 会导致软骨非受力面缺乏相应 力学剌激, 丛而引起体外构建软骨力学性能不均一, 达不到大体积、 特殊形态的软骨 (如耳 廓软骨) 对于力学性能和精确形状的要求。 因此, 开发一款可从各个方向上均匀施压, 且不 会导致软骨形态变化的生物反应器, 对体外构建工程化软骨至关重要。
发明内容
本发明要解决的技术问题是克服上述缺陷, 提供一种可 A各个方向上对培养物进行均匀 施压的用于组织工程的可控液压生物反应器。
为解决上述问题, 本发明所采用的技术方案是:
用于组织工程的可控液压生物反应器, 包括罐体, 罐体上设置有顶盖, 其特征在于: 所 述顶盖的上端部设置有可控液压系统, 所述罐体的下部设置有循环灌注系统- 所述罐体内设置有柔性隔膜,柔性隔膜将罐体和顶盖形成的腔体分隔成培养腔和加压腔: 所述培养腔的下部设置有多孔摘板, 多孔搁板用以放置培养物;
所述可控液压系统包括一端贯穿并安装在顶盖上的管路,管路的另一端安装有液压装置; 所述循环灌注系统包括分别安装在罐体上的两根管路; 两根管路呈上下位置关系: 位于 上方的管路为出液管, 出液管连接有储液装置, 位于下方的管路为进液管, 进液管连接有储 液装置; 所述进液管与储液装置之间设置有动力装置。
作为一种改进:
所述顶盖上还设置有两根管路, 管路的下端贯穿并安装在顶盖上, 上端分别安装有安全 阔和泄压阔。 作为进一步的改进:
所述罐体的下部设有管路, 管路的一端贯穿并安装在罐体上, 另一端安装有压力表。 所述进液管上安装有控制阖; 所述出液管上安装有控制阀。
作为再进一步的改进:
所述动力装置为蠕动泵, 蠕动泵与储液瓶连通; 所述液压装置为高压气瓶。
所述罐体通过螺栓与顶盖固定。
由于采用了上述技术方案, 与现有技术相比, 本发明的优点是: 它采用液压加压方式, 能够对反应器内的培养物的各个受力面提供均匀的压力刺激并且不会引起培养物的机械变 形; 利用柔性隔膜使加压系统与培养系统分离, 在不影响加压效果的基础上, 还能有效避免 污染物与加压气体进入培养体系; 采用气体加压方式和可控卸压技术, 可实现对压力刺激强 度、 频率、 作用时间等关键参数的实时、 精密调控, 实现多种刺激模式的转换; 在培养系统 中引入培养液进、 出口以实现循环灌注培养, ^而大大简化工程化软骨构建过程中换液等基 本操作的复杂程度, 并降低重复开盖操作引起污染的可能性。
下面结合附图和具体实施方式对本发明作进一步说明。
附图说明
图〗是本发明实施例一种实施例的结构示意图。
图 Φ : 1-罐体: 2顶盖; 3-螺栓; 4-管路; 5 -安全阀; 6-管路: 7-泄压阀: 8-管路; 9-液压 M; 10出液管; 11控制阀; 12-储液瓶; 13-压力表; 14-管路; 15-多孔搁板; 16-柔性隔膜; 17-培养腔; 18-加压腔; 19-进液管; 20-进液阀: 21-蠕动泵。
具体实施方式
实施例:
如图 1所示, 一种用于组织工程的可控液压生物反应器, 包括罐体 1 , 罐体 1上设置有 顶盖 2, 所述顶盖 2的上端部设置有可控液压系统, 所述罐体 1的下部设置有循环灌注系统。 设置在罐体内的培养物, 在加压刺激期间, 通过可控液压系统提供所需的液压剠激。 在培养 期间, 循环灌注系统为培养物提供新鲜培养液并交换出旧培养液。
所述罐体 1 内设置有柔性隔膜 16, 柔性隔膜 16将罐体 1和顶盖 2形成的腔体分隔成培 养腔 17和加压腔 18。 柔性隔膜 16也可以被功能相同的其他隔离物取代, 所以凡是具有柔性 隔离作用的取代物, 都属于本发明的保护范围内。 培养腔 17的下部设置有多孔摘板 15 , 多 孔搁板 15用以放置培养物。
在本实施例中, 可控液压系统包括一端贯穿并安装在顶盖 2上的管路 8, 管路 8的另一 端安装有液压装置。 液压装置、 管路 8和柔性隔膜 16, 共同实现液压的可控性。 其中, 考虑 到实际情况, 液压装置选用 15Mpa压缩空气规格的高压气瓶 9。
另外, 顶盖 2上还设置有两根管路 4、 6, 管路 4、 6的下端贯穿并安装在顶盖 2上, 上 端分别安装有安全阀 5和泄压阀 7。 其中安全阀 5的开启压力为 lOMpa, 泄压阀 7为气体减 压阔。
还有,罐体 1可以通过螺栓 3与顶盖 2固定。考虑实际操作方面的因素,罐体材质为 316L 不锈钢, 内腔直径 100mm, 高 100mm, 厚 7mm, 罐体法兰厚 40mm; 顶盖材质为 316L不锈 钢。 罐体与顶盖之间的嫘栓 3材质为 304不锈钢, 嫘帽规格 M22。
在本实施例中, 循环灌注系统包括分别安装在罐体上的两根管路, 两根管路呈上下位置 关系。 位于上方的管路为出液管 10, 出液管 10连接有储液装置, 位于下方的管路为进液管
19, 进液管 19连接有储液装置。 所述进液管 19与储液装置之间设置有动力装置。 考虑到实 际情况, 储液装置为储液瓶 12。 动力装置为蠕动泵 21 , 蠕动泵 2】与储液瓶连通。 另外, 考 虑到实际的需要, 循环灌注系统中的各个管路是由硅橡胶管制成的。
另外, 罐体 1 的下部设有管路, 管路的一端贯穿并安装在罐体 1上, 另一端安装有压力 表】 3。 根据实际需要, 压力表 13采用的是 316L不锈钢压力表。 所述进液管上安装有控制阀
20, 所述出液管上安装有控制阔 11。 上述各个部件之阆的管路, 都是由硅胶管制成的。
本发明的具体实施步骤如下:
步骤 1 : 将进液管上的控制阖与出液管上的控制阀关闭, 将培养物置于多孔搁板并向培 养腔内倒入细胞培养液使液面盖过培养物, 将柔性隔膜置于培养腔与加压腔之间并用螺栓将 顶盖与罐体紧密固定连接。
步骤 2: 打开进液管上的控制阀、 出液管上的控制阀以及蠕动泵, 将储液瓶内的培养液 灌注入培养腔, 待出液管有培养液流出, 即柔性隔膜己紧贴培养液表面时, 关闭所有的控制 阀和蠕动泵。
步骤 3 : 关闭泄压阔, 打开液压瓶, 调节液压瓶的输出压力调节至 5Mpa, 此时罐体上的 压力表显示培养腔内压力为 5MPa, 保压 30分钟:
步骤 4: 保压结束后, 关闭液压瓶, 打开泄压陶, 调节泄压阀的输出压力至 O. lMPa, 一 段 间后, 培养腔内的压力降为 0。
步骤 5 : 液压刺激过程结束后, 打开进液管上的控制阖、 出液管上的控制阀和蠕动泵, 实现对反应器内的反应物实现循环灌注培养。
以上所述的仅是本发明的优选实施方式, 应当指出, 对于本领域的普通技术人员来说, 在不脱离本发明创造构思的前提下, 还可以做出若干变形和改进, 这些都属于本发明的保护 范围。

Claims

1. 用于组织工程的可控液压生物反应器, 包括罐体 (1 ), 罐体 (1 ) 上设置有顶盖 (2), 其特征在于: 所述顶盖 (2) 的上端部设置有可控液压系统, 所述罐体 (1 ) 的下部设置有循 环灌注系统;
所述罐体内设置有柔性隔膜 (16), 柔性隔膜 (16) 将罐体 (1 )和顶盖 (2) 形成的腔体 分隔成培养腔 (17) 和加压腔 (18);
所述培养腔的下部设置有多孔搁板 (15 ), 多孔搁板 (15 ) 用以放置培养物;
所述可控液压系统包括一端贯穿并安装在顶盖 (2) 丄的管路 (8), 管路 (8 ) 的另一端 安装有液压装置;
所述循环灌注系统包括分别安装在罐体上的两根管路, 两根管路呈上下位置关系; 位于 上方的管路为出液管 (10), 出液管 (10)连接有储液装置, 位于下方的管路为进液管 U 9), 进液管 (19) 连接有储液装置; 所述进液管 (19) 与储液装置之间设置有动力装置。
2. 根据权利要求 1所述的用于组织工程的可控液压生物反应器, 其特征在于: 所述顶盖 上还设置有两根管路 (4、 6), 管路 (4、 6) 的下端贯穿并安装在顶盖丄, 上端分别安装有安 全阀 (5 ) 和泄压阀 (7)。
3. 根据权利要求 2所述的用于组织工程的可控液压生物反应器, 其特征在于: 所述罐体 U )的下部设有管路(14),管路的一端贯穿并安装在罐体 U )上,另一端安装有压力表(13 )。
4. 根据权利要求 3所述的用于组织工程的可控液压生物反应器, 其特征在于: 所述进液 管 (19) 上安装有控制阀 (20); 所述出液管 (10) 上安装有控制阀 (11 )。
5. 根据权利要求 4所述的 ffl于组织工程的可控液压生物反应器, 其特征在于: 所述液压 装置为高压气瓶 (9): 所述动力装置为蠕动泵 (21 ), 蠕动泵 (21 ) 与储液瓶 (12) 连通。
6. 根据权利要求 1-5中任意一项所述的用于组织工程的可控液压生物反应器, 其特征在 于: 所述罐体 (1 ) 通过螺栓 (3 ) 与顶盖 (2) 固定。
PCT/CN2013/085134 2012-10-22 2013-10-12 用于组织工程的可控液压生物反应器 WO2014063574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210401945.5A CN102899250B (zh) 2012-10-22 2012-10-22 用于组织工程的可控液压生物反应器
CN201210401945.5 2012-10-22

Publications (1)

Publication Number Publication Date
WO2014063574A1 true WO2014063574A1 (zh) 2014-05-01

Family

ID=47571741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/085134 WO2014063574A1 (zh) 2012-10-22 2013-10-12 用于组织工程的可控液压生物反应器

Country Status (2)

Country Link
CN (1) CN102899250B (zh)
WO (1) WO2014063574A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100011231A1 (it) * 2021-05-03 2022-11-03 React4Life S R L Dispositivo per l’esecuzione di esperimenti in vitro su materiali biologici

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899250B (zh) * 2012-10-22 2014-12-03 湖南大学 用于组织工程的可控液压生物反应器
CN103550016B (zh) * 2013-11-11 2015-05-27 中国人民解放军第三军医大学第一附属医院 用于椎间盘仿生培养的均匀施力装置
CN107858285A (zh) * 2017-12-13 2018-03-30 刘延群 分体式生物反应器
CN108072755A (zh) * 2017-12-15 2018-05-25 重庆晓微城企业孵化器有限公司 生物传感器中的培植液存储结构
CN117562736A (zh) * 2018-04-28 2024-02-20 广州保瑞医疗技术有限公司 腔内热灌注循环管路
CN109370893A (zh) * 2018-11-01 2019-02-22 刘延群 生物培养反应装置
CN109280623A (zh) * 2018-11-01 2019-01-29 刘延群 生物反应实验仪
CN113106019A (zh) * 2021-03-15 2021-07-13 重庆医科大学 用于椎间盘髓核组织仿生培养的静水压生物反应器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057698A1 (de) * 2009-12-03 2011-06-09 Martin-Luther-Universität Halle-Wittenberg Zweikammerkultivierungssystem mit elastischer, poröser Membran zur uniaxialen mechanischen Stimulation von Epithelzellen und Epithelzellverbänden für die Testung endogener und exogener Faktoren
CN102899250A (zh) * 2012-10-22 2013-01-30 湖南大学 用于组织工程的可控液压生物反应器
CN202898395U (zh) * 2012-10-22 2013-04-24 湖南大学 用于组织工程的可控液压生物反应器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101474427B (zh) * 2009-01-07 2013-04-17 中山大学中山眼科中心 组织工程产品的构建系统及方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057698A1 (de) * 2009-12-03 2011-06-09 Martin-Luther-Universität Halle-Wittenberg Zweikammerkultivierungssystem mit elastischer, poröser Membran zur uniaxialen mechanischen Stimulation von Epithelzellen und Epithelzellverbänden für die Testung endogener und exogener Faktoren
CN102899250A (zh) * 2012-10-22 2013-01-30 湖南大学 用于组织工程的可控液压生物反应器
CN202898395U (zh) * 2012-10-22 2013-04-24 湖南大学 用于组织工程的可控液压生物反应器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BROWN, T.D. ET AL.: "Techniques for mechanical stimulation of cells in vitro; a review", JOURNAL OF BIOMECHANICS, vol. 33, 2000, pages 3 - 14 *
CARVER, S.E. ET AL.: "Semi-Continuous Perfusion System for Delivering Intermittent Physiological Pressure to Regenerating Cartilage", TISSUE ENGINERING, vol. 5, no. 1, 1999, pages 1 - 11 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100011231A1 (it) * 2021-05-03 2022-11-03 React4Life S R L Dispositivo per l’esecuzione di esperimenti in vitro su materiali biologici

Also Published As

Publication number Publication date
CN102899250B (zh) 2014-12-03
CN102899250A (zh) 2013-01-30

Similar Documents

Publication Publication Date Title
WO2014063574A1 (zh) 用于组织工程的可控液压生物反应器
CN102676446B (zh) 可变形曲面上细胞流体应力加载方法、装置及实验平台
US8980624B2 (en) Apparatus for high-throughput cell culture with mechanical compression stimulation
CN106867772A (zh) 液态酒酒糟压榨装置
US20100285558A1 (en) Apparatus and Method for High-Throughput Micro-Cell Culture with Mechanical Stimulation
CN101337411A (zh) 橡胶传动带硫化装置及其硫化方法
CN202898395U (zh) 用于组织工程的可控液压生物反应器
WO2009073902A3 (en) Biomass digester system & process
CN201621350U (zh) 一种集气站紧急截断阀双气源装置
CN202717883U (zh) 一种管道在线式脱泡装置
CN101182454A (zh) 一种内外双循环的生物反应器
CN210840668U (zh) 一种新型灌溉用肥料罐
CN212894732U (zh) 一种用于微生物发酵的可控量接种设备
CN210221706U (zh) 一种压裂装置
CN201231551Y (zh) 橡胶传动带硫化装置
CN102261468A (zh) 一种玻璃模型密封方法
CN209065901U (zh) 一种丙酸杆菌的循环过滤装置
CN201386102Y (zh) 一种生物反应器
CN219279884U (zh) 生物反应器接种系统
CN220539824U (zh) 一种加氢站用氢气压缩机高压气缸
CN202326122U (zh) 隔膜增压泵的泵头
CN104450494B (zh) 基于微通道萃取的生物膜反应器及其在丁醇发酵中的应用
CN218778932U (zh) 接种旁氏罐结构
CN216764903U (zh) 一种液体菌种扩繁装置
CN216764883U (zh) 一种液体菌种高效发酵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848243

Country of ref document: EP

Kind code of ref document: A1