WO2014057859A1 - カメラモジュール、および電子機器 - Google Patents

カメラモジュール、および電子機器 Download PDF

Info

Publication number
WO2014057859A1
WO2014057859A1 PCT/JP2013/076936 JP2013076936W WO2014057859A1 WO 2014057859 A1 WO2014057859 A1 WO 2014057859A1 JP 2013076936 W JP2013076936 W JP 2013076936W WO 2014057859 A1 WO2014057859 A1 WO 2014057859A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
diameter portion
lens barrel
outer diameter
camera module
Prior art date
Application number
PCT/JP2013/076936
Other languages
English (en)
French (fr)
Inventor
関本 芳宏
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2014540819A priority Critical patent/JP6067731B2/ja
Priority to CN201380047797.4A priority patent/CN104620148B/zh
Priority to US14/432,852 priority patent/US9219851B2/en
Publication of WO2014057859A1 publication Critical patent/WO2014057859A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to an autofocus function mounted on an electronic device such as a mobile phone, and further to a camera module having an image stabilization function, and an electronic device.
  • the space saving effect by eliminating the lens barrel screw is maximized, and the strength when the lens barrel is fixed to the lens holder without the screw is increased. It becomes possible to increase.
  • lens driving device that exhibits an autofocus function is mounted on an electronic device such as a mobile phone
  • lens drive devices such as a type that uses a stepping motor, a type that uses a piezoelectric element, and a type that uses a VCM (Voice Coil Motor: voice coil motor). ing.
  • a camera shake correction function has attracted attention as a next feature-developing function.
  • the camera shake correction function is widely used in the world for digital cameras and movies, but there are few examples of application to mobile phones due to size problems.
  • proposals for new image stabilization mechanisms that can be miniaturized, and it is expected that mobile phone camera modules equipped with image stabilization functions will become mainstream in the future.
  • Patent Document 1 proposes a technique that eliminates the screw structure for focus adjustment provided in both the lens barrel and the lens holder and omits the space for the screw thread.
  • the camera module disclosed in Patent Document 1 is a camera module 100 having an AF function as shown in FIG.
  • the camera module 100 includes an optical unit 101, a lens driving device 102 for driving the optical unit 101 in the optical axis direction, and an imaging unit 103 on which the lens driving device 102 is mounted.
  • the imaging unit 103 is configured by stacking a sensor cover unit 104 and a substrate 105.
  • the optical unit 101 includes a plurality of imaging lenses 106 and a lens barrel 107 that holds the imaging lenses 106.
  • the lens driving device 102 holds a lens barrel 107, and a lens holder 108 that is driven in the optical axis direction of the optical unit 101, and an upper and lower 2 that supports the lens holder 108 so as to be movable in the optical axis direction of the optical unit 101.
  • the sensor cover unit 104 includes an IR (infrared) cut filter 120, an image sensor 121, a sensor cover 122, and the like, and the image sensor 121 is placed on the substrate 105.
  • the camera module 100 disclosed in Patent Document 1 no screw is formed on each of the outer periphery of the lens barrel 107 and the inner periphery of the lens holder 108.
  • the camera module 100 has a so-called focus adjustment-less structure in which the lens barrel 107 is positioned by being abutted against the top surface side of the sensor cover 122. As a result, the camera module 100 can be reduced in size by a screw thread.
  • the outer periphery of the lens barrel 107 and the inner periphery of the lens holder 108 have the same diameter throughout the entire range, in other words, a flat cylindrical shape. Has been.
  • the camera module 100 disclosed in Patent Document 1 has an autofocus function
  • the focus adjustment-less structure can be applied to a camera module further having a camera shake correction function in addition to the autofocus function.
  • a focus adjustment-less structure in a camera module having a camera shake correction function in addition to an autofocus function is described in Patent Document 2.
  • the “(belt-shaped) maximum outer diameter portion” of the lens barrel means the height direction (optical axis direction of the optical unit) and the width direction (perpendicular to the optical axis of the optical unit) of the lens barrel. (Direction) has a certain amount of thickness, and is a protruding portion provided so as to surround the side surface of the lens barrel. In the maximum outer diameter portion, the outer diameter of the lens barrel in the width direction of the lens barrel is the maximum.
  • the camera module disclosed in Patent Document 2 is limited to a part of the maximum outer diameter portion as shown in the cross-sectional view of the main part of FIG. It is formed with a slightly smaller diameter. That is, the camera module shown in FIG. 11A has a belt-like maximum outer diameter portion 151 a in the lens barrel 151.
  • the sensor The inclination angle ⁇ with respect to the surface of the cover (pseudo sensor cover 153) is expressed as a difference between ⁇ 1 and ⁇ 2 in FIG. ⁇ ⁇ tan ⁇ 1 (H / D E ) ⁇ cos ⁇ 1 (D I / ⁇ (D E 2 + H 2 )) It is set to satisfy.
  • the lens barrel 151 when the lens barrel 151 is inserted into the lens holder 152 while sliding in the cylindrical hole of the lens holder 152, the inclination of the cylindrical hole of the lens holder 152 is suppressed within a predetermined range.
  • the lens barrel 151 can be attached based on the sensor cover (pseudo sensor cover 153) without being influenced by the inclination of the cylindrical hole.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-134409 (published on June 17, 2010)”
  • International Patent Publication International Publication No. 2012/108247 (International Publication on Aug. 16, 2012)”
  • the camera module disclosed in Patent Document 1 does not have a step structure itself for forming a partial maximum outer diameter portion on the outer wall of the lens barrel, and a cylindrical structure in which the outer shape of the lens barrel is flat. It is. For this reason, as described above in the description of Patent Document 2, the tilt range allowed in the lens holder is narrowed. As a result, there arises a problem that there is a high possibility that the lens barrel is inclined and attached due to the tilt of the lens holder.
  • the step structure of the lens barrel described in Patent Document 2 has a belt-like maximum outer diameter portion provided at a portion close to the top surface of the lens barrel.
  • the plurality of imaging lenses held inside the lens barrel has a smaller lens diameter on the top surface side (subject side).
  • the step structure described in Patent Document 2 forms a maximum outer diameter portion by providing a lens barrel portion corresponding to a portion having a small lens diameter with a thickness greater than necessary.
  • the belt-like maximum outer diameter portion according to Patent Document 2 has a cylindrical portion of the lens barrel that is thicker than necessary, and is a disadvantageous part for the purpose of downsizing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a camera module and an electronic device that can be further miniaturized with high accuracy in attaching a lens barrel. .
  • the camera module of the present invention has a plurality of imaging lenses, an optical unit including a lens barrel that holds the plurality of imaging lenses inside, and a relative position between the lens barrels.
  • an optical unit including a lens barrel that holds the plurality of imaging lenses inside, and a relative position between the lens barrels.
  • a lens holder to which the lens barrel is fixed is provided, and a lens driving device that drives the lens holder integrally with the lens barrel, and light that has passed through the plurality of imaging lenses is received.
  • An image pickup device wherein the lens barrel is slidable inside the lens holder when the lens barrel is not fixed to the lens holder, and the lens barrel is light of the optical unit.
  • a cylindrical shape extending in the axial direction, provided at the maximum outer diameter portion covering the outer periphery of the imaging lens having the second largest lens diameter, and at the maximum outer diameter portion A maximum outer diameter portion that is a protrusion, and the maximum outer diameter portion is provided in a partial region of the maximum outer diameter portion including the outer periphery of the imaging lens having the largest lens diameter. It is a feature.
  • the lens barrel can be attached with high accuracy and further miniaturization can be achieved.
  • FIG. 1 illustrates an embodiment of a camera module according to the present invention, and is a central sectional view for clarifying the structure of a lens barrel and a lens holder.
  • FIG. 2 is a central sectional view showing a state where a gap is generated between a lens barrel and a lens holder in the camera module shown in FIG. 1 due to component tolerances.
  • FIG. 3 is an enlarged view showing the structure of a lens barrel and a lens holder in the camera module shown in FIG. 2 in the vicinity of a broken-line ellipse shown in FIG. 2. It is a center sectional view showing another embodiment of the camera module in the present invention and showing a modification of the shape of the lens holder.
  • FIG. 1 illustrates an embodiment of a camera module according to the present invention, and is a central sectional view for clarifying the structure of a lens barrel and a lens holder.
  • FIG. 2 is a central sectional view showing a state where a gap is generated between a lens barrel and a lens holder
  • FIG. 5 is an enlarged view showing the structure of the lens barrel and the lens holder in the camera module shown in FIG. 4 in the vicinity of the dashed ellipse shown in FIG. 4.
  • FIG. 10 is a central cross-sectional view showing still another embodiment of the camera module according to the present invention and showing a modification of the outer shape of the lens barrel. It is a top view which shows the structure of the lens barrel in the camera module shown in FIG. It is a side view of the lens barrel shown in FIG.
  • FIG. 7 is an enlarged view of the vicinity of a broken line ellipse shown in FIG. 4 and FIG. 6, showing a state where an adhesive is filled in the gap between the lens barrel and the lens holder in the camera module of FIG. 4 or FIG. 6.
  • the description regarding the camera module of this embodiment assumes a camera module with a camera shake correction function, it is not necessarily limited to this. That is, the configuration of the camera module of the present embodiment may be applied to a camera module with an autofocus function that does not have a camera shake correction function.
  • FIG. 1 shows the camera module according to the present embodiment, and is a central sectional view for clarifying the structure of the lens barrel and the lens holder.
  • the camera module 40 is a camera module used in an electronic device such as a camera-equipped mobile phone.
  • the camera module 40 includes an imaging unit 20, an optical unit 1 accommodated in the cover 17, and a lens driving device 10 that drives the optical unit 1.
  • the imaging unit 20 is a rectangular member provided in the lower part of the camera module 40.
  • the cover 17 is a box-shaped member that is placed over the imaging unit 20.
  • the cover 17 has an opening 17a for exposing an imaging lens 2 (described later) provided in the optical unit 1 at the center of the top surface.
  • the optical unit 1 side (that is, the subject side) is above the camera module 40
  • the imaging unit 20 side (that is, the imaging element 22 side) is the camera module 40. This will be described as lower.
  • the optical unit 1 includes a plurality of imaging lenses 2 and a lens barrel 3 that holds the plurality of imaging lenses 2 inside.
  • the plurality of imaging lenses 2 are composed of a plurality of imaging lenses having different lens diameters.
  • the plurality of imaging lenses 2 includes an imaging lens 2m having the largest lens diameter, an imaging lens 2m ′ having the second largest lens diameter, and an imaging lens 2m ′′ having the smallest lens diameter. It consists of an imaging lens.
  • An imaging lens 2m ′ is arranged on the surface of the imaging lens 2m, and an imaging lens 2m ′′ is arranged on the surface of the imaging lens 2m ′.
  • the plurality of imaging lenses 2 include the plurality of imaging lenses 2m, the imaging lens 2m ′, and the imaging lens 2m ′′ that are arranged so that the lens diameter decreases in order from the lower side to the upper side of the camera module 40. .
  • the number of the plurality of imaging lenses 2 is not limited to three as long as it is plural.
  • the plurality of imaging lenses 2 may be composed of two imaging lenses, or may be composed of four or more imaging lenses.
  • the lens driving device 10 includes a lens holder 11 and drives the optical unit 1.
  • the lens barrel 3 Before the lens barrel 3 is fixed to the lens holder 11 with the adhesive 4, the lens barrel 3 can slide in the lens holder 11 along the extending direction of the cylindrical opening provided in the lens holder 11. Yes. Then, after the relative position between the lens barrel 3 and the lens holder 11 is adjusted, the lens barrel 3 is fixed to the lens holder 11 by the adhesive 4.
  • the imaging unit 20 provided below the lens driving device 10 includes a substrate 21, an imaging element 22, a sensor cover 23, and a glass substrate 24.
  • the imaging element 22 receives light that has passed through the plurality of imaging lenses 2 provided in the optical unit 1 and performs photoelectric conversion of the received light, and is placed on the substrate 21.
  • the sensor cover 23 and the glass substrate 24 cover and protect the light receiving portion (not shown) of the image sensor 22 in particular.
  • the substrate 21, the image sensor 22, the sensor cover 23, and the glass substrate 24 are arranged in this order from the lower part of the camera module 40 in the optical unit 1 (more specifically, a combined lens including a plurality of imaging lenses 2). They are stacked in the optical axis direction.
  • the lens holder 11 is a lens driving device 10 portion in which the lens barrel 3 of the optical unit 1 is fixed by the adhesive 4 as described above.
  • the lens holder 11 is supported by two upper and lower AF (autofocus) springs 12 a and 12 b so as to be movable in the optical axis direction of the optical unit 1 with respect to the intermediate member 13.
  • An AF coil 14 is fixed to the outer peripheral portion of the lens holder 11.
  • a permanent magnet for AF driving and a permanent magnet for camera shake correction are fixed to the intermediate member 13, and in this embodiment, a dual-purpose permanent magnet 15 that is a combination of these two types of permanent magnets is fixed. Has been.
  • a protrusion 11 a is formed at the lower part of the lens holder 11.
  • the protrusion 11a is in contact with the intermediate member 13 at a mechanical end on the infinity side (a reference position on the image sensor 22 side in the movable range) in the movable range of the optical unit 1 in the optical axis direction.
  • the intermediate member 13 is supported so as to be movable in two axial directions perpendicular to the optical axis of the optical unit 1 by four elastic wires 16 (two are shown) with respect to a fixed portion described later. Has been.
  • the intermediate member 13, the permanent magnet 15, the AF springs 12 a and 12 b, the lens holder 11, the AF coil 14, the lens barrel 3, and the imaging lens 2 are integrally driven in a direction perpendicular to the optical axis of the optical unit 1. Is done.
  • the fixing portion is composed of a cover 17, an OIS (Optical Image Stabilizer) coil 18, a base 19, and the like.
  • the base 19 has an opening 19a formed at the center. And in a state where the optical unit 1 is incorporated, a part of the lens barrel 3 enters the opening 19a. That is, since it is difficult to sufficiently increase the distance (flange back) from the lower end surface of the lens barrel 3 to the light receiving portion of the imaging element 22, such a configuration is often obtained.
  • the size of the gap between the lens barrel 3 and the base 19 is set so that the lens barrel 3 does not directly contact the base 19 even when the lens holder 11 is displaced to the maximum.
  • the sensor cover 23 is a member of the imaging unit 20 on which the lens driving device 10 is mounted.
  • the sensor cover 23 has a reference surface S at the tip of a protrusion 23 a provided in the lower portion, and the reference surface S is in contact with the image sensor 22.
  • the sensor cover 23 is placed on the image sensor 22 so as to cover the entire image sensor 22.
  • An opening 23 b is formed on the image pickup lens 2 side of the sensor cover 23.
  • the opening 23b is closed by a glass substrate 24 having an infrared cut function.
  • the image sensor 22 is mounted on the substrate 21. There may be a slight gap between the substrate 21 and the sensor cover 23 due to tolerance. The substrate 21 and the sensor cover 23 are bonded and fixed while the gap is closed by the adhesive 25. .
  • neither the lens barrel 3 nor the lens holder 11 is formed with screws. Then, the lens barrel 3 is fixed to a predetermined position in a state where the lens holder 11 is located at the mechanical end on the infinity side. A gap of at least about 10 ⁇ m is formed between the lens barrel 3 and the sensor cover 23. By forming a gap between the lens barrel 3 and the sensor cover 23, the lens barrel 3 and the sensor cover 23 are in contact with each other even when the lens barrel 3 is driven in a direction perpendicular to the optical axis of the optical unit 1. Thus, a stable camera shake correction operation can be performed. This also eliminates the generation of foreign matter due to rubbing.
  • the camera module 40 includes the optical unit 1 including the plurality of imaging lenses 2 and the lens barrel 3 that holds the plurality of imaging lenses 2 therein, and the lens holder 11 to which the lens barrel 3 is fixed. And a lens driving device 10 that drives the lens holder 11 integrally with the lens barrel 3 and an imaging element 22 that receives light that has passed through the plurality of imaging lenses 2. Can do.
  • the camera module 40 of the present embodiment when the optical unit 1 is moved back and forth in the optical axis direction for focus adjustment, the camera module 40 operates as follows. That is, a current flows through the AF coil 14 of the lens driving device 10 in response to a driving instruction from a control unit (not shown) such as a mobile phone or a digital camera in which the camera module 40 is mounted. Thereby, a current that flows through the AF coil 14 and a magnetic field generated from the permanent magnet 15 act to generate a thrust force that moves the AF coil 14 in the optical axis direction of the optical unit 1.
  • a control unit not shown
  • a current that flows through the AF coil 14 and a magnetic field generated from the permanent magnet 15 act to generate a thrust force that moves the AF coil 14 in the optical axis direction of the optical unit 1.
  • the optical unit 1 moves forward and backward in the optical axis direction via the AF springs 12 a and 12 b and the lens holder 11.
  • the optical unit 1 can be controlled by autofocus (AF). That is, the AF coil 14, the permanent magnet 15, the AF springs 12a and 12b, and the lens holder 11 have a function as autofocus means.
  • the camera module 40 when the optical unit 1 is integrally driven in a direction perpendicular to the optical axis by OIS, the camera module 40 operates as follows. That is, a current flows through the OIS coil 18 of the lens driving device 10 in response to a driving instruction from a control unit (not shown) such as a mobile phone or a digital camera in which the camera module 40 is mounted. As a result, a current that flows through the OIS coil 18 and a magnetic field generated from the permanent magnet 15 act to generate a thrust that moves the OIS coil 18 in a direction perpendicular to the optical axis of the optical unit 1.
  • the optical unit 1 moves forward and backward in a direction perpendicular to the optical axis via the elastic wire 16, the intermediate member 13, the AF springs 12a and 12b, and the lens holder 11.
  • the OIS coil 18, the permanent magnet 15, the elastic wire 16, the intermediate member 13, the AF springs 12a and 12b, and the lens holder 11 have a function as a camera shake correction unit.
  • the attachment position of the imaging lens 2 to the lens holder 11 is set such that the distance from the light receiving portion of the imaging element 22 is set so as to be focused at the position of the mechanical end on the infinity side.
  • an overinf of about 25 ⁇ m is appropriate.
  • the overinf value is affected by the manufacturing tolerance and assembly tolerance of the parts, so it is set to the minimum value that matches the actual situation. It is desirable.
  • the sensor cover 23 with sufficiently high accuracy with respect to the thickness is used, the reference surface S is directly abutted against the image sensor 22, and the height is high with respect to the upper surface of the sensor cover 23 (lower surface of the lens driving device 10).
  • the lens barrel 3 is positioned with high accuracy. Thus, it can be said that a small overinf of about 25 ⁇ m is realized.
  • the lens barrel 3 is attached at a position close to the image sensor 22 side by 25 ⁇ m from the focus position with respect to a subject at infinity, and in this state, between the sensor cover 23 and the lens barrel 3.
  • the following description will be made on the assumption that a gap exists.
  • the lens barrel 3 is fixed with an adhesive 4 after being positioned with respect to the lens holder 11.
  • the top of the inner wall of the holder 11 is configured to be high.
  • the wall of the lens holder 11 may be sufficiently extended to the top surface side of the camera module 40, and a notch for applying the adhesive 4 is provided on the lens barrel 3 side. It may be a configuration.
  • the wall including the position where the adhesive 4 is applied in the lens holder 11 is extended to the top surface side, it is not essential to extend the entire circumference of the wall of the lens holder 11. Only the application position may be stretched.
  • the adhesive 4 is normally applied to about four points in the vicinity of the outer periphery of the lens barrel 3.
  • the strength of the wall may be weakened.
  • the strength of the wall of the lens holder 11 is weak, there is a possibility that the resistance when the impact force is directly applied to the wall due to a drop impact of the camera module 40 may not be sufficient. Therefore, it is desirable to set a gap between the wall and the cover 17 so that the wall and the cover 17 do not collide within the movable range of the lens holder 11 so that an impact force is not directly applied to the wall of the lens holder 11.
  • the camera module 40 is not provided with a screw on the outer periphery of the lens barrel 3, and the inside of the cylindrical hole provided in the lens holder 11 to accommodate and hold the lens barrel 3 is inserted into the lens barrel 3. Is slidable. Therefore, it is necessary to position the lens barrel 3 with respect to the lens holder 11 so that the lens barrel 3 has a desired height.
  • the positioning of the height of the lens barrel 3 may be performed using a jig (not shown).
  • the lens driving device 10 is mounted on a jig, and the lens barrel 3 is mounted on the lens in a state where the height position of the lens barrel 3 is determined by the jig. Adhering and fixing to the holder 11. Thereafter, the jig is removed, and the lens driving device 10 to which the lens barrel 3 is fixed is mounted on the imaging unit 20.
  • the lens barrel 3 can slide inside the lens holder 11 before the lens barrel 3 is fixed to the lens holder 11.
  • the lens barrel 3 is slidable before the lens barrel 3 is fixed to the lens holder 11.
  • the position of a portion that becomes a guide during sliding is limited to a part.
  • the position is provided not on the top surface of the lens barrel 3 as described with reference to FIG. 11, but on the outer periphery (same height) of the imaging lens 2m having the largest lens diameter. That is, the lens barrel 3 has a shape in which a protrusion is provided on a cylindrical side surface extending in the optical axis direction of the optical unit 1 and has a maximum outer diameter covering at least the outer periphery of the imaging lens 2m ′ having the second largest lens diameter.
  • a portion 3e and a maximum outer diameter portion 3a (for example, a belt-like shape) which is a protrusion provided on the maximum outer diameter portion 3e.
  • the maximum outer diameter portion 3 e faces the inner wall of the lens holder 11.
  • the maximum outer diameter portion 3a is provided at the lower portion of the maximum outer diameter portion 3e, and the upper portion of the maximum outer diameter portion 3e having a slightly smaller diameter than the maximum outer diameter portion 3a is provided at the upper portion. It has an outer shape. This is because the plurality of imaging lenses 2 held inside the lens barrel 3 generally has a smaller lens diameter on the top surface side (subject side) as shown in FIG.
  • the lens barrel 3 having a minimum thickness is configured to hold the imaging lens 2m, the outer diameter of the lens barrel 3 is maximized on the outer periphery of the imaging lens 2m.
  • the camera module 40 has a lens barrel 3 that covers the outer periphery that is the side surface of each of the plurality of imaging lenses 2.
  • the lens barrel 3 has a protruding portion on the side wall so as to increase the outer diameter in accordance with the outer diameter of the plurality of imaging lenses 2.
  • the portion of the side wall of the lens barrel 3 that covers the outer periphery of the imaging lens 2m ′′ having the smallest outer diameter is the portion having the smallest outer diameter.
  • the portion of the side wall of the lens barrel 3 that covers the outer periphery of the imaging lens 2m ′ having the second largest outer diameter is the upper portion of the maximum outer diameter portion 3e, and is the portion having the second largest outer diameter.
  • the upper part of the maximum outer diameter portion 3e is a belt-like protrusion that surrounds the outer periphery of the imaging lens 2m ′ and extends in the circumferential direction of the lens barrel 3.
  • the upper portion of the maximum outer diameter portion 3e is a portion of the maximum outer diameter portion 3e that faces the inner wall of the lens holder 11 and is not provided with the maximum outer diameter portion 3a.
  • the portion of the side wall of the lens barrel 3 that surrounds the outer periphery of the imaging lens 2m having the largest outer diameter is a lower portion of the maximum outer diameter portion 3e provided with the maximum outer diameter portion 3a.
  • the maximum outer diameter portion 3 a is a portion having the largest outer diameter among the side walls of the lens barrel 3.
  • the maximum outer diameter portion 3 a is a belt-like protrusion that surrounds the outer periphery of the imaging lens 2 m and extends in the circumferential direction of the lens barrel 3.
  • the outer periphery of the imaging lens 2m having the largest outer diameter is provided on the side wall of the lens barrel 3 as compared with the case where the maximum outer diameter portion 3a is not provided.
  • the thickness of the upper portion of the maximum outer diameter portion 3e that covers the outer periphery of the imaging lens 2m ′ without being covered can be reduced. For this reason, it is possible to reduce the useless space and the thickness of the lens barrel 3 and reduce the size of the camera module 40.
  • the outer diameter of the imaging lens 2m is A value obtained by adding the smallest possible thickness of the lens barrel 3 is the minimum value of the outer diameter of the lens barrel 3.
  • the outer diameter of the lens barrel 3 other than the maximum outer diameter portion 3a is naturally. Is smaller than the outer diameter of the lens barrel 3 at the maximum outer diameter portion 3a.
  • the outer diameter of the maximum outer diameter portion 3a is equal to the outer diameter of the cylindrical lens barrel 3. It will be larger than the minimum value.
  • the lens barrel 3 is provided with a maximum outer diameter portion 3a that is a belt-like protrusion extending along the outer periphery of the imaging lens 2m. Yes. Thereby, even if the diameter of the maximum outer diameter portion 3e of the lens barrel 3 is reduced, the outer diameter of the imaging lens 2 provided with the maximum outer diameter portion 3e on the outer periphery is also small. There is no need to reduce the wall thickness.
  • the range in which the maximum outer diameter portion 3a is provided is a part of the maximum outer diameter portion 3e, and there is no problem as long as it includes at least the outer periphery of the imaging lens 2m.
  • the maximum outer diameter portion 3a may be provided so as to protrude to the outer periphery of the imaging lens 2 whose lens diameter is not maximum.
  • the occupation range of the maximum outer diameter portion 3a on the outer wall of the lens barrel 3 needs to be equal to or larger than the outer peripheral range of the imaging lens 2m. 3 may be unacceptably thin, which is not desirable.
  • the maximum outer diameter portion 3a is provided in a partial region of the maximum outer diameter portion 3e including the outer periphery of the imaging lens 2m having the largest lens diameter among the plurality of imaging lenses 2.
  • FIG. 2 is a central sectional view equivalent to FIG. 1, but shows a case where the outer diameter of the lens barrel 3 is slightly reduced due to the member tolerance. Of course, it may be assumed that the inner diameter of the lens holder 11 is slightly increased.
  • a gap is formed between the lens barrel 3 and the lens holder 11, and when viewed from the top surface side of the camera module 40, the sensor cover 23 can be seen through this gap.
  • the sensor cover 23 when a foreign object or the like enters from the top surface side of the camera module 40 along the inner wall of the lens holder 11, the risk of the foreign object or the like falling onto the sensor cover 23 through this gap increases.
  • the foreign matter or the like that has fallen on the sensor cover 23 may further move to the glass substrate 24 and is reflected in the captured image.
  • FIG. 3 is an enlarged view of a main part (near the broken line ellipse shown in FIG. 2) showing the structure of the lens barrel 3 and the lens holder 11 in the camera module 40 of FIG.
  • the foreign matter falling along the outer wall of the lens barrel 3 indicated by the arrow on the lens barrel 3 side is a step formed by the maximum outer diameter portion 3e and the maximum outer diameter portion 3a. There is a high possibility of stopping at 3b.
  • a foreign matter or the like falling along the inner wall of the lens holder 11 indicated by an arrow on the lens holder 11 side has a high risk of penetrating through the gap between the lens barrel 3 and the lens holder 11.
  • FIG. 4 shows the camera module in the present embodiment, and is a central sectional view showing a modification of the lens holder with respect to FIG.
  • FIG. 5 is an enlarged view of the main part (near the broken line ellipse shown in FIG. 4) showing the structure of the lens barrel and the lens holder in the camera module of FIG.
  • the difference between the camera module 41 shown in FIG. 4 and the camera module 40 shown in FIG. 1 is that a step structure is provided on the hole side of the lens holder 11. That is, the lens holder 11 of the camera module 41 includes a minimum inner diameter portion 11b and a minimum inner diameter portion 11e whose inner diameter is larger than the minimum inner diameter portion 11b. It can be said that the minimum inner diameter portion 11 b corresponds to a portion where the maximum outer diameter portion 3 a contacts when the lens barrel 3 slides inside the lens holder 11.
  • the maximum outer diameter portion 3a of the lens barrel 3 and the minimum inner diameter portion 11b of the lens holder 11 do not overlap in the height direction of the camera module 41 (the optical axis direction of the optical unit 1). Further, the gap shape between the maximum outer diameter portion 3a and the minimum inner diameter portion 11b has a structure in which the gap in the height direction is small and a large gap space is formed in the center.
  • the inner wall of the lens holder 11 is provided with a step 11c composed of a minimum inner diameter portion 11b and a minimum inner diameter portion 11e, and foreign substances falling along the inner wall of the lens holder 11 are substantially removed from the lens barrel. 3, the risk of foreign matter falling on the sensor cover 23 can be reduced.
  • the inner diameter of the minimum inner diameter portion 11 b of the lens holder 11 is set larger than the outer diameter of the maximum outer diameter portion 3 a of the lens barrel 3. For this reason, as described above, the risk of foreign matter falling on the sensor cover 23 is reduced as compared with the camera module 40, but the sensor cover 23 can be seen from the top side of the camera module 41.
  • the camera module 41 is a camera module in which the lens barrel 3 is inserted into the lens holder 11 from the subject side, and the inner diameter of the minimum inner diameter portion 11b is larger than the outer diameter of the maximum outer diameter portion 3a.
  • the side surface of the minimum inner diameter portion 11b and the side surface of the maximum outer diameter portion 3a, which are parallel to the optical axis, may be arranged such that the side surface of the minimum inner diameter portion 11b is located on the outer side when viewed in plan.
  • the inner diameter of the minimum inner diameter portion 11b is set smaller than the outer diameter of the maximum outer diameter portion 3a. It becomes possible to do.
  • the sensor cover 23 cannot be seen from the gap between the lens barrel 3 and the lens holder 11 from the top surface side of the camera module 41, and there is a risk of falling of foreign matter or the like. Further reduction is possible. For this reason, it can be said that this is a more desirable embodiment.
  • the timing at which the lens barrel 3 is inserted in the back insertion structure is, of course, a stage before the lens driving device 10 is mounted on the imaging unit 20.
  • the lens driving device 10 After inserting the lens barrel 3 from below, the lens driving device 10 is mounted on the jig described above, the height position of the lens barrel 3 is determined, the lens barrel 3 is fixed to the lens holder 11, and the jig is removed. Thereafter, the lens driving device 10 is mounted on the imaging unit 20.
  • the camera module 41 is a camera module in which the lens barrel 3 is inserted into the lens holder 11 from the imaging element 22 side.
  • the inner diameter of the minimum inner diameter portion 11b is larger than the outer diameter of the maximum outer diameter portion 3a. It may be small. That is, the side surface of the minimum inner diameter portion 11b and the side surface of the maximum outer diameter portion 3a that are parallel to the optical axis may be arranged so that the side surface of the minimum inner diameter portion 11b is located on the inner side when viewed in plan.
  • Each configuration of the camera module 41 is a suitable example when the minimum inner diameter portion 11b is provided at a position not facing the maximum outer diameter portion 3a.
  • FIG. 6 shows the camera module in the present embodiment, and is a central sectional view showing a modification of the lens barrel with respect to FIG.
  • FIG. 7 is a top view showing the structure of the lens barrel of FIG.
  • FIG. 8 is a side view of the lens barrel of FIG. 7 as viewed in the direction of the arrow.
  • the outer diameter of the maximum outer diameter portion 3 a of the lens barrel 3 is smaller than the inner diameter of the minimum inner diameter portion 11 b of the lens holder 11, particularly assuming a front insertion structure.
  • the degree of freedom of displacement in the width direction of the camera module (direction perpendicular to the optical axis of the optical unit 1) with the lens barrel 3 inserted into the lens holder 11 is shown in FIG. It is likely to be even larger than shown. This occurs because there is no overlap between the maximum outer diameter portion 3a and the minimum inner diameter portion 11b.
  • a slight overlap portion may be provided between the maximum outer diameter portion 3a and the minimum inner diameter portion 11b.
  • the camera module 42 having an overlap portion between the maximum outer diameter portion 3a and the minimum inner diameter portion 11b has a degree of freedom of displacement in the width direction of the camera module when the lens barrel 3 is inserted into the lens holder 11. It can be reduced as compared with the camera module 41.
  • the outer shape of the lens barrel 3 in the camera module 42 has a structure as shown in FIGS.
  • a portion of the outer wall of the lens barrel 3 that cannot face the smallest inner diameter portion 11 b (for example, a substantially lower half) has a maximum outer diameter portion 3 a over the entire outer periphery of the lens barrel 3.
  • a portion of the outer wall of the lens barrel 3 that can be opposed to the minimum inner diameter portion 11b (for example, substantially upper half) is formed with a plurality of notches 3c in which the maximum outer diameter portion 3a is notched in the optical axis direction of the optical unit 1. Has been.
  • the part of the largest outer diameter part 3a provided in the part which can oppose the smallest inner diameter part 11b in the outer wall of the lens barrel 3 is an overlap part with the smallest inner diameter part 11b.
  • the notch 3c can function as an adhesive reservoir for the adhesive 4, and the adhesive strength by the adhesive 4 can be increased.
  • the lens barrel 3 may have a notch 3c formed in a portion of the maximum outer diameter portion 3a facing the minimum inner diameter portion 11b.
  • the configuration of the camera module 42 is a suitable example when the minimum inner diameter portion 11b is provided at a position facing part or all of the maximum outer diameter portion 3a.
  • FIG. 9 is an enlarged view of the vicinity of the broken line ellipse shown in FIGS. 4 and 6, showing a state in which the adhesive is filled in the gap between the lens barrel and the lens holder in the camera module of FIG. 4 or FIG.
  • the lens barrel 3 it is possible to fix the lens barrel 3 to the lens holder 11 by applying the adhesive 4 to a part of the top side of the lens barrel 3.
  • the strength of the adhesive 4 is improved when the gap between the lens barrel 3 and the lens holder 11 is filled.
  • the adhesive 4 filled in the gap between the lens barrel 3 and the lens holder 11 is formed into a bent structure so that the adhesive 4 is bent.
  • the adhesive 4 serves as a wedge.
  • a strong force that shears the adhesive 4 itself is required, and the risk of the adhesive 4 peeling off can be reduced.
  • the adhesive 4 that bonds the lens barrel 3 to the lens holder 11 may be filled in a gap between the lens barrel 3 and the lens holder 11 in a bent state.
  • An overlap portion between the maximum outer diameter portion 3a of the lens barrel 3 and the minimum inner diameter portion 11b of the lens holder 11 may be partially provided when viewed from the optical axis direction of the optical portion 1 by providing a notch 3c or the like. The meaning will be explained.
  • the mounting height and inclination of the lens barrel 3 are regulated based on the jig. In other words, even if the cylindrical hole (inner wall) for attaching the lens barrel 3 to the lens holder 11 is inclined, the lens barrel 3 is not affected by this inclination as long as the inclination is within an allowable range. A camera module with a small tilt can be realized.
  • the allowable tilt limit of the lens holder 11 will be described. Basically, only the position of the maximum outer diameter portion 3a of the lens barrel 3 is different from the example of FIG.
  • the diameter of the maximum outer diameter portion 3a is D E
  • the width of the overlap portion between the maximum outer diameter portion 3a and the minimum inner diameter portion 11b (in the optical axis direction of the optical unit 1) is H
  • ⁇ 1 is 5.71 deg.
  • the lens barrel 3 can be fixed on the basis of the jig without adding the tilt of the lens barrel 3 due to the tilt of the lens holder 11, so that the low tilt tilt is achieved.
  • the gap to be considered is two narrow gaps, a side near the top surface and a side near the image sensor.
  • the inner diameter of the minimum inner diameter portion 11b (the hole diameter) and D I it the outer diameter of the lens barrel 3 of a portion facing the D E, both walls
  • the width of the portion where the two are close to each other may be H.
  • the outer diameter of the maximum outer diameter portion 3a is set to D E
  • the inner diameter of the lens holder 11 at the opposite portion is set to D I.
  • the width of the portion (the optical axis direction of the optical unit 1) may be H.
  • the shape of the maximum outer diameter portion 3a is desirably a shape as shown in FIG.
  • the occupying range of the maximum outer diameter portion 3a on the outer wall of the lens barrel 3 includes the entire outer peripheral range of the imaging lens 2m and is slightly larger than the outer peripheral range.
  • the thickness equivalent to the thickness of the camera module 40 in the width direction is also on the top surface side of the step 3b (see FIG. 3). Try to remain. If the thickness on the top surface side is too large, the width of the step 3b in the optical axis direction becomes too large, and the tilt range allowed in the camera module 40 becomes narrow.
  • FIG. 12 is a central cross-sectional view of the camera module 43 according to the fifth embodiment.
  • a camera module 43 shown in FIG. 12 includes a lens holder 11 that is a modification of the lens holder 11 of the camera module 40 shown in FIG.
  • the adhesive 4 for fixing the lens barrel 3 to the lens holder 11 is a depression on the top surface side of the lens barrel 3 (the imaging lens 2m ′ of the side wall of the lens barrel 3).
  • An inclined surface connecting the side surface of the portion surrounding the outer periphery of ′ and the side surface of the upper portion of the maximum outer diameter portion 3 e) is arranged by application or the like so as to contact the lens holder 11.
  • the adhesive 4 is not applied only to the above-described depression on the top surface side of the lens barrel 3 but is injected into the gap between the side surface of the lens barrel 3 and the lens holder 11. Is preferable.
  • the adhesive 4 can be applied to the side surface (maximum outer diameter portion 3e) of the lens barrel 3 only by applying the adhesive 4 to the concave portion on the top surface side of the lens barrel 3. May not penetrate into the gap between the lens holder 11 and the upper part).
  • the minimum inner diameter portion 11 b of the lens holder 11 is provided at a position facing the upper portion of the maximum outer diameter portion 3 a of the lens barrel 3.
  • the lower portion of the inner wall of the lens holder 11 is a small-diameter portion protruding inward by providing the minimum inner diameter portion 11b.
  • the upper part is a large-diameter part (minimum inner-diameter part) whose inner diameter is larger than the minimum inner-diameter part 11b by providing a step so that the diameter spreads outward from the lower part. .
  • the upper portion of the maximum outer diameter portion 3e which is a small diameter portion of the lens barrel 3 and the large diameter portion which is an upper portion of the lens holder 11 are provided to face each other.
  • a concave portion is formed by the side surface of the upper portion of the maximum outer diameter portion 3 e of the lens barrel 3 and the upper portion of the inner wall of the lens holder 11.
  • the bottom of the recess is formed by a step between the upper portion of the maximum outer diameter portion 3a and the maximum outer diameter portion 3e, and a step between the minimum inner diameter portion 11b of the lens holder 11 and the upper portion of the inner wall of the lens holder 11. It is configured.
  • the width of the gap on the top surface side of the lens barrel 3 and the lens holder 11 can be increased, and the nozzle for applying the adhesive 4 is put in or close to the gap (the concave portion). And the applied adhesive 4 easily penetrates into the gap.
  • a step is also provided on the lens holder 11 side, so that foreign matter falling along the inner wall of the lens holder 11 can be stopped by this step. Increases nature.
  • the adhesive 4 is easily applied to the gap between the lens barrel 3 and the lens holder 11. For this reason, by applying the adhesive 4 over the entire circumference of the lens barrel 3, foreign matter enters through the gap between the lens barrel 3 and the lens holder 11 and dropping into the camera module 43. It becomes easy to prevent.
  • a camera module includes an optical unit including a plurality of imaging lenses and a lens barrel that holds the plurality of imaging lenses therein, and the lens barrel. And a lens driving device for driving the lens holder integrally with the lens barrel and the plurality of imaging lenses.
  • a camera module including an image sensor for receiving light, wherein the lens barrel is slidable inside the lens holder when the lens barrel is not fixed to the lens holder.
  • the maximum outer diameter portion of the lens barrel is arranged on the outer periphery of the imaging lens having the largest lens diameter, it is possible to eliminate a useless space and to realize downsizing of the camera module. Become.
  • the value obtained by adding the smallest possible lens barrel thickness to the outer diameter of the largest imaging lens This is the minimum value of the outer diameter of the lens barrel.
  • the maximum outer diameter portion which is a band-like projection
  • the outer diameter of the lens barrel outside the maximum outer diameter portion is naturally smaller than the outer diameter of the lens barrel at the maximum outer diameter portion. .
  • the maximum outer diameter portion is not provided on the outer periphery of the imaging lens having the largest lens diameter, the outer diameter of the maximum outer diameter portion is larger than the minimum value of the outer diameter of the lens barrel.
  • the maximum outer diameter portion is provided on the outer periphery of the imaging lens having the largest lens diameter.
  • the conventional technique needs to provide a maximum outer diameter portion having a larger diameter, and in the present invention, A maximum outer diameter portion having the same diameter may be provided.
  • the range in which the maximum outer diameter portion is provided is a part of the maximum outer diameter portion, and there is no problem as long as it includes at least the outer periphery of the imaging lens having the largest lens diameter.
  • the maximum outer diameter portion may be provided so as to protrude to the outer periphery of the imaging lens whose lens diameter is not maximum.
  • the occupation range of the maximum outer diameter portion of the outer wall of the lens barrel needs to be equal to or larger than the outer peripheral range of the imaging lens having the largest lens diameter. The barrel may become unacceptably thin, which is undesirable.
  • the lens holder of the camera module includes a minimum inner diameter portion that contacts the maximum outer diameter portion when the lens barrel slides inside the lens holder, and the minimum inner diameter portion. It is preferable that a minimum inner diameter portion having a larger inner diameter is provided, and the minimum inner diameter portion is provided at a position facing the maximum outer diameter portion.
  • the minimum inner diameter portion is preferably arranged so as to be opposed.
  • the width of the gap can be made large, and the adhesive can be easily disposed in the gap, so that the strength by bonding can be improved. Furthermore, entry of foreign matter can be prevented.
  • the lens holder includes a minimum inner diameter portion that contacts the maximum outer diameter portion when the lens barrel slides inside the lens holder, and the minimum inner diameter. It is preferable that the minimum inner diameter portion is provided at a position that does not face the maximum outer diameter portion.
  • the cross-sectional shape of the gap between the lens holder and the lens barrel has a bent step shape. For this reason, it is not possible to look directly into the bottom surface side from the top surface side of the camera module. Even if a foreign object or the like enters from the top surface side, a glass substrate that generally protects the image sensor ( It is less likely to drop directly onto the (infrared cut glass) surface.
  • the camera module according to one aspect of the present invention is a camera module in which the lens barrel is inserted from the subject side into the lens holder, and the inner diameter of the minimum inner diameter portion is an outer diameter of the maximum outer diameter portion. Larger is preferred.
  • the gap shape between the lens holder and the lens barrel can be bent to have a stepped shape, which reduces the risk of falling foreign matter or the like. It becomes possible.
  • the camera module according to an aspect of the present invention is a camera module in which the lens barrel is inserted into the lens holder from the image sensor side, and the inner diameter of the minimum inner diameter portion is the maximum outer diameter portion. It is preferable that the outer diameter is smaller.
  • the cross-sectional shape of the gap between the lens holder and the lens barrel can be a stepped shape that is bent. Furthermore, since the level difference can be increased as compared with the front insertion structure, it is possible to further reduce the risk of falling foreign matter or the like.
  • the lens holder includes a minimum inner diameter portion that contacts the maximum outer diameter portion when the lens barrel slides inside the lens holder, and the minimum inner diameter. It is preferable that the minimum inner diameter portion is provided at a position facing a part of the maximum outer diameter portion.
  • the maximum outer diameter portion of the lens barrel and the minimum inner diameter portion of the lens holder can be partially overlapped, and the center position when the lens barrel is fitted into the lens holder is determined. Accuracy can be increased.
  • the lens barrel has a notch formed in a portion of the maximum outer diameter portion facing the minimum inner diameter portion.
  • the notched portion can function as an adhesive reservoir, and a stepped shape that is bent in the cross-sectional shape of the gap between the lens holder and the lens barrel can be formed. As a result, it is possible to reduce the risk of falling foreign matters while increasing the adhesive strength.
  • the camera module according to an aspect of the present invention further includes an adhesive that bonds the lens holder and the lens barrel, and the adhesive is bent and the lens barrel and the lens holder are in a bent state. It is preferable that the gap between the two is filled.
  • the cross-sectional shape of the gap between the lens holder and the lens barrel is not only bent and has a stepped shape, but the gap is filled with an adhesive so that the adhesive strength can be increased. It becomes.
  • an electronic device includes the camera module according to any one aspect of the present invention.
  • the lens barrel maximum outer diameter portion is arranged on the outer periphery of the imaging lens having the largest lens diameter, thereby eliminating wasted space, reducing the size of the camera module, and thus reducing the size of the electronic device. Can be realized.
  • the present invention can be suitably used for camera modules mounted on various electronic devices including communication devices such as portable terminals.
  • the camera module can also be applied to a camera module having an autofocus function and a camera shake correction function, or a general camera module having no such function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)

Abstract

 レンズバレル(3)は、極大外径部(3e)と、最大外径部(3a)とを備えており、最大外径部(3a)は、レンズ径の最も大きな撮像レンズ(2m)の外周を含む、極大外径部(3e)の一部の領域に設けられている。これにより、レンズバレルの取り付けを高精度にしつつ、さらなる小型化を可能とする。

Description

カメラモジュール、および電子機器
 本発明は、携帯電話等の電子機器に搭載されるオートフォーカス機能、さらには手振れ補正機能を備えたカメラモジュール、および電子機器に関するものである。本発明では、ねじによるフォーカス調整を実施しないカメラモジュールにおいて、レンズバレルのねじをなくしたことによる省スペース効果を最大限に発揮すると共に、ねじなしでレンズバレルをレンズホルダーに固定するときの強度を高めることが可能になる。
 近年の携帯電話は、携帯電話内にカメラモジュールを組み込んだ機種が大半を占めている。これらのカメラモジュールは、携帯電話内に収納しなければならないため、デジタルカメラと比べて小型および軽量化に対する要求が大きい。
 上記カメラモジュールの中で、レンズ駆動装置によってオートフォーカス機能を発揮するタイプのものが、携帯電話等の電子機器に搭載される例も増加してきている。なお、レンズ駆動装置には、ステッピングモータを利用するタイプ、圧電素子を利用するタイプ、VCM(Voice Coil Motor:ボイスコイルモータ)を利用するタイプ等、様々なタイプが存在し、既に市場に流通している。
 一方、オートフォーカス(AF)機能を有するカメラモジュールが当たり前になってきた状況においては、次なる特徴出しの機能として、手振れ補正機能が注目されている。手振れ補正機能は、デジタルカメラやムービーでは世の中で広く採用されているが、サイズ面の問題等があり、携帯電話への採用例は少ない。しかしながら、小型化が可能な新規の手振れ補正機構の構造の提案例も増加しつつあり、今後は、手振れ補正機能を搭載した携帯電話用カメラモジュールが主流になっていくと予想される。
 オートフォーカス機能を有するカメラモジュールにおいて、小型化および低チルト化を実現するための有力技術として、特許文献1に開示されている技術が挙げられる。特許文献1では、レンズバレルおよびレンズホルダーの双方に設けられていたフォーカス調整用のねじ構造を廃止し、ねじ山分のスペースを省略する技術が提案されている。
 すなわち、特許文献1に開示されているカメラモジュールは、図10に示すように、AF機能を備えたカメラモジュール100である。カメラモジュール100は、光学部101と、光学部101を光軸方向に駆動するためのレンズ駆動装置102と、レンズ駆動装置102を載置している撮像部103とから構成されている。撮像部103は、センサーカバー部104と基板105とが積層されて構成されている。光学部101は、複数の撮像レンズ106と、撮像レンズ106を保持するレンズバレル107とから構成されている。レンズ駆動装置102は、レンズバレル107を保持し、光学部101の光軸方向に駆動されるレンズホルダー108と、レンズホルダー108を光学部101の光軸方向に可動であるように支持する上下2枚の板バネ109aおよび109bと、レンズホルダー108に一体的に固定されたAFコイル110と、固定部を形成するヨーク111と、ヨーク111の内壁に固定され、AFコイル110との間で電磁力を作用させるマグネット112と、ヨーク111の天面側に板バネ109aの保護等を目的に配置されるカバー114と、ヨーク111の底面側に配置され、レンズ駆動装置102全体を支持しているベース115等から構成されている。センサーカバー部104は、IR(赤外線)カットフィルター120、撮像素子121、センサーカバー122等から構成されており、撮像素子121は、基板105上に載置されている。
 特許文献1に開示されているカメラモジュール100では、レンズバレル107の外周およびレンズホルダー108の内周のそれぞれに、ねじが形成されていない。また、カメラモジュール100は、レンズバレル107が、センサーカバー122の天面側に突き当てられて位置決めされる、いわゆるフォーカス調整レス構造となっている。これにより、カメラモジュール100では、ねじ山分の小型化が可能となる。
 また、特許文献1に開示されているカメラモジュール100では、レンズバレル107の外周およびレンズホルダー108の内周は、ほぼ全範囲に亘って径が同一の、換言すればフラットな、円筒形状で説明されている。
 一方、特許文献1に開示されているカメラモジュール100は、オートフォーカス機能を有しているが、フォーカス調整レス構造は、オートフォーカス機能に加えて、手振れ補正機能をさらに有するカメラモジュールにも適用できる。オートフォーカス機能に加えて手振れ補正機能を備えたカメラモジュールにおけるフォーカス調整レス構造については、特許文献2の中で説明されている。この中では、レンズバレルの外形がフラットな円筒形状ではなく、帯状に最大外径部を有する段差構造についても言及している。
 なお、本願明細書においてレンズバレルの「(帯状の)最大外径部」とは、レンズバレルの高さ方向(光学部の光軸方向)および幅方向(光学部の光軸に対して垂直な方向)にある程度の厚みを有しており、かつ、レンズバレルの側面を囲むように設けられた突起部分である。また、この最大外径部においては、レンズバレルの幅方向における、レンズバレルの外径が最大となっている。
 ここで、特許文献2に開示されているように、レンズバレルの外形を段差構造とすることの意味について、図11の(a)および(b)を参照して説明する。
 特許文献2に開示されているカメラモジュールは、図11の(a)の要部断面図に示すとおり、最大外径部分が全範囲に存在する訳でなく一部に限定され、他の部分は若干、径を小さくして形成されている。すなわち、図11の(a)に示すカメラモジュールは、レンズバレル151に帯状の最大外径部151aを有している。ここで、レンズバレル151における最大外径部151aの外径をDとし、最大外径部151aの厚みをHとし、レンズホルダー152の円筒内径をDとするとき、レンズホルダー152における、センサーカバー(擬似センサーカバー153)表面に対する傾斜角θは、図11の(b)におけるθとθとの差として表され、
  θ≦tan-1(H/D)-cos-1(D/√(D +H))
を満たすように設定されている。
 すなわち、レンズバレル151をレンズホルダー152の円筒穴内で摺動させながらレンズホルダー152に挿入する際、レンズホルダー152の円筒穴の傾き(チルト)を所定の範囲内に抑えることにより、レンズバレル151が該円筒穴の傾きに左右されることなく、センサーカバー(擬似センサーカバー153)を基準としてレンズバレル151を取り付けることが可能となる。
 言い方を変えると、Hの値が大きすぎると、レンズホルダー152のチルトに許容される値が小さくなり、高精度のレンズホルダー152の固定が困難になる。
日本国公開特許公報「特開2010-134409号公報(2010年6月17日公開)」 国際公開特許公報「国際公開第2012/108247号(2012年8月16日国際公開)」
 しかしながら、特許文献1に開示されているカメラモジュール、および特許文献2で説明されているレンズバレルの段差構造は、以下の問題点を有している。
 まず、特許文献1に開示されているカメラモジュールは、レンズバレルの外壁に部分的な最大外径部を構成するための段差構造自体を有しておらず、レンズバレルの外形がフラットな円筒構造である。このため、特許文献2に係る説明にて上述しているとおり、レンズホルダーにおいて許容されるチルトの範囲が狭くなる。この結果、レンズホルダーのチルトに起因して、レンズバレルが傾いて取り付けられる可能性が高いという問題が発生する。
 一方、特許文献2の例では、レンズバレルに段差構造を設け、かつレンズバレルの最大外径部を帯状にしているため、レンズホルダーにおいて許容されるチルトの範囲を広くすることが可能となる。
 しかしながら、特許文献2で説明されているレンズバレルの段差構造は、帯状の最大外径部が、レンズバレルの天面に近い部分に設けられている。通常、レンズバレルの内部にて保持される複数の撮像レンズは、天面側(被写体側)のものほどレンズ径が小さい。この結果、特許文献2で説明されている段差構造は、レンズ径の小さい部分に対応するレンズバレル部分に、必要以上の肉厚を持たせて、最大外径部を形成している。つまり、特許文献2に係る帯状の最大外径部は、必要以上にレンズバレルの筒部分を肉厚にしており、小型化の目的からするとデメリットな部分になってしまっている。
 本発明は、上記の問題に鑑みて為されたものであり、その目的は、レンズバレルの取り付けを高精度にしつつ、さらなる小型化を可能とするカメラモジュール、および電子機器を提供することにある。
 本発明のカメラモジュールは、上記の問題を解決するために、複数の撮像レンズと、該複数の撮像レンズを内部に保持するレンズバレルとを備えている光学部と、上記レンズバレルとの相対位置の調整後、当該レンズバレルが固定されるレンズホルダーを備えており、かつ、該レンズホルダーを該レンズバレルと一体的に駆動させるレンズ駆動装置と、上記複数の撮像レンズを通過した光を受光する撮像素子とを備えているカメラモジュールであって、上記レンズバレルは、上記レンズホルダーに固定されていないとき、上記レンズホルダーの内部を摺動可能であり、上記レンズバレルは、上記光学部の光軸方向に延伸する円筒形状であり、レンズ径が2番目に大きな上記撮像レンズの外周を覆う極大外径部と、上記極大外径部に設けられた突起である最大外径部とを備えており、上記最大外径部は、レンズ径の最も大きな上記撮像レンズの外周を含む、上記極大外径部の一部の領域に設けられていることを特徴としている。
 本発明のカメラモジュールによれば、レンズバレルの取り付けを高精度にしつつ、さらなる小型化を可能とすることができるという効果を奏する。
本発明におけるカメラモジュールの実施の一形態を示すものであって、特にレンズバレルおよびレンズホルダーの構造を明らかにするための中央断面図である。 図1に示すカメラモジュールにおいて、部品公差の関係でレンズバレルとレンズホルダーとの間に隙間が生じた状態を示す中央断面図である。 図2に示すカメラモジュールにおけるレンズバレルおよびレンズホルダーの、図2に示す破線楕円近傍の構造を示す拡大図である。 本発明におけるカメラモジュールの実施の別形態を示すものであって、レンズホルダーの形状の変形例を示す中央断面図である。 図4に示すカメラモジュールにおけるレンズバレルおよびレンズホルダーの、図4に示す破線楕円近傍の構造を示す拡大図である。 本発明におけるカメラモジュールの実施のさらなる別形態を示すものであって、レンズバレルの外形の変形例を示す中央断面図である。 図6に示すカメラモジュールにおける、レンズバレルの構造を示す上面図である。 図7に示すレンズバレルの矢視方向の側面図である。 図4あるいは図6のカメラモジュールにおいて、レンズバレルとレンズホルダーとの隙間に接着剤が充填された状態を示す、図4および図6に示す破線楕円近傍の拡大図である。 従来のカメラモジュールの構造を示す中央断面図である。 従来のカメラモジュールにおけるレンズバレルの構造を示すとともに、チルトに対する考え方を説明するための要部拡大図である。 本発明におけるカメラモジュールの実施の別形態を示すものであって、レンズホルダーの形状の変形例を示す中央断面図である。
 〔実施の形態1〕
 本発明の一実施の形態について、図1~図3に基づいて説明すれば、以下のとおりである。
 なお、本実施の形態のカメラモジュールに関する説明は、手振れ補正機能付きのカメラモジュールを想定したものとなっているが、これに限定される訳ではない。すなわち、本実施の形態のカメラモジュールの構成は、手振れ補正機能の無いオートフォーカス機能付きカメラモジュールに適用されても構わない。
 (カメラモジュールの構成)
 最初に、本実施の形態のカメラモジュールの構成について、図1に基づいて説明する。ここで、図1は、本実施の形態におけるカメラモジュールを示すものであって、特にレンズバレルおよびレンズホルダーの構造を明らかにするための中央断面図である。
 本実施の形態のカメラモジュール40は、カメラ付携帯電話等の電子機器に用いられるカメラモジュールである。カメラモジュール40は、撮像部20と、カバー17内に収容された光学部1と、光学部1を駆動するレンズ駆動装置10とからなっている。なお、撮像部20は、カメラモジュール40の下部に設けられた矩形の部材である。カバー17は、撮像部20の上方に被せられた箱状の部材である。カバー17は、その天面の中央部分に、光学部1に設けられた撮像レンズ2(後述)を露出させるための開口17aが形成されている。
 なお、便宜上、以下の説明において、カメラモジュール40の上下に関し、光学部1側(すなわち、被写体側)をカメラモジュール40の上方、撮像部20側(すなわち、撮像素子22側)をカメラモジュール40の下方として説明する。
 光学部1は、図1に示すとおり、複数の撮像レンズ2と、これら複数の撮像レンズ2を内部に保持するレンズバレル3とからなっている。
 複数の撮像レンズ2は、レンズ径が異なる複数の撮像レンズからなる。複数の撮像レンズ2は、一例として、最も大きなレンズ径を有する撮像レンズ2mと、2番目に大きなレンズ径を有する撮像レンズ2m´と、最もレンズ径が小さな撮像レンズ2m´´との3枚の撮像レンズからなる。撮像レンズ2m表面に撮像レンズ2m´が配されており、撮像レンズ2m´表面に撮像レンズ2m´´が配されている。このように、複数の撮像レンズ2は、レンズ径が、カメラモジュール40の下方から上方にかけて順に小さくなるように配された複数の撮像レンズ2m、撮像レンズ2m´、及び撮像レンズ2m´´を有する。
 なお、複数の撮像レンズ2の枚数は複数であればよく3枚に限定されるものではない。複数の撮像レンズ2は2枚の撮像レンズから構成されてもよいし、4枚以上の撮像レンズから構成されてもよい。
 また、光学部1の周りには、レンズバレル3が接着剤4により接着固定されていることでレンズバレル3を内部に保持するレンズホルダー11が設けられている。そして、レンズ駆動装置10は、レンズホルダー11を備えており、光学部1を駆動させるためのものである。
 レンズバレル3は、接着剤4によりレンズホルダー11と固定される前は、レンズホルダー11内に設けられた円柱形状の開口部の延伸方向に沿って、レンズホルダー11内を摺動可能となっている。そして、レンズバレル3と、レンズホルダー11との相対位置が調整された後、接着剤4によって、レンズバレル3は、レンズホルダー11と固定される。
 また、レンズ駆動装置10の下方に設けられた撮像部20は、基板21と、撮像素子22と、センサーカバー23と、ガラス基板24とを備えている。撮像素子22は、光学部1に設けられた複数の撮像レンズ2を通過した光を受光し、受光した光の光電変換を行うものであり、基板21上に載置されている。また、センサーカバー23およびガラス基板24は、撮像素子22の特に受光部(図示しない)を覆い保護するものである。これらの、基板21、撮像素子22、センサーカバー23、およびガラス基板24は、カメラモジュール40の下部からこの順に、光学部1(より具体的には、複数の撮像レンズ2からなる組みレンズ)の光軸方向に積層されている。
 レンズホルダー11は、上述したとおり、光学部1のレンズバレル3が接着剤4により固定されている、レンズ駆動装置10部分である。また、レンズホルダー11は、上下2枚のAF(オートフォーカス)ばね12aおよび12bにより、中間部材13に対して光学部1の光軸方向に可動するように支持されている。そして、レンズホルダー11の外周部分には、AFコイル14が固定されている。中間部材13には、AF駆動用の永久磁石と手振れ補正用の永久磁石とが固定されており、本実施の形態では、これら2種類の永久磁石を共通化した、兼用の永久磁石15が固定されている。
 また、レンズホルダー11の下部には突起部11aが形成されている。この突起部11aは、光学部1の光軸方向への可動範囲における、無限遠側のメカ端(同可動範囲における、撮像素子22側の基準位置)にて、中間部材13に当接している。中間部材13は、後述する固定部に対して、4本の弾性ワイヤー16(図示されているのは2本)により、光学部1の光軸と垂直な2軸方向に可動であるように支持されている。これによって、中間部材13、永久磁石15、AFばね12aおよび12b、レンズホルダー11、AFコイル14、レンズバレル3、および撮像レンズ2が、光学部1の光軸と垂直な方向に一体的に駆動される。
 上記固定部は、カバー17、OIS(Optical Image Stabilizer:光学的手振れ補正機構)コイル18、およびベース19等から構成されている。ベース19は、中央部分に開口19aが形成されている。そして、光学部1が組み込まれた状態で、レンズバレル3の一部が、開口19aにまで入り込んでいる。すなわち、レンズバレル3の下端面から撮像素子22の受光部までの距離(フランジバック)を十分に大きくすることが困難なため、このような構成になる場合が多い。
 このとき、レンズバレル3とベース19との間の隙間を適当な値に設定しなければ、落下衝撃等を受けてレンズホルダー11が変位した場合に、レンズバレル3とベース19とが衝突し、レンズバレル3に多大な衝撃力が加わる虞がある。そこで、レンズホルダー11が最大変位した場合でも、レンズバレル3が直接ベース19と当接しないように、レンズバレル3とベース19との隙間の大きさが設定されている。
 次に、センサーカバー23は、レンズ駆動装置10が搭載される撮像部20の部材である。センサーカバー23は、下部に設けられた突起23aの先端が基準面Sとなっており、この基準面Sが撮像素子22に当接している。そして、センサーカバー23は、撮像素子22の全体を覆うように撮像素子22に載置されている。センサーカバー23における撮像レンズ2側には開口23bが形成されている。この開口23bは、赤外線カット機能を備えたガラス基板24によって塞がれている。
 撮像素子22は、基板21上に搭載されている。基板21とセンサーカバー23との間には、公差によって僅かな隙間が生じる場合があるが、この隙間は接着剤25により塞がれた状態で、基板21とセンサーカバー23とが接着固定される。
 本実施の形態では、レンズバレル3およびレンズホルダー11の双方にねじが形成されていない。そして、レンズホルダー11が無限遠側のメカ端に位置する状態で、レンズバレル3が所定の位置となるように固定される。レンズバレル3とセンサーカバー23との間には、少なくとも10μm程度の隙間が形成されている。レンズバレル3とセンサーカバー23との間に隙間を形成することにより、光学部1の光軸に垂直な方向にレンズバレル3が駆動された場合においても、レンズバレル3とセンサーカバー23とが接触することはなく、安定した手振れ補正動作が可能となる。またこれにより、擦れによる異物発生も無くなる。
 このように、カメラモジュール40は、複数の撮像レンズ2と、複数の撮像レンズ2を内部に保持するレンズバレル3とを備えている光学部1と、レンズバレル3が固定されているレンズホルダー11を備えており、かつ、レンズホルダー11をレンズバレル3と一体的に駆動させるレンズ駆動装置10と、複数の撮像レンズ2を通過した光を受光する撮像素子22とを備えていると解釈することができる。
 (カメラモジュールのAF機能および手振れ補正機能)
 上記構成を有する本実施の形態のカメラモジュール40において、焦点調整のために光学部1を光軸方向に進退移動させる場合、カメラモジュール40は下記のように動作する。すなわち、カメラモジュール40を搭載する携帯電話またはデジタルカメラ等の制御部(図示しない)からの駆動指示に応じて、レンズ駆動装置10のAFコイル14に電流が流される。これにより、AFコイル14に流れる電流と永久磁石15から発生する磁界とが作用することによって、AFコイル14を光学部1の光軸方向に移動させる推力が発生する。この結果、AFばね12aおよび12b、ならびにレンズホルダー11を介して、光学部1が光軸方向に進退移動する。こうして、光学部1をオートフォーカス(AF)制御することができる。つまり、AFコイル14、永久磁石15、AFばね12aおよび12b、ならびにレンズホルダー11は、オートフォーカス手段としての機能を有している。
 また、カメラモジュール40において、OISにより、光学部1を光軸と垂直な方向に一体的に駆動させる場合、カメラモジュール40は下記のように動作する。すなわち、カメラモジュール40を搭載する携帯電話またはデジタルカメラ等の制御部(図示しない)からの駆動指示に応じて、レンズ駆動装置10のOISコイル18に電流が流される。これにより、OISコイル18に流れる電流と永久磁石15から発生する磁界とが作用することによって、OISコイル18を光学部1の光軸と垂直な方向に移動させる推力が発生する。この結果、弾性ワイヤー16、中間部材13、AFばね12aおよび12b、ならびにレンズホルダー11を介して、光学部1が光軸と垂直な方向に進退移動する。こうして、光学部1を手振れ補正制御することができる。つまり、OISコイル18、永久磁石15、弾性ワイヤー16、中間部材13、AFばね12aおよび12b、ならびにレンズホルダー11は、手振れ補正手段としての機能を有している。
 (光学部のレンズホルダーへの取り付け位置)
 次に、撮像レンズ2およびレンズバレル3からなる光学部1における、レンズ駆動装置10のレンズホルダー11への取り付け位置について説明する。
 撮像レンズ2のレンズホルダー11への取り付け位置は、無限遠側のメカ端の位置において合焦するように、撮像素子22の受光部との距離が設定されているのが望ましい。
 しかしながら、レンズバレル3に対する撮像レンズ2の取り付け位置、およびセンサーカバー23の厚さ等に公差が存在し、どうしても、カメラモジュール40を構成する各部材単位で、取り付け位置のばらつきが存在する。このため、フォーカス調整を行わずに、各部材の位置決めを行おうとした場合には、各部材の取り付け位置に誤差が残存する。このような誤差が存在していても、カメラモジュール40においては、レンズ駆動装置10のストローク範囲内で、合焦位置を見つける必要がある。このことから、合焦位置の設計値の中心よりも若干、撮像素子22側に寄った位置に撮像レンズ2が位置するように、レンズバレル3をレンズホルダー11に取り付ける必要がある。このときに、撮像素子22側にずらした量を、オーバーインフと呼ぶ。オーバーインフを大きく設定すれば、レンズ駆動装置10のストロークがその分だけ大きくなるため、オーバーインフは必要最小限に留める必要がある。
 上記の様々な公差を累計すると、25μm程度のオーバーインフが適当となるが、オーバーインフの値は、部品の製造公差および組み立て公差に影響されるため、実態に合った最小限の値に設定することが望ましい。カメラモジュール40では、厚さに対する精度を十分高めたセンサーカバー23を用い、基準面Sを撮像素子22に対して直接突き当て、センサーカバー23の上面(レンズ駆動装置10の下面)に対して高精度にレンズバレル3を位置決めする。これにより、25μm程度の小さいオーバーインフを実現しているとも言える。
 ここで、図1では、無限遠の被写体に対する合焦位置よりも25μmだけ撮像素子22側に寄った位置にレンズバレル3が取り付けられ、かつその状態でセンサーカバー23とレンズバレル3との間に隙間が存在しているものとして、以降の説明を行う。
 なお、レンズバレル3は、レンズホルダー11に対して位置決めされた後、接着剤4により固定されている。接着剤4が不要な部分へと流れ出さないように、レンズバレル3上に接着剤4を塗布する位置よりも、レンズホルダー11に接着剤4を塗布する位置を含む壁(図1では、レンズホルダー11の内壁)の頂部が高くなるように構成されている。該構成の具体例としては、レンズホルダー11の該壁をカメラモジュール40の天面側に十分延伸する構成であっても構わないし、レンズバレル3側に接着剤4塗布用の切り欠き等を設ける構成であっても構わない。
 また、レンズホルダー11における接着剤4を塗布する位置を含む壁を天面側に延伸する場合、レンズホルダー11の壁の全周囲に亘って延伸させることは必須でなく、実際に接着剤4を塗布する位置のみを延伸させても構わない。接着剤4は通常、レンズバレル3の外周近傍の4点程度に塗布される。レンズホルダー11の壁が全周囲でなく一部のみに延伸される場合、この壁の強度が弱くなる虞がある。レンズホルダー11の壁の強度が弱い場合、カメラモジュール40の落下衝撃等を受けて、この壁に直接衝撃力が加わった際の耐性が十分でなくなる虞がある。そこで、レンズホルダー11の壁に直接衝撃力が加わらないように、レンズホルダー11の可動範囲内において、この壁とカバー17とが衝突しないように、両者の隙間を設定しておくことが望ましい。
 (カメラモジュールの製造方法)
 次に、本実施の形態のカメラモジュール40の製造方法について、簡単に説明する。
 カメラモジュール40は、上述したとおり、レンズバレル3の外周にねじが設けられておらず、レンズバレル3を収容・保持すべくレンズホルダー11に設けられた円筒状の穴の内部を、レンズバレル3が摺動可能になっている。従って、レンズバレル3が所望の高さになるように、レンズバレル3をレンズホルダー11に対して位置決めする必要がある。
 レンズバレル3の高さの位置決めは、治具(図示しない)を用いて行うとよい。レンズ駆動装置10が撮像部20に取り付けられる前の段階で、レンズ駆動装置10を治具上に搭載し、治具にてレンズバレル3の高さ位置を決めた状態で、レンズバレル3をレンズホルダー11に接着固定する。その後、治具を取り除き、レンズバレル3が固定されたレンズ駆動装置10を、撮像部20に搭載する。
 このように、カメラモジュール40は、レンズホルダー11に対してレンズバレル3が固定される前は、レンズホルダー11の内部をレンズバレル3が摺動可能である。
 (レンズバレルおよびレンズホルダーの構造)
 レンズバレル3がレンズホルダー11に対して、固定される前の段階では摺動可能になっていることは上述したとおりである。但し、摺動の際にガイドとなる部分の位置は一部に限定される。その位置は、図11で説明したような、レンズバレル3の天面近傍ではなく、最も大きなレンズ径を有する撮像レンズ2mの外周(同じ高さ)に設けられている。すなわち、レンズバレル3は、光学部1の光軸方向に延伸する円筒形状の側面に突起が設けられた形状であり、少なくともレンズ径が2番目に大きな撮像レンズ2m´の外周を覆う極大外径部3eと、極大外径部3eに設けられた突起である(例えば、帯状の)最大外径部3aとを備えている。換言すれば、レンズバレル3の側壁のうち、極大外径部3eは、レンズホルダー11の内壁と対向する。そして、極大外径部3eの下部に最大外径部3aが設けられており、上部に最大外径部3aより若干径が小さい極大外径部3eの上方部分が設けられている、段差構造の外形を有している。これは、レンズバレル3の内部にて保持される複数の撮像レンズ2は、図1に示すとおり、天面側(被写体側)のものほどレンズ径が小さいのが一般的であることによる。
 撮像レンズ2mを保持するために、最小限の肉厚のレンズバレル3を構成した場合、撮像レンズ2mの外周にて、レンズバレル3の外径が最大となる。図11に示した例では、撮像レンズ2mの外周におけるレンズバレル3の外径よりもさらに大きな外径を有する、帯状の最大外径部を設けることが避けられなかった。このため、レンズバレルの形状に伴い形成されたスペースが無駄に大きくなったり、レンズバレルが無駄な肉厚を有していたりしていた。
 これに対して、カメラモジュール40においては、複数の撮像レンズ2のそれぞれの側面である外周を覆うレンズバレル3を有する。レンズバレル3は、複数の撮像レンズ2の外径の大きさに合せ、外径が大きくなるように、側壁に、突起する部分を有している。
 レンズバレル3の側壁のうち、外径が最も小さい撮像レンズ2m´´の外周を覆う部分は、外径が最も小さい部分である。
 レンズバレル3の側壁のうち、外径が2番目に大きい撮像レンズ2m´の外周を覆う部分は、極大外径部3eの上方部分であり、外径が2番目に大きい部分である。極大外径部3eの上方部分は、撮像レンズ2m´の外周を囲み、レンズバレル3の円周方向に延伸する帯状の突起である。換言すると、極大外径部3eの上方部分は、極大外径部3eのうちレンズホルダー11の内壁と対向する部分であって、最大外径部3aが設けられていない部分である。
 レンズバレル3の側壁のうち、外径が最も大きい撮像レンズ2mの外周を囲む部分は、最大外径部3aが設けられた極大外径部3eの下方部分である。この最大外径部3aは、レンズバレル3の側壁のうち、外径が最も大きい部分である。最大外径部3aは、撮像レンズ2mの外周を囲み、レンズバレル3の円周方向に延伸する帯状の突起である。
 撮像レンズ2m部分の外周に、最大外径部3aを設けることにより、最大外径部3aを設けない場合と比べて、レンズバレル3の側壁のうち、外径が最も大きい撮像レンズ2mの外周を覆わず、撮像レンズ2m´の外周を覆う極大外径部3e上方部分の肉厚を薄くすることができる。このため、無駄なスペースおよび、レンズバレル3の肉厚を省き、カメラモジュール40の小型化を実現することが可能となる。
 ここで、極大外径部3eを備えているが、突起である最大外径部3aを備えていないことで円筒形状となっているレンズバレル3を想定した場合、撮像レンズ2mの外径に、考えられる最小のレンズバレル3の肉厚を加えた値が、レンズバレル3の外径の最小値となる。
 一方、極大外径部3eに帯状等の突起である最大外径部3aを設けた本実施の形態に係るレンズバレル3の場合、当然ながら、最大外径部3a以外におけるレンズバレル3の外径は、最大外径部3aにおけるレンズバレル3の外径より小さい。
 裏を返せば、最大外径部3aを撮像レンズ2mの外周に設けない上記円筒形状のレンズバレル3の場合、最大外径部3aの外径は、上記円筒形状のレンズバレル3の外径の最小値よりも大きくすることになる。
 これに対して、本実施の形態に係るレンズバレル3を備えるカメラモジュール40では、レンズバレル3には、撮像レンズ2mの外周に沿って延伸する帯状の突起である最大外径部3aを設けている。これにより、レンズバレル3のうち、極大外径部3eの部分の径を小さくしたとしても、外周に極大外径部3eが設けられる撮像レンズ2の外径も小さいため、無理にレンズバレル3の肉厚を薄くする必要がなくなる。
 つまり、撮像レンズ2mの外周におけるレンズバレル3の外径を基準に考えた場合、図11に示す例では、それよりも大きな径である最大外径部を設ける必要があり、カメラモジュール40では、それと同じ径である最大外径部を設けるとよい。
 但し、最大外径部3aが設けられる範囲は、極大外径部3eの一部であって、最低限、撮像レンズ2mの外周を含んでいれば問題無い。レンズ径が最大でない撮像レンズ2の外周にまではみ出して最大外径部3aが設けられていても構わない。また、光学部1の光軸方向に関し、レンズバレル3の外壁における最大外径部3aの占有範囲は、撮像レンズ2mの外周の範囲以上である必要があり、この範囲未満であれば、レンズバレル3が許容以上に肉薄になる虞があり、望ましくない。
 つまり、最大外径部3aは、複数の撮像レンズ2のうちレンズ径の最も大きな撮像レンズ2mの外周を含む、極大外径部3eの一部の領域に設けられている。
 次に、図1に示す実施の形態において、部材公差の関係でレンズバレル3とレンズホルダー11との間の隙間が大きくなった状態について、図2および図3を用いて説明する。
 図2は、図1と同等の中央断面図であるが、レンズバレル3の外径が、部材公差の関係で若干小さくなった場合を示している。当然ながら、レンズホルダー11の内径が若干大きくなった場合として想定しても構わない。
 図2に示す例では、レンズバレル3とレンズホルダー11との間に隙間が形成され、カメラモジュール40の天面側から見ると、この隙間からセンサーカバー23が見通せる状態になっている。例えば、レンズホルダー11の内壁に沿って、カメラモジュール40の天面側から異物等が侵入した場合、この異物等がこの隙間を通ってセンサーカバー23上にまで落下するリスクが増大してしまう。センサーカバー23上に落下した異物等は、さらにガラス基板24上にまで移動する可能性があり、撮像画像に写り込んでしまう。
 図3を用いて、もう少し説明を追加する。図3は、図2のカメラモジュール40において、レンズバレル3およびレンズホルダー11の構造を示す要部(図2に示す破線楕円近傍)拡大図である。
 図3に示す2本の矢印のうち、レンズバレル3側の矢印で示す、レンズバレル3の外壁に沿って落下する異物等は、極大外径部3eおよび最大外径部3aにより構成される段差3bで止まる可能性が高い。一方、レンズホルダー11側の矢印で示す、レンズホルダー11の内壁に沿って落下する異物等は、レンズバレル3とレンズホルダー11との間の隙間を突き抜けてしまうリスクが高くなる。
 〔実施の形態2〕
 上記図3に示すリスクを低減する構造を、図4および図5を用いて説明する。
 図4は、本実施の形態におけるカメラモジュールを示すものであって、図1に対するレンズホルダーの変形例を示す中央断面図である。図5は、図4のカメラモジュールにおいて、レンズバレルおよびレンズホルダーの構造を示す要部(図4に示す破線楕円近傍)拡大図である。
 図4に示すカメラモジュール41と、図1に示すカメラモジュール40との相違点は、レンズホルダー11の穴側にも段差構造を設けた点である。すなわち、カメラモジュール41のレンズホルダー11は、最小内径部11bと、その内径が、最小内径部11bより大きい極小内径部11eとを備えている。最小内径部11bは、レンズホルダー11の内部をレンズバレル3が摺動するときに、最大外径部3aが接触する部分に該当するとも言える。
 ここで、レンズバレル3の最大外径部3aと、レンズホルダー11の最小内径部11bとは、カメラモジュール41の高さ方向(光学部1の光軸方向)において重なっていない。また、最大外径部3aと最小内径部11bとによる隙間形状としては、高さ方向の隙間が小さく、かつ中央に大きな隙間の空間を形成したような構造になっている。
 図5の矢印で示すように、レンズバレル3の外壁に沿って落下する異物等は、レンズバレル3の段差3bで止まる可能性が高い。一方、レンズホルダー11の内壁に、最小内径部11bおよび極小内径部11eにより構成される段差11cが設けられており、レンズホルダー11の内壁に沿って落下する異物等は、実質的にはレンズバレル3の外壁側を落下することになり、異物等がセンサーカバー23上に落下するリスクを低減することができる。
 以上の説明は、レンズホルダー11に対して、レンズバレル3をカメラモジュール41の天面側(被写体側)から挿入する、いわゆるフロントインサーション構造を想定したものである。そのため、レンズホルダー11の最小内径部11bの内径は、レンズバレル3の最大外径部3aの外径より大きく設定されている。そのため、上述したようにカメラモジュール40と比べて異物等がセンサーカバー23上に落下するリスクは低減するものの、カメラモジュール41の天面側からセンサーカバー23が見通せる状態であるのは同じである。
 このように、カメラモジュール41は、レンズホルダー11に対して、レンズバレル3を被写体側から挿入するカメラモジュールであり、最小内径部11bの内径は、最大外径部3aの外径より大きくてもよい。すなわち、光軸に平行な、最小内径部11bの側面及び最大外径部3aの側面は、平面視したとき、最小内径部11bの側面が外側に位置するように配されてもよい。
 しかしながら、レンズホルダー11に対して、レンズバレル3を撮像素子22の側から挿入する、いわゆるバックインサーション構造を想定すると、最小内径部11bの内径を、最大外径部3aの外径より小さく設定することが可能となる。このような径の関係を実現した場合、カメラモジュール41の天面側から、レンズバレル3とレンズホルダー11との間の隙間からセンサーカバー23を見通すことはできなくなり、異物等の落下のリスクをさらに低減することが可能となる。このため、より望ましい実施の形態であると言える。なお、バックインサーション構造でレンズバレル3を挿入するタイミングは、当然ながら撮像部20上にレンズ駆動装置10を搭載する前の段階である。レンズバレル3を下から挿入した後、レンズ駆動装置10を上述した治具上に搭載し、レンズバレル3の高さ位置を決め、レンズバレル3をレンズホルダー11に固定し、治具を取り外した後、レンズ駆動装置10を撮像部20上に搭載する。
 このように、カメラモジュール41は、レンズホルダー11に対して、レンズバレル3を撮像素子22の側から挿入するカメラモジュールであり、最小内径部11bの内径は、最大外径部3aの外径より小さくてもよい。すなわち、光軸に平行な、最小内径部11bの側面及び最大外径部3aの側面は、平面視したとき、最小内径部11bの側面が内側に位置するように配されてもよい。
 カメラモジュール41の各構成は、最小内径部11bは、最大外径部3aと対向しない位置に設けられている場合に好適な例である。
 〔実施の形態3〕
 図6~図8を用いて、第3の実施の形態について説明する。
 図6は、本実施の形態におけるカメラモジュールを示すものであって、図4に対するレンズバレルの変形例を示す中央断面図である。図7は、図6のレンズバレルの構造を示す上面図である。図8は、図7のレンズバレルを矢視方向に見た側面図である。
 図4に示すカメラモジュール41において、特にフロントインサーション構造を想定した場合、レンズバレル3の最大外径部3aの外径は、レンズホルダー11の最小内径部11bの内径より小さい。部材の寸法公差を考慮すると、レンズバレル3をレンズホルダー11に挿入した状態での、カメラモジュールの幅方向(光学部1の光軸と垂直な方向)への変位の自由度は、図2に示した状態よりさらに大きくなる可能性が高い。これは、最大外径部3aと最小内径部11bとのオーバーラップ部分がないために生じる。
 そこで、図6に示すように、最大外径部3aと最小内径部11bとの間で、若干のオーバーラップ部を設けるとよい。最大外径部3aと最小内径部11bとの間でオーバーラップ部を有するカメラモジュール42は、レンズバレル3をレンズホルダー11に挿入した状態での、カメラモジュールの幅方向への変位の自由度を、カメラモジュール41よりも低減することができる。
 オーバーラップ部を設けるため、カメラモジュール42におけるレンズバレル3の外形状は、図7および図8に示すような構造となっている。レンズバレル3の外壁における最小内径部11bと対向し得ない部分(例えば、略下半分)は、レンズバレル3の外周全体に亘って、最大外径部3aを有する。一方、レンズバレル3の外壁における最小内径部11bと対向可能な部分(例えば、略上半分)は、最大外径部3aを光学部1の光軸方向に切り欠いた、切り欠き3cが複数形成されている。そして、レンズバレル3の外壁における最小内径部11bと対向可能な部分に設けられた最大外径部3aの部分が、最小内径部11bとのオーバーラップ部分となっている。切り欠き3cを設けなくても、レンズバレル3をレンズホルダー11に挿入した状態での、カメラモジュールの幅方向への変位の自由度を低減するという目的自体は達成可能である。但し、切り欠き3cを設けることにより、切り欠き3cを接着剤4に対する接着剤溜まりとして機能させることができ、接着剤4による接着強度を高めることが可能となる。
 このように、レンズバレル3は、最大外径部3aにおける、最小内径部11bと対向する部分に、切り欠き3cが形成されていてもよい。
 カメラモジュール42の構成は、最小内径部11bは、最大外径部3aの一部または全部と対向する位置に設けられている場合に好適な例である。
 〔実施の形態4〕
 図9を用いて、第4の実施の形態について説明する。
 図9は、図4あるいは図6のカメラモジュールにおいて、レンズバレルとレンズホルダーとの隙間に接着剤が充填された状態を示す、図4および図6に示す破線楕円近傍の拡大図である。
 接着剤4は、レンズバレル3の天面側の一部に塗布することで、レンズバレル3をレンズホルダー11に対して固定することが可能である。ここで、接着剤4は、レンズバレル3とレンズホルダー11との隙間にも充填した方が、強度が向上する。ただし、単に、レンズバレル3とレンズホルダー11との隙間に充填するよりも、接着剤4がレンズバレル3またはレンズホルダー11との界面で剥離することのないように充填を行うのが望ましい。
 図9に示すように、レンズバレル3とレンズホルダー11との隙間に充填した接着剤4が、折れ曲がり構造となるように隙間の形状を構成することにより、接着剤4が折れ曲がった状態になり、接着剤4がくさびの役割を果たす。例えばこの場合、特にレンズバレル3が上方にスッポ抜けるためには、接着剤4そのものを剪断する程度の強い力が必要であり、接着剤4が剥離するリスクを低減することができる。
 このように、レンズホルダー11に対してレンズバレル3を接着する接着剤4は、折れ曲がった状態で、レンズバレル3とレンズホルダー11との間の隙間に充填されていてもよい。
 (レンズホルダーのチルトに関する考察)
 レンズバレル3の最大外径部3aと、レンズホルダー11の最小内径部11bとのオーバーラップ部分を、切り欠き3cを設ける等により、光学部1の光軸方向から見て部分的に設けることの意味について説明する。
 レンズバレル3は、治具を基準にその取り付け高さおよび傾きが規制される。逆に言うと、レンズホルダー11にレンズバレル3を取り付けるための円筒穴(内壁)が傾いていても、この傾きが許容範囲内であれば、レンズバレル3はこの傾きの影響を受けず、静チルトの小さいカメラモジュールを実現することが可能となる。このようなレンズホルダー11のチルトの許容限界について説明する。基本的には図11の例に対して、レンズバレル3の最大外径部3aの位置が異なるだけであるので、数式上の説明は同一となる。
 最大外径部3aの直径をD、最大外径部3aと最小内径部11bとのオーバーラップ部分の幅(光学部1の光軸方向)をH、レンズホルダー11の内径(穴径)をDとする。図11の(b)と同様のθ1は、DおよびHを用いて、
  θ1=tan-1(H/D)
で表される。
 Dを5mm、Hを0.5mmとすると、θ1は5.71degとなる。レンズホルダー11のチルトが通常、5.71degに達することはなく、レンズホルダー11のチルトθとθ1との大小関係は、図11の(b)に示すとおりとなり、その差θ2は、
  θ2=cos-1(D/√(D 2+H2))
となる。従って、レンズホルダー11の許容チルトθは、
  θ≦θ1-θ2=tan-1(H/D)-cos-1(D/√(D 2+H2))
となる。
 レンズホルダー11のチルトがこの範囲の場合、レンズホルダー11のチルトによってレンズバレル3のチルトが加算されることなく、治具を基準として、レンズバレル3を固定することができるため、低静チルトのカメラモジュールを実現できる。例えば、Dを5.005mmとすると、θ2=5.11degとなり、
  θ=0.6deg
が許容値となる。
 なお、レンズバレル3およびレンズホルダー11がカメラモジュール41のような構成である場合、考慮すべき隙間は、天面に近い側と撮像素子に近い側との、2か所の細い隙間になる。両者の隙間の内、小さい方で考えるとよい。すなわち、天面側の隙間の方が小さい場合は、最小内径部11bの内径(穴径)をDとし、それに対向している部分のレンズバレル3の外径をDとし、両者の壁が接近して存在する部分の幅(光学部1の光軸方向)をHとすればよい。また、撮像素子22側の隙間が小さい場合は、最大外径部3aの外径をDとし、それに対向する部分のレンズホルダー11の内径をDとし、両者の壁が接近して存在する部分の幅(光学部1の光軸方向)をHとすればよい。
 (最大外径部の望ましい形状)
 最大外径部3aの形状は、図1に示すような形状であるのが望ましい。
 すなわち、光学部1の光軸方向に関し、レンズバレル3の外壁における最大外径部3aの占有範囲は、撮像レンズ2mの外周の範囲の全てを包含し、かつ、同外周の範囲より若干大きい。そして、図1に示すように、カメラモジュール40の幅方向(光学部1の光軸に垂直な方向)の肉厚と同等の肉厚が、段差3b(図3参照)の天面側にも残るようにする。天面側の肉厚を取り過ぎると、段差3bの光軸方向における幅が大きくなりすぎ、カメラモジュール40において許容されるチルトの範囲が狭くなる。
 〔実施の形態5〕
 図12を用いて、第5の実施の形態について説明する。図12は、実施の形態5に係るカメラモジュール43の中央断面図である。図12に示すカメラモジュール43は、図1に示すカメラモジュール40のレンズホルダー11の変形例であるレンズホルダー11を備える。
 図1に示したカメラモジュール40では、レンズバレル3をレンズホルダー11に固定するための接着剤4は、レンズバレル3の天面側の窪み部分(レンズバレル3の側壁のうち、撮像レンズ2m´´の外周を囲む部分の側面と、極大外径部3eの上方部分の側面とをつなぐ傾斜面)に、レンズホルダー11と接触するように、塗布等により配されている。接着強度という観点では、接着剤4をレンズバレル3の天面側の上記窪み部分だけに塗布するのではなく、レンズバレル3の側面と、レンズホルダー11との隙間にも注入する等して配する方が望ましい。
 しかし、使用する接着剤4の粘度にもよるが、レンズバレル3の天面側の上記窪み部分に接着剤4を塗布しただけでは、接着剤4がレンズバレル3の側面(極大外径部3eの上方部分)と、レンズホルダー11との隙間にまでは浸透しない可能性がある。
 このため、接着剤4を、レンズバレル3の上記側面と、レンズホルダー11との隙間に積極的に塗布したいが、しかし、図1に示すレンズバレル3及びレンズホルダー11の形状では、レンズバレル3の上記側面とレンズホルダー11との隙間が小さく、接着剤4を塗布のためのノズルを隙間に入れることが困難であったり、ノズルを直接隙間に挿入しないまでも、隙間近傍に配置したノズルから接着剤4を注入する場合でも、隙間が狭いことで隙間の奥まで接着剤4が浸透しにくいという問題がある。
 そこで、図12に示す本実施の形態に係るカメラモジュール43では、レンズホルダー11の最小内径部11bは、レンズバレル3の最大外径部3aの上方部分と対向する位置に設けている。
 そして、レンズホルダー11の内壁のうち、下方部分は、最小内径部11bが設けられることで内側に突起した小径部分となっている。レンズホルダー11の内壁のうち、上方部分は、下方の部分より外側に径が広がるように段差が設けられることで最小内径部11bより内径が大きくなっている大径部分(極小内径部)である。
 さらに、レンズバレル3のうち小径部分である極大外径部3eの上方部分と、レンズホルダー11の上方部分である大径部分とが対向するように設けている。
 このため、レンズバレル3の極大外径部3eの上方部分の側面と、レンズホルダー11の内壁のうち上方部分とによって、凹部が形成されている。当該凹部の底部は、最大外径部3aの上方部分と極大外径部3eとの段差と、レンズホルダー11の最小内径部11bとレンズホルダー11の内壁のうちの上方部分との段差と、によって構成されている。
 このように上記凹部を構成することで、レンズバレル3とレンズホルダー11の天面側の隙間の幅を大きくとることができ、接着剤4塗布用のノズルを隙間(上記凹部)に入れたり近付けることが容易になり、塗布した接着剤4も隙間に浸透しやすくなる。
 なお、図3を用いて説明した課題について、図12に示すカメラモジュール43では、レンズホルダー11側にも段差を設けたため、レンズホルダー11の内壁に沿って落下する異物がこの段差で止められる可能性が高まる。
 このように、図12に示すカメラモジュール43では、レンズバレル3とレンズホルダー11との間の隙間を異物が通り抜けてしまうことを防止することができる。
 図12に示すカメラモジュール43では、レンズバレル3とレンズホルダー11との間の隙間に接着剤4を塗布しやすくなっている。このため、レンズバレル3の周囲全周にわたって接着剤4を塗布することで、異物が、レンズバレル3とレンズホルダー11との間の隙間を通りカメラモジュール43の内部へ落下することで侵入することを防ぐことが容易となる。
 〔まとめ〕
 本発明の一態様に係るカメラモジュールは、上記の問題を解決するために、複数の撮像レンズと、該複数の撮像レンズを内部に保持するレンズバレルとを備えている光学部と、上記レンズバレルとの相対位置の調整後、当該レンズバレルが固定されるレンズホルダーを備えており、かつ、該レンズホルダーを該レンズバレルと一体的に駆動させるレンズ駆動装置と、上記複数の撮像レンズを通過した光を受光する撮像素子とを備えているカメラモジュールであって、上記レンズバレルは、上記レンズホルダーに固定されていないとき、上記レンズホルダーの内部を摺動可能であり、上記レンズバレルは、上記光学部の光軸方向に延伸する円筒形状であり、レンズ径が2番目に大きな上記撮像レンズの外周を覆う極大外径部と、上記極大外径部に設けられた突起である最大外径部とを備えており、上記最大外径部は、レンズ径の最も大きな上記撮像レンズの外周を含む、上記極大外径部の一部の領域に設けられていることを特徴としている。
 上記の構成によれば、レンズ径の最も大きな撮像レンズの外周に、レンズバレルの最大外径部を配置しているため、無駄なスペースを無くし、カメラモジュールの小型化を実現することが可能となる。
 極大外径部を備えており、最大外径部を備えていないレンズバレルを想定した場合、レンズ径の最も大きな撮像レンズの外径に、考えられる最小のレンズバレルの肉厚を加えた値が、レンズバレルの外径の最小値となる。一方、極大外径部に帯状等の突起である最大外径部を設けた場合、当然ながら、最大外径部以外におけるレンズバレルの外径は、最大外径部におけるレンズバレルの外径より小さい。裏を返せば、最大外径部をレンズ径の最も大きな撮像レンズの外周に設けない場合、最大外径部の外径は、上記レンズバレルの外径の最小値よりも大きくすることになる。
 これに対して、上記の構成によれば、レンズ径の最も大きな撮像レンズの外周に最大外径部を設けている。これにより、極大外径部の部分の径を小さくしたとしても、外周に極大外径部が設けられる撮像レンズの外径も小さいため、無理にレンズバレルの肉厚を薄くする必要がなくなる。
 つまり、レンズ径の最も大きな撮像レンズの外周におけるレンズバレルの外径を基準に考えた場合、従来技術では、それよりも大きな径である最大外径部を設ける必要があり、本発明では、それと同じ径である最大外径部を設けるとよい。
 但し、最大外径部が設けられる範囲は、極大外径部の一部であって、最低限、レンズ径の最も大きな撮像レンズの外周を含んでいれば問題無い。レンズ径が最大でない撮像レンズの外周にまではみ出して最大外径部が設けられていても構わない。また、光学部の光軸方向に関し、レンズバレルの外壁における最大外径部の占有範囲は、レンズ径の最も大きな撮像レンズの外周の範囲以上である必要があり、この範囲未満であれば、レンズバレルが許容以上に肉薄になる虞があり、望ましくない。
 結果、上記の構成によれば、レンズバレルの取り付けを高精度にしつつ、さらなる小型化を可能とすることができるという効果を奏する。
 さらに、本発明の一態様に係るカメラモジュールの上記レンズホルダーは、上記レンズホルダーの内部を上記レンズバレルが摺動するときに、上記最大外径部が接触する最小内径部と、上記最小内径部より内径が大きい極小内径部とを備えており、上記最小内径部は、上記最大外径部と対向する位置に設けられていることが好ましい。
 さらに、本発明の一態様に係るカメラモジュールでは、上記レンズバレルの上記極大外径部のうち上記レンズホルダーと対向し、かつ上記最大外径部が設けられていない部分と、上記レンズホルダーの上記極小内径部とは、対向して配されていることが好ましい。
 上記の構成によれば、上記レンズバレルの上記極大外径部のうち上記レンズホルダーと対向し、かつ上記最大外径部が設けられていない部分と、上記レンズホルダーの上記極小内径部との間の隙間の幅を大きくとることができ、当該隙間に接着剤を配し易くなるため、接着による強度を向上させることができる。さらに、異物の侵入を防止することができる。
 さらに、本発明の一態様に係るカメラモジュールの、上記レンズホルダーは、上記レンズホルダーの内部を上記レンズバレルが摺動するときに、上記最大外径部が接触する最小内径部と、上記最小内径部より内径が大きい極小内径部とを備えており、上記最小内径部は、上記最大外径部と対向しない位置に設けられているのが好ましい。
 上記の構成によれば、レンズホルダーとレンズバレルとの間の隙間の断面形状が折れ曲がった段差形状となる。このため、カメラモジュールの天面側から直接、同底面側を見通すことができず、万が一、天面側から異物等が侵入した場合であっても、一般的に撮像素子を保護するガラス基板(赤外線カットガラス)面上まで、直接落下することが生じにくくなる。
 さらに、本発明の一態様に係るカメラモジュールは、上記レンズホルダーに対して、上記レンズバレルを被写体側から挿入するカメラモジュールであり、上記最小内径部の内径は、上記最大外径部の外径より大きいのが好ましい。
 上記の構成によれば、いわゆるフロントインサーション構造でありながらも、レンズホルダーとレンズバレルとの間の隙間の断面形状が折れ曲がった段差形状とすることができ、異物等の落下のリスクを低減することが可能となる。
 さらに、本発明の一態様に係るカメラモジュールは、上記レンズホルダーに対して、上記レンズバレルを上記撮像素子の側から挿入するカメラモジュールであり、上記最小内径部の内径は、上記最大外径部の外径より小さいのが好ましい。
 上記の構成によれば、レンズホルダーとレンズバレルとの間の隙間の断面形状が折れ曲がった段差形状とすることができる。さらに、フロントインサーション構造に比べて段差を大きくすることができるため、異物等の落下のリスクをより低減することが可能となる。
 さらに、本発明の一態様に係るカメラモジュールの、上記レンズホルダーは、上記レンズホルダーの内部を上記レンズバレルが摺動するときに、上記最大外径部が接触する最小内径部と、上記最小内径部より内径が大きい極小内径部とを備えており、上記最小内径部は、上記最大外径部の一部と対向する位置に設けられているのが好ましい。
 上記の構成によれば、レンズバレルの最大外径部とレンズホルダーの最小内径部とを部分的にオーバーラップさせることが可能になり、レンズホルダーにレンズバレルを嵌めこんだ際の中心位置を決める精度を高めることができる。
 さらに、本発明の一態様に係るカメラモジュールの、上記レンズバレルは、上記最大外径部における、上記最小内径部と対向する部分に、切り欠きが形成されているのが好ましい。
 上記の構成によれば、切り欠きの部分を接着剤溜まりとして機能させることができ、かつ、レンズホルダーとレンズバレルとの隙間の断面形状に折れ曲がった段差形状を形成することができる。結果、接着強度を高めつつ異物等の落下のリスクを低減することができる。
 さらに、本発明の一態様に係るカメラモジュールは、上記レンズホルダーと、上記レンズバレルとを接着する接着剤をさらに備えており、上記接着剤は、折れ曲がった状態で、上記レンズバレルと上記レンズホルダーとの間の隙間に充填されているのが好ましい。
 上記の構成によれば、レンズホルダーとレンズバレルとの隙間の断面形状が折れ曲がり段差形状であるだけでなく、段差形状であるこの隙間に接着剤が充填されるため、接着強度を高めることが可能となる。
 さらに、本発明の一態様に係る電子機器は、本発明のいずれかの態様に係るカメラモジュールを備えていることを特徴としている。
 上記の構成によれば、レンズ径の最も大きな撮像レンズの外周にレンズバレルの最大外径部を配置しているため、無駄なスペースをなくし、カメラモジュールの小型化を、ひいては電子機器の小型化を実現することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、携帯端末等の通信機器をはじめとする、各種電子機器に搭載されるカメラモジュールに好適に利用することができる。また、カメラモジュールは、オートフォーカス機能、さらには手振れ補正機能を備えたカメラモジュール、またはこれらの機能を有しない一般的なカメラモジュールに適用することもできる。
1 光学部
2 撮像レンズ
2m 撮像レンズ
2m´ 撮像レンズ
3 レンズバレル
3a 最大外径部
3e 極大外径部
4 接着剤
10 レンズ駆動装置
11 レンズホルダー
11b 最小内径部
11e 極小内径部
22 撮像素子
40~43 カメラモジュール

Claims (10)

  1.  複数の撮像レンズと、該複数の撮像レンズを内部に保持するレンズバレルとを備えている光学部と、
     上記レンズバレルとの相対位置の調整後、当該レンズバレルが固定されるレンズホルダーを備えており、かつ、該レンズホルダーを該レンズバレルと一体的に駆動させるレンズ駆動装置と、
     上記複数の撮像レンズを通過した光を受光する撮像素子とを備えているカメラモジュールであって、
     上記レンズバレルは、上記レンズホルダーに固定されていないとき、上記レンズホルダーの内部を摺動可能であり、
     上記レンズバレルは、
      上記光学部の光軸方向に延伸する円筒形状であり、レンズ径が2番目に大きな上記撮像レンズの外周を覆う極大外径部と、
      上記極大外径部に設けられた突起である最大外径部とを備えており、
     上記最大外径部は、レンズ径の最も大きな上記撮像レンズの外周を含む、上記極大外径部の一部の領域に設けられていることを特徴とするカメラモジュール。
  2.  上記レンズホルダーは、
      上記レンズホルダーの内部を上記レンズバレルが摺動するときに、上記最大外径部が接触する最小内径部と、
      上記最小内径部より内径が大きい極小内径部とを備えており、
     上記最小内径部は、上記最大外径部と対向する位置に設けられていることを特徴とする請求項1に記載のカメラモジュール。
  3.  上記レンズバレルの上記極大外径部のうち上記レンズホルダーと対向し、かつ上記最大外径部が設けられていない部分と、上記レンズホルダーの上記極小内径部とは、対向して配されていることを特徴とする請求項2に記載のカメラモジュール。
  4.  上記レンズホルダーは、
      上記レンズホルダーの内部を上記レンズバレルが摺動するときに、上記最大外径部が接触する最小内径部と、
      上記最小内径部より内径が大きい極小内径部とを備えており、
     上記最小内径部は、上記最大外径部と対向しない位置に設けられていることを特徴とする請求項1に記載のカメラモジュール。
  5.  上記レンズホルダーに対して、上記レンズバレルを被写体側から挿入するカメラモジュールであり、
     上記最小内径部の内径は、上記最大外径部の外径より大きいことを特徴とする請求項4に記載のカメラモジュール。
  6.  上記レンズホルダーに対して、上記レンズバレルを上記撮像素子の側から挿入するカメラモジュールであり、
     上記最小内径部の内径は、上記最大外径部の外径より小さいことを特徴とする請求項4に記載のカメラモジュール。
  7.  上記最小内径部は、上記最大外径部の一部と対向する位置に設けられていることを特徴とする請求項2に記載のカメラモジュール。
  8.  上記レンズバレルは、上記最大外径部における、上記最小内径部と対向する部分に、切り欠きが形成されていることを特徴とする請求項7に記載のカメラモジュール。
  9.  上記レンズホルダーと、上記レンズバレルとを接着する接着剤をさらに備えており、
     上記接着剤は、折れ曲がった状態で、上記レンズバレルと上記レンズホルダーとの間の隙間に充填されていることを特徴とする請求項8に記載のカメラモジュール。
  10.  請求項1から9のいずれか1項に記載のカメラモジュールを備えていることを特徴とする電子機器。
PCT/JP2013/076936 2012-10-12 2013-10-03 カメラモジュール、および電子機器 WO2014057859A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014540819A JP6067731B2 (ja) 2012-10-12 2013-10-03 カメラモジュール、および電子機器
CN201380047797.4A CN104620148B (zh) 2012-10-12 2013-10-03 摄像机组件和电子设备
US14/432,852 US9219851B2 (en) 2012-10-12 2013-10-03 Camera module and electronic device with a lens barrel including a local maximum outer diameter section

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012227413 2012-10-12
JP2012-227413 2012-10-12
JP2013132049 2013-06-24
JP2013-132049 2013-06-24

Publications (1)

Publication Number Publication Date
WO2014057859A1 true WO2014057859A1 (ja) 2014-04-17

Family

ID=50477326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076936 WO2014057859A1 (ja) 2012-10-12 2013-10-03 カメラモジュール、および電子機器

Country Status (5)

Country Link
US (1) US9219851B2 (ja)
JP (1) JP6067731B2 (ja)
CN (1) CN104620148B (ja)
TW (1) TWI506326B (ja)
WO (1) WO2014057859A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139006A (ja) * 2018-05-01 2018-09-06 アルプス電気株式会社 レンズ駆動装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467606B2 (en) * 2014-06-10 2016-10-11 Omnivision Technologies, Inc. Wafer level stepped sensor holder
JP2016148812A (ja) * 2015-02-13 2016-08-18 アルプス電気株式会社 レンズ駆動装置
CN108267910B (zh) * 2017-01-04 2024-05-31 宁波舜宇光电信息有限公司 摄像模组
CN116908987A (zh) * 2017-05-12 2023-10-20 台湾东电化股份有限公司 光学机构
WO2018219324A1 (zh) * 2017-06-02 2018-12-06 宁波舜宇光电信息有限公司 驱动组件和摄像模组及其电子设备
EP3660567B1 (en) 2017-09-12 2023-03-29 Huawei Technologies Co., Ltd. Camera module and terminal
CN109510925A (zh) * 2017-09-15 2019-03-22 南昌欧菲光电技术有限公司 摄像模组
TWM558365U (zh) * 2017-12-18 2018-04-11 Chicony Electronics Co Ltd 鏡頭結構
CN111752067B (zh) * 2019-03-28 2022-08-30 日本电产三协株式会社 带抖动修正功能的光学单元
JP7105451B2 (ja) * 2020-01-21 2022-07-25 株式会社精工技研 レンズユニット
KR102380310B1 (ko) * 2020-08-26 2022-03-30 삼성전기주식회사 카메라 모듈

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235539A (ja) * 2005-02-28 2006-09-07 Seiko Precision Inc 固体撮像装置及び電子機器
JP2010230910A (ja) * 2009-03-26 2010-10-14 Sharp Corp カメラモジュールおよびその製造方法、カメラモジュールにおける撮像レンズの位置決め装置および位置決め方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002062463A (ja) * 2000-08-18 2002-02-28 Olympus Optical Co Ltd 対物レンズユニット
WO2007018085A1 (ja) * 2005-08-08 2007-02-15 Konica Minolta Opto, Inc. 撮像装置及び撮像装置の組立方法
US20070086769A1 (en) * 2005-10-14 2007-04-19 Konica Minolta Opto, Inc. Image taking apparatus
TWI364619B (en) * 2005-10-28 2012-05-21 Hon Hai Prec Ind Co Ltd Lens module and digital camera module therewith
TWI366730B (en) * 2005-10-28 2012-06-21 Hon Hai Prec Ind Co Ltd Lens module and digital camera module therewith
JP2009134292A (ja) * 2007-11-07 2009-06-18 Seiko Instruments Inc 駆動モジュールおよびそれを備える電子機器
US20110204746A1 (en) * 2008-01-30 2011-08-25 Seiko Instruments Inc. Driving module, and electronic apparatus including the same
CN101644812B (zh) * 2008-08-08 2012-07-18 鸿富锦精密工业(深圳)有限公司 镜头模组及具有该镜头模组的相机模组
JP5295875B2 (ja) 2008-11-06 2013-09-18 シャープ株式会社 カメラモジュールおよびそれを備えた電子機器、並びにカメラモジュールのレンズ位置決め方法
JP2010271582A (ja) * 2009-05-22 2010-12-02 Hitachi Maxell Ltd 駆動装置、レンズ部品、及びカメラモジュール
JP2011039462A (ja) * 2009-08-18 2011-02-24 Sony Corp レンズ鏡筒、カメラモジュール及び撮像装置
JP2012002982A (ja) * 2010-06-16 2012-01-05 Konica Minolta Opto Inc レンズ駆動装置、撮像装置及び携帯端末
JP5037719B1 (ja) 2011-02-10 2012-10-03 シャープ株式会社 カメラモジュールの製造方法、カメラモジュール、及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006235539A (ja) * 2005-02-28 2006-09-07 Seiko Precision Inc 固体撮像装置及び電子機器
JP2010230910A (ja) * 2009-03-26 2010-10-14 Sharp Corp カメラモジュールおよびその製造方法、カメラモジュールにおける撮像レンズの位置決め装置および位置決め方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018139006A (ja) * 2018-05-01 2018-09-06 アルプス電気株式会社 レンズ駆動装置

Also Published As

Publication number Publication date
US9219851B2 (en) 2015-12-22
TW201418819A (zh) 2014-05-16
JPWO2014057859A1 (ja) 2016-09-05
CN104620148B (zh) 2017-04-05
US20150271372A1 (en) 2015-09-24
JP6067731B2 (ja) 2017-01-25
CN104620148A (zh) 2015-05-13
TWI506326B (zh) 2015-11-01

Similar Documents

Publication Publication Date Title
JP6067731B2 (ja) カメラモジュール、および電子機器
JP5037719B1 (ja) カメラモジュールの製造方法、カメラモジュール、及び電子機器
EP3239758B1 (en) Lens-driving device, camera module, and camera mount device
KR102370739B1 (ko) 렌즈 구동장치, 카메라 모듈, 및 카메라 부착 휴대 단말
TWI654460B (zh) 鏡頭驅動裝置、相機模組以及相機搭載裝置
KR102470879B1 (ko) 렌즈 구동장치, 카메라 모듈, 및 카메라 탑재 장치
JP5329629B2 (ja) カメラモジュール
US10348968B2 (en) Method for producing camera module
US11698540B2 (en) Lens drive device, camera module, and camera mount device
TWI707170B (zh) 鏡頭驅動裝置、照相機模組以及照相機搭載裝置
TW201312255A (zh) 照相模組
CN107111096B (zh) 透镜驱动装置、摄像机模块、以及摄像机搭载装置
JP6207955B2 (ja) カメラモジュール、およびカメラモジュールの製造方法
JP5551207B2 (ja) カメラモジュール、及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13845818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540819

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14432852

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13845818

Country of ref document: EP

Kind code of ref document: A1