WO2014061652A1 - パターン構造体の形成方法 - Google Patents

パターン構造体の形成方法 Download PDF

Info

Publication number
WO2014061652A1
WO2014061652A1 PCT/JP2013/077946 JP2013077946W WO2014061652A1 WO 2014061652 A1 WO2014061652 A1 WO 2014061652A1 JP 2013077946 W JP2013077946 W JP 2013077946W WO 2014061652 A1 WO2014061652 A1 WO 2014061652A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
core material
forming
thin film
pattern structure
Prior art date
Application number
PCT/JP2013/077946
Other languages
English (en)
French (fr)
Inventor
佑介 河野
武士 坂本
貴昭 平加
雅治 福田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2014520456A priority Critical patent/JP5618033B2/ja
Publication of WO2014061652A1 publication Critical patent/WO2014061652A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present invention relates to a method for forming a pattern structure, for example, a method for forming a fine pattern structure used in the manufacture of circuit patterns, semiconductor elements, imprint molds and the like.
  • the imprint method is a pattern formation technique that transfers a micro structure at an equal magnification by using a mold member (mold) having a micro concavo-convex structure and transferring the concavo-convex structure to a molding object.
  • a mold member having a micro concavo-convex structure and transferring the concavo-convex structure to a molding object.
  • Applications in various fields are being promoted.
  • an electron beam sensitive resist is applied to a metal thin film such as chromium provided on a substrate such as quartz glass, and exposure and development are performed using an electron beam lithography method.
  • a resist pattern is formed, a metal thin film is etched using the resist pattern as an etching resist to form a fine pattern, the substrate is etched using the fine pattern as an etching mask, and an uneven structure is formed on the surface of the substrate.
  • pattern formation using an electron beam lithography method and pattern formation with a half pitch of 20 nm or less is difficult or undesirable from the viewpoint of throughput.
  • a pattern formation film is formed so as to cover the core pattern formed using the electron beam lithography method, and this pattern formation film Has been proposed to form a pattern structure on the side wall of the core pattern and then remove the core pattern (Patent Document 1).
  • a closed loop structure (hereinafter referred to as a closed loop) occurs in the formed pattern structure in the process.
  • the pattern structure is formed on the metal layer, and the pattern structure is formed.
  • each line is not isolated due to an unnecessary closed loop.
  • it is used as an electric circuit, it is electrically used as a line.
  • Patent Document 2 As a method for removing the closed loop of such a pattern structure, a method is known in which a region other than the closed loop is protected with a resist, the closed loop is removed by etching in this state, and then the resist is peeled off (Patent Document 2). ).
  • JP 2009-10317 A Japanese Patent No. 4825891
  • Patent Document 2 has a problem that the pattern structure may be damaged due to coating and peeling of the resist, and foreign matter may be attached, and the process becomes complicated. .
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a method for forming a pattern structure having no unnecessary closed loop and having excellent dimensional accuracy.
  • the pattern structure forming method of the present invention includes a core material pattern forming step of forming a core material pattern on a base material, and reducing the thickness of a desired portion of the core material pattern. Forming a thin film portion, forming a difference in thickness between the thin film portion and the other portion of the core material pattern, and forming a sidewall material film so as to cover at least the core material pattern A film forming step, performing an etching process on the side wall material film and the core material pattern, removing the side wall material film existing on the thin film portion and the side wall thereof, and forming the side wall material on the side wall of the remaining core material pattern An etching back process for forming a pattern structure made of a film and a core material pattern removing process for removing the core material pattern were adopted.
  • the core material pattern forming step is configured to form the core material pattern using an electron beam sensitive resist or a photosensitive resist.
  • the thin film portion is formed by irradiating a desired portion of the core material pattern with actinic radiation and causing the irradiated portion to contract. .
  • the core material pattern is reduced to a desired dimension between the core material pattern forming step and the thinning step or between the thinning step and the sidewall material film forming step.
  • a slimming process for reducing the size is employed.
  • the thin film portion is formed at a desired end of the core material pattern.
  • the thin film portion is formed at a desired end portion of the core material pattern, and the thin film portion is also formed at an intermediate portion of the core material pattern.
  • the thin film portion is formed at a desired end portion of the core material pattern, and the thin film portion is also formed in the middle portion of the core material pattern in the longitudinal direction.
  • the substrate structure is etched using the pattern structure as an etching mask to form a pattern structure.
  • the base material on which the pattern structure is formed is used as a mold, and the mold and a desired substrate are brought close to each other, and a resin layer is interposed between the mold and the substrate. After the resin layer is cured, the mold and the resin layer are separated from each other, and an imprint process is performed in which a pattern structure including the resin layer is formed on the substrate.
  • a base material having an intermediate layer on the surface is used as the base material, and in the core material pattern forming step, a core material pattern is formed on the intermediate layer, and the core material pattern removing step Thereafter, an intermediate layer etching step is performed in which the intermediate layer is etched using the pattern structure as an etching mask to form a pattern structure including the intermediate layer.
  • the intermediate layer etching step includes, after the intermediate layer etching step, a base material etching step of forming the pattern structure by etching the base material using the pattern structure formed of the intermediate layer as an etching mask. It was.
  • the base material on which the pattern structure is formed is used as a mold, and the mold and a desired substrate are brought close to each other, and a resin layer is interposed between the mold and the substrate. After the resin layer is cured, the mold and the resin layer are separated from each other, and an imprint process is performed in which a pattern structure including the resin layer is formed on the substrate.
  • the sidewall material film present on the sidewall of the thin film portion is more than the sidewall material film present on the sidewall of the core material pattern excluding the thin film portion.
  • the pattern structure consisting of the sidewall material film is formed while preventing the formation of the closed loop at the desired end, so it is possible to form a fine pattern structure with a half pitch of several tens of nanometers
  • the process of removing the closed loop is unnecessary, and the end of the pattern structure that does not have the closed loop is set at a position where the thickness of the thin film portion and the core material pattern excluding the thin film portion are different. As a result, a pattern structure having excellent dimensional accuracy can be formed.
  • FIG. 1A to 1D are views for explaining steps of an embodiment of a pattern structure forming method according to the present invention.
  • 2A to 2E are views for explaining the steps of an embodiment of the pattern structure forming method of the present invention.
  • 3A to 3D are views for explaining steps of an embodiment of the pattern structure forming method of the present invention.
  • 4A to 4E are views for explaining the steps of an embodiment of the pattern structure forming method of the present invention.
  • FIG. 5 is a view for explaining another embodiment of the pattern structure forming method of the present invention.
  • 6A to 6D are diagrams for explaining the steps of another embodiment of the pattern structure forming method of the present invention.
  • FIG. 7A to FIG. 7C are diagrams for explaining the steps of another embodiment of the pattern structure forming method of the present invention.
  • FIG. 8D are diagrams for explaining the steps of another embodiment of the pattern structure forming method of the present invention.
  • 9A to 9C are views for explaining another embodiment of the pattern structure forming method of the present invention.
  • 10A to 10C are views for explaining another embodiment of the pattern structure forming method of the present invention.
  • FIG. 11 is a diagram illustrating a state where an interval portion between sets of line-and-space-shaped pattern structures manufactured in Examples is observed using an SEM.
  • the core material pattern is formed on the base material in the core material pattern forming step, and the thickness of the desired portion of the core material pattern is reduced in the thinning step.
  • a thickness boundary is provided between the thin film portion and the other portion of the core material pattern, and a sidewall material film is formed so as to cover at least the core material pattern in the sidewall material film forming step, and etched back.
  • the sidewall material film is etched, the sidewall material film is present on the sidewall of the core material pattern excluding the thin film portion, and the core material pattern is removed in the core material pattern removing process to remove the sidewall material film.
  • the pattern structure made of is made to exist on the substrate.
  • FIG. 1 to FIG. 4 are diagrams for explaining the steps of an embodiment of the pattern structure forming method of the present invention.
  • FIG. 1A is a partial plan view
  • FIG. 1B is a longitudinal sectional view taken along line II in FIG. 1A.
  • the base material 11 has a laminated structure including the intermediate layer 12, but the base material 11 may not include the intermediate layer, or may include an intermediate layer composed of two or more layers.
  • the configuration of the substrate 11 can be appropriately set according to the purpose of use of the substrate 11 and the purpose of use of the pattern to be formed.
  • the base material 11 is made of quartz glass. , Glass such as silicate glass, calcium fluoride, magnesium fluoride, acrylic glass, resin such as polycarbonate, polypropylene, polyethylene, etc., or any light transmissive material such as any laminated material thereof . If the imprint mold does not require light transmission, a metal such as nickel, titanium, or aluminum, or a semiconductor such as polycrystalline silicon or gallium nitride may be used as the substrate 11.
  • the intermediate layer 12 can be made of a material having an etching rate smaller than that of the base material 11 and having etching resistance.
  • a metal such as chromium, titanium, tantalum, silicon, aluminum, chromium nitride, chromium oxide, Chromium compounds such as chromium oxynitride, tantalum compounds such as tantalum oxide, tantalum oxynitride, tantalum boride, tantalum oxynitride, titanium nitride, silicon nitride, silicon oxynitride, etc.
  • Such an intermediate layer 12 can be formed on the substrate 11 by, for example, a vacuum film forming method such as a sputtering method.
  • the intermediate layer 12 is etched using the formed pattern structure as an etching mask to form a circuit pattern or the like, the intermediate layer 12 is formed of one or a combination of two or more conductive materials such as copper, silver, gold, and nickel. Can be formed.
  • the intermediate layer 12 can be a thin film having a function of improving the adhesion between the substrate 11 and the pattern.
  • the thickness of the intermediate layer 12 can be appropriately set according to the purpose of use of the intermediate layer 12.
  • the core material pattern 14 can be formed on the substrate 11 by an electron beam (EB) lithography method, a photolithography method, or an imprint method.
  • EB electron beam
  • an electron beam sensitive resist is disposed on the intermediate layer 12 of the substrate 11, and the core pattern 14 having a desired shape is formed by performing electron beam drawing and development. be able to.
  • a photosensitive resist is disposed on the intermediate layer 12 of the base material 11, exposed by light irradiation through a photomask having a light transmitting portion having a desired shape, and developed.
  • the core material pattern 14 can be formed.
  • a photocurable resist is supplied and disposed as an object to be transferred on the intermediate layer 12 of the substrate 11 by a dispenser, an inkjet, or the like, and a mold having a desired concavo-convex structure is brought into contact.
  • the mold is separated to form a pattern with a concavo-convex structure in which the concavo-convex structure of the mold is inverted on the intermediate layer 12, and then the so-called residual film is removed by oxygen ashing or the like.
  • the core material pattern 14 can be formed.
  • the planar shape of the core material pattern 14 formed in this way is a rectangular shape in the illustrated example, but is not limited thereto. Moreover, the dimension in planar view of the core material pattern 14 can also be set suitably. Further, the thickness of the core material pattern 14 can be appropriately set in consideration of the thickness of the thin film portion 15 formed in the thin film forming process described later and the height of the pattern structure to be formed, for example, 10 nm to 1 ⁇ m. Can be set within the range.
  • FIG. 1C and FIG. 1D a desired portion of the core material pattern 14 is thinned to form a thin film portion 15, and the other portions of the core material pattern 14 and the thin film portion 15 are formed.
  • a thickness boundary 15a is provided between them.
  • 1C is a partial plan view
  • FIG. 1D is a vertical cross-sectional view taken along the line II-II in FIG. 1C
  • the thin film portion 15 is indicated by dotted lines.
  • the thin film portion 15 is formed by reducing the thickness of the end portions 14a on both sides in the longitudinal direction of the core material pattern 14 (the direction indicated by the arrow a in the drawing).
  • a thin film portion 15 can be formed, for example, by irradiating the core material pattern 14 with actinic radiation and causing the irradiated portion to contract.
  • the boundary 15a of the thickness between the other part of the core material pattern 14 and the thin film part 15, that is, the boundary position between the irradiated part and the non-irradiated part determines the end position of the pattern to be formed, and therefore the dimension of the pattern.
  • the boundary position between the irradiated portion and the non-irradiated portion may be set so that the length L of the side wall 14b of the core material pattern 14 excluding the thin film portion 15 becomes the length dimension of the pattern to be formed. it can.
  • the side wall 14b of the core material pattern 14 means a wall portion rising from the base material 11 (in the illustrated example, the intermediate layer 12) at the entire peripheral edge portion of the core material pattern 14.
  • Examples of actinic rays to be used include electron beams, X-rays, and ultraviolet rays, and the thin film region 15 can be obtained by performing drawing irradiation or irradiation through a mask pattern on the irradiation region set as described above. Can be formed.
  • the relationship t ⁇ H ⁇ MAX ((T ⁇ t) or t) is established between the thickness t of the thin film portion 15 and the thickness T of the core material pattern 14 and the height H of the pattern structure to be formed.
  • the thickness t of the thin film portion 15 can be controlled by adjusting the dose of actinic radiation and / or the focal point.
  • the above (TH) is the etching amount in the etch back process described later.
  • MAX ((T ⁇ t) or) t) is the greater of the difference (T ⁇ t) between the thickness T of the core material pattern 14 and the thickness t of the thin film portion 15 and the thickness t of the thin film portion 15. Means.
  • a thin film portion having a desired thickness is obtained by irradiating the core pattern 14 with a laser or the like to scatter the irradiated portion.
  • a method of forming a thin film portion 15 having a desired thickness by grinding the core material pattern 14 using the tip of a fine needle-like member, and a pressing member having a fine width as a core material pattern 14.
  • a method of forming the thin film portion 15 having a desired thickness by being pressed against can be used.
  • FIGS. 2A and 2B a slimming process that can be provided as necessary is provided after the thinning process.
  • 2A is a partial plan view
  • FIG. 2B is a longitudinal sectional view taken along line III-III in FIG. 2A.
  • the core material pattern 14 having the thin film portion 15 is processed by, for example, oxygen plasma and slimmed to form the core material pattern 14 '.
  • slimming is to reduce the width of the core material pattern 14 and reduce the film thickness by wet etching or dry etching (including oxygen plasma treatment).
  • the pattern width can be reduced to about 1 ⁇ 2 without changing the pattern pitch of the core material pattern 14 formed first.
  • the thin film portion 15 is set so that the length L of the side wall 14b of the core material pattern 14 excluding the thin film portion 15 becomes the pattern size to be formed. Furthermore, between the thickness t of the thin film portion 15 and the thickness T of the core material pattern 14 and the height H of the pattern structure to be formed, TH (etching amount) ⁇ MAX ((T ⁇ t) or The relationship t) is set to be established. However, when a slimming step is provided after the thinning step, the thin film portion 15 is set and the thickness t of the thin film portion 15 is set in consideration of the dimension after slimming.
  • the thin film portion 15 is taken into consideration in advance by reducing the dimension by slimming so that the length L ′ of the side wall 14′b in the core material pattern 14 ′ formed by slimming becomes the pattern dimension to be formed. Set the position of. Further, between the thickness t ′ of the thin film portion 15 ′ in the core material pattern 14 ′ formed by slimming, the thickness T ′ of the core material pattern 14 ′, and the height H of the pattern structure to be formed. In addition, the thickness t of the thin film portion 15 is set in advance in consideration of dimensional reduction by slimming so that the relationship of T′ ⁇ H (etching amount) ⁇ MAX ((T′ ⁇ t ′) or t ′) is established. .
  • FIGS. 2C, 2D, and 2E a sidewall material film 16 is formed on the intermediate layer 12 of the base material 11 so as to cover the core material pattern 14 ′.
  • 2C is a partial plan view
  • FIG. 2D is a longitudinal sectional view taken along line IV-IV in FIG. 2C
  • FIG. 2E is a longitudinal sectional view taken along line VV in FIG. 2C.
  • the sidewall material film 16 is indicated by hatching.
  • the sidewall material film 16 is not particularly limited as long as it is formed as a series of films along the surface to be deposited in consideration of the purpose of use of the pattern structure to be formed, required characteristics, and the like. Instead, it can be formed by, for example, a low-temperature vacuum film formation method such as a CVD method (chemical vapor deposition method) or an ALD method (atomic layer deposition method).
  • a low-temperature vacuum film formation method such as a CVD method (chemical vapor deposition method) or an ALD method (atomic layer deposition method).
  • the ALD method can be suitably used because it can be accurately formed at a low temperature regardless of the shape of the surface on which the atomic layer is deposited, such as an uneven surface or a curved surface.
  • the sidewall material film 16 does not damage the core material pattern 14 ′ at a temperature sufficiently lower than the glass transition temperature of the resist constituting the core material pattern 14 ′, for example, 20 to 100 ° C., preferably about room temperature.
  • the material can be formed into a film, and can be formed into a material according to the intended use of the pattern to be formed.
  • the intermediate layer 12 is a metal layer
  • the material of the sidewall material film 16 that can exhibit etching resistance in the etching of the intermediate layer 12 includes silicon-based oxide such as silicon oxide, silicon nitride, and silicon oxynitride, oxidation Examples thereof include aluminum-based materials such as aluminum, hafnium-based materials such as hafnium oxide, and titanium-based materials such as titanium nitride.
  • Such a sidewall material film 16 may be composed of a single layer or a laminated film of two or more layers.
  • the thickness of the sidewall material film 16 is preferably set to a half pitch design thickness.
  • a series of atomic layers may be continuously stacked until a thickness of about several nanometers to several tens of nanometers is obtained. it can.
  • FIGS. 3A, 3B, 3C, and 3D the sidewall material film 16, the core material pattern 14 ′, and the thin film portion 15 ′ are etched to expose the intermediate layer 12.
  • the thin film portion 15 'and the side wall material film 16 existing on the side wall thereof are removed, and the side wall material film 16 is left only on the side wall 14'b of the remaining core material pattern 14'.
  • a pattern 17 made of the sidewall material film 16 is formed.
  • 3A is a partial plan view
  • FIG. 3B is a longitudinal sectional view taken along line VI-VI in FIG. 3A
  • 3C and 3D are enlarged perspective views of a portion surrounded by a dotted circle in FIG. 3A.
  • 3C shows a state in which the thickness of the side wall material film 16 is etched, and the core material pattern 14 'and the upper surface (shown by hatching) of the thin film portion 15' are exposed, and FIG. This shows a state where the back has been completed, and corresponds to FIG. 3B.
  • the intermediate layer 12 is omitted.
  • Etch back is an operation of cutting the entire surface in the thickness direction by etching, and can be performed using an appropriate etching gas depending on the material constituting the sidewall material film 16.
  • etching back can be performed using a fluorine-based gas such as CF 4 , CHF 3 , or C 2 F 6 as an etching gas.
  • the etching rate of the core material pattern 14 (the core material pattern 14 'and the thin film portion 15') is shown in the illustrated example as being substantially the same as the etching rate of the sidewall material film 16, but the former etching rate is better. It may be large.
  • the thickness t ′ of the thin film portion 15 ′, the thickness T ′ of the core material pattern 14 ′, and the height H of the pattern structure to be formed are formed in the core material pattern 14 ′ formed by slimming.
  • the relationship T′ ⁇ H (etching amount) ⁇ MAX ((T′ ⁇ t ′) or t ′) is established between the thickness T ′ and the thickness T ′ of the core material pattern 14 ′.
  • the thin film portion 15 ′ By adjusting the etching amount so as to surely remove the difference (T ⁇ t) between the thickness t ′ of the thin film portion 15 ′ and the thickness t ′ of the thin film portion 15 ′, the thin film portion 15 ′ The portion 15 'and the sidewall material film 16 existing on the sidewall thereof are removed, and the sidewall material film 16 can be left only on the sidewall 14'b of the remaining core material pattern 14'. Therefore, the pattern structure 17 to be formed has no closed loop, and the position of the end 17a of the pattern structure 17 is the thickness of the thin film portion 15 ′ and the core material pattern 14 ′ excluding the thin film portion 15 ′. Therefore, the pattern structure 17 is excellent in dimensional accuracy.
  • FIG. 4A is a partial plan view
  • FIG. 4B is a longitudinal sectional view taken along line VII-VII in FIG. 4A.
  • the removal of the core material pattern 14 ′ can be performed by, for example, selective dry etching using oxygen plasma.
  • the formation of the closed loop at the desired end is prevented while preventing the formation of the closed loop.
  • a pattern structure 17 is formed. Therefore, for example, it is possible to form a fine line & space pattern structure 17 having a half pitch of several tens of nm (10 nm or more and less than 20 nm), and a step of removing the closed loop is unnecessary.
  • the position of the end portion 17a of the pattern structure 17 that does not have an unnecessary closed loop is set at the boundary 15a (15 ') where the thin film portion 15 (15') and the core material pattern 14 (14 ') excluding the thin film portion have different thicknesses. Since it can set in the position of a), formation of the pattern structure 17 which has the outstanding dimensional accuracy is possible.
  • the pattern structure 17 formed as described above is a pattern structure to be formed, as shown in FIGS. 4A and 4B, the base material 11 having the pattern structure 17 on the intermediate layer 12 is used. Once obtained, the pattern formation of the present invention is completed.
  • the intermediate layer 12 is etched using the pattern structure 17 formed as described above as an etching mask (FIG. 4C) to form a pattern structure 18 composed of the intermediate layer. It is also possible (FIG. 4D).
  • the pattern structure 17 is composed of the sidewall material film 16, and the sidewall material film 16 is made of an inorganic material.
  • the intermediate layer 12 is a metal layer such as chromium, a conventional organic material is used.
  • the resistance as an etching mask for the pattern structure 17 is improved as compared with an etching resist made of a material, for example, the fine line and space pattern structure 18 having a half pitch of 10 nm or more (less than 10 nm and less than 20 nm). Formation is possible.
  • the substrate 11 is etched using the pattern structure 18 formed as described above as a mask pattern to form a pattern structure 19 having a desired concavo-convex structure.
  • a pattern structure 19 having a desired concavo-convex structure.
  • FIG. 4E Also in the formation of such a pattern structure 19, for example, it is possible to form a fine line and space pattern structure having a half pitch of several tens of nm (10 nm or more and less than 20 nm).
  • an imprint mold can be produced, and further, a replica mold can be produced from this mold.
  • the mold and the desired substrate are brought close to each other, a resin layer is formed between the mold and the substrate, and after the resin layer is cured, the mold and
  • substrate can be formed spaced apart.
  • the pattern structure formed in this way is a pattern structure that reflects the shape of the pattern structure 17 described above.
  • the pattern structure thus formed is also a pattern structure reflecting the shape of the pattern structure 17 described above.
  • the shape of the core material pattern 14 in a plan view is a line and space shape as shown in FIG. 5, and a plurality of sets (3 in the drawing) of core material pattern groups having a line and space shape are provided with a predetermined interval. Set) may be provided.
  • a thin film portion can be formed by performing a thinning process on a predetermined region (region surrounded by a two-dot chain line in the illustrated example) at both ends in the longitudinal direction of each core material pattern group.
  • a closed loop pattern may be formed at one end of the core material pattern 14, it is not necessary to form the thin film portion 15 at the end.
  • FIG. 6 is a process diagram illustrating an embodiment in which the first pattern structure and the second pattern structure are simultaneously formed in the first pattern area and the second pattern area by forming such a thin film portion, respectively.
  • the core material pattern 24 continuous from the first pattern region A set on the base material 21 to the second pattern region B is formed in the same manner as the above-described core material pattern forming step (FIG. 6A).
  • one core material pattern 24 is shown.
  • the number of core material patterns 24 can be set as appropriate, and the shape, size, etc., of the core material pattern 24 in plan view are also set as appropriate. can do.
  • a thin film portion 25 (dotted diagonal lines are added in the middle of the longitudinal direction of the core material pattern 24 (the direction indicated by the arrow a in the drawing) so as to straddle the boundary between the first pattern region A and the second pattern region B.
  • a thickness boundary 25a is formed between the other portion of the core material pattern 24 and the thin film portion 25 (FIG. 6B).
  • a thin film portion is also formed at the end of the core material pattern 24 in the longitudinal direction.
  • the thin film portion 25 can be formed by irradiating the core material pattern 24 with actinic radiation and causing the irradiated portion to contract, as in the thinning step described above.
  • the thin film portion 25, that is, the irradiation portion determines the distance between the first pattern structure and the second pattern structure and the dimensions of the first pattern structure and the second pattern structure. .
  • the sidewall material film 26 is formed on the base material 21 so as to cover the core material pattern 24 in the same manner as in the above-described sidewall material film forming process, and then, in the same manner as in the above-described etch back process. 21, the thin film portion 25 and the side wall material film 26 existing on the side wall thereof are removed, and the side wall material film 26 is left only on the side wall 24 b of the remaining core material pattern 24, thereby forming a pattern structure made of the side wall material film 26.
  • a body 27 is formed (FIG. 6C).
  • the core material pattern 24 is removed in the same manner as the above-described core material pattern removing step (FIG. 6D).
  • the first pattern structure 27A can be simultaneously formed in the first pattern region A on the substrate 21, and the second pattern structure 27B can be simultaneously formed in the second pattern region B, and the formed first pattern structure can be formed.
  • the body 27A and the second pattern structure 27B do not have a closed loop and have excellent dimensional accuracy.
  • the core material is formed in the first pattern area and the second pattern area, respectively. Since pattern formation was performed by forming a pattern, a closed loop was formed in each of the first pattern structure and the second pattern structure, and a process of removing this closed loop was necessary.
  • a pattern is formed in a state of being continuous with the first pattern region and the second pattern region, and thereafter, the pattern structure at the boundary portion between the first pattern region and the second pattern region is removed, and the first pattern structure and
  • There is also a method of forming the second pattern structure but there is a risk of pattern damage due to resist application / peeling and adhesion of foreign matter, and the process is complicated.
  • the simultaneous formation of the first pattern structure 27A and the second pattern structure 27B according to the present invention there is no such conventional defect, and a pattern structure with high dimensional accuracy can be easily formed.
  • the base material to be used may be provided with an intermediate layer as necessary, as in the above-described embodiment.
  • the first pattern structure 27A and the second pattern structure 27B formed as described above are pattern structures intended for formation
  • the first pattern structure 27A and the second pattern structure 27A are formed on the substrate 21 as described above.
  • the formation of the pattern structure of the present invention is finished.
  • the intermediate layer is etched in the same manner as in FIG. 4C, and the first pattern structure and the second pattern structure made of the intermediate layer are etched.
  • the substrate 21 is etched in the same manner as in FIG. 4E using the first pattern structure and the second pattern structure formed of the intermediate layer as mask patterns, and the first pattern of the concavo-convex structure is formed.
  • a structure and a second pattern structure may be formed.
  • the first pattern structure and the second pattern structure may have a relationship between the main pattern and the dummy pattern, for example.
  • the width of the thin film portion formed in the middle portion in the longitudinal direction of the core material pattern is
  • One or two or more types of pillar-shaped pattern structures can be formed by appropriately reducing within the resolution limit of actinic radiation and forming a plurality of thin film portions by setting the distance between adjacent thin film portions short. A plurality can be formed.
  • FIG. 7 is a process diagram illustrating an embodiment of the present invention for forming a plurality of pillar-shaped patterns.
  • a continuous core material pattern 34 is formed on the base material 31 in the same manner as the above-described core material pattern forming step, and a plurality of core material patterns 34 are arranged in the longitudinal direction (the direction indicated by the arrow a in the drawing).
  • a thin film portion 35 (shown with dotted lines) is formed (FIG. 7A). Thereby, in each thin film part 35, the boundary 35a of thickness is formed between the other parts of the core material pattern 34.
  • the thin film portion 35 can be formed by irradiating the core material pattern 34 with actinic radiation and causing the irradiated portion to contract in the same manner as in the thinning process described above.
  • the width W1 of the thin film portion 35 is a width within the resolution limit of actinic radiation, for example, when writing is performed by scanning an electron beam in the direction of the arrow b shown in FIG.
  • the width W2 of the core material pattern 34 existing between the adjacent thin film portions 35 can be set small, for example, to about 10 nm.
  • one core material pattern 34 is shown.
  • the number of core material patterns 34 can be set as appropriate, and the shape, size, etc., of the core material pattern 34 in plan view can also be set as appropriate. can do.
  • a sidewall material film 36 is formed on the base material 31 so as to cover the core material pattern 34 in the same manner as in the above-described sidewall material film formation step, and then in the same manner as in the above etchback step. 31 is exposed, and the thin film portion 35 and the side wall material film 36 existing on the side wall thereof are removed, and the side wall material film 36 is left only on the side wall 34b of the remaining core material pattern 34, thereby forming a pattern structure made of the side wall material film 36.
  • a body 37 is formed (FIG. 7B).
  • the core material pattern 34 is removed in the same manner as the above-described core material pattern removing step (FIG. 7C). Thereby, the several pillar-shaped pattern structure 37 can be formed on the base material 31, and the formed pattern structure 37 becomes the thing excellent in dimensional accuracy.
  • FIG. 8 is a process diagram for explaining an example of pattern formation of an optical element functioning as a metamaterial by forming a thin film part at a part in the longitudinal direction of the core material pattern.
  • a base material 41 having desired optical characteristics and having a metal layer 42 on one surface is prepared, and the above-described core material pattern is formed on the metal layer 42 of the base material 41.
  • the core material pattern 44 having a predetermined shape is formed in the same manner as in the process (FIG. 8A).
  • a plurality of thin film portions 45 are formed in the middle of the longitudinal direction of the core pattern 44 (the direction indicated by the arrow a in the drawing), and the other portions of the core pattern 44 and the thin film are formed.
  • a thickness boundary 45a is formed between the region 45 and the region 45 (FIG. 8B).
  • the thin film portion 45 can be formed by irradiating the core material pattern 44 with actinic radiation and causing the irradiated portion to contract, similarly to the above-described thinning step.
  • the width W3 of the thin film portion 45 in the longitudinal direction of the core material pattern 44 determines the distance d between adjacent patterns, and the change in the distance d between adjacent patterns changes the degree of near-field light interaction. It is set so that it can be made.
  • the width W3 of such a thin film portion 45 is a width within the resolution limit of the actinic radiation, for example, when writing is performed by scanning an electron beam in the direction of the arrow b shown in FIG. It can be set small to the width of the image limit (for example, about 20 nm).
  • a sidewall material film 46 is formed on the metal layer 42 of the base material 41 so as to cover the core material pattern 44 in the same manner as in the above-described sidewall material film forming process, and thereafter, in the same manner as in the above etchback process. Then, the metal layer 42 is exposed, the thin film portion 45 and the side wall material film 46 existing on the side wall thereof are removed, and the side wall material film 46 is left only on the side wall 44b of the remaining core material pattern 44, thereby leaving the side wall material film 46.
  • a pattern structure 47 is formed (FIG. 8C). Next, the pattern structure 47 is formed on the metal layer 42 by removing the core material pattern 44 in the same manner as the above-described core material pattern removing step. Next, using the pattern structure 47 as an etching mask, the metal layer 42 is etched as in FIG. 4C. Thereby, the several metal pattern structure 48 which adjoins via the space
  • a slimming process may be added as in the above-described embodiment.
  • a pattern structure 47 having a shape in which one part of the double ring shape is removed with the width W3 a metal pattern structure 48 may be formed as an optical element.
  • FIG. 9A is a partial perspective view showing the thin film portion 15 formed in the thinning step.
  • the thickness boundary 15a between the other portion of the core material pattern 14 and the thin film portion 15 is inclined, and the boundary position is Not clear.
  • the side wall material film 16 exists in an inclined state between the core material pattern 14 ′ and the upper surface (shaded) of the thin film portion 15 ′. Then, in the state where the etch back is completed, as shown in FIG. 9C, the end 17a of the pattern structure 17 to be formed is not perpendicular to the intermediate layer 12 (not shown) but is slightly inclined. Become.
  • FIG. 10A is a partial perspective view showing the thin film portion 15 formed in the thinning process.
  • the thin film portion 15 is expanded in the width direction (the direction of the arrow a in the figure), and in addition to the core material pattern 14.
  • the boundary 15a of the thickness of the part and the thin film part 15 is inclined, and the boundary position is not clear.
  • the slimming process and the sidewall material film forming process are performed as described above, and when the etch back process is performed, as shown in FIG.
  • the side wall material film 16 exists on the wall surface of the generated thin film portion 15, and the side wall material film 16 is inclined between the exposed core material pattern 14 ′ and the upper surface (shaded) of the thin film portion 15 ′.
  • the end portions 17a of the pattern structure 17 to be formed are open so as to be separated from each other, and the intermediate layer 12 (not shown) )), It is not vertical but slightly inclined.
  • a synthetic quartz glass substrate having an outer shape of 6 inches square and a thickness of 0.25 inches is prepared as a base material, and chromium is formed on one surface of the base material by a sputtering method, and a chromium layer having a thickness of 5 nm is intermediately formed. Formed as a layer.
  • an electron beam sensitive resist was applied onto the chromium layer by a spin coating method, and this resist layer was drawn with an electron beam and developed to form a core material pattern (thickness 60 nm).
  • this core material pattern three sets of line and space-shaped core material patterns having a pattern width of 30 nm, a half pitch of 30 nm, and a line length of 666.33 ⁇ m are arranged at intervals of 0.5 ⁇ m in the longitudinal direction of the line. (See FIG. 5).
  • this core material pattern was slimmed by dry etching with oxygen plasma, the pattern width of each core material pattern was 15 nm, the thickness of each core material pattern was 45 nm, and the thickness of the thin film portion of the core material pattern was 30 nm.
  • a silicon oxide film (thickness 15 nm) was formed as a sidewall material film on the chromium layer by the ALD method so as to cover the slimmed core material pattern.
  • the entire surface of the silicon oxide sidewall material film was etched back using CF 4 gas by dry etching to expose the upper surface of the core material pattern including the chromium layer and the thin film portion, and to expose the sidewall of the thin film portion.
  • the pattern was formed by leaving the silicon oxide side wall material film only on the side wall of the core material pattern excluding the thin film portion.
  • the core material pattern was selectively removed by dry etching using oxygen plasma to obtain a base material having a silicon oxide pattern on the chromium layer.
  • the formed pattern there are three sets of line and space shapes having a width of 15 nm, a height of 15 nm, and a half pitch of 15 nm with an interval of 0.72 ⁇ m in the longitudinal direction of the line. There was no closed loop.
  • the 1 ⁇ m ⁇ 1 ⁇ m region including the space between the line-and-space shape sets thus formed was observed using a SEM (scanning electron microscope (Emu250 manufactured by Holon Co., Ltd.)) and shown in FIG. In FIG. 11, the lines that appear white are silicon oxide patterns.
  • the present invention is applicable to various manufacturing fields in which formation of a pattern structure in which an unnecessary closed loop needs to be removed from a pattern is performed, and various manufacturing fields in which a workpiece is processed using the formed pattern structure. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

 芯材パターン形成工程にて、基材11上に芯材パターン14を形成し、薄膜化工程にて、芯材パターン14の所望の部位の厚みを薄くして薄膜部位15とし、薄膜部位15と芯材パターン14の他の部位との間に厚みの境界15aを設け、側壁材料膜形成工程にて、少なくとも芯材パターン14を被覆するように側壁材料膜16を形成し、エッチバック工程にて、側壁材料膜16および芯材パターン14,薄膜部位15に対してエッチング処理を施し、薄膜部位15およびその側壁14bに存在する側壁材料膜16を除去し、残存する芯材パターン14の側壁14bに側壁材料膜16を存在させ、芯材パターン除去工程にて、芯材パターン14を除去して側壁材料膜16からなるパターン構造体17を基材11上に存在させた状態とする。

Description

パターン構造体の形成方法
 本発明は、パターン構造体の形成方法、例えば、回路パターン、半導体素子やインプリント用モールド等の製造において使用する微細なパターン構造体を形成する方法に関する。
 例えば、半導体素子においては、高速動作、低消費電力動作の要請からパターンの一層の微細化が求められているが、電子線リソグラフィー法を用いたパターン形成では、ハーフピッチ20nm以下のパターン形成が困難、あるいは、スループットの観点から望ましくないという問題があった。
 また、近年、フォトリソグラフィー技術に替わる微細なパターン形成技術として、インプリント方法を用いたパターン形成技術が注目されている。インプリント方法は、微細な凹凸構造を備えた型部材(モールド)を用い、凹凸構造を被成型物に転写することで微細構造を等倍転写するパターン形成技術であり、半導体素子に限らず、種々の分野への応用が進められている。インプリント方法に使用するモールドの製造では、例えば、石英ガラス等の基板上に設けたクロム等の金属薄膜に電子線感応型レジストを塗布し、電子線リソグラフィー法を用いて露光、現像を行ってレジストパターンを形成し、当該レジストパターンをエッチングレジストとして金属薄膜をエッチングして微細パターンを形成し、当該微細パターンをエッチングマスクとして基板をエッチングし、基板の表面に凹凸構造を形成する。しかし、ここでも電子線リソグラフィー法を用いたパターン形成における問題があり、ハーフピッチ20nm以下のパターン形成は、困難であったり、あるいは、スループットの観点から望ましくないものであった。
 上記のような電子線リソグラフィー法を用いたパターン形成における問題を解消するものとして、電子線リソグラフィー法を用いて形成したコアパターンを被覆するようにパターン形成用膜を形成し、このパターン形成用膜をエッチングしてコアパターンの側壁にパターン構造体を形成し、その後、コアパターンを除去する方法が提案されている(特許文献1)。しかし、このよう製造方法は、そのプロセス上、形成したパターン構造体に閉じたループ構造(以下、閉ループと記す)が生じ、例えば、金属層上にパターン構造体を形成し、当該パターン構造体をエッチングマスクとして金属層をエッチングして形成したライン&スペースのパターンでは、不要な閉ループによって、一つ一つのラインが孤立した状態とならず、例えば、電気回路として使用した場合、ラインとして電気的に孤立していない状態のため、配線として機能しないという問題があった。
 このようなパターン構造体の閉ループを除去する方法として、閉ループ以外の領域をレジストで保護し、この状態でエッチングにより閉ループを除去し、その後、レジストを剥離する方法が知られている(特許文献2)。
特開2009-10317号公報 特許第4825891号
 しかし、上記の特許文献2に記載の閉ループの除去方法は、レジストの塗布・剥離によるパターン構造体の損傷や、異物の付着を生じるおそれがあり、また、工程が煩雑になるという問題があった。
 本発明は、上述のような実情に鑑みてなされたものであり、不要な閉ループが存在せず、かつ、優れた寸法精度を有するパターン構造体を形成する方法を提供することを目的とする。
 このような目的を達成するために、本発明のパターン構造体の形成方法は、基材上に芯材パターンを形成する芯材パターン形成工程と、前記芯材パターンの所望の部位の厚みを薄くして薄膜部位とし、該薄膜部位と前記芯材パターンの他の部位との間に厚みの差を設ける薄膜化工程と、少なくとも前記芯材パターンを被覆するように側壁材料膜を形成する側壁材料膜形成工程と、前記側壁材料膜および芯材パターンに対してエッチング処理を施し、前記薄膜部位およびその側壁に存在する前記側壁材料膜を除去し、残存する前記芯材パターンの側壁に前記側壁材料膜からなるパターン構造体を形成するエッチバック工程と、前記芯材パターンを除去する芯材パターン除去工程と、を有するような構成とした。
 本発明の他の態様として、前記芯材パターン形成工程では、電子線感応型レジストあるいは感光性レジストを用いて前記芯材パターンを形成するような構成とした。
 本発明の他の態様として、前記薄膜化工程では、前記芯材パターンの所望部位に化学線を照射して、該照射部位に収縮を生じさせることにより前記薄膜部位を形成するような構成とした。
 本発明の他の態様として、前記芯材パターン形成工程と前記薄膜化工程との間、あるいは、前記薄膜化工程と前記側壁材料膜形成工程との間に、前記芯材パターンを所望の寸法まで縮小するスリミング工程を有するような構成とした。
 本発明の他の態様として、前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成するような構成とした。
 本発明の他の態様として、前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成するとともに、前記芯材パターンの途中の部位にも前記薄膜部位を形成するような構成とした。
 本発明の他の態様として、前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成するとともに、前記芯材パターンの長手方向の途中の部位にも前記薄膜部位を形成することにより、形成されるパターン構造体の長手方向における長さを調整するような構成とした。
 本発明の他の態様として、前記芯材パターン除去工程の後に、前記パターン構造体をエッチングマスクとして前記基材をエッチングしてパターン構造体を形成する基材エッチング工程を有するような構成とした。
 本発明の他の態様として、前記基材エッチング工程の後に、前記パターン構造体を形成した前記基材をモールドとし、該モールドと所望の基板とを近接させてモールドと基板との間に樹脂層を形成し、該樹脂層を硬化させた後に前記モールドと前記樹脂層とを離間して前記基板上に樹脂層からなるパターン構造体を形成するインプリント工程を有するような構成とした。
 本発明の他の態様として、前記基材として表面に中間層を備えた基材を使用し、前記芯材パターン形成工程では該中間層上に芯材パターンを形成し、前記芯材パターン除去工程の後に、前記パターン構造体をエッチングマスクとして前記中間層をエッチングして中間層からなるパターン構造体を形成する中間層エッチング工程を有するような構成とした。
 本発明の他の態様として、前記中間層エッチング工程の後に、中間層からなる前記パターン構造体をエッチングマスクとして前記基材をエッチングしてパターン構造体を形成する基材エッチング工程を有するような構成とした。
 本発明の他の態様として、前記基材エッチング工程の後に、前記パターン構造体を形成した前記基材をモールドとし、該モールドと所望の基板とを近接させてモールドと基板との間に樹脂層を形成し、該樹脂層を硬化させた後に前記モールドと前記樹脂層とを離間して前記基板上に樹脂層からなるパターン構造体を形成するインプリント工程を有するような構成とした。
 本発明では、エッチバック工程において側壁材料膜に対してエッチング処理を施した時に、薄膜部位を除く芯材パターンの側壁に存在する側壁材料膜よりも、薄膜部位の側壁に存在する側壁材料膜が先に消失することを利用して、所望の端部における閉ループの形成を妨げながら側壁材料膜からなるパターン構造体を形成するので、ハーフピッチが十数nmの微細なパターン構造体の形成が可能であるとともに、閉ループを除去する工程が不要であり、かつ、閉ループを具備しないパターン構造体の端部を、薄膜部位と薄膜部位を除く芯材パターンとの厚みが相違する位置で設定することができるので、優れた寸法精度を有するパターン構造体の形成が可能である。
図1A~図1Dは、本発明のパターン構造体の形成方法の一実施形態の工程を説明するための図である。 図2A~図2Eは、本発明のパターン構造体の形成方法の一実施形態の工程を説明するための図である。 図3A~図3Dは、本発明のパターン構造体の形成方法の一実施形態の工程を説明するための図である。 図4A~図4Eは、本発明のパターン構造体の形成方法の一実施形態の工程を説明するための図である。 図5は、本発明のパターン構造体の形成方法の他の実施形態を説明するための図である。 図6A~図6Dは、本発明のパターン構造体の形成方法の他の実施形態の工程を説明するための図である。 図7A~図7Cは、本発明のパターン構造体の形成方法の他の実施形態の工程を説明するための図である。 図8A~図8Dは、本発明のパターン構造体の形成方法の他の実施形態の工程を説明するための図である。 図9A~図9Cは、本発明のパターン構造体の形成方法の他の実施形態を説明するための図である。 図10A~図10Cは、本発明のパターン構造体の形成方法の他の実施形態を説明するための図である。 図11は、実施例において作製したライン&スペース形状のパターン構造体のセット間の間隔部位を、SEMを用いて観察した状態を示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。
 尚、図面は模式的または概念的なものであり、各部材の寸法、部材間の大きさの比等は、必ずしも現実のものと同一とは限らず、また、同じ部材等を表す場合であっても、図面により互いの寸法や比が異なって表される場合もある。
 本発明のパターン構造体の形成方法は、芯材パターン形成工程にて、基材上に芯材パターンを形成し、薄膜化工程にて、芯材パターンの所望の部位の厚みを薄くして薄膜部位とし、当該薄膜部位と芯材パターンの他の部位との間に厚みの境界を設け、側壁材料膜形成工程にて、少なくとも芯材パターンを被覆するように側壁材料膜を形成し、エッチバック工程にて、側壁材料膜に対してエッチング処理を施し、薄膜部位を除く芯材パターンの側壁に側壁材料膜を存在させ、芯材パターン除去工程にて、芯材パターンを除去して側壁材料膜からなるパターン構造体を基材上に存在させた状態とするものである。
 次に、本発明のパターン構造体の形成方法を、工程毎に説明する。
 図1~図4は、本発明のパターン構造体の形成方法の一実施形態の工程を説明するための図である。
 <芯材パターン形成工程>
 本発明では、まず、図1Aおよび図1Bに示されるように、芯材パターン形成工程において、基材11上に芯材パターン14を形成する。尚、図1Aは部分平面図であり、図1Bは図1AのI-I線における縦断面図である。
 図示例では、基材11は中間層12を備えた積層構造であるが、基材11は中間層を備えないもの、あるいは、2層以上の積層からなる中間層を備えるものであってもよく、基材11の使用目的、形成するパターンの使用目的に応じて基材11の構成を適宜設定することができる。
 例えば、形成したパターンの構成体をエッチングマスクとして中間層12をエッチングし、この中間層12のパターンをマスクとして基材11をエッチングしてインプリントモールドを作製する場合、基材11は、石英ガラス、珪酸系ガラス、フッ化カルシウム、フッ化マグネシウム、アクリルガラス等のガラスや、ポリカーボネート、ポリプロピレン、ポリエチレン等の樹脂等、あるいは、これらの任意の積層材等の光透過性の材料とすることができる。また、インプリントモールドに光透過性が不要な場合、基材11として、ニッケル、チタン、アルミニウムなどの金属、多結晶シリコンや窒化ガリウム等の半導体などを用いてもよい。また、中間層12は、基材11に比べてエッチングレートが小さく耐エッチング性を有する材料を用いることができ、例えば、クロム、チタン、タンタル、珪素、アルミニウム等の金属、窒化クロム、酸化クロム、酸窒化クロム等のクロム系化合物、酸化タンタル、酸窒化タンタル、酸化硼化タンタル、酸窒化硼化タンタル等のタンタル化合物、窒化チタン、窒化珪素、酸窒化珪素等を単独で、あるいは、2種以上の組み合わせで使用することができる。このような中間層12は、例えば、スパッタリング法等の真空成膜方法により基材11上に形成することができる。
 さらに、形成したパターン構成体をエッチングマスクとして中間層12をエッチングし回路パターン等を形成する場合、銅、銀、金、ニッケル等の導電材料の1種あるいは2種以上の組み合わせで中間層12を形成することができる。
 また、形成したパターン構造体をそのまま使用する目的の場合、例えば、中間層12は基材11とパターンとの密着性を向上させる機能を有する薄膜とすることができる。
 尚、中間層12の厚みは、中間層12の使用目的に応じて適宜設定することができる。
 基材11上への芯材パターン14の形成は、電子線(EB)リソグラフィー法、フォトリソグラフィー法、またはインプリント法により形成することができる。
 電子線(EB)リソグラフィー法を用いる場合、基材11の中間層12上に電子線感応型レジストを配設し、電子線描画、現像を行うことにより所望の形状の芯材パターン14を形成することができる。
 また、フォトリソグラフィー法を用いる場合、基材11の中間層12上に感光性レジストを配設し、所望の形状の光透過部を有するフォトマスクを介した光照射により露光し、現像することにより芯材パターン14を形成することができる。
 また、インプリント法を用いる場合、例えば、基材11の中間層12上に被転写物として光硬化性レジストをディスペンサやインクジェット等によって供給・配設し、所望の凹凸構造を有するモールドを接触させ、光硬化性レジストを硬化させた後、モールドを引き離すことにより、モールドが有する凹凸構造が反転した凹凸構造のパターンを中間層12上に形成し、その後、いわゆる残膜を酸素アッシング等により除去することで、芯材パターン14を形成することができる。
 このように形成する芯材パターン14の平面視形状は、図示例では長方形状であるが、これに限定されるものではない。また、芯材パターン14の平面視における寸法も適宜設定することができる。さらに、芯材パターン14の厚みは、後述する薄膜化工程で形成する薄膜部位15の厚み、形成しようとするパターン構造体の高さを考慮して適宜設定することができ、例えば、10nm~1μmの範囲で設定することができる。
 <薄膜化工程>
 次に、図1Cおよび図1Dに示されるように、芯材パターン14の所望の部位の厚みを薄くして薄膜部位15を形成し、芯材パターン14の他の部位と当該薄膜部位15との間に厚みの境界15aを設ける。尚、図1Cは部分平面図であり、図1Dは図1CのII-II線における縦断面図であり、図1Cでは、薄膜部位15を点斜線を付して示している。
 図示例では、芯材パターン14の長手方向(図示において矢印aで表す方向)の両側の端部14aの厚みを薄くして薄膜部位15を形成している。このような薄膜部位15は、例えば、芯材パターン14に化学線を照射して、当該照射部位に収縮を生じさせることにより形成することができる。芯材パターン14の他の部位と薄膜部位15との厚みの境界15a、すなわち照射部位と非照射部位との境界位置は、形成するパターンの端部位置、したがって、パターンの寸法を決定するものであり、図示例では、薄膜部位15を除く芯材パターン14の側壁14bの長さLが、形成するパターンの長さ寸法となるように照射部位と非照射部位との境界位置を設定することができる。尚、芯材パターン14の側壁14bとは、芯材パターン14の全周縁部において基材11(図示例では中間層12)から立ち上がっている壁部を意味する。
 使用する化学線としては、電子線、X線、紫外線等を挙げることができ、上記のように設定した照射部位に対して描画照射、あるいは、マスクパターンを介した照射を行うことにより薄膜部位15を形成することができる。薄膜部位15の厚みtは、芯材パターン14の厚みT、形成しようとするパターン構造体の高さHとの間に、T-H≧MAX((T-t)or t)の関係が成立するように設定することができ、化学線の照射量および/または焦点の調整により薄膜部位15の厚みtを制御することができる。上記の(T-H)は、後述のエッチバック工程でのエッチング量である。また、MAX((T-t)or t)は、芯材パターン14の厚みTと薄膜部位15の厚みtとの差(T-t)と、薄膜部位15の厚みtとのいずれか大きい方を意味している。
 このような薄膜部位15を形成する方法としては、上記の化学線を照射する方法の他に、芯材パターン14にレーザー等を照射して当該照射部位を飛散させることにより所望の厚みの薄膜部位15を形成する方法、微細な針状部材の先端を使用して芯材パターン14を研削することにより所望の厚みの薄膜部位15を形成する方法、微細な幅を有する押圧部材を芯材パターン14に押し当てることにより所望の厚みの薄膜部位15を形成する方法等も使用することができる。
 <スリミング工程>
 本実施形態においては、図2Aおよび図2Bに示されるように、薄膜化工程後に、必要に応じて設けることができるスリミング工程を有している。尚、図2Aは部分平面図であり、図2Bは図2AのIII-III線における縦断面図である。
 スリミング工程においては、薄膜部位15を有する芯材パターン14を例えば酸素プラズマ等で処理してスリミングして、芯材パターン14′が形成される。
 本発明において、スリミングとは、ウエットエッチングあるいはドライエッチング(酸素プラズマ処理を含む)で芯材パターン14のパターンの幅を細くするとともに、膜厚を薄くすることである。例えば、酸素プラズマ処理によるスリミングを行うことによって、最初に形成された芯材パターン14のパターンのピッチを変えずに、パターン幅を1/2程度とすることができる。
 ここで、上述の薄膜化工程では、薄膜部位15を、この薄膜部位15を除く芯材パターン14の側壁14bの長さLが、形成しようとするパターン寸法となるように設定している。さらに、薄膜部位15の厚みtを、芯材パターン14の厚みT、形成しようとするパターン構造体の高さHとの間に、T-H(エッチング量)≧MAX((T-t)or t)の関係が成立するように設定している。しかし、薄膜化工程の後にスリミング工程を有する場合、スリミング後の寸法を考慮して、薄膜部位15の設定、薄膜部位15の厚みtの設定を行う。すなわち、スリミングが行われて形成された芯材パターン14′における側壁14′bの長さL′が、形成しようとするパターン寸法となるように、予めスリミングによる寸法縮小を考慮して薄膜部位15の位置を設定する。また、スリミングが行われて形成された芯材パターン14′における薄膜部位15′の厚みt′と、芯材パターン14′の厚みT′、形成しようとするパターン構造体の高さHとの間に、T′-H(エッチング量)≧MAX((T′-t′)or t′)の関係が成立するように、予めスリミングによる寸法縮小を考慮して薄膜部位15の厚みtを設定する。
 <側壁材料膜形成工程>
 次に、図2C、図2Dおよび図2Eに示されるように、芯材パターン14′を被覆するように基材11の中間層12上に側壁材料膜16を形成する。尚、図2Cは部分平面図であり、図2Dは図2CのIV-IV線における縦断面図、図2Eは図2CのV-V線における縦断面図である。また、図2Cでは、側壁材料膜16に斜線を付して示している。
 側壁材料膜16は、形成するパターン構造体の使用目的、要求される特性等を考慮した上で、被着させる面上に沿って一連の膜として形成されたものであれば特に限定されるものではなく、例えば、CVD法(化学気相堆積法)やALD法(原子層堆積法)等の低温真空成膜法により形成することができる。特に、ALD法は、原子層を堆積させる面が凹凸面、湾曲面等如何なる形状の面であっても低温で精度良く成膜でき、好適に用いることができる。
 側壁材料膜16は、芯材パターン14′を構成するレジストのガラス転移温度より十分低い温度、例えば、20~100℃、好ましくは室温程度の温度で、芯材パターン14′に損傷を与えずに成膜することができる材料であって、形成するパターンの使用目的に応じた材料により成膜することができる。例えば、中間層12が金属層であり、この中間層12のエッチングにおいて耐エッチング性を発現できるような側壁材料膜16の材料としては、酸化珪素、窒化珪素、酸窒化珪素等の珪素系、酸化アルミニウム等のアルミニウム系、酸化ハフニウム等のハフニウム系、窒化チタン等のチタン系の材料等が挙げられる。
 このような側壁材料膜16は、単層で構成してもよく、また、2層以上の積層膜として構成してもよい。側壁材料膜16の膜厚は、ハーフピッチ設計分の膜厚とすることが好ましく、例えば、数nm~数十nm程度の厚さが得られるまで、一連の原子層を連続的に積み重ねることができる。
 <エッチバック工程>
 次いで、図3A、図3B、図3Cおよび図3Dに示されるように、側壁材料膜16、および、芯材パターン14′、薄膜部位15′に対してエッチング処理を施し、中間層12を露出させるとともに、薄膜部位15′とその側壁に存在する側壁材料膜16を除去し、残存する芯材パターン14′の側壁14′bのみに側壁材料膜16を残す。これにより、側壁材料膜16からなるパターン17を形成する。尚、図3Aは部分平面図であり、図3Bは図3AのVI-VI線における縦断面図であり、図3Cおよび図3Dは図3Aにおいて点線円で囲まれた部位の拡大斜視図であり、図3Cは側壁材料膜16の厚み分のエッチングが行われ、芯材パターン14′と薄膜部位15′の上面(斜線を付して示している)が露出した状態を示し、図3Dはエッチバックが終了した状態を示しており、図3Bに対応するものである。尚、図3C、図3Dでは、中間層12は省略している。
 エッチバックとは、エッチングにより表面を全体的に厚さ方向に削る操作であり、側壁材料膜16を構成する材料に応じて適切なエッチングガスを用いて行うことができる。例えば、側壁材料膜16が酸化珪素で構成されている場合には、CF4、CHF3、C26等のフッ素系ガスをエッチングガスとして用いてエッチバックを行うことができる。そして、上記のように、レジストを用いて形成した芯材パターン14(芯材パターン14′と薄膜部位15′)は、このようなエッチングにより、厚さ方向に削られる。尚、芯材パターン14(芯材パターン14′と薄膜部位15′)のエッチング速度は、図示例では側壁材料膜16のエッチング速度をほぼ同じものとして示しているが、前者のエッチング速度の方が大きいものであってもよい。
 上述したように、スリミングが行われて形成された芯材パターン14′における薄膜部位15′の厚みt′と、芯材パターン14′の厚みT′、形成しようとするパターン構造体の高さHとの間には、T′-H(エッチング量)≧MAX((T′-t′)or t′)の関係が成立しており、エッチバックでは、芯材パターン14′の厚みT′と薄膜部位15′の厚みt′との差(T-t)と、薄膜部位15′の厚みt′のいずれか大きい方の厚み分を確実に除去できるようにエッチング量を調整することにより、薄膜部位15′とその側壁に存在する側壁材料膜16が除去され、残存する芯材パターン14′の側壁14′bのみに側壁材料膜16を残すことができる。したがって、形成されるパターン構造体17は、閉ループが存在せず、かつ、パターン構造体17の端部17aの位置は、薄膜部位15′と薄膜部位15′を除く芯材パターン14′との厚みの境界15′aの位置で決定されるので、パターン構造体17は寸法精度に優れたものとなる。
 <芯材パターン除去工程>
 次に、図4Aおよび図4Bに示されるように、芯材パターン14′を除去し、中間層12上にパターン構造体17が存在する基材11とする。尚、図4Aは部分平面図であり、図4Bは図4AのVII-VII線における縦断面図である。
 芯材パターン14′の除去は、例えば、酸素プラズマによる選択的ドライエッチングで行うことができる。
 このような本発明では、エッチバック工程において側壁材料膜16に対してエッチング処理を施した時に、薄膜部位15(15′)を除く芯材パターン14(14′)の側壁14b(14′b)よりも、薄膜部位15(15′)の側壁14b(14′b)において側壁材料膜16が先に消失することを利用して、所望の端部における閉ループの形成を妨げながら側壁材料膜16からなるパターン構造体17を形成する。したがって、例えば、ハーフピッチが十数nm(10nm以上20nm未満)の微細なライン&スペース形状のパターン構造体17の形成が可能であるとともに、閉ループを除去する工程が不要である。さらに、不要な閉ループを具備しないパターン構造体17の端部17aの位置を、薄膜部位15(15′)と薄膜部位を除く芯材パターン14(14′)との厚みが異なる境界15a(15′a)の位置で設定することができるので、優れた寸法精度を有するパターン構造体17の形成が可能である。
 上述のように形成したパターン構造体17が形成目的のパターン構造体である場合には、図4Aおよび図4Bに示されるように、中間層12上にパターン構造体17が存在する基材11を得たところで、本発明のパターン形成が終了する。
 また、本発明のパターン構造体の形成方法では、上述のように形成したパターン構造体17をエッチングマスクとして、中間層12をエッチングし(図4C)、中間層からなるパターン構造体18を形成することも可能である(図4D)。上述のように、パターン構造体17は側壁材料膜16からなり、この側壁材料膜16は無機材料で構成されているので、例えば、中間層12がクロム等の金属層である場合、従来の有機材料からなるエッチングレジストに比べて、パターン構造体17のエッチングマスクとして耐性が向上するので、例えば、ハーフピッチが十数nm(10nm以上20nm未満)の微細なライン&スペース形状のパターン構造体18の形成が可能である。
 さらに、本発明のパターン構造体の形成方法では、上述のように形成したパターン構造体18をマスクパターンとして、基材11をエッチングして、所望の凹凸構造からなるパターン構造体19を形成することも可能である(図4E)。このようなパターン構造体19の形成においても、例えば、ハーフピッチが十数nm(10nm以上20nm未満)の微細なライン&スペース形状のパターン構造体の形成が可能である。このような基材11へのパターン構造体19の形成により、例えば、インプリント用のモールドを作製することができ、さらに、このモールドからレプリカモールドを作製することができる。また、本発明では、このように作製したモールドを使用して、モールドと所望の基板とを近接させてモールドと基板との間に樹脂層を形成し、当該樹脂層を硬化させた後にモールドと離間して、基板上に樹脂層からなるパターン構造体を形成することができる。このように形成したパターン構造体は、上述のパターン構造体17の形状を反映したパターン構造体である。勿論、上記の樹脂層からなるパターン構造体をマスクパターンとして基板をエッチングしてパターン構造体を形成することもできる。このように形成したパターン構造体も、上述のパターン構造体17の形状を反映したパターン構造体である。
 上述のパターン構造体の形成方法の実施形態は例示であり、本発明はこのような実施形態に限定されるものではない。例えば、芯材パターン14の平面視形状が、図5に示されるようなライン&スペース形状であり、かつ、ライン&スペース形状の芯材パターン群が所定の間隔を設けて複数セット(図示では3セット)配設されたものであってもよい。この場合、各芯材パターン群の長手方向の両端部の所定の領域(図示例で二点鎖線にて囲まれた領域)に薄膜化処理を行って薄膜部位を形成することができる。
 また、例えば、芯材パターン14の一方の端部には閉ループのパターンが形成されてもよい場合には、当該端部には、薄膜部位15を形成する必要はない。
 また、本発明のパターン構造体の形成方法では、例えば、芯材パターンの長手方向の途中の部位にも薄膜部位を形成してもよい。図6は、このような薄膜部位を形成することにより、第1パターン構造体と第2パターン構造体を、それぞれ第1パターン領域と第2パターン領域とに同時に形成する実施形態を説明する工程図である。この実施形態では、上述の芯材パターン形成工程と同様にして、基材21上に設定した第1パターン領域Aから第2パターン領域Bに連続した芯材パターン24を形成する(図6A)。尚、図示例では、1本の芯材パターン24を示しているが、芯材パターン24の本数は適宜設定することができ、また、芯材パターン24の平面視における形状、寸法等も適宜設定することができる。
 次に、第1パターン領域Aと第2パターン領域Bの境界を跨ぐように、芯材パターン24の長手方向(図示において矢印aで表す方向)の途中に薄膜部位25(点斜線を付して示す)を形成し、芯材パターン24の他の部位と薄膜部位25との間に厚みの境界25aを形成する(図6B)。尚、図6Bには示されていないが、芯材パターン24の長手方向の端部にも薄膜部位を形成する。
 この薄膜部位25は、上述の薄膜化工程と同様に、芯材パターン24に化学線を照射して、当該照射部位に収縮を生じさせることにより形成することができる。そして、薄膜部位25すなわち照射部位は、第1パターン構造体と第2パターン構造体とが離間する距離、および、第1パターン構造体と第2パターン構造体の各々の寸法を決定するものである。
 次いで、上述の側壁材料膜形成工程と同様にして、芯材パターン24を被覆するように基材21上に側壁材料膜26を形成し、その後、上述のエッチバック工程と同様にして、基材21を露出させるとともに、薄膜部位25とその側壁に存在する側壁材料膜26を除去し、残存する芯材パターン24の側壁24bのみに側壁材料膜26を残して、側壁材料膜26からなるパターン構造体27を形成する(図6C)。次に、上述の芯材パターン除去工程と同様にして、芯材パターン24を除去する(図6D)。これにより、基材21上の第1パターン領域Aに第1パターン構造体27A、第2パターン領域Bに第2パターン構造体27Bを同時に形成することができ、かつ、形成された第1パターン構造体27Aと第2パターン構造体27Bは、閉ループが存在せず、寸法精度に優れたものとなる。
 従来、図示例のような第1パターン構造体と第2パターン構造体を、それぞれ第1パターン領域と第2パターン領域とに同時に形成する場合、第1パターン領域と第2パターン領域にそれぞれ芯材パターンを形成してパターン形成が行われていたので、第1パターン構造体と第2パターン構造体のそれぞれに閉ループが形成され、この閉ループの除去工程が必要であった。また、第1パターン領域と第2パターン領域に連続した状態でパターンを形成し、その後、第1パターン領域と第2パターン領域の境界部位のパターン構造体を除去して、第1パターン構造体と第2パターン構造体を形成する方法もあるが、レジストの塗布・剥離によるパターンの損傷や、異物の付着を生じるおそれがあり、また、工程が煩雑であった。しかし、本発明による第1パターン構造体27Aと第2パターン構造体27Bの同時形成では、このような従来からの欠点がなく、寸法精度の高いパターン構造体を簡便に形成することができる。
 上記のような第1パターン構造体27Aと第2パターン構造体27Bの同時形成においても、上述の実施形態のように、スリミング工程を加えてもよい。また、使用する基材は、上述の実施形態のように、必要に応じて中間層を備えるものであってもよい。
 上述のように形成した第1パターン構造体27Aと第2パターン構造体27Bが形成目的のパターン構造体である場合には、上記のように、基材21上に第1パターン構造体27Aと第2パターン構造体27Bを形成したところで、本発明のパターン構造体の形成が終了する。また、形成した第1パターン構造体27Aと第2パターン構造体27Bをエッチングマスクとして、図4Cと同様に、中間層をエッチングして、中間層からなる第1パターン構造体と第2パターン構造体を形成してもよく、さらに、この中間層からなる第1パターン構造体と第2パターン構造体をマスクパターンとして、図4Eと同様に、基材21をエッチングして、凹凸構造の第1パターン構造体と第2パターン構造体を形成してもよい。尚、第1パターン構造体と第2パターン構造体は、例えば、主パターンとダミーパターンの関係であってもよい。
 さらに、上記の例では、第1パターン構造体と第2パターン構造体の2種のパターンの形成であるが、例えば、芯材パターンの長手方向の途中の部位に形成する薄膜部位の幅を、化学線照射の解像限界内で適宜縮小し、かつ、隣り合う薄膜部位の距離を短く設定して複数の薄膜部位を形成することにより、1種あるいは2種以上のピラー形状のパターン構造体を複数形成することができる。図7は、複数のピラー形状のパターンを形成する本発明の実施形態を説明する工程図である。この実施形態では、上述の芯材パターン形成工程と同様にして、基材31上に連続した芯材パターン34を形成し、芯材パターン34の長手方向(図示において矢印aで表す方向)に複数の薄膜部位35(点斜線を付して示す)を形成する(図7A)。これにより各薄膜部位35においては、芯材パターン34の他の部位との間に厚みの境界35aが形成される。この薄膜部位35は、上述の薄膜化工程と同様に、芯材パターン34に化学線を照射して、当該照射部位に収縮を生じさせることにより形成することができる。薄膜部位35の幅W1は、化学線照射の解像限界内の幅、例えば、化学線照射として図示の矢印b方向に電子線を走査して描画を行う場合、電子線描画の解像限界(例えば、20nm程度)の幅まで小さく設定することができ、隣り合う薄膜部位35の間に存在する芯材パターン34の幅W2は、例えば、10nm程度まで小さく設定することができる。
 尚、図示例では、1本の芯材パターン34を示しているが、芯材パターン34の本数は適宜設定することができ、また、芯材パターン34の平面視における形状、寸法等も適宜設定することができる。
 次いで、上述の側壁材料膜形成工程と同様にして、芯材パターン34を被覆するように基材31上に側壁材料膜36を形成し、その後、上述のエッチバック工程と同様にして、基材31を露出させるとともに、薄膜部位35とその側壁に存在する側壁材料膜36を除去し、残存する芯材パターン34の側壁34bのみに側壁材料膜36を残して、側壁材料膜36からなるパターン構造体37を形成する(図7B)。次に、上述の芯材パターン除去工程と同様にして、芯材パターン34を除去する(図7C)。これにより、基材31上に複数のピラー形状のパターン構造体37を形成することができ、形成されたパターン構造体37は寸法精度に優れたものとなる。
 また、図8は、芯材パターンの長手方向の途中の部位に薄膜部位を形成することにより、メタマテリアルとして機能する光学素子のパターン形成の例を説明する工程図である。この実施形態では、所望の光学的特性を具備し、かつ、一方の面に金属層42を備えた基材41を準備し、この基材41の金属層42上に、上述の芯材パターン形成工程と同様にして、所定形状の芯材パターン44を形成する(図8A)。次に、芯材パターン44の長手方向(図示において矢印aで表す方向)の途中に複数の薄膜部位45(点斜線を付して示す)を形成し、芯材パターン44の他の部位と薄膜部位45との間に厚みの境界45aを形成する(図8B)。この薄膜部位45は、上述の薄膜化工程と同様に、芯材パターン44に化学線を照射して、当該照射部位に収縮を生じさせることにより形成することができる。芯材パターン44の長手方向における薄膜部位45の幅W3は、近接するパターンの間隔dを決定するものであり、この近接するパターンの間隔dは、その変化が近接場光相互作用の程度を変化させ得るよう設定される。このような薄膜部位45の幅W3は、化学線照射の解像限界内の幅、例えば、化学線照射として図示の矢印b方向に電子線を走査して描画を行う場合、電子線描画の解像限界(例えば、20nm程度)の幅まで小さく設定することができる。
 次いで、上述の側壁材料膜形成工程と同様にして、芯材パターン44を被覆するように基材41の金属層42上に側壁材料膜46を形成し、その後、上述のエッチバック工程と同様にして、金属層42を露出させるとともに、薄膜部位45とその側壁に存在する側壁材料膜46を除去し、残存する芯材パターン44の側壁44bのみに側壁材料膜46を残して、側壁材料膜46からなるパターン構造体47を形成する(図8C)。次に、上述の芯材パターン除去工程と同様にして、芯材パターン44を除去することにより、金属層42上にパターン構造体47が形成される。次いで、このパターン構造体47をエッチングマスクとして、図4Cと同様に、金属層42をエッチングする。これにより、間隔dを介して近接する複数の金属パターン構造体48を基材41上に形成することができる(図8D)。
 このようなパターン構造体47、金属パターン構造体48の形成においても、上述の実施形態のように、スリミング工程を加えてもよい。また、例えば、環形状の芯材パターンの途中の部位に薄膜部位を形成することにより、二重環形状の一箇所が上記の幅W3で除去された形状のパターン構造体47、金属パターン構造体48を形成して光学素子としてもよい。
 上述の実施形態は例示であり、本発明はこれらの実施形態に限定されるものではない。
 例えば、上述の芯材パターン14の他の部位と薄膜部位15との厚みの境界15aは、図1C、図1Dに示されている例では明瞭なものとなっているが、境界15aが不明瞭なものであっても本発明に包含される。図9Aは、薄膜化工程において形成された薄膜部位15を示す部分斜視図であり、芯材パターン14の他の部位と薄膜部位15との厚みの境界15aは傾斜をなしており、境界位置は明瞭ではない。このような薄膜部位15を形成した後に、上述のようにスリミング工程、側壁材料膜形成工程を行い、エッチバック工程を行うと、エッチバックの途中段階では、図9Bに示されるように、露出した芯材パターン14′と薄膜部位15′の上面(斜線を付している)との間には、側壁材料膜16が傾斜した状態で存在する。そして、エッチバックが終了した状態では、図9Cに示されるように、形成されるパターン構造体17の端部17aが中間層12(図示せず)に対して垂直ではなく、やや傾斜したものとなる。
 また、上述の芯材パターン14の他の部位と薄膜部位15との厚みの境界15aは、図1C、図1Dに示されている例では明瞭なものとなっており、薄膜部位15の幅は芯材パターン14の他の部位と同じものとなっているが、薄膜部位15に幅方向の広がりが生じ、かつ、境界15aが不明瞭なものであっても本発明に包含される。図10Aは、薄膜化工程において形成された薄膜部位15を示す部分斜視図であり、薄膜部位15は幅方向(図示の矢印a方向)に広がりが生じており、さらに、芯材パターン14の他の部位と薄膜部位15との厚みの境界15aは傾斜をなし、境界位置は明瞭ではない。このような薄膜部位15を形成した後に、上述のようにスリミング工程、側壁材料膜形成工程を行い、エッチバック工程を行うと、エッチバックの途中段階では、図10Bに示されるように、広がりを生じた薄膜部位15の壁面に側壁材料膜16が存在し、露出した芯材パターン14′と薄膜部位15′の上面(斜線を付している)との間には、側壁材料膜16が傾斜した状態で存在する。そして、エッチバックが終了した状態では、図10Cに示されるように、形成されるパターン構造体17の端部17aは、相互に離間するように開き気味であり、かつ、中間層12(図示せず)に対して垂直ではなく、やや傾斜したものとなる。
 さらに、図10に示した例とは逆に、薄膜部位15の幅が芯材パターン14の他の部位よりも狭いものであっても本発明に包含される。
 次に、具体的な実施例を挙げて本発明を更に詳細に説明する。
 基材として、外形が6インチ角、厚さ0.25インチの合成石英ガラス基板を準備し、この基材の一方の面にクロムをスパッタリング法で成膜して厚さ5nmのクロム層を中間層として形成した。
 次に、上記のクロム層上に電子線感応型レジストをスピンコート法で塗布し、このレジスト層を電子線描画し、現像することにより芯材パターン(厚み60nm)を形成した。この芯材パターンは、パターン幅30nm、ハーフピッチ30nm、ライン長666.33μmのライン&スペース形状の芯材パターン群が、ラインの長手方向において、0.5μmの間隔を設けて3セット配設されたものとした(図5参照)。
 次いで、ライン&スペース形状の各芯材パターン群間の中点を中心として、FOV(field of view)=0.75μmでSEM観察することにより、それぞれの芯材パターン群の両端の端部から0.11μmまでの部位に電子線を照射(照射量2.4×103μC/cm2)した。これにより、各芯材パターンの両端に薄膜部位(厚み45nm)を形成した。
 次に、この芯材パターンを酸素プラズマでドライエッチングしてスリミングし、各芯材パターンのパターン幅を15nm、各芯材パターンの厚みを45nm、芯材パターンの薄膜部位の厚みを30nmとした。
 次に、スリミングした芯材パターンを被覆するようにクロム層上に、側壁材料膜としてALD法により酸化珪素膜(厚み15nm)を成膜した。
 次いで、CF4ガスを用いて酸化珪素の側壁材料膜の全面をドライエッチングによりエッチバックし、クロム層、薄膜部位を含む芯材パターンの上面を露出させるとともに、薄膜部位の側壁を露出させた。これにより、薄膜部位を除く芯材パターンの側壁のみに酸化珪素の側壁材料膜を残してパターンを形成した。
 次に、酸素プラズマによるドライエッチングで選択的に芯材パターンを除去し、クロム層上に酸化珪素のパターンが存在する基材を得た。形成したパターンは、幅15nm、高さ15nm、ハーフピッチ15nmのライン&スペース形状が、ラインの長手方向において、0.72μmの間隔を設けて3セット存在するものであり、パターンの端部には閉ループが存在しないものであった。
 このように形成したライン&スペース形状のセット間の間隔部位を含む1μm×1μmの領域をSEM(走査型電子顕微鏡(Holon(株)製 emu250))を用いて観察し、図11に示した。図11では、白く見えるラインが酸化珪素のパターンである。
 不要な閉ループをパターンから除去する必要のあるパターン構造体の形成が行われる種々の製造分野、および、形成したパターン構造体を用いて被加工体へ加工を行う種々の製造分野に適用可能である。
 11,21,31,41…基材
 12…中間層
 14,14′,24,34,44…芯材パターン
 14b,14′b,24b,34b,44b…側壁
 15,15′,25,35,45…薄膜部位
 15a,15′a,25a,35a,45a…厚みの境界
 16,26,36,46…側壁材料膜
 17,27(27A,27B),37,47…パターン構造体

Claims (12)

  1.  基材上に芯材パターンを形成する芯材パターン形成工程と、
     前記芯材パターンの所望の部位の厚みを薄くして薄膜部位とし、該薄膜部位と前記芯材パターンの他の部位との間に厚みの差を設ける薄膜化工程と、
     少なくとも前記芯材パターンを被覆するように側壁材料膜を形成する側壁材料膜形成工程と、
     前記側壁材料膜および芯材パターンに対してエッチング処理を施し、前記薄膜部位およびその側壁に存在する前記側壁材料膜を除去し、残存する前記芯材パターンの側壁に前記側壁材料膜からなるパターン構造体を形成するエッチバック工程と、
     前記芯材パターンを除去する芯材パターン除去工程と、を有することを特徴とするパターン構造体の形成方法。
  2.  前記芯材パターン形成工程では、電子線感応型レジストあるいは感光性レジストを用いて前記芯材パターンを形成することを特徴とする請求項1に記載のパターン構造体の形成方法。
  3.  前記薄膜化工程では、前記芯材パターンの所望部位に化学線を照射して、該照射部位に収縮を生じさせることにより前記薄膜部位を形成することを特徴とする請求項1に記載のパターン構造体の形成方法。
  4.  前記芯材パターン形成工程と前記薄膜化工程との間、あるいは、前記薄膜化工程と前記側壁材料膜形成工程との間に、前記芯材パターンを所望の寸法まで縮小するスリミング工程を有することを特徴とする請求項1に記載のパターン構造体の形成方法。
  5.  前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成することを特徴とする請求項1に記載のパターン構造体の形成方法。
  6.  前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成するとともに、前記芯材パターンの途中の部位にも前記薄膜部位を形成することを特徴とする請求項1に記載のパターン構造体の形成方法。
  7.  前記薄膜化工程では、前記芯材パターンの所望の端部に前記薄膜部位を形成するとともに、前記芯材パターンの長手方向の途中の部位にも前記薄膜部位を形成することにより、形成されるパターン構造体の長手方向における長さを調整することを特徴とする請求項1に記載のパターン構造体の形成方法。
  8.  前記芯材パターン除去工程の後に、前記パターン構造体をエッチングマスクとして前記基材をエッチングしてパターン構造体を形成する基材エッチング工程を有することを特徴とする請求項1に記載のパターン構造体の形成方法。
  9.  前記基材エッチング工程の後に、前記パターン構造体を形成した前記基材をモールドとし、該モールドと所望の基板とを近接させてモールドと基板との間に樹脂層を形成し、該樹脂層を硬化させた後に前記モールドと前記樹脂層とを離間して前記基板上に樹脂層からなるパターン構造体を形成するインプリント工程を有することを特徴とする請求項8に記載のパターン構造体の形成方法。
  10.  前記基材として表面に中間層を備えた基材を使用し、前記芯材パターン形成工程では該中間層上に芯材パターンを形成し、前記芯材パターン除去工程の後に、前記パターン構造体をエッチングマスクとして前記中間層をエッチングして中間層からなるパターン構造体を形成する中間層エッチング工程を有することを特徴とする請求項1に記載のパターン構造体の形成方法。
  11.  前記中間層エッチング工程の後に、中間層からなる前記パターン構造体をエッチングマスクとして前記基材をエッチングしてパターン構造体を形成する基材エッチング工程を有することを特徴とする請求項10に記載のパターン構造体の形成方法。
  12.  前記基材エッチング工程の後に、前記パターン構造体を形成した前記基材をモールドとし、該モールドと所望の基板とを近接させてモールドと基板との間に樹脂層を形成し、該樹脂層を硬化させた後に前記モールドと前記樹脂層とを離間して前記基板上に樹脂層からなるパターン構造体を形成するインプリント工程を有することを特徴とする請求項11に記載のパターン構造体の形成方法。
PCT/JP2013/077946 2012-10-17 2013-10-15 パターン構造体の形成方法 WO2014061652A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014520456A JP5618033B2 (ja) 2012-10-17 2013-10-15 パターン構造体の形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-229574 2012-10-17
JP2012229574 2012-10-17

Publications (1)

Publication Number Publication Date
WO2014061652A1 true WO2014061652A1 (ja) 2014-04-24

Family

ID=50488213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077946 WO2014061652A1 (ja) 2012-10-17 2013-10-15 パターン構造体の形成方法

Country Status (2)

Country Link
JP (1) JP5618033B2 (ja)
WO (1) WO2014061652A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494104B2 (ja) 2020-12-24 2024-06-03 キオクシア株式会社 パターン形成方法およびテンプレートの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358061A (ja) * 2000-04-12 2001-12-26 Mitsubishi Electric Corp 半導体装置の製造方法
JP2003324066A (ja) * 2002-04-29 2003-11-14 Hewlett Packard Co <Hp> 高密度なサブリソグラフィ構造をつくる方法
JP2010118501A (ja) * 2008-11-13 2010-05-27 Toshiba Corp 半導体装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003826A (ja) * 2008-06-19 2010-01-07 Toshiba Corp 半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358061A (ja) * 2000-04-12 2001-12-26 Mitsubishi Electric Corp 半導体装置の製造方法
JP2003324066A (ja) * 2002-04-29 2003-11-14 Hewlett Packard Co <Hp> 高密度なサブリソグラフィ構造をつくる方法
JP2010118501A (ja) * 2008-11-13 2010-05-27 Toshiba Corp 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7494104B2 (ja) 2020-12-24 2024-06-03 キオクシア株式会社 パターン形成方法およびテンプレートの製造方法

Also Published As

Publication number Publication date
JPWO2014061652A1 (ja) 2016-09-05
JP5618033B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
TWI620995B (zh) 次解析度基板圖案化所用之蝕刻遮罩的形成方法
US8956962B2 (en) Method for fabricating large-area nanoscale pattern
JP6167609B2 (ja) ナノインプリント用テンプレート、ナノインプリント用テンプレートを用いたパターン形成方法、およびナノインプリント用テンプレートの製造方法
CN103843114A (zh) 利用多个关键尺寸的侧壁图像转移
CN110021518B (zh) 自对准双重图案方法
US20090170310A1 (en) Method of forming a metal line of a semiconductor device
US9586343B2 (en) Method for producing nanoimprint mold
US20030087167A1 (en) Method for fabricating a mask for semiconductor structures
JP6003571B2 (ja) ナノインプリント用テンプレートの製造方法
TWI328255B (en) Etching bias reduction
JP6089451B2 (ja) ナノインプリントモールドおよびその製造方法
JP5618033B2 (ja) パターン構造体の形成方法
JP5983322B2 (ja) パターン構造体の形成方法
JP6357753B2 (ja) ナノインプリントモールドの製造方法
JP6136445B2 (ja) 反射型位相シフトマスク及び製造方法
JP6015140B2 (ja) ナノインプリントモールドおよびその製造方法
JP6156013B2 (ja) インプリントモールドの製造方法
CN104345576A (zh) 形成图案的方法
US20080305635A1 (en) Method for fabricating a pattern
JP6019967B2 (ja) パターン形成方法
JP6019966B2 (ja) パターン形成方法
CN114361012B (zh) 一种半导体器件及其制作方法
JP2018046212A (ja) 多段構造体を有するテンプレートの製造方法
KR101791052B1 (ko) 크롬 나노갭 제조방법 및 이를 이용한 크롬 나노갭 및 포토마스크
CN117542731A (zh) 掩膜图形化方法、半导体结构及半导体结构的制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520456

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13847416

Country of ref document: EP

Kind code of ref document: A1