WO2014061255A1 - 融雪コントローラ、および融雪コントローラを備える融雪管理システム - Google Patents

融雪コントローラ、および融雪コントローラを備える融雪管理システム Download PDF

Info

Publication number
WO2014061255A1
WO2014061255A1 PCT/JP2013/006106 JP2013006106W WO2014061255A1 WO 2014061255 A1 WO2014061255 A1 WO 2014061255A1 JP 2013006106 W JP2013006106 W JP 2013006106W WO 2014061255 A1 WO2014061255 A1 WO 2014061255A1
Authority
WO
WIPO (PCT)
Prior art keywords
snow melting
controller
reduction
snow
power consumption
Prior art date
Application number
PCT/JP2013/006106
Other languages
English (en)
French (fr)
Inventor
農士 三瀬
馬場 朗
知也 十河
小川 剛
徳永 吉彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP13847176.8A priority Critical patent/EP2910712A4/en
Publication of WO2014061255A1 publication Critical patent/WO2014061255A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01HSTREET CLEANING; CLEANING OF PERMANENT WAYS; CLEANING BEACHES; DISPERSING OR PREVENTING FOG IN GENERAL CLEANING STREET OR RAILWAY FURNITURE OR TUNNEL WALLS
    • E01H5/00Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice
    • E01H5/10Removing snow or ice from roads or like surfaces; Grading or roughening snow or ice by application of heat for melting snow or ice, whether cleared or not, combined or not with clearing or removing mud or water, e.g. burners for melting in situ, heated clearing instruments; Cleaning snow by blowing or suction only
    • E01H5/102Self-contained devices for melting dislodged snow or ice, e.g. built-in melting chambers, movable melting tanks

Definitions

  • the present invention relates to a snow melting controller and a snow melting controller, and more particularly to a snow melting controller for controlling a plurality of snow melting devices installed in a plurality of areas and a snow melting management system including the snow melting controller.
  • a snow melting device is used to melt snow accumulated on houses, roads and the like.
  • the snow melting device includes a heater that converts electric power into heat.
  • Recent snow melting devices control the start and stop of snow melting and the output intensity of snow melting based on detection results such as snow conditions, weather conditions, road surface temperature, road surface freezing conditions, etc. (for example, reference 1 [Japan National Publication Patent Publication No. 2008-150898]).
  • the present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a snow melting controller and a snow melting management system capable of suppressing a user's unfairness with respect to the distribution of power used for snow melting when reducing power consumption. It is to provide.
  • a snow melting controller is a snow melting controller that manages a plurality of snow melting devices installed in a plurality of areas, and executes a reduction process for reducing the total power consumption of the plurality of snow melting devices. Configured as follows.
  • the snow melting controller is configured to determine, in each of the plurality of areas, a degree of reduction in power consumption of the snow melting device based on the snow accumulation amount and weather information of each of the plurality of areas in the reduction process.
  • a snow melting controller according to a second embodiment of the present invention is configured to reduce the power used by the snow melting device in each of the plurality of areas according to the reduction degree in the first embodiment.
  • a snow melting controller includes, in the second aspect, a plurality of child controllers that respectively control the plurality of snow melting devices, and a parent controller that communicates with the plurality of child controllers.
  • the parent controller is configured to perform the reduction process.
  • the parent controller is configured to transmit the reduction degree to the child controller installed in an area corresponding to the reduction degree.
  • the child controller receives the reduction degree, the child controller is configured to reduce power used by the snow melting device according to the reduction degree.
  • a snow melting controller according to any one of the first to third aspects, wherein in the reduction process, the reduction degree of the power consumption is increased as the amount of snow is smaller. Is done.
  • the weather information includes an air temperature.
  • the snow melting controller is configured to increase the power consumption reduction degree as the temperature increases.
  • the plurality of areas include a specific area in which a plurality of specific snow melting devices are installed.
  • the specific area the plurality of specific snow melting devices are respectively installed in a plurality of spaces.
  • the snow melting controller is configured to determine, for each of the plurality of spaces, a reduction degree of power consumption of the specific snow melting device based on attribute information of each user of the plurality of spaces.
  • the space is a house.
  • the user is a resident of the house.
  • the attribute information includes at least one of sex, age, and health status of the resident.
  • the plurality of areas include a specific area in which a plurality of specific snow melting devices are installed.
  • the specific area the plurality of specific snow melting devices are respectively installed in a plurality of spaces.
  • the snow melting controller is configured to determine, for each of the plurality of spaces, a reduction degree of power consumption of the specific snow melting device, based on user behavior information of each of the plurality of spaces.
  • the space is a house.
  • the user is a resident of the house.
  • the behavior information is information indicating the presence / absence of the resident.
  • a snow melting controller is configured to execute cooperative control in any one of the first to ninth aspects to control the snow melting device in cooperation with a specific device. .
  • the specific device is a device fed from the same power source as the snow melting device.
  • the snow melting controller is configured so that the period during which the power usage of the snow melting device peaks and the period during which the power usage of the specific device peaks do not overlap with each other. Configured to control.
  • the snow melting controller of the twelfth aspect executes the reduction process when receiving a demand response signal requesting execution of the reduction process. Composed.
  • the demand response signal includes information on a reduction time zone indicating a time zone in which the snow melting controller executes the reduction process.
  • the snow melting controller is configured to operate the snow melting device at a predetermined power or more in a predetermined time zone before the reduction time zone, and to reduce the power used by the snow melting device based on the degree of reduction in the reduction time zone. Is done.
  • the demand response signal includes information related to a reduction time zone indicating a time zone in which the snow melting controller executes the reduction process.
  • the snow melting controller is configured to sequentially operate a plurality of snow melting devices installed in the same area in the reduction time zone.
  • a snow melting management system is the snow melting controller according to any one of the first to fourteenth aspects, the snow accumulation amount and weather information of each of the plurality of areas, and the snow melting controller. And an information acquisition unit to be provided.
  • the snow melting management system of this embodiment includes a plurality of information acquisition units 7 installed in a plurality (three in this embodiment) of areas (regions) B (B1 to B3), and a plurality of information acquisition units 7 And a snow melting controller 10 that manages a plurality (six in this embodiment) of snow melting devices (snow removal devices) 4 installed in the area B.
  • the information acquisition unit 7 is configured to acquire the amount of snow and weather information and give the information to the snow melting controller 10.
  • the snow melting controller 10 is configured to execute a reduction process for reducing the total power consumption of the plurality of snow melting devices 4.
  • the snow melting controller 10 is configured to determine the power consumption reduction degree of the snow melting device 4 for each of the plurality of areas B based on the amount of snow in each of the plurality of areas B and the weather information.
  • the power consumption reduction degree is, for example, a power consumption reduction rate (power consumption reduction rate).
  • the reduction rate is defined as a ratio of reduced power (used power reduction amount) to current used power.
  • the snow melting controller 10 is configured to reduce the power used by the snow melting device 4 for each of the plurality of areas B according to the degree of reduction.
  • FIG. 1 shows the configuration of the snow melting management system of this embodiment, and the snow melting management system manages the power required for snow melting in the wide area A.
  • the wide area A is composed of a plurality of areas B1 to B3 (a plurality of areas), and each of the areas B1 to B3 has one to a plurality of houses H (in FIG. 1, the areas B1 to B3 Two houses H are shown in the figure). That is, the snow melting management system of this embodiment is installed in the wide area A.
  • the wide area A has a plurality (three in this embodiment) of areas (regions) B (B1 to B3).
  • the plurality of areas B have a plurality of spaces (housing H).
  • the parent controller 1 In the wide area A, the parent controller 1 is provided.
  • a relay controller 2 is provided in each of the areas B1 to B3.
  • a child controller 3 and a snow melting device 4 are provided in the house H. Note that each function of the parent controller 1, the relay controller 2, and the child controller 3 constitutes the snow melting controller 10.
  • the snow melting controller 10 includes a parent controller 1, a plurality (three in the present embodiment) of relay controllers 2, and a plurality (six in the present embodiment) of child controllers 3.
  • the parent controller 1 is installed in the wide area A.
  • the parent controller 1 is configured to execute a reduction process.
  • the parent controller 1 is configured to transmit the reduction degree to the child controller 3 installed in the area B corresponding to the reduction degree.
  • a plurality of relay controllers 2 are installed in a plurality of areas (regions) B, respectively.
  • the relay controller 2 is configured to relay signals between the parent controller 1 and the child controller 3 installed in the same area B as the relay controller 2.
  • the plurality of child controllers 3 are respectively installed in a plurality of spaces (houses H).
  • the child controller 3 is configured to control the snow melting device 4 installed in the same space (house H) as the child controller 3.
  • the child controller 3 receives the reduction degree, the child controller 3 is configured to reduce the power used by the snow melting device 4 in accordance with the reduction degree.
  • the snow melting controller 10 is not limited to the above configuration.
  • the snow melting controller 10 may have a configuration in which the parent controller 1 includes the functions of the relay controller 2, or may have a configuration in which the parent controller 1 includes the functions of the relay controller 2 and the child controller 3. .
  • the parent controller 1 and the relay controller 2 are configured to be communicable via a wide area network NT1 including the Internet.
  • the relay controller 2 and the child controller 3 are configured to be communicable via the regional network NT2.
  • the child controller 3 and the snow melting device 4 are configured to communicate with each other via the control line L 1, and the child controller 3 controls the operation of the snow melting device 4.
  • the snow melting device 4 includes a heater that uses electric power, and has a function of converting electric energy into heat energy and melting snow on the roof of the house H, the periphery of the house H, and the like.
  • the snow cover detection device 5 is connected to the local network NT2, and detects the amount of snow in each of the areas B1 to B3. Then, the snow cover detection device 5 transmits a snow cover detection result (snow cover information) to the upper relay controller 2.
  • the weather information detecting device 6 is connected to the regional network NT2, and detects each weather information in the areas B1 to B3.
  • the weather information is information related to the weather such as temperature, humidity, and amount of snowfall. Then, the weather information detection device 6 transmits the detection result of the weather information to the upper relay controller 2.
  • the snow cover detection device 5 and the weather information detection device 6 constitute an information acquisition unit 7.
  • the information acquisition unit 7 is configured to transmit the amount of snow and weather information to the relay controller 2 installed in the same area B as the information acquisition unit 7.
  • each relay controller 2 in the regions B1 to B3 transmits the snow cover amount information and the weather information received from the snow cover detection device 5 and the weather information detection device 6 to the parent controller 1. That is, the relay controller 2 transmits the snow coverage information and the weather information of the area managed by itself to the parent controller 1, and the parent controller 1 acquires the snow cover information and the weather information of the areas B1 to B3.
  • the child controller 3 monitors the power consumption of the snow melting device 4 to be controlled, and periodically transmits the power consumption data of the snow melting device 4 to the upper relay controller 2.
  • each relay controller 2 in the regions B1 to B3 transmits the power usage data of the snow melting device 4 in the regions B1 to B3 to the upper parent controller 1, respectively.
  • the parent controller 1 can grasp the power used by the snow melting device 4 for each of the regions B1 to B3.
  • the power usage data of the snow melting device 4 transmitted from the relay controller 2 to the parent controller 1 is the sum of the power usage of the snow melting device 4 for each of the regions B1 to B3 or the individual usage of the snow melting device 4 for each of the regions B1 to B3. It is electric power.
  • the parent controller 1 is configured to be able to communicate with the power company center server CS via the wide area network NT1.
  • the power company When there is a possibility that the amount of power supply exceeds the demand amount, the power company requests each customer within the supply range to reduce the amount of power used in order to suppress the peak of power demand.
  • the center server CS transmits a demand response signal (hereinafter referred to as a DR signal as necessary) to the parent controller 1 and requests the parent controller 1 to reduce power consumption.
  • the DR signal includes information on the reduction target value Pm of the total power used, which is the sum of the power used by each snow melting device 4 in the wide area A under the control of the parent controller 1.
  • the DR signal is a signal for requesting the snow melting controller 10 to execute the reduction process.
  • the parent controller 1 that has received the DR signal determines that it is necessary to reduce the power used in the wide area A composed of the regions B1 to B3, and achieves the reduction target value Pm of the total power used in the wide area A. Next, the power used to be allocated to the areas B1 to B3 is determined. That is, when the snow melting controller 10 (parent controller 1) receives a demand response signal for requesting execution of reduction processing, the snow melting controller 10 (parent controller 1) executes reduction processing.
  • the parent controller 1 determines each area B1 to B3 based on the snow amount information and the weather information of the areas B1 to B3. Decide the reduction rate of power consumption.
  • the parent controller 1 determines that the necessity of the snow melting device 4 is higher in regions where the amount of snow is larger and the temperature is lower, and the power consumption reduction rate is reduced. That is, in the reduction process, the parent controller 1 decreases the power consumption reduction degree (reduction rate) as the amount of snow accumulation increases. Further, in the reduction process, the parent controller 1 reduces the reduction degree (reduction rate) of the used power as the temperature is lower.
  • the parent controller 1 determines that the necessity of the snow melting device 4 is lower in the region where the amount of snow accumulation is smaller and the temperature is higher, and the power consumption reduction rate is increased. That is, in the reduction process, the parent controller 1 increases the power consumption reduction degree (reduction rate) as the amount of snow is smaller. Further, in the reduction process, the parent controller 1 increases the power consumption reduction degree (reduction rate) as the temperature increases.
  • the total power usage in the wide area A is P1.
  • the breakdown of the total power usage P1 is the power usage P11 in the region B1, the power usage P12 in the region B2, and the power usage P13 in the region B3. That is, the total power used is the sum of the power used by the plurality of snow melting devices 4 installed in the wide area A.
  • the parent controller 1 when receiving the DR signal from the center server CS, the parent controller 1 reduces the power usage allocated to the regions B1 to B3 (after the power usage reduction). That is, the parent controller 1 executes a reduction process. For example, the parent controller 1 sets power usage P21 ( ⁇ P11) allocated to the region B1, power usage P22 ( ⁇ P12) allocated to the region B2, and power usage P23 ( ⁇ P13) allocated to the region B3.
  • the parent controller 1 determines the power consumption reduction rates K1 to K3 of the regions B1 to B3 based on the snow amount information and the weather information of the regions B1 to B3. For example, when the amount of snow in the region B1 is larger than the amount of snow in the regions B2 and B3 and the temperature in the region B1 is lower than the temperatures in the regions B2 and B3, the power consumption reduction rate K1 in the region B1 is the region B2, B3. The power consumption reduction rates K2 and K3 are smaller.
  • the parent controller 1 transmits information on the power consumption reduction rate K1 to the relay controller 2 in the region B1, transmits information on the power usage reduction rate K2 to the relay controller 2 in the region B2, and sends it to the relay controller 2 in the region B3.
  • Information on the power consumption reduction rate K3 is transmitted.
  • the relay controller 2 in the region B1 transmits information on the power consumption reduction rate K1 to each child controller 3 in the region B1.
  • the relay controller 2 in the region B2 transmits information on the power consumption reduction rate K2 to each child controller 3 in the region B2.
  • the relay controller 2 in the region B3 transmits information on the power consumption reduction rate K3 to each child controller 3 in the region B3.
  • each child controller 3 in the region B1 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate K1.
  • Each child controller 3 in the region B2 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate K2.
  • Each child controller 3 in the region B3 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate K3.
  • the total power used in the wide area A can be reduced by the reduction target value Pm. Furthermore, since the power consumption reduction rate is determined for each region B1 to B3 based on the amount of snow and weather information in each region, the user feels unfair with regard to the distribution of power used for melting snow when reducing power consumption. Can be suppressed.
  • the snow melting management system of the present embodiment is a snow melting management system that manages the snow melting device 4 provided in each of a plurality of areas (regions) B, and includes an information acquisition unit 7, a snow melting controller 10, and the like. .
  • the information acquisition unit 7 acquires information on the amount of snow in each area B and weather information in each area B.
  • the snow melting controller 10 reduces the power consumption of the snow melting device 4 (reduction rate) based on the amount of snow in each area B and the weather information in each area B. ) Is determined for each area B.
  • the snow melting controller 10 needs to reduce the power consumption in the plurality of areas B by receiving a demand response signal for requesting the power consumption reduction in the plurality of areas B.
  • the snow melting controller 10 of the present embodiment is a snow melting controller that manages the snow melting device 4 provided in each of the plurality of areas B.
  • the snow melting controller 10 determines the degree of reduction in the power consumption of the snow melting device 4 based on the amount of snow in each area B and the weather information in each area B. Decide every time.
  • the snow melting controller 10 of the present embodiment has the following first to sixth characteristics.
  • the second to sixth features are arbitrary features.
  • the snow melting controller 10 is a snow melting controller that manages a plurality of snow melting devices 4 installed in a plurality of areas (regions) B, and a reduction process for reducing the total power consumption of the plurality of snow melting devices 4 Configured to perform.
  • the snow melting controller 10 determines the power consumption reduction degree (reduction rate) of the snow melting device 4 for each of the plurality of areas B based on the amount of snow and the weather information of each of the plurality of areas B. Composed.
  • the snow melting controller 10 is configured to reduce the power used by the snow melting device 4 in accordance with the degree of reduction for each of the plurality of areas B.
  • the snow melting controller 10 includes a plurality of child controllers 3 that respectively control the plurality of snow melting devices 4 and a parent controller 1 that communicates with the plurality of child controllers 3.
  • the parent controller 1 is configured to execute a reduction process.
  • the parent controller 1 is configured to transmit the reduction degree to the child controller 3 installed in the area B corresponding to the reduction degree.
  • the child controller 3 receives the reduction degree, the child controller 3 is configured to reduce the power used by the snow melting device 4 in accordance with the reduction degree.
  • the snow melting controller 10 is configured to increase the power consumption reduction degree as the snow accumulation amount decreases in the reduction process.
  • the weather information includes the temperature.
  • the snow melting controller 10 is configured to increase the power consumption reduction degree as the temperature increases.
  • the snow melting controller 10 is configured to execute the reduction process when receiving the demand response signal requesting the execution of the reduction process.
  • the snow melting management system of the present embodiment includes the above-described snow melting controller 10 and an information acquisition unit 7 that acquires the snow accumulation amount and weather information of each of the plurality of areas B and gives them to the snow melting controller 10.
  • the power consumption reduction rate (reduction degree) is determined for each area B based on the amount of snow in each area B and weather information. Therefore, there is an effect that it is possible to suppress the user's unfairness with respect to the distribution of the power used for melting snow when reducing the power used.
  • the snow melting management system of the present embodiment has the same configuration as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the snow melting controller 10 determines the degree of power consumption reduction of the snow melting device 4 for each of the plurality of spaces (housing H) based on the attribute information of each user of the plurality of spaces (housing H). It is configured to perform processing. In the present embodiment, the distribution process is executed by the relay controller 2.
  • the relay controller 2 of the present embodiment holds the attribute information of the residents of each house H in the area managed by the relay controller 2 in advance.
  • This attribute information is the age, sex, health status, etc. of the resident for each house H. That is, the attribute information includes at least one of the gender, age, and health status of the resident.
  • the relay controller 2 receives the information on the power consumption reduction rate from the parent controller 1, the snow melting device provided in each house H in the area B managed by the relay controller 2 based on the attribute information of the resident of the house H 4 to determine the distribution of power used.
  • the area (area) B1 is a specific area in which a plurality (two in the illustrated example) of snow melting devices (specific snow melting devices) 4 are installed.
  • the plurality of specific snow melting devices 4 are installed in a plurality of spaces (houses H), respectively.
  • the relay controller 2 includes an attribute storage unit 2a that stores attribute information of each resident of the houses H11 and H12 in the area B1.
  • the relay controller 2 periodically receives power usage data of the snow melting devices 4 of the houses H11 and H12 from the child controllers 3 of the houses H11 and H12, and the snow melting devices 4 of the houses H11 and H12. Knowing the power consumption data. Further, the relay controller 2 receives information on the power consumption reduction rate K1 of the area B1 from the parent controller 1.
  • the relay controller 2 that has received the information on the power consumption reduction rate K1 determines the power usage to be allocated to the snow melting devices 4 in the houses H11 and H12 in order to achieve the power consumption reduction rate K1 in the region B1.
  • the relay controller 2 sets the power consumption reduction rate in each of the houses H11 and H12 based on the attribute information of each resident in the houses H11 and H12 in order to achieve the power consumption reduction rate K1 in the region B1. Decide.
  • the relay controller 2 determines that the necessity of the snow melting device 4 is high for the house H in which the minimum age of the resident is in the age range of the elderly, and reduces the reduction rate of power consumption. Moreover, the relay controller 2 judges that the necessity of the snow melting device 4 is high also for the house H where all the residents are women, and reduces the reduction rate of power consumption. In addition, the relay controller 2 determines that the necessity of the snow melting device 4 is low for the house H in which the inhabitants of the middle age are present, and increases the power consumption reduction rate. Further, the relay controller 2 determines that the necessity of the snow melting device 4 is low even for the house H in which all the residents are men, and increases the reduction rate of the power consumption.
  • the power used in the house H11 is PH11
  • the power used in the house H12 is PH12.
  • the relay controller 2 reduces the power usage allocated to the houses H11 and H12.
  • the relay controller 2 determines the power consumption reduction rates KH1 and KH2 of the houses H11 and H12 based on the attribute information of the residents of the houses H11 and H12.
  • the power consumption reduction rate KH1 of the house H11 is smaller than the power consumption reduction rate KH2 of the house H12. Become.
  • the relay controller 2 transmits information on the used power reduction rate KH1 to the child controller 3 of the house H11, and sends information on the used power reduction rate KH2 to the child controller 3 of the house H12.
  • the child controller 3 of the house H11 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate KH1.
  • the child controller 3 of the house H12 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate KH2.
  • controller 2 determines the reduction rate of the power used in each of the houses H based on the attribute information of the residents of each house H.
  • each used electric power in each house H is determined based on the attribute information of the resident of each house H, when the used electric power is reduced, the user feels unfair with respect to the distribution of the electric power used for melting snow. Further suppression can be achieved.
  • the snow melting controller 10 is based on the amount of snow in each area B, the weather information of each area B, and the user's attribute information existing in the space (house H) in which the snow melting device 4 is installed. The degree of reduction in power consumption of the device 4 is determined for each space (house H).
  • the snow melting controller 10 of the present embodiment has the following seventh and eighth features in addition to the first to sixth features described above.
  • the second to sixth and eighth features are arbitrary features.
  • the plurality of areas B include a specific area in which a plurality of specific snow melting devices 4 are installed.
  • the specific area the plurality of specific snow melting devices 4 are respectively installed in a plurality of spaces (houses H).
  • the snow melting controller 10 is configured to determine, for each of the plurality of spaces (housing H), the degree of power consumption reduction of the specific snow melting device 4 based on the attribute information of each user of the plurality of spaces (housing H). Is done.
  • the space is a house H.
  • the user is a resident of the house H.
  • the attribute information includes at least one of the gender, age, and health status of the resident.
  • the snow melting management system of the present embodiment includes the snow melting controller 10 described above, and an information acquisition unit 7 that acquires the snow accumulation amount and weather information of each of the plurality of areas B and gives them to the snow melting controller 10.
  • the snow melting management system of the present embodiment has the same configuration as that of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the snow melting controller 10 determines the degree of power consumption reduction of the snow melting device 4 for each of the plurality of spaces (housing H) based on the behavior information of each user of the plurality of spaces (housing H). It is configured to perform processing. In the present embodiment, the distribution process is executed by the relay controller 2.
  • the house H of the present embodiment is provided with a home information acquisition unit 71 and an entry / exit information acquisition unit 72 to acquire resident behavior information, and the home information acquisition unit 71, entry / exit The information acquisition unit 72 is connected to the child controller 3 in the house H.
  • the home information acquisition unit 71 has a function of acquiring information on the presence / absence of a resident in the house H (home information) as behavior information and transmitting the home information to the child controller 3.
  • the home information acquisition unit 71 includes, for example, a personal computer, a portable information device, a schedule setting device such as a control panel, a human sensor, or the like.
  • the schedule setting device has a function for a resident of the house H to input and set an outing schedule, and transmits home information to the child controller 3 based on the set outing schedule.
  • the human sensor includes a pyroelectric sensor that detects the presence of a person in the house H, and transmits home information to the child controller 3 based on the detection result.
  • the home information acquisition unit 71 includes one or more of a schedule setting device, a human sensor, and the like.
  • the entry / exit information acquisition unit 72 has a function of acquiring information (entry / exit information) relating to entry / exit of a car in the garage of the house H as behavior information and transmitting the entry / exit information to the child controller 3. .
  • the entry / exit information acquisition unit 72 includes, for example, a vehicle use schedule setting device such as a personal computer, a portable information device, a control panel, a vehicle detection sensor such as a photoelectric sensor provided in the garage, a charging device for an electric vehicle, and the like. Is done.
  • a vehicle use schedule setting device such as a personal computer, a portable information device, a control panel, a vehicle detection sensor such as a photoelectric sensor provided in the garage, a charging device for an electric vehicle, and the like. Is done.
  • the vehicle use schedule setting device has a function for a resident of the house H to input and set a vehicle use schedule that is scheduled to be used for a car. Based on the set car use schedule, the car use schedule information is stored in the child controller 3. Send to.
  • the vehicle detection sensor detects the presence or absence of a car in the garage, and transmits the entry / exit information to the child controller 3 based on the detection result.
  • the charging device of the electric vehicle transmits entry / exit information to the child controller 3 based on the presence / absence of the vehicle to be charged.
  • the entry / exit information acquisition unit 72 includes at least one of a vehicle use schedule setting device, a vehicle detection sensor, a charging device, and the like.
  • the child controller 3 transmits the received behavior information (at-home information, entry / exit information) to the upper relay controller 2.
  • the relay controller 2 determines the living behavior (presence / absence) of the resident in each house H in the area B managed by the relay controller 2 based on the received home information and entry / exit information. And the relay controller 2 performs the following operation
  • the area (area) B1 is a specific area in which a plurality (two in the illustrated example) of snow melting devices (specific snow melting devices) 4 are installed.
  • the plurality of specific snow melting devices 4 are installed in a plurality of spaces (houses H), respectively.
  • the relay controller 2 can determine the presence / absence status of the resident in each of the houses H11 and H12 based on the at-home information transmitted from each child controller 3 of the houses H11 and H12.
  • the relay controller 2 periodically receives power usage data of the snow melting devices 4 of the houses H11 and H12 from the child controllers 3 of the houses H11 and H12, and the individual snow melting devices 4 of the houses H11 and H12.
  • the power consumption data is grasped. Further, the relay controller 2 receives information on the power consumption reduction rate K1 of the area B1 from the parent controller 1.
  • the relay controller 2 that has received the information on the power consumption reduction rate K1 determines the power usage to be allocated to the snow melting devices 4 in the houses H11 and H12 in order to achieve the power consumption reduction rate K1 in the region B1.
  • the relay controller 2 reduces the power consumption in each of the houses H11 and H12 based on the presence / absence status of each resident in the houses H11 and H12 in order to achieve the power consumption reduction rate K1 in the region B1. Decide the rate.
  • the relay controller 2 determines that the necessity of the snow melting device 4 is low for the house H in which no resident is present, and increases the reduction rate of power consumption. Further, the relay controller 2 determines that the necessity of the snow melting device 4 is high for the house H where the resident is present, and reduces the reduction rate of the power consumption.
  • the power used in the house H11 is PH31
  • the power used in the house H12 is PH32.
  • the relay controller 2 reduces the power usage allocated to the houses H11 and H12.
  • the relay controller 2 determines the power consumption reduction rates KH1 and KH2 of the houses H11 and H12 based on the presence / absence status of the residents of the houses H11 and H12. For example, when the resident of the house H11 is absent and the resident of the house H12 is present, the used power reduction rate KH1 of the house H11 is larger than the used power reduction rate KH2 of the house H12.
  • the relay controller 2 transmits information on the used power reduction rate KH1 to the child controller 3 of the house H11, and sends information on the used power reduction rate KH2 to the child controller 3 of the house H12.
  • the child controller 3 of the house H11 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate KH1.
  • the child controller 3 of the house H12 reduces the power consumption of the snow melting device 4 to be controlled by the power consumption reduction rate KH2.
  • the controller 2 determines the reduction rate of the power used in each house H based on the at-home information of each house H.
  • each electric power used in each house H is determined based on the presence / absence of the residents in each house H, the user's unfairness with respect to the distribution of the electric power used for melting snow when reducing the electric power used The feeling can be further suppressed.
  • the child controller 3 of the house H controls the operation of the snow melting device 4 in each of the houses H based on the entering / exiting status of each car in the house H.
  • the child controller 3 grasps the time ta when the resident of the house H goes out by car and the time tb when he goes home by car based on the car use schedule obtained by the entry / exit information obtaining unit 72. it can.
  • the child controller 3 starts the operation of the snow melting device 4 at time t1 before the outing time ta, and stops the operation of the snow melting device 4 at time t2 after the outing time ta.
  • the child controller 3 starts the operation of the snow melting device 4 at time t3 before the return home time tb, and stops the operation of the snow melting device 4 at time t4 after the return home time tb.
  • the child controller 3 performs snow melting between the garage and the road by operating the snow melting device 4 in accordance with the going-out time ta and the return home time tb. Further, the child controller 3 does not perform snow melting between the garage and the road by the snow melting device 4 when the resident of the house H is scheduled to go out by car, but does not go over a predetermined period.
  • the child controller 3 of the house H may periodically perform the operation of the snow melting device 4 provided on the roof in order to prevent damage to the roof of the house H when the resident of the house H is absent for a long time.
  • the child controller 3 of the house H may prohibit the operation of the snow melting device 4 provided on the roof during a time zone in which the resident is estimated to pass under the eaves of the house H based on the resident's going-out schedule. This is to prevent the snow melted on the roof from falling on the residents passing under the eaves.
  • the control content of the snow melting device 4 can be made suitable for the living behavior of the resident. Note that the operation control of the snow melting device 4 based on the behavior information of the resident of the house H is executed regardless of whether or not the DR signal is transmitted from the center server CS.
  • the snow melting controller 10 uses the amount of snow in each area B, the weather information in each area B, and the action information of users entering and leaving the space (house H) in which the snow melting device 4 is installed. Based on this, the degree of power consumption reduction of the snow melting device 4 is determined for each space (house H).
  • the snow melting controller 10 of the present embodiment has the following ninth and tenth features in addition to the first to sixth features described above.
  • the second to sixth and tenth features are arbitrary features.
  • the plurality of areas B include a specific area in which a plurality of specific snow melting devices 4 are installed.
  • the specific area the plurality of specific snow melting devices 4 are respectively installed in a plurality of spaces (houses H).
  • the snow melting controller 10 is configured to determine, for each of the plurality of spaces (housing H), the degree of power consumption reduction of the specific snow melting device 4 based on the action information of each user of the plurality of spaces (housing H). Is done.
  • the space is a house H.
  • the user is a resident of the house H.
  • the behavior information is information indicating the presence / absence of a resident.
  • the snow melting management system of the present embodiment includes the snow melting controller 10 described above, and an information acquisition unit 7 that acquires the snow accumulation amount and weather information of each of the plurality of areas B and gives them to the snow melting controller 10.
  • the child controller 3 of the house H can communicate with other electric devices (specific devices) such as a charging device 81 and a water heater 82 of the electric vehicle via the control line L1 in addition to the snow melting device 4. It is connected.
  • other electric devices such as a charging device 81 and a water heater 82 of the electric vehicle via the control line L1 in addition to the snow melting device 4. It is connected.
  • the snow melting controller 10 of the present embodiment is configured to execute cooperative control for controlling the snow melting device 4 in cooperation with specific devices (for example, the charging device 81 and the hot water heater 82).
  • the specific device is, for example, a device that is fed from the same power source as the snow melting device 4.
  • the snow melting controller 10 controls the snow melting device 4 and the specific device so that the period when the power usage of the snow melting device 4 peaks and the period when the power usage of the specific device peaks.
  • the cooperative control is executed by the child controller 3.
  • the child controller 3 receives a request for reducing the power consumption using the DR signal from the management server CS
  • the power consumption of each of the snow melting device 4, the charging device 81, and the water heater 82 is shown in FIG. Coordinated control is performed so that peak periods do not overlap each other.
  • Y ⁇ b> 1 is power used by the snow melting device 4
  • Y ⁇ b> 2 is power used by the charging device 81
  • Y ⁇ b> 3 is power used by the water heater 82.
  • the child controller 3 can operate a plurality of electric devices while suppressing the peak of power demand when requesting reduction of power consumption. That is, it is possible to achieve both reduction in power consumption and ensuring user convenience.
  • the child controller 3 presets priorities for the snow melting device 4, the charging device 81, and the water heater 82. And the child controller 3 stops operation
  • the child controller 3 is configured such that the hot water heater 82: high, the snow melting device 4: medium, and the charging device 81: low priority are set, the charging device 81 ⁇ the snow melting device 4 ⁇ hot water supply. The operation is stopped in the order of the device 82.
  • the child controller 3 can continue the operation of the important electrical equipment as much as possible when adjusting the power demand, and can ensure the convenience of the user.
  • the snow melting controller 10 of this embodiment controls the operation of the snow melting device 4 in cooperation with other devices.
  • the snow melting controller 10 of the present embodiment has the following eleventh and twelfth features in addition to the first to sixth features described above.
  • the second to sixth and twelfth features are arbitrary features.
  • the snow melting controller 10 of this embodiment may have the 7th and 8th characteristic.
  • the snow melting controller 10 of the present embodiment may have ninth and tenth features.
  • the snow melting controller 10 is configured to execute cooperative control for controlling the snow melting device 4 in cooperation with specific devices (for example, the charging device 81 and the water heater 82).
  • the specific device is a device fed from the same power source as the snow melting device 4.
  • the snow melting controller 10 controls the snow melting device 4 and the specific device so that the period when the power usage of the snow melting device 4 peaks and the period when the power usage of the specific device peaks. Configured as follows.
  • the snow melting management system of the present embodiment includes the snow melting controller 10 having the above-described characteristics, and an information acquisition unit 7 that acquires the snow accumulation amount and weather information of each of the plurality of areas B and gives the snow melting controller 10 to the snow melting controller 10. .
  • the child controller 3 is based on the weather information, the snow cover information, the resident's outing schedule, the car use schedule, the state of the storage battery (not shown) provided in the house H, the state of the heat storage device, etc. You may update each priority of the water heater 82 at any time.
  • the present embodiment has the same configuration as that of any one of the first to fourth embodiments, and the same components are denoted by the same reference numerals and description thereof is omitted.
  • the DR signal transmitted from the center server CS to the parent controller 1 includes not only information on the reduction target value Pm of the total power usage in the wide area A but also information on the time zone (reduction time zone) for requesting reduction of the power usage. Is also included. Further, the information on the power consumption reduction rate K1 transmitted from the parent controller 1 to each of the relay controllers 2 in the regions B1 to B3 includes information on the reduction time zone.
  • each relay controller 2 in the regions B1 to B3 temporarily melts the power used by each snow melting device 4 in each house H in the region managed by the relay controller 2 in the region managed by the relay controller 2 in advance. Therefore, the occurrence of trouble due to snow accumulation during the reduction time zone is suppressed.
  • the demand response signal includes information on the reduction time zone Ts indicating the time zone in which the snow melting controller 10 executes the reduction process.
  • the snow melting controller 10 is configured to operate the snow melting device 4 at a predetermined power or higher in a predetermined time zone before the reduction time zone Ts, and to reduce the power used by the snow melting device 4 based on the degree of reduction in the reduction time zone Ts. The This process is executed by the relay controller 2 in this embodiment.
  • the peak of power demand may increase rapidly.
  • the peak of power demand is suppressed by shifting the timing (predetermined time period) at which the snow melting device 4 in each region B increases the power consumption between the houses H. That is, the snow melting controller 10 assigns different predetermined time zones to a plurality of spaces (houses H) in the same area B.
  • FIG. 13 shows the electric power used by the houses H11 to H13 in the area B1
  • Y11 is the electric power used by the snow melting device 4 of the house H11
  • Y12 is the electric power used by the snow melting device 4 of the house H12.
  • Y13 is the power used by the snow melting device 4 of the house H13.
  • the peak of power demand is suppressed by shifting the time zones (power increase periods) T11 to T13 for temporarily increasing the used power Y11 to Y13.
  • the power increase periods T11 to T13 of the houses H11 to H13 are partially overlapped. However, since there is no period in which all the power increase periods T11 to T13 overlap at the same time, it is possible to contribute to suppression of peak power demand.
  • the demand response signal includes information related to the reduction time period Ts in which the power consumption in the plurality of areas B needs to be reduced.
  • the snow melting controller 10 controls the operation of the snow melting device 4 to maintain the power used by the snow melting device 4 at a predetermined value or more before the reduction time zone Ts, and based on the degree of reduction in the reduction time zone Ts. Reduce power consumption.
  • the snow melting controller 10 of the present embodiment has the following thirteenth feature in addition to the first to sixth features described above.
  • the second to fifth features are arbitrary features.
  • the demand response signal includes information on a reduction time zone Ts indicating a time zone in which the snow melting controller 10 executes the reduction process.
  • the snow melting controller 10 is configured to operate the snow melting device 4 at a predetermined power or higher in a predetermined time zone before the reduction time zone Ts, and to reduce the power used by the snow melting device 4 based on the degree of reduction in the reduction time zone Ts.
  • the relay controller 2 may perform an intermittent operation in which the electric power used by the snow melting device 4 is alternately increased or decreased during the reduction time zone Ts. That is, the snow melting controller 10 operates the plurality of snow melting devices 4 installed in the same area B in order in the reduction time zone Ts. This process is executed by the relay controller 2 in this embodiment.
  • FIG. 14 shows the electric power used by the houses H11 to H13 in the area B1
  • Y21 is the electric power used by the snow melting device 4 of the house H11
  • Y22 is the electric power used by the snow melting device 4 of the house H12.
  • Y23 is the power used by the snow melting device 4 in the house H13.
  • the snow melting controller 10 operates the snow melting device 4 of the house H11, the snow melting device 4 of the house H12, and the snow melting device 4 of the house H13 in this order in the reduction time zone Ts. In this way, during the reduction time period Ts, each of the used power Y21 to Y23 is intermittently operated, and further, the periods T21 to T23 in which the used power of the used power Y21 to Y23 is increased are shifted from each other, thereby peaking power demand. Is further suppressed.
  • the demand response signal includes information related to the reduction time zone Ts in which the power used in the plurality of areas B needs to be reduced.
  • the snow melting controller 10 controls the operation of the snow melting device 4 and performs intermittent operation to alternately increase or decrease the power used by the snow melting device 4 in the reduction time zone Ts.
  • the snow melting controller 10 of the present embodiment may have the following fourteenth feature instead of the thirteenth feature.
  • the demand response signal includes information on a reduction time zone Ts indicating a time zone in which the snow melting controller 10 executes the reduction process.
  • the snow melting controller 10 is configured to sequentially operate a plurality of snow melting devices 4 installed in the same area B in the reduction time zone Ts.
  • the snow melting controller 10 of the present embodiment may have seventh and eighth characteristics.
  • the snow melting controller 10 of the present embodiment may have ninth and tenth features.
  • the snow melting management system of the present embodiment includes the snow melting controller 10 having the above-described characteristics, and an information acquisition unit 7 that acquires the snow accumulation amount and weather information of each of the plurality of areas B and gives the snow melting controller 10 to the snow melting controller 10. .
  • the space where the snow melting device 4 is installed is not limited to the house H, and may be other spaces such as a store, an office, and an office.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 本発明に係る融雪コントローラは、複数のエリアに設置される複数の融雪装置を管理する融雪コントローラであって、前記複数の融雪装置の総使用電力を削減する削減処理を実行するように構成される。融雪コントローラは、前記削減処理では、前記複数のエリアのそれぞれの積雪量および気象情報に基づいて、前記融雪装置の使用電力の削減度合いを前記複数のエリアのそれぞれについて決定するように構成される。

Description

融雪コントローラ、および融雪コントローラを備える融雪管理システム
 本発明は、融雪コントローラおよび融雪コントローラに関し、特に、複数のエリアに設置される複数の融雪装置を制御する融雪コントローラおよび融雪コントローラを備える融雪管理システムに関する。
 従来、住宅、道路等に積もった雪を融かすために融雪装置が用いられている。融雪装置は、電力を熱に変換するヒータ等で構成される。最近の融雪装置は、積雪状況、気象状況、路面温度、路面の凍結状況等の各検出結果に基づいて、融雪の開始・停止、融雪の出力強度の各制御を行う(例えば、文献1[日本国公開特許公報第2008-150898号]参照)。
 商用電力系統からの電力供給が不安定になり、商用電力系統からの電力供給が、商用電力系統の電力需要に対して不足すると、商用電力系統の停電が発生する虞がある。そこで、融雪装置の使用電力を削減するために、全ての融雪装置の使用電力を一律に削減することが考えられる。
 しかしながら、地域毎に、積雪状況や気象状況等の環境が異なる。したがって、全ての融雪装置の使用電力を一律に削減すると、各地域の積雪状況や気象状況等の違いによって、電力が不足して十分に融雪できない地域や、融雪のために必要以上の電力が供給される地域が発生してしまう。而して、電力が不足して十分に融雪できない地域のユーザは、使用電力の削減時に、融雪のために使用できる電力の配分に不公平感を感じる傾向にある。
 本発明は、上記事由に鑑みてなされたものであり、その目的は、使用電力の削減時に、融雪に用いる電力の配分に対するユーザの不公平感を抑制することができる融雪コントローラおよび融雪管理システムを提供することにある。
 本発明に係る第1の形態の融雪コントローラは、複数のエリアに設置される複数の融雪装置を管理する融雪コントローラであって、前記複数の融雪装置の総使用電力を削減する削減処理を実行するように構成される。融雪コントローラは、前記削減処理では、前記複数のエリアのそれぞれの積雪量および気象情報に基づいて、前記融雪装置の使用電力の削減度合いを前記複数のエリアのそれぞれについて決定するように構成される。
 本発明に係る第2の形態の融雪コントローラは、第1の形態において、前記複数のエリアのそれぞれに関して、前記削減度合いに応じて前記融雪装置の使用電力を削減するように構成される。
 本発明に係る第3の形態の融雪コントローラは、第2の形態において、前記複数の融雪装置をそれぞれ制御する複数の子コントローラと、前記複数の子コントローラと通信する親コントローラと、を備える。前記親コントローラは、前記削減処理を実行するように構成される。前記親コントローラは、前記削減度合いを、前記削減度合に対応するエリアに設置された前記子コントローラに送信するように構成される。前記子コントローラは、前記削減度合いを受け取ると、前記削減度合いに応じて前記融雪装置の使用電力を削減するように構成される。
 本発明に係る第4の形態の融雪コントローラは、第1~第3の形態のいずれか1つにおいて、前記削減処理では、前記積雪量が少ないほど前記使用電力の削減度合いを大きくするように構成される。
 本発明に係る第5の形態の融雪コントローラでは、第1~第4の形態のいずれか1つにおいて、前記気象情報は、気温を含む。前記融雪コントローラは、前記削減処理では、前記気温が高いほど前記使用電力の削減度合いを大きくするように構成される。
 本発明に係る第6の形態の融雪コントローラでは、第1~第5の形態のいずれか1つにおいて、前記複数のエリアは、複数の特定の融雪装置が設置された特定エリアを含む。前記特定エリアにおいて、前記複数の特定の融雪装置はそれぞれ複数の空間に設置される。前記融雪コントローラは、前記複数の空間のそれぞれのユーザの属性情報に基づいて、前記特定の融雪装置の使用電力の削減度合いを前記複数の空間のそれぞれについて決定するように構成される。
 本発明に係る第7の形態の融雪コントローラでは、第6の形態において、前記空間は、住宅である。前記ユーザは、前記住宅の住人である。前記属性情報は、前記住人の性別と年齢と健康状態との少なくとも一つを含む。
 本発明に係る第8の形態の融雪コントローラでは、第1~第5の形態のいずれか1つにおいて、前記複数のエリアは、複数の特定の融雪装置が設置された特定エリアを含む。前記特定エリアにおいて、前記複数の特定の融雪装置はそれぞれ複数の空間に設置される。前記融雪コントローラは、前記複数の空間のそれぞれのユーザの行動情報に基づいて、前記特定の融雪装置の使用電力の削減度合いを前記複数の空間のそれぞれについて決定するように構成される。
 本発明に係る第9の形態の融雪コントローラでは、第8の形態において、前記空間は、住宅である。前記ユーザは、前記住宅の住人である。前記行動情報は、前記住人の在・不在を示す情報である。
 本発明に係る第10の形態の融雪コントローラは、第1~第9の形態のいずれか1つにおいて、前記融雪装置を特定の機器と連携させて制御する連携制御を実行するように構成される。
 本発明に係る第11の形態の融雪コントローラでは、第10の形態において、前記特定の機器は、前記融雪装置と同じ電源から給電される機器である。前記融雪コントローラは、前記連携制御では、前記融雪装置の使用電力がピークとなる期間と前記特定の機器の使用電力がピークとなる期間とが重ならないように、前記融雪装置と前記特定の機器とを制御するように構成される。
 本発明に係る第12の形態の融雪コントローラは、第1~第11の形態のいずれか1つにおいて、前記削減処理の実行を要請するデマンドレスポンス信号を受信すると、前記削減処理を実行するように構成される。
 本発明に係る第13の形態の融雪コントローラでは、第12の形態において、前記デマンドレスポンス信号は、前記融雪コントローラが前記削減処理を実行する時間帯を示す削減時間帯に関する情報を含む。前記融雪コントローラは、前記削減時間帯より前の所定時間帯に所定電力以上で前記融雪装置を動作させ、前記削減時間帯では前記削減度合いに基づいて前記融雪装置の使用電力を削減するように構成される。
 本発明に係る第14の形態の融雪コントローラでは、第12の形態において、前記デマンドレスポンス信号は、前記融雪コントローラが前記削減処理を実行する時間帯を示す削減時間帯に関する情報を含む。前記融雪コントローラは、前記削減時間帯において、同一のエリアに設置された複数の融雪装置を順番に動作させるように構成される。
 本発明に係る第15の形態の融雪管理システムは、第1~第14の形態のいずれか1つの融雪コントローラと、前記複数のエリアのそれぞれの積雪量および気象情報を取得して前記融雪コントローラに与える情報取得部と、を備える。
実施形態1の融雪管理システムの構成を示すブロック図である。 実施形態1の融雪管理システムの使用電力の変化を示すグラフである。 実施形態1の融雪管理システムの使用電力の変化を示す表である。 実施形態2の融雪管理システムの構成の一部を示すブロック図である。 実施形態2の融雪管理システムの使用電力の変化を示す表である。 実施形態3の融雪管理システムの構成を示すブロック図である。 実施形態3の融雪管理システムの構成の一部を示すブロック図である。 実施形態3の融雪管理システムの使用電力の変化を示す表である。 実施形態3の融雪管理システムの融雪装置の制御を示す波形図である。 実施形態4の融雪管理システムの構成の一部を示すブロック図である。 実施形態4の融雪管理システムの連携制御を示す波形図である。 実施形態4の融雪管理システムの電気機器の優先順位を示す表である。 実施形態5の融雪装置の制御を示す波形図である。 実施形態5の融雪装置の別の制御を示す波形図である。
  (実施形態1)
 本実施形態の融雪管理システムは、図1に示すように、複数(本実施形態では3つ)のエリア(地域)B(B1~B3)に設置される複数の情報取得部7と、複数のエリアBに設置される複数(本実施形態では6つ)の融雪装置(除雪装置)4を管理する融雪コントローラ10と、を備える。
 情報取得部7は、積雪量および気象情報を取得して融雪コントローラ10に与えるように構成される。
 融雪コントローラ10は、複数の融雪装置4の総使用電力を削減する削減処理を実行するように構成される。融雪コントローラ10は、削減処理では、複数のエリアBのそれぞれの積雪量および気象情報に基づいて、融雪装置4の使用電力の削減度合いを複数のエリアBのそれぞれについて決定するように構成される。使用電力の削減度合は、例えば、使用電力の削減率(使用電力削減率)である。削減率は、現在の使用電力に対する、削減される電力(使用電力削減量)の割合で定義される。融雪コントローラ10は、削減度合いを決定すると、複数のエリアBのそれぞれに関して、削減度合いに応じて融雪装置4の使用電力を削減するように構成される。
 図1は、本実施形態の融雪管理システムの構成を示しており、融雪管理システムは、広域エリアA内において融雪に要する電力を管理している。
 広域エリアAは、複数の地域B1~B3(複数のエリア)で構成され、地域B1~B3のそれぞれには、1乃至複数の住宅Hが存在している(図1では、地域B1~B3のそれぞれに2つの住宅Hを図示している)。すなわち、本実施形態の融雪管理システムは、広域エリアAに設置される。広域エリアAは、複数(本実施形態では3つ)のエリア(地域)B(B1~B3)を有している。複数のエリアBは、複数の空間(住宅H)を有している。
 そして、広域エリアAには、親コントローラ1が設けられている。地域B1~B3には、中継コントローラ2がそれぞれ設けられている。住宅Hには、子コントローラ3および融雪装置4がそれぞれ設けられている。なお、親コントローラ1、中継コントローラ2、子コントローラ3の各機能が、融雪コントローラ10を構成している。
 本実施形態では、融雪コントローラ10は、親コントローラ1と、複数(本実施形態では3つ)の中継コントローラ2と、複数(本実施形態では6つ)の子コントローラ3と、を備える。
 親コントローラ1は、広域エリアAに設置される。親コントローラ1は、削減処理を実行するように構成される。親コントローラ1は、削減度合いを、削減度合いに対応するエリアBに設置された子コントローラ3に送信するように構成される。
 複数の中継コントローラ2は、複数のエリア(地域)Bに、それぞれ、設置される。中継コントローラ2は、親コントローラ1と、中継コントローラ2と同じエリアBに設置された子コントローラ3と、の間で信号を中継するように構成される。
 複数の子コントローラ3は、複数の空間(住宅H)に、それぞれ、設置される。子コントローラ3は、子コントローラ3と同じ空間(住宅H)に設置された融雪装置4を制御するように構成される。子コントローラ3は、削減度合いを受け取ると、削減度合いに応じて融雪装置4の使用電力を削減するように構成される。
 なお、融雪コントローラ10は上記の構成に限定されない。例えば、融雪コントローラ10は、親コントローラ1に中継コントローラ2の機能を含めた構成であってもよいし、親コントローラ1に中継コントローラ2および子コントローラ3の各機能を含めた構成であってもよい。
 広域エリアA内において、親コントローラ1と中継コントローラ2とは、インターネット等を含む広域ネットワークNT1を介して通信可能に構成されている。
 地域B1~B3において、中継コントローラ2と子コントローラ3とは、地域ネットワークNT2を介して通信可能に構成されている。
 住宅Hにおいて、子コントローラ3と融雪装置4とは、制御線L1を介して通信可能に構成されており、子コントローラ3は融雪装置4の動作を制御する。
 融雪装置4は、電力を用いるヒータ等で構成されており、電気エネルギーを熱エネルギーに変換して、住宅Hの屋根、住宅Hの周辺等の雪を溶かす機能を有する。
 また、地域B1~B3において、積雪検出装置5が地域ネットワークNT2にそれぞれ接続しており、地域B1~B3における各積雪量を検出する。そして、積雪検出装置5は、積雪量の検出結果(積雪量情報)を、上位の中継コントローラ2へ送信する。
 さらに、地域B1~B3において、気象情報検出装置6が地域ネットワークNT2にそれぞれ接続されており、地域B1~B3における各気象情報を検出する。気象情報とは、気温、湿度、降雪量等の気象に関する情報である。そして、気象情報検出装置6は、気象情報の検出結果を、上位の中継コントローラ2へ送信する。
 積雪検出装置5および気象情報検出装置6が、情報取得部7を構成する。情報取得部7は、情報取得部7と同じエリアBに設置された中継コントローラ2に、積雪量および気象情報を送信するように構成される。
 次に、本実施形態の融雪管理システムの動作について説明する。
 まず、地域B1~B3の各中継コントローラ2は、積雪検出装置5および気象情報検出装置6から受信した積雪量情報および気象情報を、親コントローラ1へ送信する。すなわち、中継コントローラ2は、自己が管理する地域の積雪量情報および気象情報を、親コントローラ1へ送信し、親コントローラ1は、地域B1~B3の各積雪量情報および各気象情報を取得する。
 また、子コントローラ3は、制御対象となる融雪装置4の使用電力を監視しており、融雪装置4の使用電力データを、上位の中継コントローラ2へ定期的に送信する。
 さらに、地域B1~B3の各中継コントローラ2は、地域B1~B3における融雪装置4の使用電力データを、上位の親コントローラ1へそれぞれ送信する。
 すなわち、親コントローラ1は、融雪装置4の使用電力を地域B1~B3毎に把握できる。なお、中継コントローラ2が親コントローラ1へ送信する融雪装置4の使用電力データは、地域B1~B3毎の融雪装置4の使用電力の和、または地域B1~B3毎の融雪装置4の個別の使用電力である。
 そして、親コントローラ1は、電力会社のセンターサーバCSとの間で、広域通信網NT1を介して通信可能に構成されている。
 電力会社は、電力の供給量が需要量を超える虞がある場合、供給範囲内の各需要家に対して、電力需要のピークを抑制するために、使用電力の削減要請を行う。
 具体的には、センターサーバCSが、親コントローラ1へデマンドレスポンス信号(以降、必要に応じてDR信号と称す)を送信し、親コントローラ1に対して使用電力の削減要請を行う。DR信号は、親コントローラ1の管理下にある広域エリアA内の各融雪装置4の使用電力の和である総使用電力の削減目標値Pmの情報が含まれている。DR信号は、融雪コントローラ10に削減処理の実行を要請するための信号である。
 DR信号を受信した親コントローラ1は、地域B1~B3で構成される広域エリアAにおける使用電力を削減する必要が生じたと判断し、広域エリアAにおける総使用電力の削減目標値Pmを達成するために、地域B1~B3に割り当てる使用電力を決定する。すなわち、融雪コントローラ10(親コントローラ1)は、削減処理の実行を要請するデマンドレスポンス信号を受信すると、削減処理を実行する。
 具体的に、親コントローラ1は、広域エリアAにおける総使用電力の削減目標値Pmを達成するために、地域B1~B3の各積雪量情報および気象情報に基づいて、地域B1~B3のそれぞれにおける使用電力の削減率を決める。
 親コントローラ1は、積雪量が多く、気温が低い地域ほど、融雪装置4の必要性が高いと判断して、使用電力の削減率を小さくする。すなわち、親コントローラ1は、削減処理では、積雪量が多いほど使用電力の削減度合い(削減率)を小さくする。また、親コントローラ1は、削減処理では、気温が低いほど使用電力の削減度合い(削減率)を小さくする。
 また、親コントローラ1は、積雪量が少なく、気温が高い地域ほど、融雪装置4の必要性が低いと判断して、使用電力の削減率を大きくする。すなわち、親コントローラ1は、削減処理では、積雪量が少ないほど使用電力の削減度合い(削減率)を大きくする。また、親コントローラ1は、削減処理では、気温が高いほど使用電力の削減度合い(削減率)を大きくする。
 例えば、図2に示すように、センターサーバCSがDR信号を送信する以前(使用電力削減前)、広域エリアAにおける総使用電力はP1であるとする。総使用電力P1の内訳は、地域B1の使用電力P11、地域B2の使用電力P12、地域B3の使用電力P13である。つまり、総使用電力は、広域エリアAに設置された複数の融雪装置4の使用電力の総和である。
 そして、親コントローラ1は、センターサーバCSからDR信号を受信すると、地域B1~B3に割り当てる各使用電力を削減する(使用電力削減後)。つまり、親コントローラ1は、削減処理を実行する。例えば、親コントローラ1は、地域B1に割り当てる使用電力P21(<P11)、地域B2に割り当てる使用電力P22(<P12)、地域B3に割り当てる使用電力P23(<P13)とする。
 このとき、地域B1の使用電力削減量ΔP1=P11-P21、地域B2の使用電力削減量ΔP2=P12-P22、地域B3の使用電力削減量ΔP3=P13-P23とすると(図3参照)、削減目標値Pm=ΔP1+ΔP2+ΔP3となる。さらに、使用電力削減後の総使用電力P2=P1-Pm=P21+P22+P23となる。
 この場合、地域B1の使用電力削減率K1=ΔP1/P11、地域B2の使用電力削減率K2=ΔP2/P12、地域B3の使用電力削減率K3=ΔP3/P13となる(図3参照)。
 親コントローラ1は、地域B1~B3の各使用電力削減率K1~K3を、地域B1~B3の各積雪量情報および気象情報に基づいて決める。例えば、地域B1の積雪量が地域B2,B3の各積雪量より多く、且つ地域B1の気温が地域B2,B3の各気温より低い場合、地域B1の使用電力削減率K1は、地域B2,B3の各使用電力削減率K2,K3より小さくなる。
 そして、親コントローラ1は、地域B1の中継コントローラ2へ使用電力削減率K1の情報を送信し、地域B2の中継コントローラ2へ使用電力削減率K2の情報を送信し、地域B3の中継コントローラ2へ使用電力削減率K3の情報を送信する。
 地域B1の中継コントローラ2は、地域B1の各子コントローラ3へ使用電力削減率K1の情報を送信する。地域B2の中継コントローラ2は、地域B2の各子コントローラ3へ使用電力削減率K2の情報を送信する。地域B3の中継コントローラ2は、地域B3の各子コントローラ3へ使用電力削減率K3の情報を送信する。
 そして、地域B1の各子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率K1だけ削減する。地域B2の各子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率K2だけ削減する。地域B3の各子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率K3だけ削減する。
 したがって、広域エリアA内における総使用電力は、削減目標値Pmの削減が実現される。さらに、各地域の積雪量、気象情報に基づいて、使用電力の削減率が地域B1~B3毎に決定されるので、使用電力の削減時に、融雪に用いる電力の配分に対するユーザの不公平感を抑制することができる。
 以上述べたように、本実施形態の融雪管理システムは、複数のエリア(地域)Bのそれぞれに設けた融雪装置4を管理する融雪管理システムであって、情報取得部7と、融雪コントローラ10と、を備える。情報取得部7は、各エリアBの積雪量の情報、および各エリアBの気象情報を取得する。融雪コントローラ10は、複数のエリアBにおける使用電力を削減する必要が生じた場合、各エリアBの積雪量および各エリアBの気象情報に基づいて、融雪装置4の使用電力の削減度合い(削減率)をエリアB毎に決定する。
 また、本実施形態の融雪管理システムでは、融雪コントローラ10は、複数のエリアBにおける使用電力の削減を要請するデマンドレスポンス信号を受信することによって、複数のエリアBにおける使用電力を削減する必要が生じたと判断する。
 また、本実施形態の融雪コントローラ10は、複数のエリアBのそれぞれに設けた融雪装置4を管理する融雪コントローラである。融雪コントローラ10は、複数のエリアBにおける使用電力を削減する必要が生じた場合、各エリアBの積雪量および各エリアBの気象情報に基づいて、融雪装置4の使用電力の削減度合いをエリアB毎に決定する。
 換言すれば、本実施形態の融雪コントローラ10は、以下の第1~第6の特徴を有する。なお、第2~第6の特徴は任意の特徴である。
 第1の特徴では、融雪コントローラ10は、複数のエリア(地域)Bに設置される複数の融雪装置4を管理する融雪コントローラであって、複数の融雪装置4の総使用電力を削減する削減処理を実行するように構成される。融雪コントローラ10は、削減処理では、複数のエリアBのそれぞれの積雪量および気象情報に基づいて、融雪装置4の使用電力の削減度合い(削減率)を複数のエリアBのそれぞれについて決定するように構成される。
 第2の特徴では、第1の特徴において、融雪コントローラ10は、複数のエリアBのそれぞれに関して、削減度合いに応じて融雪装置4の使用電力を削減するように構成される。
 第3の特徴では、第2の特徴において、融雪コントローラ10は、複数の融雪装置4をそれぞれ制御する複数の子コントローラ3と、複数の子コントローラ3と通信する親コントローラ1と、を備える。親コントローラ1は、削減処理を実行するように構成される。親コントローラ1は、削減度合いを、削減度合に対応するエリアBに設置された子コントローラ3に送信するように構成される。子コントローラ3は、削減度合いを受け取ると、削減度合いに応じて融雪装置4の使用電力を削減するように構成される。
 第4の特徴では、第1~第3の特徴のいずれか1つにおいて、融雪コントローラ10は、削減処理では、積雪量が少ないほど使用電力の削減度合いを大きくするように構成される。
 第5の特徴では、第1~第4の特徴のいずれか1つにおいて、気象情報は、気温を含む。融雪コントローラ10は、削減処理では、気温が高いほど使用電力の削減度合いを大きくするように構成される。
 第6の特徴では、第1~第5の特徴のいずれか1つにおいて、融雪コントローラ10は、削減処理の実行を要請するデマンドレスポンス信号を受信すると、削減処理を実行するように構成される。
 本実施形態の融雪管理システムは、上記の融雪コントローラ10と、複数のエリアBのそれぞれの積雪量および気象情報を取得して融雪コントローラ10に与える情報取得部7と、を備える。
 以上説明したように、本実施形態の融雪コントローラ10および融雪管理システムによれば、各エリアBの積雪量、気象情報に基づいて、使用電力の削減率(削減度合い)がエリアB毎に決定されるので、使用電力の削減時に、融雪に用いる電力の配分に対するユーザの不公平感を抑制することができるという効果がある。
  (実施形態2)
 本実施形態の融雪管理システムは、実施形態1と同様の構成を備えており、同様の構成には同一の符号を付して説明は省略する。
 本実施形態の融雪コントローラ10は、複数の空間(住宅H)のそれぞれのユーザの属性情報に基づいて、融雪装置4の使用電力の削減度合いを複数の空間(住宅H)のそれぞれについて決定する分配処理を実行するように構成される。本実施形態において、分配処理は、中継コントローラ2により実行される。
 本実施形態の中継コントローラ2は、自己が管理する地域の各住宅Hの住人の属性情報を予め保持している。この属性情報は、住宅H毎の住人の年齢、性別、健康状態等である。つまり、属性情報は、住人の性別と年齢と健康状態との少なくとも一つを含む。そして、中継コントローラ2は、親コントローラ1から、使用電力削減率の情報を受信した場合、住宅Hの住人の属性情報に基づいて、自己が管理する地域B内の各住宅Hに設けた融雪装置4の使用電力の配分を決定する。
 以下、図4に示す地域B1の構成を用いて説明する。なお、地域B1内の2つの住宅Hを区別する場合、住宅H11,H12と称す。地域(エリア)B1は、複数(図示例では2つ)の融雪装置(特定の融雪装置)4が設置された特定エリアである。複数の特定の融雪装置4はそれぞれ複数の空間(住宅H)に設置される。
 まず、中継コントローラ2は、地域B1の住宅H11,H12の各住人の属性情報を記憶した属性記憶部2aを備える。そして、中継コントローラ2は、住宅H11,H12の各融雪装置4の使用電力データを、住宅H11,H12の各子コントローラ3から定期的に受信しており、住宅H11,H12の各融雪装置4の使用電力データを把握している。さらに、中継コントローラ2は、地域B1の使用電力削減率K1の情報を、親コントローラ1から受信する。
 そして、使用電力削減率K1の情報を受信した中継コントローラ2は、地域B1における使用電力削減率K1を達成するために、住宅H11,H12の各融雪装置4に割り当てる使用電力を決定する。
 具体的に、中継コントローラ2は、地域B1における使用電力削減率K1を達成するために、住宅H11,H12の各住人の属性情報に基づいて、住宅H11,H12のそれぞれにおける使用電力の削減率を決める。
 例えば、中継コントローラ2は、住人の最低年齢が高齢者の年齢範囲である住宅Hに対しては、融雪装置4の必要性が高いと判断して、使用電力の削減率を小さくする。また、中継コントローラ2は、住人が全て女性である住宅Hに対しても、融雪装置4の必要性が高いと判断して、使用電力の削減率を小さくする。また、中継コントローラ2は、壮年期の住人がいる住宅Hに対しては、融雪装置4の必要性が低いと判断して、使用電力の削減率を大きくする。また、中継コントローラ2は、住人が全て男性である住宅Hに対しても、融雪装置4の必要性が低いと判断して、使用電力の削減率を大きくする。
 例えば、センターサーバCSがDR信号を送信する以前、住宅H11における使用電力をPH11、住宅H12における使用電力をPH12とする。
 そして、センターサーバCSがDR信号を送信し、中継コントローラ2が親コントローラ1から使用電力削減率K1の情報を受信すると、中継コントローラ2は、住宅H11,H12に割り当てる使用電力を削減する。
 つまり、中継コントローラ2は、住宅H11に割り当てる使用電力PH21(<PH11)、住宅H12に割り当てる使用電力PH22(<PH12)とする。このとき、住宅H11の使用電力削減量ΔPH1=PH11-PH21、住宅H12の使用電力削減量ΔPH2=PH12-PH22とすると(図5参照)、地域B1の使用電力削減量ΔP1=ΔPH1+ΔPH2となる。
 この場合、住宅H11の使用電力削減率KH1=ΔPH1/PH11、住宅H2の使用電力削減率KH2=ΔPH2/PH12となる(図5参照)。そして、中継コントローラ2は、住宅H11,H12の各使用電力削減率KH1,KH2を、住宅H11,H12の各住人の属性情報に基づいて決める。
 例えば、住宅H11の住人の最低年齢が高齢者の年齢範囲であり、住宅H12には壮年期の住人がいる場合、住宅H11の使用電力削減率KH1は、住宅H12の使用電力削減率KH2より小さくなる。
 中継コントローラ2は、住宅H11の子コントローラ3へ使用電力削減率KH1の情報を送信し、住宅H12の子コントローラ3へ使用電力削減率KH2の情報を送信する。
 そして、住宅H11の子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率KH1だけ削減する。住宅H12の子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率KH2だけ削減する。
 なお、地域B2,B3においても同様に、コントローラ2は、各住宅Hの住人の属性情報に基づいて、住宅Hのそれぞれにおける使用電力の削減率を決める。
 したがって、住宅Hのそれぞれにおける各使用電力の削減率は、各住宅Hの住人の属性情報に基づいて決定されるので、使用電力の削減時に、融雪に用いる電力の配分に対するユーザの不公平感をさらに抑制することができる。
 以上述べたように、融雪コントローラ10は、各エリアBの積雪量、各エリアBの気象情報、および融雪装置4が設置された空間(住宅H)に存在するユーザの属性情報に基づいて、融雪装置4の使用電力の削減度合いを空間(住宅H)毎に決定する。
 換言すれば、本実施形態の融雪コントローラ10は、上記の第1~第6の特徴に加えて、以下の第7および第8の特徴を有する。なお、本実施形態において、第2~第6および第8の特徴は任意の特徴である。
 第7の特徴では、複数のエリアBは、複数の特定の融雪装置4が設置された特定エリアを含む。特定エリアにおいて、複数の特定の融雪装置4はそれぞれ複数の空間(住宅H)に設置される。融雪コントローラ10は、複数の空間(住宅H)のそれぞれのユーザの属性情報に基づいて、特定の融雪装置4の使用電力の削減度合いを複数の空間(住宅H)のそれぞれについて決定するように構成される。
 第8の特徴では、第7の特徴において、空間は、住宅Hである。ユーザは、住宅Hの住人である。属性情報は、住人の性別と年齢と健康状態との少なくとも一つを含む。
 また、本実施形態の融雪管理システムは、上記の融雪コントローラ10と、複数のエリアBのそれぞれの積雪量および気象情報を取得して融雪コントローラ10に与える情報取得部7と、を備える。
  (実施形態3)
 本実施形態の融雪管理システムは、実施形態1と同様の構成を備えており、同様の構成には同一の符号を付して説明は省略する。
 本実施形態の融雪コントローラ10は、複数の空間(住宅H)のそれぞれのユーザの行動情報に基づいて、融雪装置4の使用電力の削減度合いを複数の空間(住宅H)のそれぞれについて決定する分配処理を実行するように構成される。本実施形態において、分配処理は、中継コントローラ2により実行される。
 図6に示すように、本実施形態の住宅Hは、住人の行動情報を取得するために、在宅情報取得部71、入出庫情報取得部72を設けており、在宅情報取得部71、入出庫情報取得部72は、住宅H内の子コントローラ3に接続している。
 在宅情報取得部71は、行動情報として、住宅H内の住人の在・不在に関する情報(在宅情報)を取得し、この在宅情報を子コントローラ3へ送信する機能を有するものである。
 在宅情報取得部71は、例えば、パーソナルコンピュータ、携帯情報機器、コントロールパネル等のスケジュール設定装置や、人感センサ等で構成される。
 スケジュール設定装置は、住宅Hの住人が外出スケジュールを入力、設定する機能を有しており、設定された外出スケジュールに基づいて、在宅情報を子コントローラ3へ送信する。
 人感センサは、住宅H内の人の存在を検出する焦電センサ等で構成され、この検出結果に基づいて、在宅情報を子コントローラ3へ送信する。
 在宅情報取得部71は、スケジュール設定装置や、人感センサ等のうち、1つ以上で構成される。
 入出庫情報取得部72は、行動情報として、住宅Hの車庫における自動車の入庫・出庫に関する情報(入出庫情報)を取得し、この入出庫情報を子コントローラ3へ送信する機能を有するものである。
 入出庫情報取得部72は、例えば、パーソナルコンピュータ、携帯情報機器、コントロールパネル等の車使用スケジュール設定装置や、車庫内に設けた光電センサ等の車検知センサや、電気自動車の充電装置等で構成される。
 車使用スケジュール設定装置は、住宅Hの住人が自動車の使用予定である車使用スケジュールを入力、設定する機能を有しており、設定された車使用スケジュールに基づいて、入出庫情報を子コントローラ3へ送信する。
 車検知センサは、車庫内の自動車の有無を検出し、この検出結果に基づいて、入出庫情報を子コントローラ3へ送信する。
 電気自動車の充電装置は、充電対象の車の有無に基づいて、入出庫情報を子コントローラ3へ送信する。
 入出庫情報取得部72は、車使用スケジュール設定装置、車検知センサ、充電装置等のうち、1つ以上で構成される。
 子コントローラ3は、受信した行動情報(在宅情報、入出庫情報)を上位の中継コントローラ2へ送信する。
 中継コントローラ2は、自己が管理する地域Bの各住宅Hにおける住人の生活行動(在・不在)を、受信した在宅情報、入出庫情報に基づいて判断する。そして、中継コントローラ2は、住宅Hの住人の生活行動に基づいて、以下の動作を行う。
 以下、図7に示す地域B1の構成を用いて説明する。なお、地域B1内の2つの住宅Hを区別する場合、住宅H11,H12と称す。地域(エリア)B1は、複数(図示例では2つ)の融雪装置(特定の融雪装置)4が設置された特定エリアである。複数の特定の融雪装置4はそれぞれ複数の空間(住宅H)に設置される。
 まず、中継コントローラ2は、住宅H11,H12の各子コントローラ3から送信される在宅情報に基づいて、住宅H11,H12のそれぞれにおける住人の在・不在状況を判定できる。また、中継コントローラ2は、住宅H11,H12の各融雪装置4の使用電力データを、住宅H11,H12の各子コントローラ3から定期的に受信しており、住宅H11,H12の融雪装置4の個別の使用電力データを把握している。さらに、中継コントローラ2は、地域B1の使用電力削減率K1の情報を、親コントローラ1から受信する。
 そして、使用電力削減率K1の情報を受信した中継コントローラ2は、地域B1における使用電力削減率K1を達成するために、住宅H11,H12の各融雪装置4に割り当てる使用電力を決定する。
 具体的に、中継コントローラ2は、地域B1における使用電力削減率K1を達成するために、住宅H11,H12における各住人の在・不在状況に基づいて、住宅H11,H12のそれぞれにおける使用電力の削減率を決める。中継コントローラ2は、住人が不在である住宅Hに対しては、融雪装置4の必要性が低いと判断して、使用電力の削減率を大きくする。また、中継コントローラ2は、住人が在である住宅Hに対しては、融雪装置4の必要性が高いと判断して、使用電力の削減率を小さくする。
 例えば、センターサーバCSがDR信号を送信する以前、住宅H11における使用電力をPH31、住宅H12における使用電力をPH32とする。
 そして、センターサーバCSがDR信号を送信し、中継コントローラ2が親コントローラ1から使用電力削減率K1の情報を受信すると、中継コントローラ2は、住宅H11,H12に割り当てる使用電力を削減する。
 つまり、中継コントローラ2は、住宅H11に割り当てる使用電力PH41(<PH31)、住宅H12に割り当てる使用電力PH42(<PH32)とする。このとき、住宅H11の使用電力削減量ΔPH1=PH31-PH41、住宅H12の使用電力削減量ΔPH2=PH32-PH42とすると(図8参照)、地域B1の使用電力削減量ΔP1=ΔPH1+ΔPH2となる。
 この場合、住宅H11の使用電力削減率KH1=ΔPH1/PH31、住宅H2の使用電力削減率KH2=ΔPH2/PH32となる(図8参照)。
 そして、中継コントローラ2は、住宅H11,H12の各使用電力削減率KH1,KH2を、住宅H11,H12の各住人の在・不在状況に基づいて決める。例えば、住宅H11の住人が不在であり、住宅H12の住人が在である場合、住宅H11の使用電力削減率KH1は、住宅H12の使用電力削減率KH2より大きくなる。
 中継コントローラ2は、住宅H11の子コントローラ3へ使用電力削減率KH1の情報を送信し、住宅H12の子コントローラ3へ使用電力削減率KH2の情報を送信する。
 そして、住宅H11の子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率KH1だけ削減する。住宅H12の子コントローラ3は、制御対象となる融雪装置4の使用電力を、使用電力削減率KH2だけ削減する。
 なお、地域B2,B3においても同様に、コントローラ2は、各住宅Hの在宅情報に基づいて、住宅Hのそれぞれにおける使用電力の削減率を決める。
 したがって、住宅Hのそれぞれにおける各使用電力の削減率は、各住宅Hの住人の在・不在状況に基づいて決定されるので、使用電力の削減時に、融雪に用いる電力の配分に対するユーザの不公平感をさらに抑制することができる。
 さらに、住宅Hの子コントローラ3は、住宅Hにおける各自動車の入出庫状況に基づいて、住宅Hのそれぞれにおける融雪装置4の動作を制御する。
 例えば、図9に示すように、子コントローラ3は、入出庫情報取得部72が取得した車使用スケジュールに基づいて、住宅Hの住人が自動車で外出する時刻ta、自動車で帰宅する時刻tbを把握できる。
 そこで、子コントローラ3は、外出時刻ta以前の時刻t1に、融雪装置4の動作を開始し、外出時刻ta以降の時刻t2に、融雪装置4の動作を停止させる。また、子コントローラ3は、帰宅時刻tb以前の時刻t3に、融雪装置4の動作を開始し、帰宅時刻tb以降の時刻t4に、融雪装置4の動作を停止させる。
 すなわち、子コントローラ3は、自動車による外出時刻taおよび帰宅時刻tbに合わせて、融雪装置4を動作させることによって、車庫-道路間の融雪を行う。また、子コントローラ3は、住宅Hの住人が自動車で外出する予定が、所定期間以上に亘ってない場合、融雪装置4による車庫-道路間の融雪を行わない。
 また、住宅Hの子コントローラ3は、住宅Hの住人が長期不在の場合、住宅Hの屋根の損傷を防ぐために、屋根に設けた融雪装置4の動作を定期的に行ってもよい。
 さらに、住宅Hの子コントローラ3は、住人の外出スケジュールに基づいて、住人が住宅Hの軒下を通過すると推定される時間帯に、屋根に設けた融雪装置4の動作を禁止してもよい。これは、屋根で溶けた雪が軒下を通過する住人に降り掛かることを避けるためである。
 このように、住宅Hの住人の行動情報に基づいて、融雪装置4の動作を制御することによって、融雪装置4の制御内容を、住人の生活行動に適したものとすることができる。なお、この住宅Hの住人の行動情報に基づく融雪装置4の動作制御は、センターサーバCSからのDR信号の送信の有無に関わらず、実行される。
 以上述べたように、本実施形態の融雪コントローラ10は、各エリアBの積雪量、各エリアBの気象情報、および融雪装置4が設置された空間(住宅H)に出入りするユーザの行動情報に基づいて、融雪装置4の使用電力の削減度合いを空間(住宅H)毎に決定する。
 換言すれば、本実施形態の融雪コントローラ10は、上記の第1~第6の特徴に加えて、以下の第9および第10の特徴を有する。なお、本実施形態において、第2~第6および第10の特徴は任意の特徴である。
 第9の特徴では、複数のエリアBは、複数の特定の融雪装置4が設置された特定エリアを含む。特定エリアにおいて、複数の特定の融雪装置4はそれぞれ複数の空間(住宅H)に設置される。融雪コントローラ10は、複数の空間(住宅H)のそれぞれのユーザの行動情報に基づいて、特定の融雪装置4の使用電力の削減度合いを複数の空間(住宅H)のそれぞれについて決定するように構成される。
 第10の特徴では、第9の特徴において、空間は、住宅Hである。ユーザは、住宅Hの住人である。行動情報は、住人の在・不在を示す情報である。
 また、本実施形態の融雪管理システムは、上記の融雪コントローラ10と、複数のエリアBのそれぞれの積雪量および気象情報を取得して融雪コントローラ10に与える情報取得部7と、を備える。
  (実施形態4)
 本実施形態について、図10に示す住宅Hの構成を用いて説明する。なお、実施形態1乃至3いずれかと同様の構成には、同一の符号を付して説明は省略する。
 本実施形態では、住宅Hの子コントローラ3は、融雪装置4以外に、電気自動車の充電装置81、給湯器82等の他の電気機器(特定の機器)が制御線L1を介して通信可能に接続されている。
 本実施形態の融雪コントローラ10は、融雪装置4を特定の機器(例えば、充電装置81および給湯器82)と連携させて制御する連携制御を実行するように構成される。特定の機器は、例えば、融雪装置4と同じ電源から給電される機器である。
 融雪コントローラ10は、連携制御では、融雪装置4の使用電力がピークとなる期間と特定の機器の使用電力がピークとなる期間とが重ならないように、融雪装置4と特定の機器とを制御するように構成される。なお、本実施形態において、連携制御は、子コントローラ3により実行される。
 そして、子コントローラ3は、DR信号を用いた使用電力の削減要請が管理サーバCSからあった場合、図11に示すように、融雪装置4、充電装置81、給湯器82のそれぞれの使用電力がピークとなる期間が互いに重ならないように連携制御する。なお、図11において、Y1は、融雪装置4の使用電力であり、Y2は、充電装置81の使用電力であり、Y3は、給湯器82の使用電力である。
 したがって、子コントローラ3は、使用電力の削減要請時に、電力需要のピークを抑制しながら、複数の電気機器を動作させることができる。すなわち、使用電力の削減と、ユーザの利便性の確保とを両立させることができる。
 また、使用電力の削減要請時に、電力需要が電力供給量に逼迫した場合、この状況が、センターサーバCSから親コントローラ1、中継コントローラ2を介して、子コントローラ3に伝達される。
 子コントローラ3は、融雪装置4、充電装置81、給湯器82に対して、優先順位を予め設定している。そして、子コントローラ3は、電力供給量に対して電力需要が十分に低減されるまで、優先順位が低い電気機器から順に動作を停止させる。
 子コントローラ3は、例えば、図12に示すように、給湯器82:高、融雪装置4:中、充電装置81:低の各優先順位が設定された場合、充電装置81→融雪装置4→給湯器82の順に動作を停止させる。
 したがって、子コントローラ3は、電力需要の調整時に、重要な電気機器の動作をできるだけ継続することができ、ユーザの利便性を確保することができる。
 以上述べたように、本実施形態の融雪コントローラ10は、融雪装置4の動作を、他の機器と連携させて制御する。
 換言すれば、本実施形態の融雪コントローラ10は、上記の第1~第6の特徴に加えて、以下の第11および第12の特徴を有する。なお、本実施形態において、第2~第6および第12の特徴は任意の特徴である。また、本実施形態の融雪コントローラ10は、第7および第8の特徴を有していてもよい。あるいは、本実施形態の融雪コントローラ10は、第9および第10の特徴を有していてもよい。
 第11の特徴では、融雪コントローラ10は、融雪装置4を特定の機器(例えば、充電装置81および給湯器82)と連携させて制御する連携制御を実行するように構成される。
 第12の特徴では、第11の特徴において、特定の機器は、融雪装置4と同じ電源から給電される機器である。融雪コントローラ10は、連携制御では、融雪装置4の使用電力がピークとなる期間と特定の機器の使用電力がピークとなる期間とが重ならないように、融雪装置4と特定の機器とを制御するように構成される。
 また、本実施形態の融雪管理システムは、上記の特徴を有する融雪コントローラ10と、複数のエリアBのそれぞれの積雪量および気象情報を取得して融雪コントローラ10に与える情報取得部7と、を備える。
 なお、子コントローラ3は、気象情報、積雪量情報、住人の外出スケジュール、車使用スケジュール、住宅Hに設けた図示しない蓄電池、蓄熱装置等の状態等に基づいて、融雪装置4、充電装置81、給湯器82の各優先順位を随時更新してもよい。
  (実施形態5)
 本実施形態は、実施形態1乃至4いずれかと同様の構成を有しており、同様の構成には同一の符号を付して説明は省略する。
 センターサーバCSが親コントローラ1へ送信するDR信号には、広域エリアA内の総使用電力の削減目標値Pmの情報だけでなく、使用電力の削減要請を行う時間帯(削減時間帯)の情報も含まれている。さらに、親コントローラ1が地域B1~B3の各中継コントローラ2へ送信する使用電力削減率K1の情報にも、削減時間帯の情報が含まれている。
 そして、地域B1~B3の各中継コントローラ2は、削減時間帯以前に、自己が管理する地域の各住宅Hの各融雪装置4の使用電力を一時的に増大させて、予め融雪しておくことによって、削減時間帯中の積雪による不具合発生を抑制しておく。
 すなわち、デマンドレスポンス信号は、融雪コントローラ10が削減処理を実行する時間帯を示す削減時間帯Tsに関する情報を含む。融雪コントローラ10は、削減時間帯Tsより前の所定時間帯に所定電力以上で融雪装置4を動作させ、削減時間帯Tsでは削減度合いに基づいて融雪装置4の使用電力を削減するように構成される。この処理は、本実施形態では、中継コントローラ2により実行される。
 ここで、全ての住宅Hの融雪装置4の使用電力を同時に増大させると、電力需要のピークが急増する可能性がある。
 そこで、地域B1~B3のそれぞれにおいて、各地域B内の融雪装置4が使用電力を増大させるタイミング(所定時間帯)を住宅H間で互いにずらすことによって、電力需要のピークを抑制する。つまり、融雪コントローラ10は、同じエリアBの複数の空間(住宅H)に、互いに異なる所定時間帯を割り当てる。
 例えば、図13は、地域B1における住宅H11~H13の各使用電力を示しており、Y11は、住宅H11の融雪装置4の使用電力であり、Y12は、住宅H12の融雪装置4の使用電力であり、Y13は、住宅H13の融雪装置4の使用電力である。
 そして、地域B1における削減時間帯Ts以前において、使用電力Y11~Y13を一時的に増大させる時間帯(電力増大期間)T11~T13を互いにずらすことによって、電力需要のピークを抑制している。
 なお、図13において、住宅H11~H13の各電力増大期間T11~T13が、一部重複している。しかし、全ての電力増大期間T11~T13が同時に重複する期間はないため、電力需要のピーク抑制に寄与できるものである。
 以上述べたように、本実施形態の融雪コントローラ10では、デマンドレスポンス信号は、複数のエリアBにおける使用電力を削減する必要がある削減時間帯Tsに関する情報を含む。融雪コントローラ10は、融雪装置4の動作を制御し、削減時間帯Ts以前において、融雪装置4が使用する電力を所定値以上に維持させ、削減時間帯Tsにおいて、削減度合いに基づいて融雪装置4の使用電力を削減させる。
 換言すれば、本実施形態の融雪コントローラ10は、上記の第1~第6の特徴に加えて、以下の第13の特徴を有する。なお、本実施形態において、第2~第5の特徴は任意の特徴である。
 第13の特徴では、デマンドレスポンス信号は、融雪コントローラ10が削減処理を実行する時間帯を示す削減時間帯Tsに関する情報を含む。融雪コントローラ10は、削減時間帯Tsより前の所定時間帯に所定電力以上で融雪装置4を動作させ、削減時間帯Tsでは削減度合いに基づいて融雪装置4の使用電力を削減するように構成される。
 また、中継コントローラ2は、削減時間帯Ts中において、融雪装置4の使用電力を交互に増減させる間欠運転を行ってもよい。つまり、融雪コントローラ10は、削減時間帯Tsにおいて、同一のエリアBに設置された複数の融雪装置4を順番に動作させる。この処理は、本実施形態では、中継コントローラ2により実行される。
 図14は、地域B1における住宅H11~H13の各使用電力を示しており、Y21は、住宅H11の融雪装置4の使用電力であり、Y22は、住宅H12の融雪装置4の使用電力であり、Y23は、住宅H13の融雪装置4の使用電力である。
 融雪コントローラ10は、削減時間帯Tsにおいて、住宅H11の融雪装置4と、住宅H12の融雪装置4と、住宅H13の融雪装置4と、をこの順番に動作させる。このように、削減時間帯Ts中において、使用電力Y21~Y23のそれぞれを間欠運転し、さらに、使用電力Y21~Y23の各使用電力を増やす期間T21~T23を互いにずらすことによって、電力需要のピークをさらに抑制している。
 すなわち、本実施形態の融雪コントローラ10では、デマンドレスポンス信号は、複数のエリアBにおける使用電力を削減する必要がある削減時間帯Tsに関する情報を含む。融雪コントローラ10は、融雪装置4の動作を制御し、削減時間帯Tsにおいて、融雪装置4の使用電力を交互に増減させる間欠運転を行う。
 換言すれば、本実施形態の融雪コントローラ10は、第13の特徴に代えて、以下の第14の特徴を有していてもよい。
 第14の特徴では、デマンドレスポンス信号は、融雪コントローラ10が削減処理を実行する時間帯を示す削減時間帯Tsに関する情報を含む。融雪コントローラ10は、削減時間帯Tsにおいて、同一のエリアBに設置された複数の融雪装置4を順番に動作させるように構成される。
 なお、本実施形態の融雪コントローラ10は、第7および第8の特徴を有していてもよい。あるいは、本実施形態の融雪コントローラ10は、第9および第10の特徴を有していてもよい。
 また、本実施形態の融雪管理システムは、上記の特徴を有する融雪コントローラ10と、複数のエリアBのそれぞれの積雪量および気象情報を取得して融雪コントローラ10に与える情報取得部7と、を備える。
 なお、各実施形態において、融雪装置4が設置される空間は、住宅Hに限定されず、店舗、事務所、オフィス等の他の空間であってもよい。

Claims (15)

  1.  複数のエリアに設置される複数の融雪装置を管理する融雪コントローラであって、
     前記複数の融雪装置の総使用電力を削減する削減処理を実行するように構成され、
     前記削減処理では、前記複数のエリアのそれぞれの積雪量および気象情報に基づいて、前記融雪装置の使用電力の削減度合いを前記複数のエリアのそれぞれについて決定するように構成される
     ことを特徴とする融雪コントローラ。
  2.  前記複数のエリアのそれぞれに関して、前記削減度合いに応じて前記融雪装置の使用電力を削減するように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  3.  前記複数の融雪装置をそれぞれ制御する複数の子コントローラと、
     前記複数の子コントローラと通信する親コントローラと、
     を備え、
     前記親コントローラは、前記削減処理を実行するように構成され、
     前記親コントローラは、前記削減度合いを、前記削減度合に対応するエリアに設置された前記子コントローラに送信するように構成され、
     前記子コントローラは、前記削減度合いを受け取ると、前記削減度合いに応じて前記融雪装置の使用電力を削減するように構成される
     ことを特徴とする請求項2に記載の融雪コントローラ。
  4.  前記削減処理では、前記積雪量が少ないほど前記使用電力の削減度合いを大きくするように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  5.  前記気象情報は、気温を含み、
     前記融雪コントローラは、前記削減処理では、前記気温が高いほど前記使用電力の削減度合いを大きくするように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  6.  前記複数のエリアは、複数の特定の融雪装置が設置された特定エリアを含み、
     前記特定エリアにおいて、前記複数の特定の融雪装置はそれぞれ複数の空間に設置され、
     前記融雪コントローラは、前記複数の空間のそれぞれのユーザの属性情報に基づいて、前記特定の融雪装置の使用電力の削減度合いを前記複数の空間のそれぞれについて決定するように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  7.  前記空間は、住宅であり、
     前記ユーザは、前記住宅の住人であり、
     前記属性情報は、前記住人の性別と年齢と健康状態との少なくとも一つを含む
     ことを特徴とする請求項6に記載の融雪コントローラ。
  8.  前記複数のエリアは、複数の特定の融雪装置が設置された特定エリアを含み、
     前記特定エリアにおいて、前記複数の特定の融雪装置はそれぞれ複数の空間に設置され、
     前記融雪コントローラは、前記複数の空間のそれぞれのユーザの行動情報に基づいて、前記特定の融雪装置の使用電力の削減度合いを前記複数の空間のそれぞれについて決定するように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  9.  前記空間は、住宅であり、
     前記ユーザは、前記住宅の住人であり、
     前記行動情報は、前記住人の在・不在を示す情報である
     ことを特徴とする請求項8に記載の融雪コントローラ。
  10.  前記融雪装置を特定の機器と連携させて制御する連携制御を実行するように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  11.  前記特定の機器は、前記融雪装置と同じ電源から給電される機器であり、
     前記融雪コントローラは、前記連携制御では、前記融雪装置の使用電力がピークとなる期間と前記特定の機器の使用電力がピークとなる期間とが重ならないように、前記融雪装置と前記特定の機器とを制御するように構成される
     ことを特徴とする請求項10に記載の融雪コントローラ。
  12.  前記削減処理の実行を要請するデマンドレスポンス信号を受信すると、前記削減処理を実行するように構成される
     ことを特徴とする請求項1に記載の融雪コントローラ。
  13.  前記デマンドレスポンス信号は、前記融雪コントローラが前記削減処理を実行する時間帯を示す削減時間帯に関する情報を含み、
     前記融雪コントローラは、前記削減時間帯より前の所定時間帯に所定電力以上で前記融雪装置を動作させ、前記削減時間帯では前記削減度合いに基づいて前記融雪装置の使用電力を削減するように構成される
     ことを特徴とする請求項12に記載の融雪コントローラ。
  14.  前記デマンドレスポンス信号は、前記融雪コントローラが前記削減処理を実行する時間帯を示す削減時間帯に関する情報を含み、
     前記融雪コントローラは、前記削減時間帯において、同一のエリアに設置された複数の融雪装置を順番に動作させるように構成される
     ことを特徴とする請求項12に記載の融雪コントローラ。
  15.  請求項1に記載の融雪コントローラと、
     前記複数のエリアのそれぞれの積雪量および気象情報を取得して前記融雪コントローラに与える情報取得部と、
     を備える
     ことを特徴とする融雪管理システム。
PCT/JP2013/006106 2012-10-19 2013-10-11 融雪コントローラ、および融雪コントローラを備える融雪管理システム WO2014061255A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13847176.8A EP2910712A4 (en) 2012-10-19 2013-10-11 SNOW MELT CONTROL AND SNOW MELT ADMINISTRATION SYSTEM WITH SNOW MELT CONTROL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012232371A JP5963085B2 (ja) 2012-10-19 2012-10-19 融雪管理システム、および融雪コントローラ
JP2012-232371 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061255A1 true WO2014061255A1 (ja) 2014-04-24

Family

ID=50487834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/006106 WO2014061255A1 (ja) 2012-10-19 2013-10-11 融雪コントローラ、および融雪コントローラを備える融雪管理システム

Country Status (3)

Country Link
EP (1) EP2910712A4 (ja)
JP (1) JP5963085B2 (ja)
WO (1) WO2014061255A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170411A1 (ja) * 2014-05-09 2015-11-12 株式会社 東芝 計画作成装置及び電力管理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073075A (ja) * 2014-09-30 2016-05-09 株式会社アドテックス 動的電力制御装置
WO2016141952A1 (en) * 2015-03-06 2016-09-15 Nec Europe Ltd. A method and a system for controlling energy supply to different units
JP2017034822A (ja) * 2015-07-31 2017-02-09 東京電力ホールディングス株式会社 鉄塔用融雪装置
US11210920B2 (en) * 2020-01-21 2021-12-28 Simmonds Precision Products, Inc. Configurable parent-child switch
JP6895696B1 (ja) * 2020-03-31 2021-06-30 株式会社ビーエステクノ 融雪制御システム
JP7306365B2 (ja) * 2020-11-11 2023-07-11 トヨタ自動車株式会社 充電制御システム、充電制御装置および充電制御プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757851A (ja) * 1993-08-09 1995-03-03 Showa Electric Wire & Cable Co Ltd ロードヒーティング制御装置
JP2008150898A (ja) 2006-12-19 2008-07-03 Hitachi Industrial Equipment Systems Co Ltd 消雪装置駆動方法及び消雪装置制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06237107A (ja) * 1993-02-10 1994-08-23 Nec Corp アンテナ融雪制御装置
JP2001228265A (ja) * 2000-02-15 2001-08-24 Mitsubishi Cable Ind Ltd 路面凍結防止システム
JP2001359238A (ja) * 2000-06-14 2001-12-26 Nippon Dainatekku Kk 電力回路切替装置
JP2011142753A (ja) * 2010-01-07 2011-07-21 Panasonic Corp 家電機器制御装置及び家電機器制御システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757851A (ja) * 1993-08-09 1995-03-03 Showa Electric Wire & Cable Co Ltd ロードヒーティング制御装置
JP2008150898A (ja) 2006-12-19 2008-07-03 Hitachi Industrial Equipment Systems Co Ltd 消雪装置駆動方法及び消雪装置制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2910712A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015170411A1 (ja) * 2014-05-09 2015-11-12 株式会社 東芝 計画作成装置及び電力管理装置

Also Published As

Publication number Publication date
EP2910712A1 (en) 2015-08-26
JP5963085B2 (ja) 2016-08-03
EP2910712A4 (en) 2015-11-25
JP2014084584A (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014061255A1 (ja) 融雪コントローラ、および融雪コントローラを備える融雪管理システム
US10756549B1 (en) Smart energy distribution methods and systems for electric vehicle charging
JP6720124B2 (ja) Evseベースのエネルギ自動化、管理及び保護のためのシステム及び方法
KR101531527B1 (ko) 무선전력 공급 장치, 무선전력 수신이 가능한 전자 기기 및 무선전력 전송 제어 방법
WO2013065394A1 (ja) 制御装置及び制御対象機器
CN104791957A (zh) 一种基于智能手表的智能空调调节方法及系统
US8798834B2 (en) Movable component for a network system
KR20110093531A (ko) 스마트 디바이스를 이용한 전력 제어 방법 및 장치
JP5960455B2 (ja) 住宅設備機器の管理システム
EP3007459B1 (en) Controlled device, control device, device control method, and device control system
CN103048973A (zh) 智能家居系统
WO2013042308A1 (ja) 電力調整装置及び電力調整方法
WO2012144626A1 (ja) エネルギー管理装置、およびエネルギー管理システム
KR100976225B1 (ko) 통합검침망을 이용한 에어컨 원격 제어방법
WO2019082426A1 (ja) エネルギー管理装置、エネルギー管理システム、及び、エネルギー管理方法
CA2710508A1 (en) Adjusting distributed storage of solar electrical power responsive to changes in supply and demand
CN104359191A (zh) 通过app实现远程监控车载净化器的方法及系统
JP6783156B2 (ja) 電力制御システムおよび電力制御装置
JP2012023824A (ja) 自家発電システム、中央管理装置及び電気機器の動作を制御する方法
JP5967543B2 (ja) コントローラ、電力管理システムおよびプログラム
WO2011055201A1 (ja) 電力監視装置
CN104949257A (zh) 空调控制系统
KR101091001B1 (ko) 디밍 기능을 갖는 센서 네트워크형 멀티탭
JP2011244563A (ja) 連携充電システムおよび充電池の充電方法
CN103345170B (zh) 成像装置及其供电控制方法、电源唤醒装置和控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13847176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013847176

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013847176

Country of ref document: EP