WO2014063336A1 - 一种铝合金熔模铸造小尺寸内腔成型方法 - Google Patents

一种铝合金熔模铸造小尺寸内腔成型方法 Download PDF

Info

Publication number
WO2014063336A1
WO2014063336A1 PCT/CN2012/083541 CN2012083541W WO2014063336A1 WO 2014063336 A1 WO2014063336 A1 WO 2014063336A1 CN 2012083541 W CN2012083541 W CN 2012083541W WO 2014063336 A1 WO2014063336 A1 WO 2014063336A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
copper
aluminum alloy
small
casting
Prior art date
Application number
PCT/CN2012/083541
Other languages
English (en)
French (fr)
Inventor
周中波
薛祥义
常辉
张利军
王金龙
狄玮岚
Original Assignee
西安西工大超晶科技发展有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安西工大超晶科技发展有限责任公司 filed Critical 西安西工大超晶科技发展有限责任公司
Priority to PCT/CN2012/083541 priority Critical patent/WO2014063336A1/zh
Publication of WO2014063336A1 publication Critical patent/WO2014063336A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/02Lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention belongs to the field of casting technology and relates to a molding method, in particular to the molding of small-sized holes, grooves or other small complicated cavities in investment casting aluminum alloy castings. Background technique
  • Investment casting also known as lost wax casting, refers to a fusible pattern made of wax or plastic, coated with several layers of refractory material, dried and hardened to form a monolithic shell, followed by steam or hot water.
  • a casting method is obtained by melting a pattern from a shell, and obtaining a certain strength after being fired at a high temperature, and then casting and dehulling to obtain a casting.
  • Investment casting method can produce complex shape, clear outline, thin-walled castings, the dimensional accuracy can reach CT4 ⁇ CT6, the surface roughness can reach Ral2.5 ⁇ 1.6 m, the minimum wall thickness of casting can reach 0.3mm, which can greatly reduce the mechanical Processing workload, improving the utilization rate of metal materials, is widely used in aviation, aerospace, ships, conventional weapons and general machinery, sports supplies, and art.
  • Aluminum alloy has excellent comprehensive mechanical properties and electrical properties. Combined with investment casting precision casting technology, it can obtain high-performance structural parts and functional parts with complex internal cavity, high surface quality and thin wall which can not be formed by mechanical processing. Casting technology is an important technical support for the development of aerospace vehicles, weapons, radar and other defense and civilian products in the direction of high performance.
  • the aluminum alloy castings used in these products generally have complex and precise internal cavities with high dimensional accuracy and surface quality requirements, such as radar waveguides, which have the highest surface quality requirements.
  • the inner cavity size is as small as 0.2mm, which is extremely difficult to form.
  • Investment casting cavities are usually formed by pressure wax-hanging sand-dewaxing-baking-casting, however, for this type In small-sized cavities, it is difficult for the coating to fill the cavity due to the surface tension during the hanging process. Even if the cavity is filled, the strength of the coating is not sufficient to resist the erosion of the aluminum alloy liquid during casting, thereby causing damage.
  • Another method for forming a cavity is to first inject a gypsum core of a corresponding cavity size using gypsum, insert the gypsum core into the wax mold during the waxing process, and then obtain a high precision by hanging sand-dewaxing-baking-casting.
  • the casting of the cavity however, for the small inner cavity with a large length and a large length, the strength of the gypsum core is still unable to withstand the erosion of the aluminum alloy liquid, resulting in the invention of the casting.
  • the object of the present invention is to solve the technical problem that the aluminum alloy castings can not achieve the surface and dimensional precision by sand casting, and the complex small inner cavity cannot be formed by investment casting, and provide a small size of investment casting of aluminum alloy.
  • Inner cavity forming method which adopts pure copper or copper alloy processing core, fully exerts the high strength and high plasticity of pure copper or copper alloy core at room temperature and high temperature, and can be obtained with effective casting measures. Aluminum alloy castings with high dimensional accuracy and good surface quality.
  • the aluminum alloy investment casting small size inner cavity forming method comprises the following steps:
  • Lower core Place the pure copper or copper alloy core in the casting wax mold according to the casting process requirements, and verify its position and dimensional accuracy, and make it meet the position and dimensional accuracy;
  • De-core The casting after the clear shell is placed in concentrated sulfuric acid or concentrated nitric acid. The passivation of the aluminum alloy will not corrode, while the pure copper or copper alloy core is completely corroded in concentrated sulfuric acid or concentrated nitric acid. Thereby forming a cavity having a small-sized inner cavity.
  • the core is subjected to high-temperature oxidation prevention treatment: that is, a nickel having a thickness of 0.02 to 0.2 mm is plated on the surface of the core.
  • step 4 an inert gas is introduced into the roasting process to protect the pure copper or copper alloy core from high temperature oxidation.
  • the above inert gas is nitrogen, argon or helium.
  • step 4 a layer of charcoal is placed under the monolithic shell to form a reducing atmosphere in the roasting furnace to prevent oxidation of the copper or copper alloy core.
  • a copper-nickel alloy processing core can be selected.
  • the invention introduces a core made of pure copper or copper alloy into the investment casting of aluminum alloy, especially for castings with complicated long and small cavities such as grooves with high aspect ratio and small size blind holes, and fully exerts pure copper or copper.
  • the high strength and high plasticity of the alloy core at room temperature and high temperature supplemented by appropriate measures to prevent the oxidation of the pure copper or copper alloy core during high temperature roasting, effectively preventing the aluminum alloy liquid from scouring during the casting process.
  • the deformation and damage caused by the simple and efficient core removal method can achieve high dimensional accuracy and surface quality of the inner cavity and the outer shape.
  • the invention can solve the problem that the products of aviation, aerospace, weapons, radar and the like are difficult to be formed for structural parts or functional parts with small size and high precision, and the process is simple, the production cost is low, and great economic benefits can be obtained.
  • the aluminum alloy investment casting small-sized inner cavity molding method of the invention is to form a complex or small or high aspect ratio inner cavity by using a pure copper or copper alloy core, and the implementation steps of the method are as follows:
  • Lower core Place the pure copper or copper alloy core in the casting wax mold according to the casting process requirements, and check the position and dimensional accuracy;
  • Shell The wax mold is pressed according to the casting process requirements, and then the multilayer refractory material is coated on the wax mold. After drying and hardening, the mold is melted and discharged, thereby obtaining a core containing pure copper or copper alloy. Integral shell
  • De-core The casting after the clear shell is placed in concentrated sulfuric acid or concentrated nitric acid. Since the passivation of the aluminum alloy does not cause corrosion, the pure copper or copper alloy core is completely dissolved in concentrated sulfuric acid or concentrated nitric acid. Corrosion, resulting in a small cavity with high dimensional accuracy and good surface quality.
  • the present invention adopts a pure copper or copper alloy core for investment casting, which is special in that it simultaneously provides a method for preventing oxidation when a core and a ceramic mold shell are fired at a high temperature, and a method for removing the core by using a passivation principle. .
  • Core pretreatment a layer of 0.02 mm nickel is plated on the surface of the core to prevent oxidation of the core during the firing of the mold;
  • Lower core Place the pure copper core in the casting wax mold according to the casting process requirements, and check its position and dimensional accuracy;
  • Shelling The wax mold is pressed according to the casting process requirements, and then a plurality of layers of refractory material are coated on the wax mold. After drying and hardening, the model is melted and discharged, thereby obtaining a package. a monolithic shell containing a pure copper core;
  • De-core The casting after the clear shell is placed in concentrated sulfuric acid, the corrosion of the aluminum alloy will not cause corrosion, and the pure copper is completely corroded in concentrated sulfuric acid, resulting in high dimensional accuracy and good surface quality. Small cavity.
  • a core made of pure copper is introduced, especially for castings with high aspect ratio grooves, small-sized blind holes and other complicated small internal cavities, which fully exerts pure copper at room temperature and high temperature.
  • the core removal is carried out to obtain aluminum alloy castings with high dimensional accuracy and good surface quality.
  • the invention can solve the problem that the products of aviation, aerospace, weapons, radar and the like are difficult to be formed for structural parts or functional parts with small size and high precision, and the process is simple and the production cost is low.
  • Core pretreatment 0.1mm nickel is plated on the surface of the core to prevent oxidation of the core during the baking process of the mold;
  • Shell The wax mold is pressed according to the casting process requirements, and then the multilayer refractory material is coated on the wax mold. After drying and hardening, the mold is melted and discharged, thereby obtaining a monolithic shell containing a pure copper core. ;
  • De-core The casting after the clear shell is placed in concentrated nitric acid. Corrosion does not occur due to the passivation of the aluminum alloy. Pure copper is completely corroded in concentrated nitric acid, resulting in high dimensional accuracy and good surface quality. Small cavity.
  • a core made of pure copper is introduced, especially for castings with high aspect ratio grooves, small-sized blind holes and other complicated small internal cavities, which fully exerts pure copper at room temperature and high temperature.
  • the deformation and damage caused by the core scouring, while the concentrated nitric acid is removed, the aluminum alloy casting with high dimensional accuracy and good surface quality can be obtained.
  • the invention can solve the problem that the products of aviation, aerospace, weapons, radar and the like are difficult to be formed for structural parts or functional parts with small size and high precision, and the process is simple and the production cost is low.
  • Example 3 The copper alloy is selected to be processed into a core that meets the dimensional accuracy and surface quality requirements according to the required cavity size;
  • Core pretreatment 0.2mm nickel is plated on the surface of the core to prevent oxidation of the core during the baking process of the mold;
  • Lower core Place the copper alloy core in the casting wax mold according to the casting process requirements, and check the position and dimensional accuracy;
  • Shell The wax mold is pressed according to the casting process requirements, and then the multilayer refractory material is coated on the wax mold. After drying and hardening, the mold is melted and discharged, thereby obtaining a monolithic shell containing a pure copper core. ;
  • De-core The casting after the clear shell is placed in concentrated nitric acid. The corrosion of the aluminum alloy does not cause corrosion, and the copper alloy is completely corroded in concentrated nitric acid, resulting in high dimensional accuracy and good surface quality. Small cavity.
  • a core made of copper alloy is introduced, especially for castings with high aspect ratio grooves, small-sized blind holes and other complicated small internal cavities, which fully exerts the copper alloy at room temperature and high temperature.
  • the invention can solve the problem that the products of aviation, aerospace, weapons, radar and the like are difficult to be formed for structural parts or functional parts with small size and high precision, and the process is simple and the production cost is low.
  • the copper-nickel alloy is selected to be processed into a core that meets dimensional accuracy and surface quality requirements according to the required cavity size;
  • Shell The wax mold is pressed according to the casting process requirements, and then the multilayer refractory material is coated on the wax mold. After drying and hardening, the mold is melted and discharged, thereby obtaining a monolithic shell containing a pure copper core. ;
  • a monolithic shell comprising a copper-nickel alloy core is placed in a baking furnace and calcined at 700 ° C to obtain a high-strength mold;
  • De-core The casting after the clear shell is placed in concentrated nitric acid. Since the passivation of the aluminum alloy does not cause corrosion, the copper-nickel alloy is completely corroded in concentrated nitric acid, resulting in high dimensional accuracy and surface. Fine small cavity.
  • the core made of copper-nickel alloy is introduced into the investment casting of aluminum alloy, especially for the casting of complex and small internal cavity such as groove with high aspect ratio and small size blind hole, which fully exerts the high temperature of copper-nickel alloy.
  • High strength, high plasticity and high oxidation resistance The oxidation behavior does not occur during the roasting process of the shell, and the deformation and damage caused by the aluminum alloy liquid to the core scouring can be effectively prevented during the casting process.
  • the concentrated nitric acid is removed, and the inner cavity and the outer shape can be obtained with high dimensional precision and surface. Good quality aluminum alloy castings.
  • the invention can solve the problem that the products of aviation, aerospace, weapons, radar and the like are difficult to be formed for structural parts or functional parts with small size and high precision, and the process is simple and the production cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

一种铝合金熔模铸造小尺寸内腔成型方法,包括加工纯铜或者铜合金的型芯、型芯预处理、下芯、制壳、焙烧、浇注和除芯等工艺。该方法在铝合金熔模铸造中引入纯铜或者铜合金的型芯,特别是对于具有高长厚比的凹槽、小尺寸盲孔等复杂细小内腔的铸件,充分发挥了纯铜或者铜合金型芯在室温及高温时所具有的高强度及高塑性,辅以防止高温焙烧时氧化的措施,在浇注过程中有效的防止了铝合金液对型芯冲刷造成的变形及损坏。同时,该方法提出了简单高效的除芯方法,可获得内腔及外形尺寸精度高、表面质量好的铝合金铸件。

Description

一种铝合金熔模铸造小尺寸内腔成型方法 技术领域
本发明属于铸造技术领域, 涉及一种成型方法, 尤其是一种熔 模铸造铝合金铸件中小尺寸孔、 槽或其它细小复杂型腔的成型。 背景技术
熔模铸造又称失蜡铸造, 是指用蜡料或塑料制成可熔性模样, 在 其上涂覆若干层耐火材料, 经过干燥和硬化形成一个整体型壳后, 再 用蒸汽或热水从型壳中熔掉模样,型壳经高温培烧后从而获得一定强 度, 再经浇注, 去壳而得到铸件的一种铸造方法。熔模铸造方法可生 产形状复杂、 轮廓清晰、 薄壁铸件, 其尺寸精度可达 CT4〜CT6, 表 面粗糙度可达 Ral2.5〜1.6 m, 铸件最小壁厚可至 0.3mm, 可大幅减 少机械加工工作量, 提高金属材料的利用率, 在航空、 航天、 船舶、 常规武器及一般机器件、 文体用品、 艺术品上得到广泛应用。
铝合金具有优异的综合力学性能及电性能, 结合熔模精密铸造 技术可获得采用机械加工无法成型的内腔复杂、表面质量高、 薄壁的 高性能结构件及功能件, 铝合金熔模精密铸造技术是航空航天飞行 器、兵器、雷达等国防及民用产品向着高性能方向发展的重要技术支 撑。这些产品所使用的铝合金铸件一般具有复杂且精密内腔, 尺寸精 度及表面质量要求很高, 如雷达用波导管, 其表面质量最高要求可达
Ral.6 m, 内空腔尺寸最小可达 0.2mm, 成型难度极大。 熔模铸造空 腔通常采用压蜡 -挂砂 -脱蜡 -焙烧 -浇注的方法成型, 然而, 对于这类 细小尺寸空腔, 挂砂过程中由于表面张力使得涂料难以填充空腔, 即 使空腔被填满,涂料的强度也不足以抵御浇注时铝合金液的冲刷从而 造成损坏。另外一种成型空腔的方法是首先使用石膏灌注相应空腔尺 寸的石膏芯, 压蜡过程中将石膏芯嵌入蜡模, 然后经挂砂-脱蜡-焙烧- 浇注后获得具有较高精度空腔的铸件, 但是, 对于宽长比较大的细小 内腔,石膏芯所具有的强度依然无法抵御铝合金液的冲刷导致铸件报 发明内容
本发明的目的在于解决现有技术方案中铝合金铸件采用砂型铸 造无法达到表面及尺寸精度,采用熔模铸造无法成型复杂细小内腔所 存在的技术问题, 提供一种铝合金熔模铸造小尺寸内腔成型方法, 该 方法采用纯铜或铜合金加工型芯,充分发挥纯铜或铜合金型芯在室温 及高温时所具有的高强度及高塑性, 并且配合有效的铸造措施, 能够 获得内腔及外型尺寸精度高、 表面质量好的铝合金铸件。
本发明的目的是通过以下技术方案来解决的:
这种铝合金熔模铸造小尺寸内腔成型方法, 包括以下步骤:
1 ) 根据所需型腔尺寸将纯铜或者铜合金加工成型芯;
2) 下芯: 按照铸件工艺要求将纯铜或铜合金型芯放置于铸件压 蜡模具中, 检验其位置尺寸精度, 并使其符合位置尺寸精度;
3 ) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜或铜合金型芯的整体型壳; 4) 焙烧: 将包含纯铜或铜合金型芯的的整体型壳放入焙烧炉中 在 700°C~1000°C之间进行焙烧获得高强度模壳;
5 ) 浇注: 熔炼铝合金液, 然后对包含纯铜或铜合金型芯的模壳 进行浇注;
6) 除芯: 将清壳后的铸件放入浓硫酸或者浓硝酸中, 由于铝合 金的钝化作用不会腐蚀,而纯铜或铜合金型芯在浓硫酸或者浓硝酸中 则完全被腐蚀, 从而形成具有小尺寸内腔的型腔。
进一步的, 上述步骤 1 ) 中, 对型芯进行高温防氧化处理: 即在 型芯表面电镀一层厚度为 0.02~0.2mm的镍。
进一步, 步骤 4) 中, 焙烧过程中通入惰性气体对纯铜或铜合金 型芯进行保护, 防止高温氧化。
上述惰性气体为氮气、 氩气或者氦气。
进一步, 步骤 4) 中, 在整体型壳下方放置一层木炭, 在焙烧炉 中形成还原性气氛, 防止铜或铜合金型芯氧化。
进一步, 在步骤 1 ) 中, 可以选择铜-镍系合金加工型芯。
本发明具有以下有益效果:
本发明在铝合金熔模铸造中引入纯铜或铜合金加工成的型芯,特 别是对于具有高长厚比的凹槽、 小尺寸盲孔等复杂细小内腔的铸件, 充分发挥了纯铜或铜合金型芯在室温及高温时所具有的高强度及高 塑性, 辅以适当措施防止纯铜或铜合金型芯在高温焙烧时氧化, 在浇 铸过程中有效的防止了铝合金液对型芯冲刷造成的变形及损坏,同时 提出了简单高效的除芯方法, 可获得内腔及外型尺寸精度高、表面质 量好的铝合金铸件。 采用本发明可以解决航空、 航天、 兵器、 雷达等 产品对于具有小尺寸高精度的结构件或功能件难以成型的问题,且工 艺简单, 生产成本低, 可获得极大的经济效益。
具体实施方式
本发明的铝合金熔模铸造小尺寸内腔成型方法是采用纯铜或者 铜合金型芯成型复杂的或细小的或高长厚比的内腔,该方法的实现步 骤具体如下:
1) 根据所需型腔尺寸将纯铜或者铜合金加工成符合尺寸精度及 表面质量要求的型芯;根据实际情况可选择以下三种铜或者铜芯的高 温防氧化方法: (1 )在型芯表面电镀一层镍; (2 )焙烧时通入惰性气 体或者在型芯周围形成还原性气氛; (3 )选择铜-镍系合金加工型芯, 可以不采用以上所述的两种之一的保护措施;
2) 型芯预处理: 若选用第 (1 ) 种防氧化方法, 则需要对型芯进 行镀镍处理, 在型芯表面镀一层 0.02~0.2mm的镍; 其它两种方案可 忽略本步骤;
3) 下芯: 按照铸件工艺要求将纯铜或铜合金型芯放置于铸件压 蜡模具中, 检验其位置尺寸精度;
4) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜或铜合金型芯的整体型壳;
5) 焙烧: 将包含纯铜或铜合金型芯的的整体型壳放入焙烧炉中 在 700°C~1000°C之间进行焙烧获得高强度模壳。 焙烧过程中通入氮 气或者氩气、氦气等惰性气体对纯铜或铜合金型芯进行保护, 防止高 温氧化; 也可在整体型壳下方放置一层木炭, 在焙烧炉中形成还原性 气氛, 防止铜或铜合金型芯氧化; 若型芯表面已镀镍或者采用铜-镍 系合金的型芯, 可以不采用保护性气体或者放置木炭直接进行焙烧; 6) 浇注: 依据铸件工艺要求熔炼合格的铝合金液, 然后对包含 纯铜或铜合金型芯的模壳进行浇注;
7) 除芯: 将清壳后的铸件放入浓硫酸或者浓硝酸中, 由于铝合 金的钝化作用不会产生腐蚀,而纯铜或铜合金型芯在浓硫酸或者浓硝 酸中则完全被腐蚀, 从而形成尺寸精度高、 表面质量好的细小型腔。
综上所述, 本发明采用熔模铸造用纯铜或者铜合金型芯, 其特 殊之处在于同时提供了型芯同陶瓷模壳高温焙烧时防止氧化的方法 及采用钝化原理除芯的方法。
以下结合实施例对本发明进行详细说明:
实施例 1
1) 选用纯铜根据所需型腔尺寸加工成符合尺寸精度及表面质量 要求的型芯;
2) 型芯预处理:在型芯表面镀一层 0.02mm的镍以防止型芯在模 壳焙烧过程的氧化;
3) 下芯: 按照铸件工艺要求将纯铜型芯放置于铸件压蜡模具中, 检验其位置尺寸精度;
4 ) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜型芯的整体型壳;
5) 焙烧:将包含纯铜型芯的的整体型壳放入焙烧炉中在 700°C进 行焙烧获得高强度模壳。
6) 浇注: 依据铸件工艺要求熔炼合格的铝合金液, 然后对包含 纯铜型芯的模壳进行浇注;
7 ) 除芯: 将清壳后的铸件放入浓硫酸中, 由于铝合金的钝化作 用不会产生腐蚀, 而纯铜在浓硫酸中则完全被腐蚀, 从而形成尺寸精 度高、 表面质量好的细小型腔。
在铝合金熔模铸造中引入纯铜加工成的型芯,特别是对于具有高 长厚比的凹槽、小尺寸盲孔等复杂细小内腔的铸件, 充分发挥了纯铜 在室温及高温时所具有的高强度及高塑性,并在型芯表面镀镍以防止 纯铜型芯在高温焙烧时氧化;在浇铸过程中可有效的防止铝合金液对 型芯冲刷造成的变形及损坏, 同时浓硫酸进行除芯, 可获得内腔及外 型尺寸精度高、表面质量好的铝合金铸件。采用本发明可以解决航空、 航天、兵器、雷达等产品对于具有小尺寸高精度的结构件或功能件难 以成型的问题, 且工艺简单, 生产成本低。
实施例 2
1) 选用纯铜根据所需型腔尺寸加工成符合尺寸精度及表面质量 要求的型芯;
2) 型芯预处理: 在型芯表面镀一层 0.1mm的镍以防止型芯在模 壳焙烧过程的氧化;
3) 下芯: 按照铸件工艺要求将纯铜型芯放置于铸件压蜡模具中, 检验其位置尺寸精度;
4) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜型芯的整体型壳;
5)焙烧:将包含纯铜型芯的的整体型壳放入焙烧炉中在 850°C进 行焙烧获得高强度模壳, 焙烧过程中通入氮气或者氩气、氦气等惰性 气体对纯铜型芯进行保护, 进一步防止纯铜型芯高温氧化;
6) 浇注: 依据铸件工艺要求熔炼合格的铝合金液, 然后对包含 纯铜型芯的模壳进行浇注;
7 ) 除芯: 将清壳后的铸件放入浓硝酸中, 由于铝合金的钝化作 用不会产生腐蚀, 而纯铜在浓硝酸中则完全被腐蚀, 从而形成尺寸精 度高、 表面质量好的细小型腔。
在铝合金熔模铸造中引入纯铜加工成的型芯,特别是对于具有高 长厚比的凹槽、小尺寸盲孔等复杂细小内腔的铸件, 充分发挥了纯铜 在室温及高温时所具有的高强度及高塑性,并在型芯表面镀镍以及在 型壳焙烧过程中通入惰性气体以防止纯铜型芯在高温焙烧时氧化;在 浇铸过程中可有效的防止铝合金液对型芯冲刷造成的变形及损坏,同 时浓硝酸进行除芯, 可获得内腔及外型尺寸精度高、表面质量好的铝 合金铸件。 采用本发明可以解决航空、 航天、 兵器、 雷达等产品对于 具有小尺寸高精度的结构件或功能件难以成型的问题, 且工艺简单, 生产成本低。
实施例 3 1) 选用铜合金根据所需型腔尺寸加工成符合尺寸精度及表面质 量要求的型芯;
2) 型芯预处理: 在型芯表面镀一层 0.2mm的镍以防止型芯在模 壳焙烧过程的氧化;
3) 下芯: 按照铸件工艺要求将铜合金型芯放置于铸件压蜡模具 中, 检验其位置尺寸精度;
4) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜型芯的整体型壳;
5)焙烧: 将包含纯铜型芯的的整体型壳放入焙烧炉中在 1000°C 进行焙烧获得高强度模壳, 焙烧过程中在整体型壳下方放置一层木 炭, 在焙烧炉中形成还原性气氛, 进一步防止铜合金型芯高温氧化;
6) 浇注: 依据铸件工艺要求熔炼合格的铝合金液, 然后对包含 铜合金型芯的模壳进行浇注;
7 ) 除芯: 将清壳后的铸件放入浓硝酸中, 由于铝合金的钝化作 用不会产生腐蚀, 而铜合金在浓硝酸中则完全被腐蚀, 从而形成尺寸 精度高、 表面质量好的细小型腔。
在铝合金熔模铸造中引入铜合金加工成的型芯,特别是对于具有 高长厚比的凹槽、小尺寸盲孔等复杂细小内腔的铸件, 充分发挥了铜 合金在室温及高温时所具有的高强度及高塑性,并在型芯表面镀镍以 及在型壳焙烧过程中形成保护性气氛以防止铜合金型芯在高温焙烧 时氧化;在浇铸过程中可有效的防止铝合金液对型芯冲刷造成的变形 及损坏, 同时浓硝酸进行除芯, 可获得内腔及外型尺寸精度高、 表面 质量好的铝合金铸件。 采用本发明可以解决航空、 航天、 兵器、 雷达 等产品对于具有小尺寸高精度的结构件或功能件难以成型的问题,且 工艺简单, 生产成本低。
实施例 4
1) 选用铜-镍系合金根据所需型腔尺寸加工成符合尺寸精度及 表面质量要求的型芯;
2) 下芯: 按照铸件工艺要求将铜-镍系合金型芯放置于铸件压蜡 模具中, 检验其位置尺寸精度;
3 ) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层 耐火材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包 含纯铜型芯的整体型壳;
4)焙烧: 将包含铜-镍系合金型芯的的整体型壳放入焙烧炉中在 700 °C进行焙烧获得高强度模壳;
5 ) 浇注: 依据铸件工艺要求熔炼合格的铝合金液, 然后对包含 铜 -镍系合金型芯的模壳进行浇注;
6) 除芯: 将清壳后的铸件放入浓硝酸中, 由于铝合金的钝化作 用不会产生腐蚀, 而铜-镍合金在浓硝酸中则完全被腐蚀, 从而形成 尺寸精度高、 表面质量好的细小型腔。
在铝合金熔模铸造中引入铜-镍合金加工成的型芯, 特别是对于 具有高长厚比的凹槽、小尺寸盲孔等复杂细小内腔的铸件, 充分发挥 了铜-镍系合金在高温时所具有的高强度、 高塑性及高的抗氧化性, 型壳焙烧过程中不发生氧化行为,在浇铸过程中可有效的防止铝合金 液对型芯冲刷造成的变形及损坏, 同时浓硝酸进行除芯, 可获得内腔 及外型尺寸精度高、表面质量好的铝合金铸件。采用本发明可以解决 航空、 航天、 兵器、 雷达等产品对于具有小尺寸高精度的结构件或功 能件难以成型的问题, 且工艺简单, 生产成本低。

Claims

权 利 要 求 书
1.一种铝合金熔模铸造小尺寸内腔成型方法, 其特征在于, 包括以下 步骤:
1 ) 根据所需型腔尺寸将纯铜或者铜合金加工成型芯;
2) 下芯: 按照铸件工艺要求将纯铜或铜合金型芯放置于铸件压蜡模 具中, 检验其位置尺寸精度, 并使其符合位置尺寸精度;
3) 制壳: 依据铸件工艺要求压制蜡模, 然后在蜡模上涂挂多层耐火 材料, 经干燥硬化之后, 再将模型熔化、 排出型外, 从而获得包含纯铜或 铜合金型芯的整体型壳;
4 ) 焙烧: 将包含纯铜或铜合金型芯的的整体型壳放入焙烧炉中在 700°C~1000°C之间进行焙烧获得高强度模壳;
5) 浇注: 熔炼铝合金液, 然后对包含纯铜或铜合金型芯的模壳进行 浇注;
6) 除芯: 将清壳后的铸件放入浓硫酸或者浓硝酸中, 由于铝合金的 钝化作用不会腐蚀,而纯铜或铜合金型芯在浓硫酸或者浓硝酸中则完全被 腐蚀, 从而形成具有小尺寸内腔的型腔。
2.根据权利要求 1所述的铝合金熔模铸造小尺寸内腔成型方法, 其特 征在于, 步骤 1 ) 中, 对型芯进行高温防氧化处理: 即在型芯表面电镀一 层厚度为 0.02~0.2mm的镍。
3.根据权利要求 1所述的铝合金熔模铸造小尺寸内腔成型方法, 其特 征在于, 歩骤 4) 中, 焙烧过程中通入惰性气体对纯铜或铜合金型芯进行 保护, 防止高温氧化。
4.根据权利要求 3所述的铝合金熔模铸造小尺寸内腔成型方法, 其特 征在于, 所述惰性气体为氮气、 氩气或者氦气。
5.根据权利要求 1所述的铝合金熔模铸造小尺寸内腔成型方法,其特 征在于, 步骤 4) 中, 在整体型壳下方放置一层木炭, 在焙烧炉中形成还 原性气氛, 防止铜或铜合金型芯氧化。
6.根据权利要求 1所述的铝合金熔模铸造小尺寸内腔成型方法,其特 征在于, 步骤 1 ) 中, 选择铜-镍系合金加工型芯。
PCT/CN2012/083541 2012-10-26 2012-10-26 一种铝合金熔模铸造小尺寸内腔成型方法 WO2014063336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083541 WO2014063336A1 (zh) 2012-10-26 2012-10-26 一种铝合金熔模铸造小尺寸内腔成型方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083541 WO2014063336A1 (zh) 2012-10-26 2012-10-26 一种铝合金熔模铸造小尺寸内腔成型方法

Publications (1)

Publication Number Publication Date
WO2014063336A1 true WO2014063336A1 (zh) 2014-05-01

Family

ID=50543888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083541 WO2014063336A1 (zh) 2012-10-26 2012-10-26 一种铝合金熔模铸造小尺寸内腔成型方法

Country Status (1)

Country Link
WO (1) WO2014063336A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790633A (zh) * 2017-11-14 2018-03-13 蚌埠市嘉实机电设备制造有限公司 一种铝合金门窗熔模精密铸工艺
CN112123662A (zh) * 2020-09-08 2020-12-25 哈尔滨工业大学 一种复杂构型空腔水下吸声板的制备方法
CN114535504A (zh) * 2022-02-21 2022-05-27 北京航空材料研究院股份有限公司 一种钛合金铸件、型壳及型壳制备方法
WO2024023054A1 (de) * 2022-07-25 2024-02-01 Golden Devices Gmbh Verfahren zur herstellung von hochfrequenztechnischen funktionsstrukturen und hochfrequenztechnische funktionsstruktur

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1217958A (zh) * 1997-11-26 1999-06-02 北京航空航天大学 铸造型芯新工艺
US5921309A (en) * 1997-04-25 1999-07-13 Mitsubishi Steel Mfg. Co., Ltd. Production process of wax pattern
CN1781622A (zh) * 2004-10-26 2006-06-07 联合工艺公司 不可氧化涂层
CN101462151A (zh) * 2009-01-16 2009-06-24 哈尔滨工业大学 一种熔模精密铸造TiAl基合金模壳的制备方法
CN102059321A (zh) * 2010-12-10 2011-05-18 西安航空动力控制科技有限公司 一种型芯及其制备方法以及利用型芯制备铸件内腔的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5921309A (en) * 1997-04-25 1999-07-13 Mitsubishi Steel Mfg. Co., Ltd. Production process of wax pattern
CN1217958A (zh) * 1997-11-26 1999-06-02 北京航空航天大学 铸造型芯新工艺
CN1781622A (zh) * 2004-10-26 2006-06-07 联合工艺公司 不可氧化涂层
CN101462151A (zh) * 2009-01-16 2009-06-24 哈尔滨工业大学 一种熔模精密铸造TiAl基合金模壳的制备方法
CN102059321A (zh) * 2010-12-10 2011-05-18 西安航空动力控制科技有限公司 一种型芯及其制备方法以及利用型芯制备铸件内腔的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WAN, LI ET AL., FUNDAMENTAL ENGINEERING OF SPECIAL CASTING, June 2009 (2009-06-01), pages 124 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790633A (zh) * 2017-11-14 2018-03-13 蚌埠市嘉实机电设备制造有限公司 一种铝合金门窗熔模精密铸工艺
CN112123662A (zh) * 2020-09-08 2020-12-25 哈尔滨工业大学 一种复杂构型空腔水下吸声板的制备方法
CN112123662B (zh) * 2020-09-08 2022-02-01 哈尔滨工业大学 一种复杂构型空腔水下吸声板的制备方法
CN114535504A (zh) * 2022-02-21 2022-05-27 北京航空材料研究院股份有限公司 一种钛合金铸件、型壳及型壳制备方法
CN114535504B (zh) * 2022-02-21 2023-10-27 北京航空材料研究院股份有限公司 一种钛合金铸件、型壳及型壳制备方法
WO2024023054A1 (de) * 2022-07-25 2024-02-01 Golden Devices Gmbh Verfahren zur herstellung von hochfrequenztechnischen funktionsstrukturen und hochfrequenztechnische funktionsstruktur

Similar Documents

Publication Publication Date Title
US11213885B2 (en) Castings and manufacture methods
CN105598390A (zh) 一种空心叶片陶瓷铸型及其脱芯方法
WO2014063336A1 (zh) 一种铝合金熔模铸造小尺寸内腔成型方法
CN102091757B (zh) 大型薄壁机匣件的整体精密铸造方法
CN102717029B (zh) 一种大型薄壁壳体铝合金铸件的铸造方法
CN103521715A (zh) 一种含细长内腔的钛及钛合金精密铸件的制备方法
CN101955353A (zh) 一种改善氧化铝基陶瓷型芯高温性能方法
JP2007268615A5 (zh)
CN109724556B (zh) 镍基单晶高温合金精密铸造过程的再结晶倾向性评价方法
CN103861998A (zh) 一种熔模铸造方法
CN101954454A (zh) 一种解决铸件热裂纹的方法
CN101456061A (zh) 一种提高石墨型钛合金铸件质量的辅助工艺
CN103240403B (zh) 一种适用于纯铜高炉风口套的表面铸渗工艺
JP2005349472A (ja) 接触層を用いたロストワックス鋳造方法
CN103894546B (zh) 端部凹凸复杂铸件的精密铸造方法
CN107737880A (zh) 一种水溶性陶瓷型芯及其制备方法
CN104550735A (zh) 百万千瓦核电机组末级超长导叶片精铸方法
CN104550740A (zh) 大型薄壁回旋体高强度铝合金铸件铸造方法
CN110976773A (zh) 一种提高镍基合金铸件性能的方法
CN104372188B (zh) 一种高硅镍铜合金铸件的制备方法
Li et al. Modification of ceramic shell facecoat for inhibition of sand burning defect on DZ22B directionally solidified blades
US20160354836A1 (en) Slurry for forming mold, mold and method for producing mold
CN104550700A (zh) 橡胶冷模铸造方法
RU2556178C1 (ru) Способ защиты поверхности отливок турбинных лопаток при термической обработке
CN108927504A (zh) 一种铝合金大型发动机机匣零件的铸造工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 12887265

Country of ref document: EP

Kind code of ref document: A1