WO2014054803A1 - Production method for multilayer printed wiring board, and base material - Google Patents

Production method for multilayer printed wiring board, and base material Download PDF

Info

Publication number
WO2014054803A1
WO2014054803A1 PCT/JP2013/077167 JP2013077167W WO2014054803A1 WO 2014054803 A1 WO2014054803 A1 WO 2014054803A1 JP 2013077167 W JP2013077167 W JP 2013077167W WO 2014054803 A1 WO2014054803 A1 WO 2014054803A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
group
multilayer printed
printed wiring
wiring board
Prior art date
Application number
PCT/JP2013/077167
Other languages
French (fr)
Japanese (ja)
Inventor
晃正 森山
倫也 古曳
雅史 石井
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2014539854A priority Critical patent/JP6393618B2/en
Publication of WO2014054803A1 publication Critical patent/WO2014054803A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4682Manufacture of core-less build-up multilayer circuits on a temporary carrier or on a metal foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1366Spraying coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0097Processing two or more printed circuits simultaneously, e.g. made from a common substrate, or temporarily stacked circuit boards

Definitions

  • the present invention relates to a method for manufacturing a multilayer printed wiring board and a base substrate.
  • Patent Document 1 discloses a configuration in which a prepreg is employed as a copper foil carrier and the copper foil is laminated on the prepreg so as to be peeled off.
  • a multilayer printed wiring board usually includes a configuration in which a build-up layer including one or more wiring layers and one or more insulating layers is laminated on a resin substrate.
  • the resin substrate is thinned, the multilayer printed wiring board is being manufactured.
  • the mounting process may be hindered due to bending and deformation or warping.
  • an object of the present invention is to provide a base substrate that functions as a support when a thin multilayer printed wiring board having a configuration different from the conventional one is manufactured.
  • a method for producing a base substrate for producing a multilayer printed wiring board according to the present invention comprises a step of preparing a resinous plate-like carrier, and a laminate in which a release agent layer is laminated on a metal foil.
  • a release agent layer is laminated on a metal foil previously laminated on at least one main surface of the plate-like carrier, or on at least one main surface of the plate-like carrier, and on the main surface of the plate-like carrier. Laminating the release agent layer via the metal foil.
  • a method for manufacturing a multilayer printed wiring board according to the present invention includes a step of preparing a base substrate obtained by the above-described manufacturing method, and a set of an insulating layer and a wiring layer on the release agent layer of the base substrate. Laminating one or more buildup layers.
  • the peel strength between the base substrate and the buildup layer is preferably 10 gf / cm or more and 200 gf / cm or less.
  • the peel strength between the base substrate and the buildup layer after heating at 220 ° C. for 3 hours, 6 hours, or 9 hours is preferably 10 gf / cm or more and 200 gf / cm or less.
  • the layer thickness of the metal foil is preferably in the range of 1 to 400 ⁇ m.
  • the thickness of the plate carrier is preferably 5 ⁇ m or more and 1000 ⁇ m or less.
  • the layer thickness of the release agent layer is preferably in the range of 0.001 to 10 ⁇ m.
  • the metal foil is a copper foil or a copper alloy foil.
  • the plate carrier is a prepreg.
  • the plate carrier preferably has a glass transition temperature Tg of 120 to 320 ° C.
  • the method further includes a step of separating the base substrate and the buildup layer.
  • the method further includes a step of laminating a buildup layer on the surface of the multilayer printed wiring board obtained by the above step.
  • the build-up layer preferably includes one or more insulating layers and one or more wiring layers.
  • the one or more wiring layers included in the build-up layer may be a patterned or non-patterned metal foil.
  • the one or more insulating layers included in the build-up layer may be a thermosetting resin.
  • the one or more insulating layers included in the buildup layer may be a prepreg.
  • the build-up layer preferably includes one or more single-sided or double-sided metal-clad laminates.
  • the build-up layer may be formed using at least one of a subtractive method, a full additive method, or a semi-additive method.
  • the method further includes a step of performing a dicing process on the laminate in which the buildup layer is laminated on the base substrate.
  • one or more grooves are formed in the laminate in which the buildup layer is laminated on the base substrate by the dicing process, and the buildup layer can be separated into pieces by the grooves.
  • the method further includes a step of forming a via wiring for one or more insulating layers included in the build-up layer.
  • the release agent layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
  • the silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product may be used alone or in combination.
  • the release agent layer is preferably made of a compound having 2 or less mercapto groups in the molecule.
  • the release agent layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr) It is preferable to use the aluminate compound, titanate compound, zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products, which are used alone or in combination.
  • the release agent layer may be a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin.
  • a multilayer printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board as described above is also provided.
  • a base substrate used in the method for manufacturing a multilayer printed wiring board according to the present invention includes a resin-made plate carrier, a metal foil laminated on at least one main surface of the plate carrier, and the metal foil. And a release agent layer laminated on the main surface of the plate-like carrier.
  • the layer thickness of the metal foil is preferably in the range of 1 to 400 ⁇ m.
  • the thickness of the plate carrier is preferably 5 ⁇ m or more and 1000 ⁇ m or less.
  • the layer thickness of the release agent layer is preferably in the range of 0.001 to 10 ⁇ m.
  • the metal foil is a copper foil or a copper alloy foil.
  • the plate-like carrier is a thermosetting resin.
  • the plate carrier is a prepreg.
  • the release agent layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
  • the silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product may be used alone or in combination.
  • the release agent layer is preferably made of a compound having 2 or less mercapto groups in the molecule.
  • the release agent layer has the following formula: Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr) It is preferable to use the aluminate compound, titanate compound, zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products, which are used alone or in combination.
  • the release agent layer may be a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin.
  • the build-up layer and the base substrate can be separated after the build-up layer lamination step, and a thin multilayer printed wiring board can be efficiently manufactured.
  • FIG. 1 is a schematic cross-sectional view of a base substrate according to a first embodiment of the present invention. It is a schematic process drawing which shows the state which laminated
  • FIG. 1 is a schematic cross-sectional view of a base substrate.
  • FIG. 2 is a schematic process diagram showing a state in which a buildup layer is laminated on a base substrate.
  • FIG. 3 is a process diagram schematically showing a process of separating the multilayer printed wiring board and the base material.
  • the base substrate 100 is a thermosetting resin having a predetermined thickness which is a resin plate carrier, in this example, a prepreg 10, a metal foil 20 laminated on the upper surface (main surface) of the prepreg 10, A release agent layer 30 is provided on the upper surface of the prepreg 10 via the metal foil 20, and the prepreg 10, the metal foil 20, and the release agent layer 30 are laminated in this order. It is not always necessary to form the metal foil 20 on the entire upper surface of the prepreg 10. Similarly, the release agent layer 30 does not necessarily have to be laminated on the entire upper surface of the metal foil 20.
  • the top view shapes of the prepreg 10, the metal foil 20, and the release agent layer 30 are not limited to a rectangle, and may be other shapes such as a circle.
  • a laminate of the prepreg 10 and the metal foil 20 is referred to as a metal-clad laminate 25, and if the metal foil 20 is a copper foil, this may be referred to as a copper-clad laminate.
  • FIG. 1 is a metal-clad laminated board with which metal foil was provided in the single side
  • the number of resin layers and metal layers included in the metal-clad laminate 25 is arbitrary.
  • the release agent layer 30 is laminated on the metal foil 20 of the metal-clad laminate 25. Also good. Or after laminating the release agent layer 30 and the metal foil 20 and preparing a metal foil with a release agent layer in advance, the metal foil with a release agent layer and the prepreg 10 may be laminated.
  • the release agent layer 30 may be formed by utilizing an arbitrary coating method. The layers may be tightly integrated by using a heating press.
  • the build-up layer 110 is a laminate of one insulating layer 40 and one wiring layer 50, and FIG. 2 exemplarily shows a build-up layer 110 having a two-layer structure.
  • the insulating layer 40 of the build-up layer 110 is preferably made of a thermosetting resin layer, and more preferably made of a prepreg in which the thermosetting resin is reinforced with glass fiber, an inorganic filler or the like.
  • the wiring layer 50 of the buildup layer 110 is preferably a patterned or non-patterned metal layer, preferably a metal foil or a plated metal layer, and copper is more preferable as the material of the metal foil or the plated metal layer. It is.
  • the buildup layer 110 is formed by repeatedly laminating the insulating layer 40 and the wiring layer 50 in order. After the buildup layer 110 is laminated on the base substrate 100, the buildup layer 110 is separated from the base substrate 100, whereby the buildup layer 110 can be suitably obtained as a thin multilayer printed wiring board.
  • the base substrate 100 used for stacking the buildup layer 110 is not included.
  • the multilayer printed wiring board according to the present embodiment has a “thin” configuration.
  • “Thin” means, for example, that the thickness of the multilayer printed wiring board is 400 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the multilayer printed wiring board The thickness may exceed 400 ⁇ m.
  • the base substrate 100 itself is also heated or physically or chemically treated, and in some cases, immersed in a chemical solution. Even after going through such a process, as schematically shown in FIG. 3, the separation between the buildup layer 110 and the base substrate 100, that is, the releasability is ensured.
  • the release agent layer 30 remains on the prepreg 10 side, but this is not necessarily the case.
  • the constituent materials and layer thicknesses of the insulating layer 40 and the wiring layer 50 are arbitrary, and one wiring layer 50 may be composed of a stack of one or more conductive layers, and one insulating layer 40 may have one or more insulating layers. You may comprise from lamination
  • the wiring layer 50 is composed of, for example, one or more metal foils.
  • the insulating layer 40 is composed of one or more resin layers. It is desirable that the insulating layer 40 has high insulating properties, but this is not necessarily the case.
  • the wiring layer 50 does not necessarily have to be patterned and does not necessarily have to be electrically connected to other wiring layers. Providing the floating wiring layer 50 may be effective when controlling the electrostatic capacity or adjusting the mechanical strength of the multilayer printed wiring board.
  • the buildup layer 110 includes one or more insulating layers 40 and one or more wiring layers 50.
  • one or more wiring layers 50 included in the buildup layer 110 are patterned or unpatterned metal foil.
  • one or more insulating layers 40 included in the buildup layer 110 are prepregs.
  • the build-up layer 110 includes a single-sided or double-sided metal-clad laminate.
  • the prepreg 10 that functions as a plate-like carrier or support substrate for the metal foil 20 is a composite of an arbitrary base material and an arbitrary filling material.
  • the base material such as a nonwoven fabric or a woven fabric is filled with a synthetic resin or the like. It is obtained by solidifying the filling material from a liquid while impregnating the material.
  • the prepreg 10 has a high insulating property and a desired mechanical strength.
  • the resin that is a constituent material of the prepreg 10 is illustratively a phenol resin, a polyimide resin, an epoxy resin, natural rubber, pine resin, and the like.
  • the prepreg 10 is preferably in a B-stage state, thereby ensuring sufficient strength.
  • the prepreg 10 desirably has a high glass transition temperature Tg.
  • the glass transition temperature Tg of the prepreg 10 is, for example, 120 to 320 ° C., preferably 170 to 240 ° C.
  • the glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
  • the thickness of the prepreg 10 is not particularly limited, and is set to a thickness that has flexibility or a thickness that does not have flexibility. However, since it is desirable that the substrate in the base substrate 100 has mechanical strength and rigidity, it is not appropriate to make it extremely thin. Further, if the prepreg 10 is extremely thick, heat propagation through the prepreg 10 is difficult to occur, and therefore, a non-uniform heat distribution occurs in the plane of the prepreg 10 during hot pressing, making it difficult to achieve sufficient hot pressing. There is a fear. In view of this point, the thickness of the prepreg 10 is set to 50 to 900 ⁇ m, more preferably 100 to 400 ⁇ m.
  • a copper or copper alloy foil is typical, but a foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used. By utilizing the copper alloy, the hardness of the metal foil 20 can be increased. Examples of the copper alloy include high-purity copper alloys to which a small amount of beryllium or cadmium is added.
  • the thickness of the metal foil 20 is typically 1 to 400 ⁇ m, preferably 5 to 70 ⁇ m.
  • the metal foil 20 may be surface treated.
  • metal plating for the purpose of imparting heat resistance (Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc. ), Chromate treatment (including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc.
  • the chromate treatment liquid for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating).
  • the roughening treatment on the metal foil 20 affects the peel strength between the metal-clad laminate 25 and the buildup layer 110.
  • the chromate treatment on the metal foil 20 has a great influence on the peel strength. Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but since it tends to significantly increase the peel strength, it is also meaningful as a means for adjusting the peel strength.
  • the glossy surface of the copper foil or copper alloy foil as the metal foil 20 may be subjected to nickel-zinc (Ni—Zn) alloy plating treatment and chromate (Cr—Zn chromate) treatment under the following conditions.
  • Ni—Zn nickel-zinc
  • Cr—Zn chromate chromate
  • Nickel-zinc alloy plating Ni concentration 17g / L (added as NiSO 4 ) Zn concentration 4g / L (added as ZnSO 4 ) pH 3.1 Liquid temperature 40 °C Current density 0.1-10A / dm 2 Plating time 0.1 to 10 seconds
  • the metal foil 20 is laminated and fixed onto the prepreg 10 by thermocompression bonding using a hot press or the like.
  • hot pressing conditions it is preferable to perform hot pressing at a pressure of 30 to 40 kg / cm 2 and a temperature higher than the glass transition temperature of the prepreg 10.
  • the release agent layer 30 is selected from any material that is relatively strongly fixed to the metal foil 20 and that is relatively weakly fixed to the buildup layer 110 and, ultimately, the lowermost insulating layer 40. It is preferable.
  • the lowermost insulating layer 40 is typically a resin layer, and preferably a prepreg.
  • the base substrate 100 may be heated and chemically or physically processed. From such a viewpoint, it is desirable to ensure that the release agent layer 30 also has heat resistance and chemical resistance and is not easily altered or eroded by chemicals.
  • the release agent layer 30 can be formed on the metal foil 20 by any method such as spin coating, dip coating, spray coating, and printing.
  • the upper surface of the metal foil 20 on which the release agent layer 30 is formed is a rough surface (M surface) or a glossy surface (S surface), but is preferably a glossy surface. Thereby, the variation in the roughness of the upper surface of the metal foil 20 can be suppressed, and the quality of the base substrate 100 can be stabilized.
  • the layer thickness of the release agent layer 30 is typically 0.001 to 10 ⁇ m, preferably 0.001 to 0.1 ⁇ m.
  • Silane Compound The constituent material of the release agent layer 30 should not be limited to materials disclosed in the present application or currently available.
  • a silane compound represented by the following chemical formula and a hydrolysis product thereof A condensate of the hydrolysis product may be used alone or in combination.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms
  • Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.
  • the silane compound must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of the mold release agent layer 30 and the metal foil 20 to fall too much.
  • the silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom.
  • the alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the silane compound has three alkoxy groups and the above hydrocarbon groups (one or more hydrogen atoms are substituted with halogen atoms). It is preferable that it has one hydrocarbon group.
  • both R 3 and R 4 are alkoxy groups.
  • Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl.
  • cycloalkyl group examples include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms.
  • An alkyl group is mentioned.
  • the aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms.
  • an alkyl group eg, tolyl group,
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl.
  • propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
  • a compound having two or less mercapto groups in the molecule may be used for the release agent layer 30.
  • examples thereof include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof, and at least one selected from these is used. be able to.
  • Thiol has one mercapto group in the molecule and is represented by, for example, R-SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
  • the thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • the thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
  • Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Dithiocarboxylic acid can also be used in the form of a salt.
  • a compound having two dithiocarboxylic acid groups can also be used.
  • the thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH.
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • thiosulfonic acid can be used in the form of a salt.
  • Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 .
  • R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
  • Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons.
  • Dithiosulfonic acid can also be used in the form of a salt.
  • examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
  • heterocyclic group suitable as R examples include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
  • Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
  • Metal alkoxide An aluminate compound, titanate compound, zirconate compound having a structure represented by the following formula, or a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a metal alkoxide) alone Or by using a mixture of a plurality of layers and laminating the insulating layer 40 on the metal-clad laminate 25, the adhesiveness is appropriately lowered, and the peel strength can be adjusted to a range as described later.
  • R 1 is an alkoxy group or a halogen atom
  • R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0, 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group.
  • M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
  • the metal alkoxide must have at least one alkoxy group.
  • a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom
  • a substituent is comprised only by group, there exists a tendency for the adhesiveness of the surface of the metal foil 20 of the metal-clad laminated board 25 and the insulating layer 40 to fall too much.
  • the metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the surface of the metal foil 20 of the metal-clad laminate 25 and the insulating layer 40 tends to be excessively lowered.
  • the alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
  • the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (one or more hydrogen atoms are replaced by halogen atoms). Preferably one or two of them).
  • alkyl group examples include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
  • cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms.
  • cycloalkyl group preferably 3 to 10 carbon atoms.
  • examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
  • one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
  • aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldieth
  • titanate compounds examples include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso
  • zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltrie
  • It can be manufactured by bringing the insulating layer 40 into close contact with the base substrate 100 by hot pressing.
  • the metal alkoxide is applied to the bonding surface of the metal foil 20 in the molecule, and then the base substrate 100 is hot-press laminated with a B-stage resin insulating layer 40. Is possible.
  • Metal alkoxide can be used in the form of an aqueous solution.
  • Alcohols such as methanol and ethanol can be added in order to increase the solubility in water.
  • the addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
  • the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
  • the pH of the aqueous solution of metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side.
  • it can be used at a pH in the range of 3.0 to 10.0.
  • the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
  • the adjustment of the peel strength for realizing such adhesion is composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin. This is done by using a resin coating. Such a resin coating film is subjected to a baking process under predetermined conditions as will be described later, and is hot-pressed and bonded between the metal-clad laminate 25 and the insulating layer 40, so that the adhesiveness is appropriately reduced. This is because the peel strength can be adjusted within the range described below.
  • Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
  • the melamine-based resin examples include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin.
  • the melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
  • the number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000.
  • the resin can be made into a paint and the adhesive strength of the resin coating film can be easily adjusted to a predetermined range.
  • examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
  • silicone examples include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof.
  • the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification.
  • the resin coating film if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude
  • the total amount of the epoxy resin and the melamine resin is preferably included in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
  • Fluorine resin also functions as a mold release agent, like silicone, and has the effect of improving the heat resistance of the resin coating film. If the fluororesin is too much compared to silicone, the above-mentioned peel strength becomes small, so that it may be peeled off during transport or processing, and the temperature required for the baking process described later increases, which is uneconomical. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
  • the resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4, and Mg (OH) 2 in addition to silicone, epoxy resin and / or melamine resin, and, if necessary, fluororesin 1 You may further contain the surface roughening particle
  • the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the metal foil 20 coated with the resin coating film becomes uneven and becomes a matte surface.
  • the content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
  • the particle diameter of the surface roughened particles is preferably 15 nm to 4 ⁇ m.
  • the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like.
  • SEM scanning electron microscope
  • the amount of unevenness on the surface of the metal foil 20 is about 4.0 ⁇ m in terms of the maximum height roughness Ry defined by JIS.
  • the base substrate 100 is obtained through a step of laminating the metal foil 20 on at least one surface of the prepreg 10 by thermocompression bonding or the like and a step of laminating the release agent layer 30 on the metal foil 20.
  • the process of forming the release agent layer 30 on the metal foil 20 includes an application process and a baking process as follows.
  • the coating step is a resin comprising, on the metal foil 20 of the metal-clad laminate 25, a silicone as a main agent, an epoxy resin as a curing agent, a melamine resin, and a fluororesin as a release agent as necessary. It is a step of applying a paint to form a resin coating film.
  • the resin paint is obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol.
  • the blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone.
  • the fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
  • the coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred.
  • the coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 ⁇ m.
  • the gravure coating method is a method in which a resin coating film is formed on the surface of the metal foil 20 by transferring the resin coating filled in the recesses (cells) provided on the roll surface to the metal-clad laminate 25.
  • the lower part of the lower roll having cells provided on the surface is immersed in the resin paint, and the resin paint is pumped into the cell by the rotation of the lower roll.
  • the metal-clad laminate 25 is supplied between the lower roll and the upper roll disposed on the upper side of the lower roll, and the upper roll and the upper roll are pressed while pressing the coating object against the lower roll with the upper roll.
  • the metal-clad laminate 25 is conveyed, and the resin paint pumped into the cell is transferred (applied) to the surface of the metal foil 20 of the metal-clad laminate 25.
  • a doctor blade on the carry-in side of the metal-clad laminate 25 so as to contact the surface of the lower roll, excess resin paint pumped up on the roll surface other than the cells is removed, and the metal-clad laminate is removed. A predetermined amount of resin paint is applied to the surface of the plate 25.
  • a smoothing roll may be arranged on the carry-out side of the metal-clad laminate 25 to maintain the smoothness of the resin coating film.
  • resin coatings may be individually formed on the surfaces of the metal foils on both sides of the metal-clad laminate 25.
  • the resin coating on one side of the metal-clad laminate turn over the metal-clad laminate, and again supply the metal-clad laminate between the lower roll and the upper roll, Similarly, the resin paint in the cell of the lower roll is transferred (applied) to the back surface of the metal-clad laminate.
  • the baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time).
  • baking temperature is the temperature reached by the coating object.
  • a conventionally well-known apparatus is used as a heating means used for a baking process.
  • the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the peel strength exceeds 200 gf / cm, The peelability is reduced.
  • baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film deteriorates, the said peeling strength exceeds 200 gf / cm, and the workability
  • the coating object may be altered by high temperatures. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
  • the resin coating in the application step includes silicone as a main agent, epoxy resin as a curing agent, melamine resin, fluororesin as a release agent, SiO 2 , MgO, al 2 O 3, BaSO 4 and Mg (OH) may be made of one or more surface roughening particles selected from 2.
  • the resin paint is obtained by further adding surface roughening particles to the above-described silicone-added resin solution.
  • the surface of the resin coating becomes uneven, and the metal foil 20 becomes uneven due to the unevenness, resulting in a matte surface.
  • the compounding amount (addition amount) of the surface roughening particles in the resin coating is 1 to 10 parts by mass with respect to 100 parts by mass of the silicone. It is preferable. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 ⁇ m.
  • the manufacturing method according to the present embodiment is as described above. However, other steps may be included between or before and after each step in performing the present embodiment. For example, a cleaning process for cleaning the surface of the metal foil 20 may be performed before the coating process.
  • the insulating layer 40 made of a resin layer laminated on the base substrate 100 may have the same configuration as the prepreg 10 that functions as a carrier of the metal foil 20 in the base substrate 100. It may be a different configuration. If the mechanical strength of the insulating layer 40 may be lower than the mechanical strength of the prepreg 10 of the base substrate 100, the insulating layer 40 may be made thinner than the prepreg 10.
  • the insulating layer 40 and the base substrate 100 can be easily peeled off after the build-up layer 110 stacking step. It is desirable to set the peel strength between the insulating layer 40 and the base substrate 100 based on the viewpoint of ensuring the above. In addition, adjustment of peeling strength can be adjusted with the setting of the material and thickness of the above-mentioned mold release agent layer 30, and can be adjusted with surface treatment of the metal foil 20 or the insulating layer 40.
  • the peel strength between the metal-clad laminate 25 and the buildup layer 110 is typically 10 gf / cm or higher, preferably 30 gf / cm or higher, more preferably 50 gf / cm or higher. , Typically 200 gf / cm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less.
  • the peel strength between the metal-clad laminate 25 and the buildup layer 110 does not vary greatly even after the buildup layer 110 is laminated. Thereby, it can avoid that the peelability between the base base material 100 and the buildup layer 110 after the lamination process of the buildup layer 110 is impaired.
  • the peel strength between the metal-clad laminate 25 and the buildup layer 110 after heating at 220 ° C. for 3 hours, 6 hours, or 9 hours is typically 10 gf / cm or more, preferably 30 gf. / Cm or more, more preferably 50 gf / cm or more, typically 200 g / fcm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less.
  • the peel strength after heating at 220 ° C. was described above in both 3 hours and 6 hours, or in both 6 hours and 9 hours, from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all peel strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
  • the peel strength is measured in accordance with a 90 degree peel strength measuring method defined in JIS C6481.
  • the matte surface (M surface) of the electrolytic copper foil is used as an adhesive surface with the resin, and surface treatment such as roughening treatment is performed.
  • the adhesive strength is improved by the chemical and physical anchor effect.
  • various binders are added to increase the adhesive strength with the copper foil.
  • the surface roughness of the upper surface of the metal foil 20 was measured in accordance with JIS B 0601 (2001).
  • the ten-point average roughness (Rz jis) of the upper surface it is preferably 3.5 ⁇ m or less, more preferably 3.0 ⁇ m or less.
  • the surface roughness is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more.
  • S surface glossy surface
  • M surface rough surface
  • the surface treatment for improving the peel strength such as the roughening treatment is not performed on the bonding surfaces of the metal foil 20 and the insulating layer 40.
  • a binder for increasing the adhesive strength with the base substrate 100 is not added to the insulating layer 40.
  • the base substrate 100 shown in FIG. 1 is prepared.
  • the manufacturing method of the base substrate 100 itself is clear from the above description.
  • the metal foil 20 is laminated on the prepreg 10 by hot pressing with a hot press, and then released onto the metal foil 20.
  • the agent layer 30 is formed by an arbitrary method. Although the metal foil 20 is laminated
  • the release agent layer 30 is laminated over the entire top surface of the metal foil 20, but this is not necessarily the case.
  • the wiring layer 50 in the buildup layer 110 may use a metal foil.
  • the wiring layer 50 may be formed using at least one of a subtractive method, a full additive method, or a semi-additive method.
  • the subtractive method is a method of selectively removing unnecessary portions of metal foil on an arbitrary substrate such as a metal-clad laminate or a wiring board (including a printed wiring board and a printed circuit board) by etching or the like.
  • the full additive method is a method of forming the wiring layer 50 that is a patterned conductor layer by using electroless plating and / or electrolytic plating.
  • an electroless metal deposition and electrolytic plating, etching, or a combination of both are formed on a seed layer made of a metal foil, and then an unnecessary seed layer is etched away. This is a method for obtaining a conductor pattern.
  • one or more of resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, metal foil with carrier, metal foil, or base substrate 100 may be included.
  • a hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a prepreg 10 or metal foil 20 of the base substrate 100, or a resin, and conductive plating is performed on the side and bottom surfaces of the hole
  • the process of carrying out can be further included.
  • the process of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
  • a resin may be laminated on the patterned wiring layer 50, and a metal foil may be adhered to the resin.
  • attach both surfaces to the said resin can also be further included.
  • the “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
  • the “metal foil with carrier” is obtained by laminating a metal foil with a release agent layer on a resin carrier that functions as a support substrate.
  • the same material as the release agent layer 30 disclosed in the present application can be used for the release agent layer that releasably bonds between the carrier and the metal foil in the metal foil with a carrier.
  • the metal foil with a carrier is preferably a copper foil with a carrier.
  • a laminate obtained by laminating the buildup layer 110 on the base substrate 100 may be diced.
  • the dicing depth does not need to be such that the laminated body to be diced is completely separated into pieces, and may not reach the base substrate 100.
  • a groove that reaches or does not reach the base substrate 100 is provided.
  • the equipment used for dicing is not limited to the type utilizing a dicing blade, and any method such as wire or laser can be adopted.
  • the base substrate 100 and the buildup layer 110 may be separated and separated.
  • a plurality of individual build-up layers 110 can be obtained from the common base substrate 100 as individual multilayer printed wiring boards.
  • the insulating layer 40 and the wiring layer 50 in the buildup layer 110 may be laminated by thermocompression bonding. This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed all at once at the end.
  • the number of the insulating layers 40 and the wiring layers 50 included in the buildup layer 110 and the stacking order are arbitrary.
  • the number of stacked units composed of a set of the insulating layer 40 and the wiring layer 50 is typically 1 or more, and may be 2 or more, 3 or more, 4 or more.
  • the increase in the number of laminated units makes it difficult to maintain the accuracy of the interlayer position of the multilayer printed wiring board.
  • the multilayer printed wiring board is stably fixed on the base substrate 100, and the buildup layer 110 can be stably laminated on the insulating layer 40.
  • the wiring layer 50 is not limited to a metal foil or a patterned metal foil, and is preferably a copper foil or a patterned copper foil, but may be a metal plating layer formed by plating. Further, the wiring layer 50 may be formed by utilizing a normal semiconductor process technology.
  • the wiring layer 50 is not intended to be particularly limited, but typically, a solid wiring layer formed by vapor deposition typified by CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) is utilized by using photolithography technology. Is formed by patterning.
  • the wiring layer 50 is not necessarily patterned, and the wiring layer 50 may be a solid wiring layer. Patterning may be performed using lift-off technology.
  • the insulating layer 40 is a resin layer provided with a resin layer or via wiring (interlayer wiring), but is not limited thereto, and can typically be exemplified by a thermosetting resin or a photosensitive resin.
  • the insulating layer 40 may be a prepreg reinforced with glass fiber or an inorganic filler.
  • the constituent resin of the insulating layer 40 may be selected from materials having the same or similar characteristics as the prepreg 10. You may form into a film using the application
  • the insulating layer 40 is not particularly limited, but typically, an insulating material is formed by vapor deposition represented by CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), and the like. Accordingly, conductive vias are embedded to ensure electrical connection between the upper and lower wiring layers 50.
  • the method for incorporating the conductive via into the insulating layer 40 is arbitrary.
  • a mask layer having an opening is formed on the insulating layer 40 deposited on the wiring layer 50. Etching is performed through the mask layer to remove the insulating layer 40 in a range corresponding to the opening of the mask layer.
  • a method of filling the conductive material in a range where 40 is removed can be exemplified. Such technology is the basis of semiconductor process technology and is obvious to those skilled in the art.
  • the wiring layer 50 is made of a conductive material such as copper, aluminum, or polysilicon.
  • the insulating layer 40 is made of an insulating material such as silicon dioxide.
  • the via incorporated in the insulating layer 40 is made of a conductive material such as copper, aluminum, or polysilicon.
  • the buildup layer 110 and the base substrate 100 are separated.
  • the buildup layer 110 can be efficiently manufactured as a multilayer printed wiring board.
  • another buildup layer may be laminated on the insulating layer 40 of the multilayer printed wiring board that has been in close contact with the base substrate 100.
  • the surface of the insulating layer 40 of the multilayer printed wiring board that has been in close contact with the base substrate 100 may be used as a mounting surface on another mounting board, and mounting bumps or pins may be mounted. it can.
  • the surface of the base substrate 100 exposed by the separation of the buildup layer 110 and the base substrate 100 may be used as a mounting surface for other arbitrary elements.
  • Via wiring may be formed in the buildup layer 110 in order to ensure electrical continuity between the wiring layers 50 in the buildup layer 110 or between the wiring layer 50 in the buildup layer 110 and external wiring.
  • the process may be performed in the process of forming the buildup layer 110 on the base substrate 100, or may be performed after the buildup layers 110 having a predetermined number of layers are stacked on the base substrate 100.
  • Via wiring may be formed in a state where the buildup layer 110 is laminated on the base substrate 100, or via wiring may be formed after the plate-like carrier of the base substrate 100 is peeled from the buildup layer 110. .
  • a via hole that penetrates the upper wiring layer 50 and the intermediate insulating layer 40 and reaches the lower wiring layer 50 is formed.
  • a conductive material is provided in the via hole by deposition or the like, thereby ensuring electrical conduction between the lower wiring layer 50 and the upper wiring layer 50.
  • the via hole can be formed by any method such as mechanical cutting or laser processing.
  • the number of insulating layers 40 through which the via hole passes is arbitrary, and may be two or more. Electrolytic plating may be used to fill the via hole with the conductive material.
  • a desired number of prepregs and then a metal foil are repeatedly laminated one or more times in order, and the laminate is sandwiched between a set of flat plate plates and set in a hot press machine.
  • a build-up layer can be formed on the base substrate by thermocompression molding at a temperature and pressure.
  • the flat plate for example, a stainless plate can be used.
  • the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used.
  • the build-up layer may be formed by one insulating layer and one metal layer, or may be formed at a time.
  • a step of adjusting the thickness by half-etching the entire surface of the metal foil constituting the wiring layer 50 may be included.
  • Laser processing is performed at a predetermined position of the metal foil constituting the wiring layer 50 to form a via hole penetrating the metal foil and the resin, and after applying a desmear process for removing smear in the via hole, the bottom of the via hole, the side surface and the metal Electroless plating may be performed on the entire surface or a part of the foil to form an interlayer connection, and further electrolytic plating may be performed as necessary.
  • a plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating.
  • the surface of the metal foil may be chemically roughened in advance.
  • the plating resist is removed after plating.
  • a circuit is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured.
  • the process from the lamination of the resin and the copper foil to the circuit formation may be repeated a plurality of times to form a multilayer build-up substrate.
  • the release agent layer 30 side of another base substrate 100 may be laminated on the top layer of the buildup layer 110.
  • a prepreg containing a thermosetting resin may be used as the insulating layer 40 of the buildup layer 110.
  • the insulating layer 40 is a resin layer, for example, a prepreg or a photosensitive resin.
  • a prepreg is used as the insulating layer 40
  • a via hole may be provided in the prepreg by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed.
  • a photosensitive resin is used as the resin
  • the resin in the via hole forming portion can be removed by a photolithography method.
  • electroless plating is performed on the bottom and side surfaces of the via hole, the entire surface or a part of the resin to form an interlayer connection, and further electrolytic plating is performed as necessary.
  • a plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, a circuit is formed by removing unnecessary portions of the electroless plating portion or the electrolytic plating portion by etching.
  • FIG. 4 is a schematic cross-sectional view of the base substrate.
  • FIG. 5 is a schematic cross-sectional view showing a state in which build-up layers are laminated on both surfaces of a base substrate.
  • a base substrate 100 is used in which a metal foil 20 and a release agent layer 30 are sequentially laminated on the lower surface (main surface) of the prepreg 10. Even in such a case, the same effect as the first embodiment can be obtained.
  • the buildup layers 110 can be laminated on both surfaces of the base substrate 100, and the utilization efficiency of the base substrate 100 can be effectively increased. The production efficiency of the printed wiring board can be increased.
  • each metal foil 20 stuck on both surfaces of the prepreg 10 may be the same or different.
  • Example 1 A plurality of electrolytic copper foils (thickness 12 ⁇ m) were prepared, and nickel-zinc (Ni—Zn) alloy plating treatment and chromate (Cr—Zn) were performed on the shiny (S) surface of each electrolytic copper foil under the following conditions. Chromate) treatment was performed, and the 10-point average roughness (Rz jis: measured according to JIS B 0601 (2001)) of the S surface was set to 1.5 ⁇ m.
  • Nickel-zinc alloy plating Ni concentration 17g / L (added as NiSO 4 ) Zn concentration 4g / L (added as ZnSO 4 ) pH 3.1 Liquid temperature 40 °C Current density 0.1-10A / dm 2 Plating time 0.1 to 10 seconds
  • an aqueous solution of the mold release agent was applied using a spray coater, and then the copper foil surface was dried in air at 100 ° C.
  • the use conditions of the release agent the type of release agent, the stirring time from when the release agent is dissolved in water to before application, the concentration of the release agent in the aqueous solution, the alcohol concentration in the aqueous solution, the pH of the aqueous solution Is shown in the table of FIG.
  • the surface of the copper foil with a release agent layer obtained in this way, the side where the release agent is not treated, and the upper surface of the prepreg (manufactured by Nanya Plastic Co., Ltd., FR-4 prepreg) used as a plate carrier are bonded together thereby, the base substrate which is a laminated body of a prepreg, copper foil, and a mold release agent layer was obtained.
  • a prepreg manufactured by Nanya Plastic Co., FR-4 prepreg, thickness 62 ⁇ m
  • a copper foil manufactured by JX Nippon Mining & Metals Co., Ltd.
  • JTC product name
  • Treatment liquid 3-glycidoxypropyltrimethoxysilane 0.9 volume% aqueous solution pH 5.0 to 9.0 Stirred at room temperature for 12 hours
  • Treatment method After applying the treatment liquid using a spray coater, the treated surface is dried in air at 100 ° C. for 5 minutes.
  • Example 12 FR-4 prepreg (manufactured by Nanya Plastic Co., Ltd.) and copper foil (manufactured by JX Nippon Mining & Metals, JTC 12 ⁇ m (product name)) are sequentially stacked on both sides of the same base substrate as in Examples 1 to 11. Hot pressing was performed under a predetermined heating condition at a pressure of 3 MPa to prepare a four-layer copper-clad laminate.
  • a 100 ⁇ m diameter hole penetrating the copper foil on the surface of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine.
  • electroless copper plating on the copper foil surface on the copper foil with carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate, and copper plating by electrolytic copper plating The electrical connection was formed between the copper foil on the copper foil with a carrier and the copper foil on the surface of the four-layer copper-clad laminate.
  • a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this way, a four-layer buildup substrate was obtained.
  • the stacking order of the insulating layer 40 and the wiring layer 50 in the buildup layer 110 may be reversed.
  • the wiring layer 50 is positioned at the uppermost layer of the buildup layer 110, thereby easily ensuring the electrical connection between the multilayer printed wiring board and the outside.
  • the main surface of the plate carrier is typically the upper surface or the lower surface of the flat carrier.
  • Prepreg 20 Metal foil 25: Metal-clad laminate 30: Release agent layer 40: Insulating layer 50: Wiring layer 100: Base substrate 110: Build-up layer

Abstract

A production method for a base material used in the production of a multilayer printed wiring board includes: a step in which a resin, plate-like carrier is prepared; and a step in which, either a stacked body having a mould-release-agent layer stacked upon a metal foil therein is stacked upon at least one main surface of the plate-like carrier, or the mould-release-agent layer is stacked upon the metal foil which has already been stacked upon the at least one main surface of the plate-like carrier, so that the mould-release-agent layer is stacked upon the main surface of the plate-like carrier, with the metal foil located therebetween.

Description

多層プリント配線基板の製造方法及びベース基材Multilayer printed wiring board manufacturing method and base substrate
 本発明は、多層プリント配線基板の製造方法及びベース基材に関する。 The present invention relates to a method for manufacturing a multilayer printed wiring board and a base substrate.
 多層プリント配線基板に関して従来から様々な開発が行われている。例えば、特許文献1には、銅箔のキャリアとしてプリプレグを採用し、プリプレグ上に剥離可能に銅箔を積層した構成が開示されている。 Various developments have been made on multilayer printed wiring boards. For example, Patent Document 1 discloses a configuration in which a prepreg is employed as a copper foil carrier and the copper foil is laminated on the prepreg so as to be peeled off.
特開2009-272589号公報JP 2009-272589 A
 多層プリント配線基板には、1以上の配線層と1以上の絶縁層を含むビルドアップ層が樹脂基板上に積層した構成が通常含まれるが、樹脂基板を薄くすると多層プリント配線板が製造工程中で撓んで変形したり、反りが生じたりして実装工程上の支障が起こる場合がある。本願発明は、この点に鑑みて、従来とは異構成の薄型の多層プリント配線板を製造する際に支持体として機能するベース基材を提供することを目的とする。 A multilayer printed wiring board usually includes a configuration in which a build-up layer including one or more wiring layers and one or more insulating layers is laminated on a resin substrate. However, when the resin substrate is thinned, the multilayer printed wiring board is being manufactured. In some cases, the mounting process may be hindered due to bending and deformation or warping. In view of this point, an object of the present invention is to provide a base substrate that functions as a support when a thin multilayer printed wiring board having a configuration different from the conventional one is manufactured.
 本発明に係る多層プリント配線基板の製造用のベース基材の製造方法は、樹脂製の板状キャリアを準備する工程と、金属箔上に離型剤層が積層した積層体を前記板状キャリアの少なくとも一方の主面上に積層し、若しくは前記板状キャリアの少なくとも一方の主面上に予め積層された金属箔上に離型剤層を積層し、前記板状キャリアの前記主面上に前記金属箔を介して前記離型剤層を積層する工程と、を含む。 A method for producing a base substrate for producing a multilayer printed wiring board according to the present invention comprises a step of preparing a resinous plate-like carrier, and a laminate in which a release agent layer is laminated on a metal foil. A release agent layer is laminated on a metal foil previously laminated on at least one main surface of the plate-like carrier, or on at least one main surface of the plate-like carrier, and on the main surface of the plate-like carrier. Laminating the release agent layer via the metal foil.
 本発明に係る多層プリント配線基板の製造方法は、上述の製造方法により得られたベース基材を準備する工程と、前記ベース基材の前記離型剤層上に絶縁層と配線層の組を含むビルドアップ層を1層以上積層する工程と、を含む。 A method for manufacturing a multilayer printed wiring board according to the present invention includes a step of preparing a base substrate obtained by the above-described manufacturing method, and a set of an insulating layer and a wiring layer on the release agent layer of the base substrate. Laminating one or more buildup layers.
 前記ベース基材と前記ビルドアップ層の剥離強度が10gf/cm以上200gf/cm以下である、と良い。 The peel strength between the base substrate and the buildup layer is preferably 10 gf / cm or more and 200 gf / cm or less.
 220℃で3時間、6時間又は9時間のうちの少なくとも一つの加熱後における、前記ベース基材と前記ビルドアップ層の剥離強度が10gf/cm以上200gf/cm以下である、と良い。 The peel strength between the base substrate and the buildup layer after heating at 220 ° C. for 3 hours, 6 hours, or 9 hours is preferably 10 gf / cm or more and 200 gf / cm or less.
 前記金属箔の層厚が、1~400μmの範囲内にある、と良い。 The layer thickness of the metal foil is preferably in the range of 1 to 400 μm.
 前記板状キャリアの厚みが、5μm以上1000μm以下である、と良い。 The thickness of the plate carrier is preferably 5 μm or more and 1000 μm or less.
 前記離型剤層の層厚が、0.001~10μmの範囲内にある、と良い。 The layer thickness of the release agent layer is preferably in the range of 0.001 to 10 μm.
 前記金属箔が、銅箔又は銅合金箔である、と良い。 It is preferable that the metal foil is a copper foil or a copper alloy foil.
 前記板状キャリアが、プリプレグである、と良い。 It is preferable that the plate carrier is a prepreg.
 前記板状キャリアは、120~320℃のガラス転移温度Tgを有する、と良い。 The plate carrier preferably has a glass transition temperature Tg of 120 to 320 ° C.
 前記ベース基材と前記ビルドアップ層を分離する工程を更に含む、と良い。 It is preferable that the method further includes a step of separating the base substrate and the buildup layer.
 前記工程により得られた多層プリント配線基板の面上にビルドアップ層を積層する工程を更に含む、と良い。 It is preferable that the method further includes a step of laminating a buildup layer on the surface of the multilayer printed wiring board obtained by the above step.
 前記ビルドアップ層が、1以上の絶縁層と1以上の配線層を含む、と良い。 The build-up layer preferably includes one or more insulating layers and one or more wiring layers.
 前記ビルドアップ層に含まれる1以上の配線層が、パターニングされた若しくはパターニングされていない金属箔である、と良い。 The one or more wiring layers included in the build-up layer may be a patterned or non-patterned metal foil.
 前記ビルドアップ層に含まれる1以上の絶縁層が、熱硬化性樹脂である、と良い。 The one or more insulating layers included in the build-up layer may be a thermosetting resin.
 前記ビルドアップ層に含まれる1以上の絶縁層が、プリプレグである、と良い。 The one or more insulating layers included in the buildup layer may be a prepreg.
 前記ビルドアップ層が、1以上の片面あるいは両面金属張積層板を含む、と良い。 The build-up layer preferably includes one or more single-sided or double-sided metal-clad laminates.
 前記ビルドアップ層が、サブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される、と良い。 The build-up layer may be formed using at least one of a subtractive method, a full additive method, or a semi-additive method.
 前記ベース基材上に前記ビルドアップ層が積層した積層体に対してダイシング処理を施す工程を更に含む、と良い。 It is preferable that the method further includes a step of performing a dicing process on the laminate in which the buildup layer is laminated on the base substrate.
 前記ダイシング処理により、前記ベース基材上に前記ビルドアップ層が積層した前記積層体には1以上の溝が形成され、当該溝により前記ビルドアップ層が個片化可能である、と良い。 It is preferable that one or more grooves are formed in the laminate in which the buildup layer is laminated on the base substrate by the dicing process, and the buildup layer can be separated into pieces by the grooves.
 前記ビルドアップ層に含まれる1以上の絶縁層に対してビア配線を形成する工程を更に含む、と良い。 Preferably, the method further includes a step of forming a via wiring for one or more insulating layers included in the build-up layer.
 前記離型剤層が、次式:
Figure JPOXMLDOC01-appb-C000005
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、又はアルコキシ基、又はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、と良い。
The release agent layer has the following formula:
Figure JPOXMLDOC01-appb-C000005
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
The silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product may be used alone or in combination.
 前記離型剤層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる、と良い。 The release agent layer is preferably made of a compound having 2 or less mercapto groups in the molecule.
 前記離型剤層が、次式:
Figure JPOXMLDOC01-appb-C000006
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0又は1又は2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、と良い。
The release agent layer has the following formula:
Figure JPOXMLDOC01-appb-C000006
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
It is preferable to use the aluminate compound, titanate compound, zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products, which are used alone or in combination.
 前記離型剤層が、シリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜である、と良い。 The release agent layer may be a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin.
 上述の何れかに記載の多層プリント配線基板の製造方法により製造された多層プリント配線基板も提供される。 A multilayer printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board as described above is also provided.
 本発明に係る多層プリント配線基板の製造方法に用いられるベース基材は、樹脂製の板状キャリアと、前記板状キャリアの少なくとも一方の主面上に積層した金属箔と、前記金属箔を介して前記板状キャリアの前記主面上に積層した離型剤層と、を備える。 A base substrate used in the method for manufacturing a multilayer printed wiring board according to the present invention includes a resin-made plate carrier, a metal foil laminated on at least one main surface of the plate carrier, and the metal foil. And a release agent layer laminated on the main surface of the plate-like carrier.
 前記金属箔の層厚が、1~400μmの範囲内にある、と良い。 The layer thickness of the metal foil is preferably in the range of 1 to 400 μm.
 前記板状キャリアの厚みが、5μm以上1000μm以下である、と良い。 The thickness of the plate carrier is preferably 5 μm or more and 1000 μm or less.
 前記離型剤層の層厚が、0.001~10μmの範囲内にある、と良い。 The layer thickness of the release agent layer is preferably in the range of 0.001 to 10 μm.
 前記金属箔が、銅箔又は銅合金箔である、と良い。 It is preferable that the metal foil is a copper foil or a copper alloy foil.
 前記板状キャリアが、熱硬化性樹脂である、と良い。 It is preferable that the plate-like carrier is a thermosetting resin.
 前記板状キャリアが、プリプレグである、と良い。 It is preferable that the plate carrier is a prepreg.
 前記離型剤層が、次式:
Figure JPOXMLDOC01-appb-C000007
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、又はアルコキシ基、又はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、と良い。
The release agent layer has the following formula:
Figure JPOXMLDOC01-appb-C000007
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
The silane compound, the hydrolysis product thereof, and the condensate of the hydrolysis product may be used alone or in combination.
 前記離型剤層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる、と良い。 The release agent layer is preferably made of a compound having 2 or less mercapto groups in the molecule.
 前記離型剤層が、次式:
Figure JPOXMLDOC01-appb-C000008
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0又は1又は2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、と良い。
The release agent layer has the following formula:
Figure JPOXMLDOC01-appb-C000008
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
It is preferable to use the aluminate compound, titanate compound, zirconate compound, the hydrolysis products thereof, and the condensates of the hydrolysis products, which are used alone or in combination.
 前記離型剤層が、シリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜である、と良い。 The release agent layer may be a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin.
 本発明によれば、ビルドアップ層の積層工程後、ビルドアップ層とベース基材を分離可能であり、薄型の多層プリント配線基板を効率的に製造することができる。 According to the present invention, the build-up layer and the base substrate can be separated after the build-up layer lamination step, and a thin multilayer printed wiring board can be efficiently manufactured.
本発明の第1実施形態に係るベース基材の概略的な断面図である。1 is a schematic cross-sectional view of a base substrate according to a first embodiment of the present invention. 本発明の第1実施形態に係るベース基材上にビルドアップ層を積層した状態を示す概略的な工程図である。It is a schematic process drawing which shows the state which laminated | stacked the buildup layer on the base base material which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る多層プリント配線基板とベース基材を分離する工程を模式的に示す工程図である。It is process drawing which shows typically the process of isolate | separating the multilayer printed wiring board and base material which concern on 1st Embodiment of this invention. 本発明の第2実施形態に係るベース基材の概略的な断面図であるIt is a schematic sectional drawing of the base substrate concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係るベース基材の両面上にプリプレグ及びビルドアップ層を積層した状態を示す概略的な断面図である。It is a schematic sectional drawing which shows the state which laminated | stacked the prepreg and the buildup layer on both surfaces of the base base material which concerns on 2nd Embodiment of this invention. 本発明に係る実施例の試験結果を示す表である。It is a table | surface which shows the test result of the Example which concerns on this invention.
 以下、図面を参照しつつ本発明の実施形態について説明する。各実施形態は、個々に独立したものではなく、過剰説明をするまでもなく、当業者をすれば、適宜、組み合わせることが可能であり、この組み合わせによる相乗効果も把握可能である。実施形態間の重複説明は、原則的に省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments are not individually independent, and need not be overexplained. Those skilled in the art can appropriately combine the embodiments, and can also grasp the synergistic effect of the combination. In principle, duplicate descriptions between the embodiments are omitted.
<第1実施形態>
 図1乃至図3を参照して第1実施形態について説明する。図1は、ベース基材の概略的な断面図である。図2は、ベース基材上にビルドアップ層を積層した状態を示す概略的な工程図である。図3は、多層プリント配線基板とベース基材を分離する工程を模式的に示す工程図である。
<First Embodiment>
The first embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a schematic cross-sectional view of a base substrate. FIG. 2 is a schematic process diagram showing a state in which a buildup layer is laminated on a base substrate. FIG. 3 is a process diagram schematically showing a process of separating the multilayer printed wiring board and the base material.
 図1に示すようにベース基材100は、樹脂製の板状キャリアである所定厚の熱硬化性樹脂、本例ではプリプレグ10、プリプレグ10の上面(主面)上に積層した金属箔20、金属箔20を介してプリプレグ10の上面に積層した離型剤層30を備え、プリプレグ10、金属箔20、及び離型剤層30がこの順に積層した積層体である。なお、必ずしもプリプレグ10の上面の全面に金属箔20を形成する必要はなく、同様に、必ずしも金属箔20の上面の全面に離型剤層30を積層する必要はない。プリプレグ10、金属箔20、離型剤層30の上面視形状は矩形に限らず、円形等の他の形状であっても構わない。プリプレグ10と金属箔20の積層体を金属張積層板25と呼び、金属箔20が銅箔であれば、これを銅張積層板と呼ぶ場合がある。なお、図1に示すものは、片面に金属箔が設けられた金属張積層板であるが、その表裏両面に金属箔を設けても構わない。金属張積層板25に含まれる樹脂層や金属層の数は任意である。 As shown in FIG. 1, the base substrate 100 is a thermosetting resin having a predetermined thickness which is a resin plate carrier, in this example, a prepreg 10, a metal foil 20 laminated on the upper surface (main surface) of the prepreg 10, A release agent layer 30 is provided on the upper surface of the prepreg 10 via the metal foil 20, and the prepreg 10, the metal foil 20, and the release agent layer 30 are laminated in this order. It is not always necessary to form the metal foil 20 on the entire upper surface of the prepreg 10. Similarly, the release agent layer 30 does not necessarily have to be laminated on the entire upper surface of the metal foil 20. The top view shapes of the prepreg 10, the metal foil 20, and the release agent layer 30 are not limited to a rectangle, and may be other shapes such as a circle. A laminate of the prepreg 10 and the metal foil 20 is referred to as a metal-clad laminate 25, and if the metal foil 20 is a copper foil, this may be referred to as a copper-clad laminate. In addition, although what is shown in FIG. 1 is a metal-clad laminated board with which metal foil was provided in the single side | surface, you may provide metal foil in the front and back both surfaces. The number of resin layers and metal layers included in the metal-clad laminate 25 is arbitrary.
 ベース基材100の構成層の積層順番に関しては任意であるが、例えば、はじめに金属張積層板25を用意した後、金属張積層板25の金属箔20上に離型剤層30を積層しても良い。若しくは、離型剤層30と金属箔20を積層して離型剤層付き金属箔を事前に用意した後、この離型剤層付き金属箔とプリプレグ10を積層しても良い。任意のコーティング方法を活用して離型剤層30を形成しても良い。加熱プレスの活用により各層同士を密着一体化しても良い。 For example, after the metal-clad laminate 25 is first prepared, the release agent layer 30 is laminated on the metal foil 20 of the metal-clad laminate 25. Also good. Or after laminating the release agent layer 30 and the metal foil 20 and preparing a metal foil with a release agent layer in advance, the metal foil with a release agent layer and the prepreg 10 may be laminated. The release agent layer 30 may be formed by utilizing an arbitrary coating method. The layers may be tightly integrated by using a heating press.
 図2及び図3に示すように、ベース基材100の離型剤層30上には1層以上のビルドアップ層110が積層される。ビルドアップ層110は、1層の絶縁層40と1層の配線層50の積層体であり、図2においては例示的に2層構成のビルドアップ層110が図示されている。ビルドアップ層110の絶縁層40は、好適には熱硬化性の樹脂層から成り、より好適には熱硬化性樹脂がガラス繊維、無機充填剤等で補強されたプリプレグから成る。ビルドアップ層110の配線層50は、好適にはパターニングされた若しくはパターニングされていない金属層、好適には金属箔若しくはメッキ金属層であり、金属箔若しくはメッキ金属層の材質としては銅がより好適である。ビルドアップ層110は、絶縁層40と配線層50を順に繰り返し積層することにより形成される。ベース基材100上にビルドアップ層110を積層した後、ベース基材100からビルドアップ層110を分離し、これにより、ビルドアップ層110を好適に薄型の多層プリント配線基板として得ることができる。 As shown in FIGS. 2 and 3, one or more buildup layers 110 are laminated on the release agent layer 30 of the base substrate 100. The build-up layer 110 is a laminate of one insulating layer 40 and one wiring layer 50, and FIG. 2 exemplarily shows a build-up layer 110 having a two-layer structure. The insulating layer 40 of the build-up layer 110 is preferably made of a thermosetting resin layer, and more preferably made of a prepreg in which the thermosetting resin is reinforced with glass fiber, an inorganic filler or the like. The wiring layer 50 of the buildup layer 110 is preferably a patterned or non-patterned metal layer, preferably a metal foil or a plated metal layer, and copper is more preferable as the material of the metal foil or the plated metal layer. It is. The buildup layer 110 is formed by repeatedly laminating the insulating layer 40 and the wiring layer 50 in order. After the buildup layer 110 is laminated on the base substrate 100, the buildup layer 110 is separated from the base substrate 100, whereby the buildup layer 110 can be suitably obtained as a thin multilayer printed wiring board.
 このようにして製造される多層プリント配線基板においては、ビルドアップ層110の積層に用いられたベース基材100が含まれない。このような意味において本実施形態に係る多層プリント配線基板が「薄型」構成であると言える。「薄型」であるとは、例えば多層プリント配線基板の厚みが400μm以下、好ましくは200μm以下、より好ましくは100μm以下であることを言う。ただし、多層プリント配線基板の機能上、配線層の層数が極端に多い場合(例えば10層以上)、又は100μmよりも厚い絶縁層又は配線層が必要とされる場合には多層プリント配線基板の厚みが400μmを超える場合があってもよい。 In the multilayer printed wiring board manufactured in this way, the base substrate 100 used for stacking the buildup layer 110 is not included. In this sense, it can be said that the multilayer printed wiring board according to the present embodiment has a “thin” configuration. “Thin” means, for example, that the thickness of the multilayer printed wiring board is 400 μm or less, preferably 200 μm or less, more preferably 100 μm or less. However, when the number of wiring layers is extremely large (for example, 10 layers or more) or when an insulating layer or wiring layer thicker than 100 μm is required for the function of the multilayer printed wiring board, the multilayer printed wiring board The thickness may exceed 400 μm.
 ビルドアップ層110の積層工程においてはベース基材100自体も加熱され、若しくは物理的若しくは化学的に処置され、場合によっては、薬液に浸される。このような工程を経た後においても図3に模式的に示すようにビルドアップ層110とベース基材100の分離性、端的には剥離性が確保される。好適には、離型剤層30がプリプレグ10側に残存するが、必ずしもこの限りではない。 In the stacking process of the build-up layer 110, the base substrate 100 itself is also heated or physically or chemically treated, and in some cases, immersed in a chemical solution. Even after going through such a process, as schematically shown in FIG. 3, the separation between the buildup layer 110 and the base substrate 100, that is, the releasability is ensured. Preferably, the release agent layer 30 remains on the prepreg 10 side, but this is not necessarily the case.
 絶縁層40と配線層50の構成材料や層厚は任意であり、1つの配線層50が、1以上の導電層の積層から構成されても良く、1つの絶縁層40が、1以上の絶縁層の積層から構成されても良い。配線層50は、例えば、1以上の金属箔から構成される。絶縁層40は、1以上の樹脂層から構成される。絶縁層40の絶縁性は高いことが望ましいが、必ずしもこの限りではない。配線層50は、必ずしもパターニングされている必要はなく、また、必ずしも他の配線層と電気的に接続されていなくても良い。フローティングの配線層50を設けることは、静電容量の制御や多層プリント配線基板の機械的な強度等を調整する際には有効になる場合がある。 The constituent materials and layer thicknesses of the insulating layer 40 and the wiring layer 50 are arbitrary, and one wiring layer 50 may be composed of a stack of one or more conductive layers, and one insulating layer 40 may have one or more insulating layers. You may comprise from lamination | stacking of a layer. The wiring layer 50 is composed of, for example, one or more metal foils. The insulating layer 40 is composed of one or more resin layers. It is desirable that the insulating layer 40 has high insulating properties, but this is not necessarily the case. The wiring layer 50 does not necessarily have to be patterned and does not necessarily have to be electrically connected to other wiring layers. Providing the floating wiring layer 50 may be effective when controlling the electrostatic capacity or adjusting the mechanical strength of the multilayer printed wiring board.
 ビルドアップ層110の具体的な構成は任意である。例えば、ビルドアップ層110は、1以上の絶縁層40と1以上の配線層50を含む。例えば、ビルドアップ層110に含まれる1以上の配線層50が、パターニングされた若しくはパターニングされていない金属箔である。例えば、ビルドアップ層110に含まれる1以上の絶縁層40が、プリプレグである。例えば、ビルドアップ層110が、片面あるいは両面金属張積層板を含む。 The specific configuration of the buildup layer 110 is arbitrary. For example, the buildup layer 110 includes one or more insulating layers 40 and one or more wiring layers 50. For example, one or more wiring layers 50 included in the buildup layer 110 are patterned or unpatterned metal foil. For example, one or more insulating layers 40 included in the buildup layer 110 are prepregs. For example, the build-up layer 110 includes a single-sided or double-sided metal-clad laminate.
 金属箔20の板状キャリア若しくは支持基板として機能するプリプレグ10は、任意の基材と任意の充填材料の複合体であり、典型的には、不織布、織物等の基材を合成樹脂等の充填材料に含侵させた状態で充填材料を液体から固体化して得られる。プリプレグ10は、高い絶縁性を有し、かつ所望の機械的強度を有する。プリプレグ10の構成材料である樹脂は、例示的には、フェノール樹脂、ポリイミド樹脂、エポキシ樹脂、天然ゴム、松脂等である。プリプレグ10は、Bステージの状態にあるものが良く、これにより、十分な強度を確保することができる。 The prepreg 10 that functions as a plate-like carrier or support substrate for the metal foil 20 is a composite of an arbitrary base material and an arbitrary filling material. Typically, the base material such as a nonwoven fabric or a woven fabric is filled with a synthetic resin or the like. It is obtained by solidifying the filling material from a liquid while impregnating the material. The prepreg 10 has a high insulating property and a desired mechanical strength. The resin that is a constituent material of the prepreg 10 is illustratively a phenol resin, a polyimide resin, an epoxy resin, natural rubber, pine resin, and the like. The prepreg 10 is preferably in a B-stage state, thereby ensuring sufficient strength.
 プリプレグ10は、高いガラス転移温度Tgを有することが望ましい。プリプレグ10のガラス転移温度Tgは、例えば、120~320℃、好ましくは170~240℃である。なお、ガラス転移温度Tgは、DSC(示差走査熱量測定法)により測定される値とする。 The prepreg 10 desirably has a high glass transition temperature Tg. The glass transition temperature Tg of the prepreg 10 is, for example, 120 to 320 ° C., preferably 170 to 240 ° C. The glass transition temperature Tg is a value measured by DSC (differential scanning calorimetry).
 プリプレグ10の厚みは特に制限はなく、可撓性を有する程度の厚さ若しくは可撓性を有しない程度の厚さに設定される。但し、ベース基材100中の基板として機械的な強度と剛性があるほうが望ましいため、極端に薄くすることは適当ではない。また、プリプレグ10が極端に厚いとプリプレグ10を介した熱伝播が生じにくくなるため、ホットプレス時にプリプレグ10の平面内において不均一な熱分布が生じてしまい、十分なホットプレスを達成し難くなるおそれがある。この点に鑑みて、プリプレグ10の厚みを50~900μmとし、より好ましくは100~400μmとする。 The thickness of the prepreg 10 is not particularly limited, and is set to a thickness that has flexibility or a thickness that does not have flexibility. However, since it is desirable that the substrate in the base substrate 100 has mechanical strength and rigidity, it is not appropriate to make it extremely thin. Further, if the prepreg 10 is extremely thick, heat propagation through the prepreg 10 is difficult to occur, and therefore, a non-uniform heat distribution occurs in the plane of the prepreg 10 during hot pressing, making it difficult to achieve sufficient hot pressing. There is a fear. In view of this point, the thickness of the prepreg 10 is set to 50 to 900 μm, more preferably 100 to 400 μm.
 金属箔20としては、銅又は銅合金箔が代表的なものであるが、アルミニウム、ニッケル、亜鉛などの箔を使用することもできる。銅又は銅合金箔の場合、電解箔又は圧延箔を使用することができる。銅合金を活用することにより、金属箔20の硬さを高めることができる。銅合金としては、ベリリウムやカドミウムを少量添加した高純度銅合金が例示できる。金属箔20の厚みは、典型的には1~400μmであり、好適には5~70μmである。 As the metal foil 20, a copper or copper alloy foil is typical, but a foil of aluminum, nickel, zinc or the like can also be used. In the case of copper or copper alloy foil, electrolytic foil or rolled foil can be used. By utilizing the copper alloy, the hardness of the metal foil 20 can be increased. Examples of the copper alloy include high-purity copper alloys to which a small amount of beryllium or cadmium is added. The thickness of the metal foil 20 is typically 1 to 400 μm, preferably 5 to 70 μm.
 金属箔20に表面処理を施しても構わない。例えば、耐熱性付与を目的とした金属めっき(Niめっき、Ni-Zn合金めっき、Cu-Ni合金めっき、Cu-Zn合金めっき、Znめっき、Cu-Ni-Zn合金めっき、Co-Ni合金めっきなど)、防錆性や耐変色性を付与するためのクロメート処理(クロメート処理液中にZn、P、Ni、Mo、Zr、Ti等の合金元素を1種以上含有させる場合を含む)、表面粗度調整のための粗化処理(例:銅電着粒やCu-Ni-Co合金めっき、Cu-Ni-P合金めっき、Cu-Co合金めっき、Cu-Ni合金めっき、Cu-Co合金めっき、Cu-As合金めっき、Cu-As-W合金めっき等の銅合金めっきによるもの)が挙げられる。 The metal foil 20 may be surface treated. For example, metal plating for the purpose of imparting heat resistance (Ni plating, Ni—Zn alloy plating, Cu—Ni alloy plating, Cu—Zn alloy plating, Zn plating, Cu—Ni—Zn alloy plating, Co—Ni alloy plating, etc. ), Chromate treatment (including the case where one or more alloy elements such as Zn, P, Ni, Mo, Zr, Ti, etc. are contained in the chromate treatment liquid) for imparting rust prevention and discoloration resistance, surface roughness (For example, copper electrodeposition grains, Cu—Ni—Co alloy plating, Cu—Ni—P alloy plating, Cu—Co alloy plating, Cu—Ni alloy plating, Cu—Co alloy plating, And copper alloy plating such as Cu—As alloy plating and Cu—As—W alloy plating).
 金属箔20に対する粗化処理が、金属張積層板25とビルドアップ層110間の剥離強度に影響を与える。同様に、金属箔20に対するクロメート処理もその剥離強度に大きな影響を与える。クロメート処理は防錆性や耐変色性の観点から重要であるが、剥離強度を有意に上昇させる傾向が見られるので、剥離強度の調整手段としても意義がある。 The roughening treatment on the metal foil 20 affects the peel strength between the metal-clad laminate 25 and the buildup layer 110. Similarly, the chromate treatment on the metal foil 20 has a great influence on the peel strength. Chromate treatment is important from the viewpoint of rust prevention and discoloration resistance, but since it tends to significantly increase the peel strength, it is also meaningful as a means for adjusting the peel strength.
 例えば、金属箔20としての銅箔又は銅合金箔の光沢面に対して下記の条件によるニッケル-亜鉛(Ni-Zn)合金めっき処理及びクロメート(Cr-Znクロメート)処理を施しても良い。 For example, the glossy surface of the copper foil or copper alloy foil as the metal foil 20 may be subjected to nickel-zinc (Ni—Zn) alloy plating treatment and chromate (Cr—Zn chromate) treatment under the following conditions.
 (ニッケル-亜鉛合金めっき)
  Ni濃度 17g/L(NiSO4として添加)
  Zn濃度  4g/L(ZnSO4として添加)
  pH    3.1
  液温    40℃
  電流密度  0.1~10A/dm2
  めっき時間 0.1~10秒
(Nickel-zinc alloy plating)
Ni concentration 17g / L (added as NiSO 4 )
Zn concentration 4g / L (added as ZnSO 4 )
pH 3.1
Liquid temperature 40 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 (クロメート処理)
  Cr濃度    1.4g/L(CrO3又はK2CrO7として添加)
  Zn濃度    0.01~1.0g/L(ZnSO4として添加)
  Na2SO4濃度 10g/L
  pH      4.8
  液温      55℃
  電流密度    0.1~10A/dm2
  めっき時間   0.1~10秒
(Chromate treatment)
Cr concentration 1.4g / L (added as CrO 3 or K 2 CrO 7 )
Zn concentration 0.01 to 1.0 g / L (added as ZnSO 4 )
Na 2 SO 4 concentration 10 g / L
pH 4.8
Liquid temperature 55 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 金属箔20は、プリプレグ10上にホットプレス等により熱圧着して積層固定される。ホットプレスの条件としては、圧力30~40kg/cm2、プリプレグ10のガラス転移温度よりも高い温度でホットプレスすることが好ましい。 The metal foil 20 is laminated and fixed onto the prepreg 10 by thermocompression bonding using a hot press or the like. As hot pressing conditions, it is preferable to perform hot pressing at a pressure of 30 to 40 kg / cm 2 and a temperature higher than the glass transition temperature of the prepreg 10.
 離型剤層30は、金属箔20に対して相対的に強く固着し、ビルドアップ層110、端的にはその最下層の絶縁層40に対して相対的に弱く固着する任意の材料から選択することが好ましい。なお、最下層の絶縁層40は、典型的には樹脂層であり、好適にはプリプレグである。図2に示すビルドアップ層110の積層工程において、ベース基材100が加熱され、化学的又は物理的に処理される場合がある。このような観点から、離型剤層30としても耐熱性及び耐薬品性を有し、容易に変質したり薬品により浸食を受けたりしないことを確保することが望ましい。離型剤層30は、スピンコーティング、ディップコーティング、スプレーコーティング、印刷等の任意の方法にて金属箔20上に形成することができる。 The release agent layer 30 is selected from any material that is relatively strongly fixed to the metal foil 20 and that is relatively weakly fixed to the buildup layer 110 and, ultimately, the lowermost insulating layer 40. It is preferable. The lowermost insulating layer 40 is typically a resin layer, and preferably a prepreg. In the stacking process of the buildup layer 110 shown in FIG. 2, the base substrate 100 may be heated and chemically or physically processed. From such a viewpoint, it is desirable to ensure that the release agent layer 30 also has heat resistance and chemical resistance and is not easily altered or eroded by chemicals. The release agent layer 30 can be formed on the metal foil 20 by any method such as spin coating, dip coating, spray coating, and printing.
 離型剤層30が形成される金属箔20の上面は、粗面(M面)又は光沢面(S面)であるが、好適には光沢面である。これにより、金属箔20の上面の粗度のバラつきを抑制してベース基材100の品質の安定化を図ることができる。離型剤層30の層厚は、典型的には0.001~10μmであり、好適には0.001~0.1μmである。 The upper surface of the metal foil 20 on which the release agent layer 30 is formed is a rough surface (M surface) or a glossy surface (S surface), but is preferably a glossy surface. Thereby, the variation in the roughness of the upper surface of the metal foil 20 can be suppressed, and the quality of the base substrate 100 can be stabilized. The layer thickness of the release agent layer 30 is typically 0.001 to 10 μm, preferably 0.001 to 0.1 μm.
(1)シラン化合物
 離型剤層30の構成材料は、本願に開示若しくは現時点において入手可能な材料に限定されるべきものではないが、例えば、次の化学式に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体の単独又は組み合わせを用いても良い。
Figure JPOXMLDOC01-appb-C000009
(式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、又はアルコキシ基、又はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
(1) Silane Compound The constituent material of the release agent layer 30 should not be limited to materials disclosed in the present application or currently available. For example, a silane compound represented by the following chemical formula and a hydrolysis product thereof A condensate of the hydrolysis product may be used alone or in combination.
Figure JPOXMLDOC01-appb-C000009
Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
 当該シラン化合物はアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、離型剤層30と金属箔20の密着性が低下し過ぎる傾向がある。また、当該シラン化合物はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を少なくとも一つ有していることが必要である。当該炭化水素基が存在しない場合、離型剤層30と金属箔20の密着性が上昇する傾向があるからである。なお、本願発明に係るアルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。 The silane compound must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of the mold release agent layer 30 and the metal foil 20 to fall too much. The silane compound is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have at least one. This is because when the hydrocarbon group does not exist, the adhesion between the release agent layer 30 and the metal foil 20 tends to increase. The alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms.
 金属張積層板25とビルドアップ層110の剥離強度を後述の範囲に調節する上では、当該シラン化合物はアルコキシ基を三つ、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つ有していることが好ましい。これを上の式で言えば、R3及びR4の両方がアルコキシ基ということになる。 In adjusting the peel strength between the metal-clad laminate 25 and the build-up layer 110 to a range described later, the silane compound has three alkoxy groups and the above hydrocarbon groups (one or more hydrogen atoms are substituted with halogen atoms). It is preferable that it has one hydrocarbon group. In the above formula, both R 3 and R 4 are alkoxy groups.
 アルコキシ基としては、限定的ではないが、メトキシ基、エトキシ基、n-又はiso-プロポキシ基、n-、iso-又はtert-ブトキシ基、n-、iso-又はneo-ペントキシ基、n-ヘキソキシ基、シクロヘキシソキシ基、n-ヘプトキシ基、及びn-オクトキシ基等の直鎖状、分岐状、又は環状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルコキシ基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Alkoxy groups include, but are not limited to, methoxy, ethoxy, n- or iso-propoxy, n-, iso- or tert-butoxy, n-, iso- or neo-pentoxy, n-hexoxy Group, cyclohexyloxy group, n-heptoxy group, n-octoxy group and the like, straight chain, branched or cyclic carbon number of 1-20, preferably carbon number of 1-10, more preferably carbon number of 1- 5 alkoxy groups. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, and n-hexyl. A linear or branched alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as a group, n-octyl group and n-decyl group.
 シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Examples of the cycloalkyl group include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like, which have 3 to 10 carbon atoms, preferably 5 to 7 carbon atoms. An alkyl group is mentioned.
 アリール基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられる。 The aryl group includes a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, etc., having 6 to 20, preferably 6 to 14 carbon atoms. An aryl group is mentioned.
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。 In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいシラン化合物の例としては、メチルトリメトキシシラン、エチルトリメトキシシラン、n-又はiso-プロピルトリメトキシシラン、n-、iso-又はtert-ブチルトリメトキシシラン、n-、iso-又はneo-ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、フェニルトリメトキシシラン;アルキル置換フェニルトリメトキシシラン(例えば、p-(メチル)フェニルトリメトキシシラン)、メチルトリエトキシシラン、エチルトリエトキシシラン、n-又はiso-プロピルトリエトキシシラン、n-、iso-又はtert-ブチルトリエトキシシラン、ペンチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、フェニルトリエトキシシラン、アルキル置換フェニルトリエトキシシラン(例えば、p-(メチル)フェニルトリエトキシシラン)、(3,3,3-トリフルオロプロピル)トリメトキシシラン、及びトリデカフルオロオクチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、フェニルトリクロロシラン、トリメチルフルオロシラン、ジメチルジブロモシラン、ジフェニルジブロモシラン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、プロピルトリメトキシシラン、メチルトリエトキシシラン、ヘキシルトリメトキシシラン、フェニルトリエトキシシラン、デシルトリメトキシシランが好ましい。 Examples of preferred silane compounds include methyltrimethoxysilane, ethyltrimethoxysilane, n- or iso-propyltrimethoxysilane, n-, iso- or tert-butyltrimethoxysilane, n-, iso- or neo-pentyl. Trimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, phenyltrimethoxysilane; alkyl-substituted phenyltrimethoxysilane (eg, p- (methyl) phenyltrimethoxysilane), methyltriethoxysilane, ethyl Triethoxysilane, n- or iso-propyltriethoxysilane, n-, iso- or tert-butyltriethoxysilane, pentyltriethoxysilane, hexyltriethoxysilane, octyltriethoxy Silane, decyltriethoxysilane, phenyltriethoxysilane, alkyl-substituted phenyltriethoxysilane (eg, p- (methyl) phenyltriethoxysilane), (3,3,3-trifluoropropyl) trimethoxysilane, and trideca Fluorooctyltriethoxysilane, methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, phenyltrichlorosilane, trimethylfluorosilane, dimethyldibromosilane, diphenyldibromosilane, their hydrolysis products, and condensates of these hydrolysis products Etc. Among these, propyltrimethoxysilane, methyltriethoxysilane, hexyltrimethoxysilane, phenyltriethoxysilane, and decyltrimethoxysilane are preferable from the viewpoint of availability.
 (2)分子内に2つ以下のメルカプト基を有する化合物
 上述のシラン化合物に代えて、分子内に2つ以下のメルカプト基を有する化合物を離型剤層30に用いても良い。この例としては、チオール、ジチオール、チオカルボン酸又はその塩、ジチオカルボン酸又はその塩、チオスルホン酸又はその塩、及びジチオスルホン酸又はその塩が挙げられ、これらの中から選択される少なくとも一種を用いることができる。
(2) Compound having two or less mercapto groups in the molecule Instead of the silane compound described above, a compound having two or less mercapto groups in the molecule may be used for the release agent layer 30. Examples thereof include thiol, dithiol, thiocarboxylic acid or a salt thereof, dithiocarboxylic acid or a salt thereof, thiosulfonic acid or a salt thereof, and dithiosulfonic acid or a salt thereof, and at least one selected from these is used. be able to.
 チオールは、分子内に一つのメルカプト基を有するものであり、例えばR-SHで表される。ここで、Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。 Thiol has one mercapto group in the molecule and is represented by, for example, R-SH. Here, R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group.
 ジチオールは、分子内に二つのメルカプト基を有するものであり、例えばR(SH)2で表される。Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。また、二つのメルカプト基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素又は窒素に結合してもよい。 Dithiol has two mercapto groups in the molecule and is represented by, for example, R (SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two mercapto groups may be bonded to the same carbon, or may be bonded to different carbons or nitrogens.
 チオカルボン酸は、有機カルボン酸の水酸基がメルカプト基に置換されたものであり、例えばR-CO-SHで表される。Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。また、チオカルボン酸は、塩の形態でも使用することが可能である。なお、チオカルボン酸基を、二つ有する化合物も使用可能である。 The thiocarboxylic acid is one in which a hydroxyl group of an organic carboxylic acid is substituted with a mercapto group, and is represented by, for example, R—CO—SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. The thiocarboxylic acid can also be used in the form of a salt. A compound having two thiocarboxylic acid groups can also be used.
 ジチオカルボン酸は、有機カルボン酸のカルボキシ基中の2つの酸素原子が硫黄原子に置換されたものであり、例えばR-(CS)-SHで表される。Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。また、ジチオカルボン酸は、塩の形態でも使用することが可能である。なお、ジチオカルボン酸基を、二つ有する化合物も使用可能である。 Dithiocarboxylic acid is one in which two oxygen atoms in the carboxy group of an organic carboxylic acid are substituted with sulfur atoms, and is represented by, for example, R- (CS) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Dithiocarboxylic acid can also be used in the form of a salt. A compound having two dithiocarboxylic acid groups can also be used.
 チオスルホン酸は、有機スルホン酸の水酸基がメルカプト基に置換されたものであり、例えばR(SO2)-SHで表される。Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。また、チオスルホン酸は、塩の形態でも使用することが可能である。 The thiosulfonic acid is obtained by replacing the hydroxyl group of an organic sulfonic acid with a mercapto group, and is represented by, for example, R (SO 2 ) -SH. R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Further, thiosulfonic acid can be used in the form of a salt.
 ジチオスルホン酸は、有機ジスルホン酸の二つの水酸基がそれぞれメルカプト基に置換されたものであり、例えばR-((SO2)-SH)2で表される。Rは、水酸基又はアミノ基を含んでもよい、脂肪族系又は芳香族系炭化水素基又は複素環基を表す。また、二つのチオスルホン酸基は、それぞれ同じ炭素に結合してもよいし、互いに別々の炭素に結合してもよい。また、ジチオスルホン酸は、塩の形態でも使用することが可能である。 Dithiosulfonic acid is one in which two hydroxyl groups of organic disulfonic acid are substituted with mercapto groups, and is represented by, for example, R-((SO 2 ) -SH) 2 . R represents an aliphatic or aromatic hydrocarbon group or heterocyclic group which may contain a hydroxyl group or an amino group. Two thiosulfonic acid groups may be bonded to the same carbon, or may be bonded to different carbons. Dithiosulfonic acid can also be used in the form of a salt.
 ここで、Rとして好適な脂肪族系炭化水素基としては、アルキル基、シクロアルキル基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらか又は両方を含んでいてもよい。 Here, examples of the aliphatic hydrocarbon group suitable as R include an alkyl group and a cycloalkyl group, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、Rとして好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらか又は両方を含んでいてもよい。 In addition, examples of suitable aromatic hydrocarbon groups as R include phenyl groups, phenyl groups substituted with alkyl groups (eg, tolyl groups, xylyl groups), 1- or 2-naphthyl groups, anthryl groups, and the like. -20, preferably 6-14 aryl groups, and these hydrocarbon groups may contain either or both of a hydroxyl group and an amino group.
 また、Rとして好適な複素環基としては、イミダゾール、トリアゾール、テトラゾール、ベンゾイミダゾール、ベンゾトリアゾール、チアゾール、ベンゾチアゾールが挙げられ、水酸基とアミノ基のどちらか又は両方を含んでいてもよい。 Also, examples of the heterocyclic group suitable as R include imidazole, triazole, tetrazole, benzimidazole, benzotriazole, thiazole, and benzothiazole, which may contain either or both of a hydroxyl group and an amino group.
 分子内に2つ以下のメルカプト基を有する化合物の好ましい例としては、3-メルカプト-1,2プロパンジオール、2-メルカプトエタノール、1,2-エタンジチオール、6-メルカプト-1-ヘキサノール、1-オクタンチオール、1-ドデカンチオール、10-ヒドロキシ-1-ドデカンチオール、10-カルボキシ-1-ドデカンチオール、10-アミノ-1-ドデカンチオール、1-ドデカンチオールスルホン酸ナトリウム、チオフェノール、チオ安息香酸、4-アミノ-チオフェノール、p-トルエンチオール、2,4-ジメチルベンゼンチオール、3-メルカプト-1,2,4トリアゾール、2-メルカプト-ベンゾチアゾールが挙げられる。これらの中でも水溶性と廃棄物処理上の観点から、3-メルカプト-1,2プロパンジオールが好ましい。 Preferred examples of the compound having two or less mercapto groups in the molecule include 3-mercapto-1,2, propanediol, 2-mercaptoethanol, 1,2-ethanedithiol, 6-mercapto-1-hexanol, 1- Octanethiol, 1-dodecanethiol, 10-hydroxy-1-dodecanethiol, 10-carboxy-1-dodecanethiol, 10-amino-1-dodecanethiol, sodium 1-dodecanethiolsulfonate, thiophenol, thiobenzoic acid, Examples include 4-amino-thiophenol, p-toluenethiol, 2,4-dimethylbenzenethiol, 3-mercapto-1,2,4 triazole, and 2-mercapto-benzothiazole. Of these, 3-mercapto-1,2-propanediol is preferred from the viewpoint of water solubility and waste disposal.
(3)金属アルコキシド
 次式に示す構造を有するアルミネート化合物、チタネート化合物、ジルコネート化合物、又はその加水分解生成物質、又は該加水分解生成物質の縮合体(以下、単に金属アルコキシドと記述する)を単独で又は複数混合して使用して、金属張積層板25上に絶縁層40を積層することで、適度に密着性が低下し、剥離強度を後述するような範囲に調節できる。
(3) Metal alkoxide An aluminate compound, titanate compound, zirconate compound having a structure represented by the following formula, or a hydrolysis product thereof, or a condensate of the hydrolysis product (hereinafter simply referred to as a metal alkoxide) alone Or by using a mixture of a plurality of layers and laminating the insulating layer 40 on the metal-clad laminate 25, the adhesiveness is appropriately lowered, and the peel strength can be adjusted to a range as described later.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0又は1又は2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である。 In the formula, R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms. Any one of these substituted hydrocarbon groups, M is any one of Al, Ti, and Zr, n is 0, 1 or 2, m is an integer from 1 to M, and R At least one of 1 is an alkoxy group. M + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr.
 当該金属アルコキシドはアルコキシ基を少なくとも一つ有していることが必要である。アルコキシ基が存在せずに、アルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基のみで置換基が構成される場合、金属張積層板25の金属箔20の表面と絶縁層40の密着性が低下し過ぎる傾向がある。また、当該金属アルコキシドはアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基を0~2個有していることが必要である。当該炭化水素基を3つ以上有する場合、金属張積層板25の金属箔20の表面と絶縁層40の密着性が低下し過ぎる傾向があるからである。なお、本願発明に係るアルコキシ基には一つ以上の水素原子がハロゲン原子に置換されたアルコキシ基も含まれるものとする。金属張積層板25とビルドアップ層110の剥離強度を後述の範囲に調節する上では、当該金属アルコキシドはアルコキシ基を二つ以上、上記炭化水素基(一つ以上の水素原子がハロゲン原子で置換された炭化水素基を含む)を一つか二つ有していることが好ましい。 The metal alkoxide must have at least one alkoxy group. A hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group in the absence of an alkoxy group, or any one of these hydrocarbons in which one or more hydrogen atoms are substituted with a halogen atom When a substituent is comprised only by group, there exists a tendency for the adhesiveness of the surface of the metal foil 20 of the metal-clad laminated board 25 and the insulating layer 40 to fall too much. The metal alkoxide is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group, or any one of these hydrocarbon groups in which one or more hydrogen atoms are substituted with a halogen atom. It is necessary to have 0-2. This is because when there are three or more hydrocarbon groups, the adhesion between the surface of the metal foil 20 of the metal-clad laminate 25 and the insulating layer 40 tends to be excessively lowered. The alkoxy group according to the present invention includes an alkoxy group in which one or more hydrogen atoms are substituted with halogen atoms. In adjusting the peel strength between the metal-clad laminate 25 and the build-up layer 110 within the range described below, the metal alkoxide has two or more alkoxy groups and the hydrocarbon group (one or more hydrogen atoms are replaced by halogen atoms). Preferably one or two of them).
 また、アルキル基としては、限定的ではないが、メチル基、エチル基、n-又はiso-プロピル基、n-、iso-又はtert-ブチル基、n-、iso-又はneo-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基等の直鎖状又は分岐状の炭素数1~20、好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基が挙げられる。 Examples of the alkyl group include, but are not limited to, methyl group, ethyl group, n- or iso-propyl group, n-, iso- or tert-butyl group, n-, iso- or neo-pentyl group, n And straight-chain or branched alkyl groups having 1 to 20, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms, such as -hexyl group, n-octyl group, and n-decyl group. .
 また、シクロアルキル基としては、限定的ではないが、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基、シクロオクチル基等の炭素数3~10、好ましくは炭素数5~7のシクロアルキル基が挙げられる。 Further, the cycloalkyl group is not limited, but it has 3 to 10 carbon atoms such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc., preferably 5 to 7 carbon atoms. Of the cycloalkyl group.
 また、R2として好適な芳香族炭化水素基としては、フェニル基、アルキル基で置換されたフェニル基(例:トリル基、キシリル基)、1-又は2-ナフチル基、アントリル基等の炭素数6~20、好ましくは6~14のアリール基が挙げられ、これら炭化水素基は水酸基とアミノ基のどちらか又は両方を含んでいてもよい。
 これらの炭化水素基は一つ以上の水素原子がハロゲン原子で置換されてもよく、例えば、フッ素原子、塩素原子、又は臭素原子で置換されることができる。
Further, examples of the aromatic hydrocarbon group suitable as R 2 include a phenyl group, a phenyl group substituted with an alkyl group (eg, tolyl group, xylyl group), 1- or 2-naphthyl group, anthryl group, and the like. Examples thereof include 6 to 20, preferably 6 to 14, aryl groups, and these hydrocarbon groups may contain one or both of a hydroxyl group and an amino group.
In these hydrocarbon groups, one or more hydrogen atoms may be substituted with a halogen atom, and may be substituted with, for example, a fluorine atom, a chlorine atom, or a bromine atom.
 好ましいアルミネート化合物の例としては、トリメトキシアルミニウム、メチルジメトキシアルミニウム、エチルジメトキシアルミニウム、n-又はiso-プロピルジメトキシアルミニウム、n-、iso-又はtert-ブチルジメトキシアルミニウム、n-、iso-又はneo-ペンチルジメトキシアルミニウム、ヘキシルジメトキシアルミニウム、オクチルジメトキシアルミニウム、デシルジメトキシアルミニウム、フェニルジメトキシアルミニウム;アルキル置換フェニルジメトキシアルミニウム(例えば、p-(メチル)フェニルジメトキシアルミニウム)、ジメチルメトキシアルミニウム、トリエトキシアルミニウム、メチルジエトキシアルミニウム、エチルジエトキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジエトキシアルミニウム、ペンチルジエトキシアルミニウム、ヘキシルジエトキシアルミニウム、オクチルジエトキシアルミニウム、デシルジエトキシアルミニウム、フェニルジエトキシアルミニウム、アルキル置換フェニルジエトキシアルミニウム(例えば、p-(メチル)フェニルジエトキシアルミニウム)、ジメチルエトキシアルミニウム、トリイソプロポキシアルミニウム、メチルジイソプロポキシアルミニウム、エチルジイソプロポキシアルミニウム、n-又はiso-プロピルジエトキシアルミニウム、n-、iso-又はtert-ブチルジイソプロポキシアルミニウム、ペンチルジイソプロポキシアルミニウム、ヘキシルジイソプロポキシアルミニウム、オクチルジイソプロポキシアルミニウム、デシルジイソプロポキシアルミニウム、フェニルジイソプロポキシアルミニウム、アルキル置換フェニルジイソプロポキシアルミニウム(例えば、p-(メチル)フェニルジイソプロポキシアルミニウム)、ジメチルイソプロポキシアルミニウム、(3,3,3-トリフルオロプロピル)ジメトキシアルミニウム、及びトリデカフルオロオクチルジエトキシアルミニウム、メチルジクロロアルミニウム、ジメチルクロロアルミニウム、ジメチルクロロアルミニウム、フェニルジクロロアルミニウム、ジメチルフルオロアルミニウム、ジメチルブロモアルミニウム、ジフェニルブロモアルミニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、トリメトキシアルミニウム、トリエトキシアルミニウム、トリイソプロポキシアルミニウム、が好ましい。 Examples of preferred aluminate compounds include trimethoxyaluminum, methyldimethoxyaluminum, ethyldimethoxyaluminum, n- or iso-propyldimethoxyaluminum, n-, iso- or tert-butyldimethoxyaluminum, n-, iso- or neo- Pentyl dimethoxy aluminum, hexyl dimethoxy aluminum, octyl dimethoxy aluminum, decyl dimethoxy aluminum, phenyl dimethoxy aluminum; alkyl-substituted phenyl dimethoxy aluminum (for example, p- (methyl) phenyl dimethoxy aluminum), dimethylmethoxy aluminum, triethoxy aluminum, methyl diethoxy aluminum Ethyldiethoxyaluminum, n- or iso-propyldiethyl Aluminum, n-, iso- or tert-butyldiethoxyaluminum, pentyldiethoxyaluminum, hexyldiethoxyaluminum, octyldiethoxyaluminum, decyldiethoxyaluminum, phenyldiethoxyaluminum, alkyl-substituted phenyldiethoxyaluminum (eg p -(Methyl) phenyldiethoxyaluminum), dimethylethoxyaluminum, triisopropoxyaluminum, methyldiisopropoxyaluminum, ethyldiisopropoxyaluminum, n- or iso-propyldiethoxyaluminum, n-, iso- or tert-butyl Diisopropoxy aluminum, pentyl diisopropoxy aluminum, hexyl diisopropoxy aluminum, octyl dii Propoxyaluminum, decyldiisopropoxyaluminum, phenyldiisopropoxyaluminum, alkyl-substituted phenyldiisopropoxyaluminum (eg, p- (methyl) phenyldiisopropoxyaluminum), dimethylisopropoxyaluminum, (3,3,3-tri Fluoropropyl) dimethoxyaluminum and tridecafluorooctyldiethoxyaluminum, methyldichloroaluminum, dimethylchloroaluminum, dimethylchloroaluminum, phenyldichloroaluminum, dimethylfluoroaluminum, dimethylbromoaluminum, diphenylbromoaluminum, their hydrolysis products, And condensates of these hydrolysis products. Among these, from the viewpoint of availability, trimethoxyaluminum, triethoxyaluminum, and triisopropoxyaluminum are preferable.
 好ましいチタネート化合物の例としては、テトラメトキシチタン、メチルトリメトキシチタン、エチルトリメトキシチタン、n-又はiso-プロピルトリメトキシチタン、n-、iso-又はtert-ブチルトリメトキシチタン、n-、iso-又はneo-ペンチルトリメトキシチタン、ヘキシルトリメトキシチタン、オクチルトリメトキシチタン、デシルトリメトキシチタン、フェニルトリメトキシチタン;アルキル置換フェニルトリメトキシチタン(例えば、p-(メチル)フェニルトリメトキシチタン)、ジメチルジメトキシチタン、テトラエトキシチタン、メチルトリエトキシチタン、エチルトリエトキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリエトキシチタン、ペンチルトリエトキシチタン、ヘキシルトリエトキシチタン、オクチルトリエトキシチタン、デシルトリエトキシチタン、フェニルトリエトキシチタン、アルキル置換フェニルトリエトキシチタン(例えば、p-(メチル)フェニルトリエトキシチタン)、ジメチルジエトキシチタン、テトライソプロポキシチタン、メチルトリイソプロポキシチタン、エチルトリイソプロポキシチタン、n-又はiso-プロピルトリエトキシチタン、n-、iso-又はtert-ブチルトリイソプロポキシチタン、ペンチルトリイソプロポキシチタン、ヘキシルトリイソプロポキシチタン、オクチルトリイソプロポキシチタン、デシルトリイソプロポキシチタン、フェニルトリイソプロポキシチタン、アルキル置換フェニルトリイソプロポキシチタン(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシチタン、(3,3,3-トリフルオロプロピル)トリメトキシチタン、及びトリデカフルオロオクチルトリエトキシチタン、メチルトリクロロチタン、ジメチルジクロロチタン、トリメチルクロロチタン、フェニルトリクロロチタン、ジメチルジフルオロチタン、ジメチルジブロモチタン、ジフェニルジブロモチタン、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、が好ましい。 Examples of preferred titanate compounds include tetramethoxy titanium, methyl trimethoxy titanium, ethyl trimethoxy titanium, n- or iso-propyl trimethoxy titanium, n-, iso- or tert-butyl trimethoxy titanium, n-, iso- Or neo-pentyltrimethoxytitanium, hexyltrimethoxytitanium, octyltrimethoxytitanium, decyltrimethoxytitanium, phenyltrimethoxytitanium; alkyl-substituted phenyltrimethoxytitanium (eg p- (methyl) phenyltrimethoxytitanium), dimethyldimethoxy Titanium, tetraethoxy titanium, methyl triethoxy titanium, ethyl triethoxy titanium, n- or iso-propyl triethoxy titanium, n-, iso- or tert-butyl triethoxy titanium, Nitrotriethoxytitanium, hexyltriethoxytitanium, octyltriethoxytitanium, decyltriethoxytitanium, phenyltriethoxytitanium, alkyl-substituted phenyltriethoxytitanium (eg p- (methyl) phenyltriethoxytitanium), dimethyldiethoxytitanium , Tetraisopropoxytitanium, methyltriisopropoxytitanium, ethyltriisopropoxytitanium, n- or iso-propyltriethoxytitanium, n-, iso- or tert-butyltriisopropoxytitanium, pentyltriisopropoxytitanium, hexyltri Isopropoxytitanium, octyltriisopropoxytitanium, decyltriisopropoxytitanium, phenyltriisopropoxytitanium, alkyl-substituted phenyltriisopropoxytitanium ( For example, p- (methyl) phenyltriisopropoxytitanium), dimethyldiisopropoxytitanium, (3,3,3-trifluoropropyl) trimethoxytitanium, and tridecafluorooctyltriethoxytitanium, methyltrichlorotitanium, dimethyldichloro Examples include titanium, trimethylchlorotitanium, phenyltrichlorotitanium, dimethyldifluorotitanium, dimethyldibromotitanium, diphenyldibromotitanium, hydrolysis products thereof, and condensates of these hydrolysis products. Among these, tetramethoxy titanium, tetraethoxy titanium, and tetraisopropoxy titanium are preferable from the viewpoint of availability.
 好ましいジルコネート化合物の例としては、テトラメトキシジルコニウム、メチルトリメトキシジルコニウム、エチルトリメトキシジルコニウム、n-又はiso-プロピルトリメトキシジルコニウム、n-、iso-又はtert-ブチルトリメトキシジルコニウム、n-、iso-又はneo-ペンチルトリメトキシジルコニウム、ヘキシルトリメトキシジルコニウム、オクチルトリメトキシジルコニウム、デシルトリメトキシジルコニウム、フェニルトリメトキシジルコニウム;アルキル置換フェニルトリメトキシジルコニウム(例えば、p-(メチル)フェニルトリメトキシジルコニウム)、ジメチルジメトキシジルコニウム、テトラエトキシジルコニウム、メチルトリエトキシジルコニウム、エチルトリエトキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリエトキシジルコニウム、ペンチルトリエトキシジルコニウム、ヘキシルトリエトキシジルコニウム、オクチルトリエトキシジルコニウム、デシルトリエトキシジルコニウム、フェニルトリエトキシジルコニウム、アルキル置換フェニルトリエトキシジルコニウム(例えば、p-(メチル)フェニルトリエトキシジルコニウム)、ジメチルジエトキシジルコニウム、テトライソプロポキシジルコニウム、メチルトリイソプロポキシジルコニウム、エチルトリイソプロポキシジルコニウム、n-又はiso-プロピルトリエトキシジルコニウム、n-、iso-又はtert-ブチルトリイソプロポキシジルコニウム、ペンチルトリイソプロポキシジルコニウム、ヘキシルトリイソプロポキシジルコニウム、オクチルトリイソプロポキシジルコニウム、デシルトリイソプロポキシジルコニウム、フェニルトリイソプロポキシジルコニウム、アルキル置換フェニルトリイソプロポキシジルコニウム(例えば、p-(メチル)フェニルトリイソプロポキシチタン)、ジメチルジイソプロポキシジルコニウム、(3,3,3-トリフルオロプロピル)トリメトキシジルコニウム、及びトリデカフルオロオクチルトリエトキシジルコニウム、メチルトリクロロジルコニウム、ジメチルジクロロジルコニウム、トリメチルクロロジルコニウム、フェニルトリクロロジルコニウム、ジメチルジフルオロジルコニウム、ジメチルジブロモジルコニウム、ジフェニルジブロモジルコニウム、これらの加水分解生成物、及びこれらの加水分解生成物の縮合体などが挙げられる。これらの中でも、入手の容易性の観点から、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、が好ましい。 Examples of preferred zirconate compounds include tetramethoxyzirconium, methyltrimethoxyzirconium, ethyltrimethoxyzirconium, n- or iso-propyltrimethoxyzirconium, n-, iso- or tert-butyltrimethoxyzirconium, n-, iso- Or neo-pentyltrimethoxyzirconium, hexyltrimethoxyzirconium, octyltrimethoxyzirconium, decyltrimethoxyzirconium, phenyltrimethoxyzirconium; alkyl-substituted phenyltrimethoxyzirconium (eg, p- (methyl) phenyltrimethoxyzirconium), dimethyldimethoxy Zirconium, tetraethoxyzirconium, methyltriethoxyzirconium, ethyltriethoxyzirconium, -Or iso-propyltriethoxyzirconium, n-, iso- or tert-butyltriethoxyzirconium, pentyltriethoxyzirconium, hexyltriethoxyzirconium, octyltriethoxyzirconium, decyltriethoxyzirconium, phenyltriethoxyzirconium, alkyl-substituted phenyl Triethoxyzirconium (eg, p- (methyl) phenyltriethoxyzirconium), dimethyldiethoxyzirconium, tetraisopropoxyzirconium, methyltriisopropoxyzirconium, ethyltriisopropoxyzirconium, n- or iso-propyltriethoxyzirconium, n -, Iso- or tert-butyltriisopropoxyzirconium, pentyltriisopropoxy Luconium, hexyltriisopropoxyzirconium, octyltriisopropoxyzirconium, decyltriisopropoxyzirconium, phenyltriisopropoxyzirconium, alkyl-substituted phenyltriisopropoxyzirconium (eg, p- (methyl) phenyltriisopropoxytitanium), dimethyldi Isopropoxyzirconium, (3,3,3-trifluoropropyl) trimethoxyzirconium, and tridecafluorooctyltriethoxyzirconium, methyltrichlorozirconium, dimethyldichlorozirconium, trimethylchlorozirconium, phenyltrichlorozirconium, dimethyldifluorozirconium, dimethyldibromo Zirconium, diphenyldibromozirconium and their hydrolysis Products, and condensates of these hydrolysis products. Among these, tetramethoxyzirconium, tetraethoxyzirconium, and tetraisopropoxyzirconium are preferable from the viewpoint of availability.
 ベース基材100上に絶縁層40をホットプレスで密着させて製造可能である。例えば、金属箔20の貼り合わせ面に前記分子内に前記金属アルコキシドを塗工処理した上で、ベース基材100に対して、Bステージの樹脂製の絶縁層40をホットプレス積層することで製造可能である。 It can be manufactured by bringing the insulating layer 40 into close contact with the base substrate 100 by hot pressing. For example, the metal alkoxide is applied to the bonding surface of the metal foil 20 in the molecule, and then the base substrate 100 is hot-press laminated with a B-stage resin insulating layer 40. Is possible.
 金属アルコキシドは水溶液の形態で使用することができる。水への溶解性を高めるためにメタノールやエタノールなどのアルコールを添加することもできる。アルコールの添加は特に疎水性の高い金属アルコキシドを使用する時に有効である。 Metal alkoxide can be used in the form of an aqueous solution. Alcohols such as methanol and ethanol can be added in order to increase the solubility in water. The addition of alcohol is particularly effective when a highly hydrophobic metal alkoxide is used.
 金属アルコキシドの水溶液中の濃度は高い方が金属張積層板25とビルドアップ層110間の剥離強度は低下する傾向にあり、金属アルコキシド濃度調整によって剥離強度を調整可能である。限定的ではないが、金属アルコキシドの水溶液中の濃度は0.001~1.0mol/Lとすることができ、典型的には0.005~0.2mol/Lとすることができる。 The higher the concentration of the metal alkoxide in the aqueous solution, the lower the peel strength between the metal-clad laminate 25 and the build-up layer 110, and the peel strength can be adjusted by adjusting the metal alkoxide concentration. Although not limited, the concentration of the metal alkoxide in the aqueous solution can be 0.001 to 1.0 mol / L, and typically 0.005 to 0.2 mol / L.
 金属アルコキシドの水溶液のpHは特に制限はなく、酸性側でもアルカリ性側でも利用できる。例えば3.0~10.0の範囲のpHで使用できる。特段のpH調整が不要であるという観点から中性付近である5.0~9.0の範囲のpHとするのが好ましく、7.0~9.0の範囲のpHとするのがより好ましい。 The pH of the aqueous solution of metal alkoxide is not particularly limited and can be used on either the acidic side or the alkaline side. For example, it can be used at a pH in the range of 3.0 to 10.0. From the standpoint that no special pH adjustment is required, the pH is preferably in the range of 5.0 to 9.0, which is near neutral, and more preferably in the range of 7.0 to 9.0. .
(4)樹脂塗膜からなる離型剤層
 シリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜を離型剤層として活用して絶縁層40とベース基材100を貼り合わせても良く、適度に密着性が低下し、剥離強度を後述するような範囲に調節できる。
(4) Release agent layer made of resin coating film Release agent layer composed of silicone and any one or more resins selected from epoxy resins, melamine resins and fluororesins As a result, the insulating layer 40 and the base substrate 100 may be bonded together, the adhesiveness is appropriately reduced, and the peel strength can be adjusted to a range as described later.
 このような密着性を実現するための剥離強度の調節は、後述するようにシリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜を使用することで行う。このような樹脂塗膜に後述するような所定条件の焼付け処理を行って、金属張積層板25と絶縁層40の間に用いてホットプレスして貼り合わせることで、適度に密着性が低下し、剥離強度を後述の範囲に調節できるようになるからである。 As described later, the adjustment of the peel strength for realizing such adhesion is composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin. This is done by using a resin coating. Such a resin coating film is subjected to a baking process under predetermined conditions as will be described later, and is hot-pressed and bonded between the metal-clad laminate 25 and the insulating layer 40, so that the adhesiveness is appropriately reduced. This is because the peel strength can be adjusted within the range described below.
 エポキシ系樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、臭素化エポキシ樹脂、アミン型エポキシ樹脂、可撓性エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、臭素化フェノキシ樹脂等が挙げられる。 Epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, brominated epoxy resin, amine type epoxy resin, flexible epoxy resin, hydrogenated bisphenol A type epoxy resin, phenoxy resin, Examples thereof include brominated phenoxy resin.
 メラミン系樹脂としては、メチルエーテル化メラミン樹脂、ブチル化尿素メラミン樹脂、ブチル化メラミン樹脂、メチル化メラミン樹脂、ブチルアルコール変性メラミン樹脂等が挙げられる。また、メラミン系樹脂は、前記樹脂とブチル化尿素樹脂、ブチル化ベンゾグアナミン樹脂等との混合樹脂であってもよい。 Examples of the melamine-based resin include methyl etherified melamine resin, butylated urea melamine resin, butylated melamine resin, methylated melamine resin, and butyl alcohol-modified melamine resin. The melamine resin may be a mixed resin of the resin and a butylated urea resin, a butylated benzoguanamine resin, or the like.
 なお、エポキシ系樹脂の数平均分子量は2000~3000、メラミン系樹脂の数平均分子量は500~1000であることが好ましい。このような数平均分子量を有することによって、樹脂の塗料化が可能になると共に、樹脂塗膜の接着強度を所定範囲に調整し易くなる。 The number average molecular weight of the epoxy resin is preferably 2000 to 3000, and the number average molecular weight of the melamine resin is preferably 500 to 1000. By having such a number average molecular weight, the resin can be made into a paint and the adhesive strength of the resin coating film can be easily adjusted to a predetermined range.
 また、フッ素樹脂としては、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル等が挙げられる。 Also, examples of the fluororesin include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, and polyvinyl fluoride.
 シリコーンとしては、メチルフェニルポリシロキサン、メチルハイドロポリシロキサン、ジメチルポリシロキサン、変性ジメチルポリシロキサン、これらの混合物等が挙げられる。ここで、変性とは、例えば、エポキシ変性、アルキル変性、アミノ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシポリエーテル変性、ポリエーテル変性、アルキル高級アルコールエステル変性、ポリエステル変性、アシロキシアルキル変性、ハロゲン化アルキルアシロキシアルキル変性、ハロゲン化アルキル変性、アミノグリコール変性、メルカプト変性、水酸基含有ポリエステル変性等が挙げられる。 Examples of silicone include methylphenyl polysiloxane, methyl hydropolysiloxane, dimethyl polysiloxane, modified dimethyl polysiloxane, and mixtures thereof. Here, the modification is, for example, epoxy modification, alkyl modification, amino modification, carboxyl modification, alcohol modification, fluorine modification, alkylaralkyl polyether modification, epoxy polyether modification, polyether modification, alkyl higher alcohol ester modification, polyester modification. And acyloxyalkyl modification, halogenated alkylacyloxyalkyl modification, halogenated alkyl modification, aminoglycol modification, mercapto modification, hydroxyl group-containing polyester modification, and the like.
 樹脂塗膜において、膜厚が小さすぎると、樹脂塗膜が薄膜すぎて形成が困難であるため、生産性が低下し易い。また、膜厚が一定の大きさを超えても、樹脂塗膜の剥離性のさらなる向上は見られず、樹脂塗膜の製造コストが高くなり易い。このような観点から、樹脂塗膜は、その膜厚が0.1~10μmであることが好ましく、0.5~5μmであることが更に好ましい。また、樹脂塗膜の膜厚は、後述する手順において、樹脂塗料を所定塗布量で塗布することによって達成される。 In the resin coating film, if the film thickness is too small, the resin coating film is too thin and difficult to form, so that the productivity is likely to decrease. Moreover, even if a film thickness exceeds a fixed magnitude | size, the further improvement of the peelability of a resin coating film is not seen, but the manufacturing cost of a resin coating film tends to become high. From such a viewpoint, the resin coating film preferably has a thickness of 0.1 to 10 μm, and more preferably 0.5 to 5 μm. Moreover, the film thickness of a resin coating film is achieved by apply | coating a resin coating material by the predetermined application amount in the procedure mentioned later.
 樹脂塗膜において、シリコーンは樹脂塗膜の離型剤として機能する。そこで、エポキシ系樹脂、メラミン系樹脂の合計量がシリコーンに比べて多すぎると、金属張積層板25と絶縁層40との間で樹脂塗膜が付与する剥離強度が大きくなるため、樹脂塗膜の剥離性が低下し、人手で容易に剥がせなくなることがある。一方で、エポキシ系樹脂、メラミン系樹脂の合計量が少なすぎると、前述の剥離強度が小さくなるため、搬送時や加工時に剥離することがある。この観点から、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部の量で含まれることが好ましく、更に好ましくは20~800重量部の量で含まれることが好ましい。 In the resin coating film, silicone functions as a release agent for the resin coating film. Therefore, if the total amount of the epoxy resin and the melamine resin is too much compared to silicone, the peel strength imparted by the resin coating between the metal-clad laminate 25 and the insulating layer 40 is increased. May be difficult to remove by hand. On the other hand, if the total amount of the epoxy resin and the melamine resin is too small, the above-described peeling strength is reduced, and thus the peeling may occur at the time of transportation or processing. From this viewpoint, the total of the epoxy resin and the melamine resin is preferably included in an amount of 10 to 1500 parts by weight, more preferably 20 to 800 parts by weight with respect to 100 parts by weight of silicone. Is preferred.
 また、フッ素樹脂は、シリコーンと同様、離型剤として機能し、樹脂塗膜の耐熱性を向上させる効果がある。フッ素樹脂がシリコーンに比べて多すぎると、前述の剥離強度が小さくなるため、搬送時や加工時に剥離することがあるほか、後述する焼き付け工程に必要な温度が上がるため不経済となる。この観点から、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましく、更に好ましくは0~40質量部であることが好ましい。 Fluorine resin also functions as a mold release agent, like silicone, and has the effect of improving the heat resistance of the resin coating film. If the fluororesin is too much compared to silicone, the above-mentioned peel strength becomes small, so that it may be peeled off during transport or processing, and the temperature required for the baking process described later increases, which is uneconomical. From this viewpoint, the fluororesin is preferably 0 to 50 parts by mass, more preferably 0 to 40 parts by mass with respect to 100 parts by mass of silicone.
 樹脂塗膜は、シリコーン、及びエポキシ樹脂及び/又はメラミン樹脂、及び必要に応じてフッ素樹脂に加えて、SiO2、MgO、Al23、BaSO4及びMg(OH)2から選択される1種以上の表面粗化粒子を更に含有していてもよい。樹脂塗膜が表面粗化粒子を含有することによって、樹脂塗膜の表面が凹凸となる。その凹凸によって、樹脂塗膜が塗布された金属箔20の表面が凹凸となり、艶消し表面となる。表面粗化粒子の含有量は、樹脂塗膜が凹凸化されれば特に限定されないが、シリコーン100質量部に対して、1~10質量部が好ましい。 The resin coating film is selected from SiO 2 , MgO, Al 2 O 3 , BaSO 4, and Mg (OH) 2 in addition to silicone, epoxy resin and / or melamine resin, and, if necessary, fluororesin 1 You may further contain the surface roughening particle | grains of a seed | species or more. When the resin coating film contains surface roughening particles, the surface of the resin coating film becomes uneven. Due to the unevenness, the surface of the metal foil 20 coated with the resin coating film becomes uneven and becomes a matte surface. The content of the surface roughening particles is not particularly limited as long as the resin coating is roughened, but it is preferably 1 to 10 parts by mass with respect to 100 parts by mass of silicone.
 表面粗化粒子の粒子径は、15nm~4μmであることが好ましい。ここで、粒子径は、走査電子顕微鏡(SEM)写真等から測定した平均粒子径(最大粒子径と最小粒子径の平均値)を意味する。表面粗化粒子の粒子径が前記範囲であることによって、樹脂塗膜の表面の凹凸量が調整し易くなり、結果的に金属箔20の表面の凹凸量が調整し易くなる。具体的には、金属箔20の表面の凹凸量は、JIS規定の最大高さ粗さRyで4.0μm程度となる。 The particle diameter of the surface roughened particles is preferably 15 nm to 4 μm. Here, the particle diameter means an average particle diameter (average value of the maximum particle diameter and the minimum particle diameter) measured from a scanning electron microscope (SEM) photograph or the like. When the particle diameter of the surface roughened particles is within the above range, the unevenness on the surface of the resin coating film can be easily adjusted, and as a result, the unevenness on the surface of the metal foil 20 can be easily adjusted. Specifically, the amount of unevenness on the surface of the metal foil 20 is about 4.0 μm in terms of the maximum height roughness Ry defined by JIS.
 ここで、ベース基材100の製造方法について説明する。ベース基材100は、プリプレグ10の少なくとも一方の表面に、金属箔20を熱圧着等により積層する工程と、金属箔20上に離型剤層30を積層する工程と、を経て得られる。金属箔20上に離型剤層30を成膜する工程は、次のように塗布工程と焼き付け工程を含む。 Here, a method for manufacturing the base substrate 100 will be described. The base substrate 100 is obtained through a step of laminating the metal foil 20 on at least one surface of the prepreg 10 by thermocompression bonding or the like and a step of laminating the release agent layer 30 on the metal foil 20. The process of forming the release agent layer 30 on the metal foil 20 includes an application process and a baking process as follows.
(塗布工程)
 塗布工程は、金属張積層板25の金属箔20上に、主剤としてのシリコーンと、硬化剤としてのエポキシ系樹脂、メラミン系樹脂と、必要に応じて離型剤としてのフッ素樹脂とからなる樹脂塗料を塗布して樹脂塗膜を形成する工程である。樹脂塗料は、アルコール等の有機溶媒にエポキシ系樹脂、メラミン系樹脂、フッ素樹脂及びシリコーンを溶解したものである。また、樹脂塗料における配合量(添加量)は、シリコーン100質量部に対して、エポキシ系樹脂、メラミン系樹脂の合計が10~1500質量部であることが好ましい。また、フッ素樹脂は、シリコーン100質量部に対して、0~50質量部であることが好ましい。
(Coating process)
The coating step is a resin comprising, on the metal foil 20 of the metal-clad laminate 25, a silicone as a main agent, an epoxy resin as a curing agent, a melamine resin, and a fluororesin as a release agent as necessary. It is a step of applying a paint to form a resin coating film. The resin paint is obtained by dissolving an epoxy resin, a melamine resin, a fluororesin, and silicone in an organic solvent such as alcohol. The blending amount (addition amount) in the resin coating is preferably 10 to 1500 parts by mass of the total of the epoxy resin and the melamine resin with respect to 100 parts by mass of the silicone. The fluororesin is preferably 0 to 50 parts by mass with respect to 100 parts by mass of silicone.
 塗布工程における塗布方法としては、樹脂塗膜が形成できれば特に限定されるものではないが、グラビアコート法、バーコート法、ロールコート法、カーテンフローコート法、静電塗装機を用いる方法等が用いられ、樹脂塗膜の均一性、及び、作業の簡便性からグラビアコート法が好ましい。また、塗布量としては、樹脂塗膜3が好ましい膜厚:0.5~5μmとなるように、樹脂量として1.0~2.0g/m2が好ましい。 The coating method in the coating process is not particularly limited as long as a resin coating film can be formed, but a gravure coating method, a bar coating method, a roll coating method, a curtain flow coating method, a method using an electrostatic coating machine, etc. are used. In view of the uniformity of the resin coating film and the ease of work, the gravure coating method is preferred. The coating amount is preferably 1.0 to 2.0 g / m 2 so that the resin coating film 3 has a preferable film thickness: 0.5 to 5 μm.
 グラビアコート法は、ロール表面に設けられた凹部(セル)に満たされた樹脂塗料を金属張積層板25に転写させることによって、金属箔20の表面に樹脂塗膜を形成させる方法である。具体的には、表面にセルが設けられた下側ロールの下部を樹脂塗料中に浸漬し、下側ロールの回転によってセル内に樹脂塗料を汲み上げる。そして、下側ロールと、下側ロールの上側に配置された上側ロールとの間に金属張積層板25を供給し、上側ロールでコーティング対象物を下側ロールに押し付けながら、下側ロール及び上側ロールを回転させることによって、金属張積層板25が搬送されると共に、セル内に汲み上げられた樹脂塗料が金属張積層板25の金属箔20の表面に転写(塗布)される。 The gravure coating method is a method in which a resin coating film is formed on the surface of the metal foil 20 by transferring the resin coating filled in the recesses (cells) provided on the roll surface to the metal-clad laminate 25. Specifically, the lower part of the lower roll having cells provided on the surface is immersed in the resin paint, and the resin paint is pumped into the cell by the rotation of the lower roll. Then, the metal-clad laminate 25 is supplied between the lower roll and the upper roll disposed on the upper side of the lower roll, and the upper roll and the upper roll are pressed while pressing the coating object against the lower roll with the upper roll. By rotating the roll, the metal-clad laminate 25 is conveyed, and the resin paint pumped into the cell is transferred (applied) to the surface of the metal foil 20 of the metal-clad laminate 25.
 また、金属張積層板25の搬入側に、下側ロールの表面に接触するようにドクターブレードを配置することによって、セル以外のロール表面に汲み上げられた過剰な樹脂塗料が取り除かれ、金属張積層板25の表面に所定量の樹脂塗料が塗布される。なお、セルの番手(大きさ及び深さ)が大きい場合、又は、樹脂塗料の粘度が高い場合には、金属張積層板25の片面に形成される樹脂塗膜が平滑になり難くなる。したがって、金属張積層板25の搬出側にスムージングロールを配置して、樹脂塗膜の平滑度を維持してもよい。 Further, by placing a doctor blade on the carry-in side of the metal-clad laminate 25 so as to contact the surface of the lower roll, excess resin paint pumped up on the roll surface other than the cells is removed, and the metal-clad laminate is removed. A predetermined amount of resin paint is applied to the surface of the plate 25. In addition, when the count (size and depth) of a cell is large, or when the viscosity of a resin coating is high, the resin coating film formed on one side of the metal-clad laminate 25 is difficult to be smooth. Therefore, a smoothing roll may be arranged on the carry-out side of the metal-clad laminate 25 to maintain the smoothness of the resin coating film.
 なお、金属張積層板25が、その表裏両面に金属箔を有する場合には、金属張積層板25の両面の各金属箔の表面に樹脂塗膜を個別に形成しても良い。この場合には、金属張積層板の片面に樹脂塗膜を形成させた後に、金属張積層板を裏返して、再度、下側ロールと上側ロールとの間に金属張積層板を供給し、上述と同様に、下側ロールのセル内の樹脂塗料を金属張積層板の裏面に転写(塗布)する。 In addition, when the metal-clad laminate 25 has metal foils on both the front and back surfaces, resin coatings may be individually formed on the surfaces of the metal foils on both sides of the metal-clad laminate 25. In this case, after forming the resin coating on one side of the metal-clad laminate, turn over the metal-clad laminate, and again supply the metal-clad laminate between the lower roll and the upper roll, Similarly, the resin paint in the cell of the lower roll is transferred (applied) to the back surface of the metal-clad laminate.
(焼付け工程)
 焼付け工程は、塗布工程で形成された樹脂塗膜に125~320℃(焼付け温度)で0.5~60秒間(焼付け時間)の焼付け処理を施す工程である。このように、所定配合量の樹脂塗料で形成された樹脂塗膜に所定条件の焼付け処理を施すことによって、樹脂塗膜により付与される金属張積層板25と絶縁層40との間の剥離強度が所定範囲に制御される。本発明において、焼付け温度はコーティング対象物の到達温度である。また、焼付け処理に使用される加熱手段としては、従来公知の装置を使用する。
(Baking process)
The baking step is a step of subjecting the resin coating film formed in the coating step to a baking treatment at 125 to 320 ° C. (baking temperature) for 0.5 to 60 seconds (baking time). In this way, the peel strength between the metal-clad laminate 25 and the insulating layer 40 imparted by the resin coating film is obtained by subjecting the resin coating film formed of the resin coating of a predetermined blending amount to a baking process under a predetermined condition. Is controlled within a predetermined range. In the present invention, the baking temperature is the temperature reached by the coating object. Moreover, a conventionally well-known apparatus is used as a heating means used for a baking process.
 焼き付けが不十分となる条件、例えば焼付け温度が125℃未満、又は、焼付け時間が0.5秒未満である場合には、樹脂塗膜が硬化不足となり、上記剥離強度が200gf/cmを超え、剥離性が低下する。また、焼き付けが過度な条件、例えば焼付け温度が320℃を超える場合には、樹脂塗膜が劣化して、上記剥離強度が200gf/cmを超え、剥離時の作業性が悪化する。あるいは、コーティング対象物が高温によって変質することがある。また、焼付け時間が60秒を超える場合には、生産性が悪化する。 When the baking is insufficient, for example, when the baking temperature is less than 125 ° C. or when the baking time is less than 0.5 seconds, the resin coating becomes insufficiently cured, and the peel strength exceeds 200 gf / cm, The peelability is reduced. Moreover, when baking is an excessive condition, for example, when baking temperature exceeds 320 degreeC, a resin coating film deteriorates, the said peeling strength exceeds 200 gf / cm, and the workability | operativity at the time of peeling deteriorates. Alternatively, the coating object may be altered by high temperatures. Further, when the baking time exceeds 60 seconds, the productivity is deteriorated.
 ベース基材100の製造方法に関しては、前記塗布工程の樹脂塗料が、主剤としてのシリコーンと、硬化剤としてのエポキシ樹脂、メラミン系樹脂と、離型剤としてのフッ素樹脂と、SiO2、MgO、Al23、BaSO4及びMg(OH)2から選択される1種以上の表面粗化粒子とからなるものであってもよい。 Regarding the manufacturing method of the base substrate 100, the resin coating in the application step includes silicone as a main agent, epoxy resin as a curing agent, melamine resin, fluororesin as a release agent, SiO 2 , MgO, al 2 O 3, BaSO 4 and Mg (OH) may be made of one or more surface roughening particles selected from 2.
 具体的には、樹脂塗料は、前記したシリコーン添加樹脂溶液に表面粗化粒子を更に添加したものである。このような表面粗化粒子を樹脂塗料に更に添加することによって、樹脂塗膜の表面が凹凸となり、この凹凸によって金属箔20が凹凸となり、艶消し表面となる。そして、このような艶消し表面を有する金属箔20を得るためには、樹脂塗料における表面粗化粒子の配合量(添加量)が、シリコーン100質量部に対して、1~10質量部であることが好ましい。また、表面粗化粒子の粒子径が15nm~4μmであることが更に好ましい。 Specifically, the resin paint is obtained by further adding surface roughening particles to the above-described silicone-added resin solution. By further adding such surface-roughening particles to the resin coating, the surface of the resin coating becomes uneven, and the metal foil 20 becomes uneven due to the unevenness, resulting in a matte surface. In order to obtain the metal foil 20 having such a matte surface, the compounding amount (addition amount) of the surface roughening particles in the resin coating is 1 to 10 parts by mass with respect to 100 parts by mass of the silicone. It is preferable. Further, it is more preferable that the surface roughened particles have a particle size of 15 nm to 4 μm.
 本実施形態に係る製造方法は、以上説明したとおりであるが、本実施形態を行うにあたり、前記各工程の間あるいは前後に、他の工程を含めてもよい。例えば、塗布工程の前に金属箔20の表面を洗浄する洗浄工程を行ってもよい。 The manufacturing method according to the present embodiment is as described above. However, other steps may be included between or before and after each step in performing the present embodiment. For example, a cleaning process for cleaning the surface of the metal foil 20 may be performed before the coating process.
 冒頭で述べたように、ベース基材100上に積層される樹脂層から成る絶縁層40は、ベース基材100において金属箔20のキャリアとして機能するプリプレグ10と同一の構成であっても良いし、異構成であっても良い。ベース基材100のプリプレグ10の機械的強度に比べて絶縁層40の機械的強度を低くしても構わなければ、絶縁層40の層厚をプリプレグ10の層厚よりも薄くすれば良い。 As described at the beginning, the insulating layer 40 made of a resin layer laminated on the base substrate 100 may have the same configuration as the prepreg 10 that functions as a carrier of the metal foil 20 in the base substrate 100. It may be a different configuration. If the mechanical strength of the insulating layer 40 may be lower than the mechanical strength of the prepreg 10 of the base substrate 100, the insulating layer 40 may be made thinner than the prepreg 10.
 ビルドアップ層110の積層工程において絶縁層40をベース基材100上に十分に固定することが望ましく、他方、ビルドアップ層110の積層工程後において絶縁層40とベース基材100の容易な剥離性を確保するという観点に基づいて絶縁層40とベース基材100間の剥離強度を設定することが望ましい。なお、剥離強度の調節は、上述の離型剤層30の材料や厚みの設定により調整することができ、また、金属箔20や絶縁層40の表面処理により調整することができる。 It is desirable to sufficiently fix the insulating layer 40 on the base substrate 100 in the build-up layer 110 stacking step, and on the other hand, the insulating layer 40 and the base substrate 100 can be easily peeled off after the build-up layer 110 stacking step. It is desirable to set the peel strength between the insulating layer 40 and the base substrate 100 based on the viewpoint of ensuring the above. In addition, adjustment of peeling strength can be adjusted with the setting of the material and thickness of the above-mentioned mold release agent layer 30, and can be adjusted with surface treatment of the metal foil 20 or the insulating layer 40.
 ビルドアップ層110の積層工程前において金属張積層板25とビルドアップ層110間の剥離強度が、典型的には10gf/cm以上、好ましくは30gf/cm以上、より好ましくは50gf/cm以上であり、典型的には200gf/cm以下、好ましくは150gf/cm以下、より好ましくは80gf/cm以下である。このように金属張積層板25とビルドアップ層110間の剥離強度を設定することにより、ベース基材100上における絶縁層40の位置ズレを抑制することができ、かつビルドアップ層110の積層工程後においてベース基材100とビルドアップ層110間の適当な剥離性を確保することができる。 Before the buildup layer 110 is laminated, the peel strength between the metal-clad laminate 25 and the buildup layer 110 is typically 10 gf / cm or higher, preferably 30 gf / cm or higher, more preferably 50 gf / cm or higher. , Typically 200 gf / cm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less. By setting the peel strength between the metal-clad laminate 25 and the buildup layer 110 in this manner, the positional deviation of the insulating layer 40 on the base substrate 100 can be suppressed, and the buildup layer 110 is laminated. Later, appropriate peelability between the base substrate 100 and the buildup layer 110 can be ensured.
 金属張積層板25とビルドアップ層110間の剥離強度は、ビルドアップ層110の積層工程後においても大きく変動しないことが望ましい。これによりビルドアップ層110の積層工程後におけるベース基材100とビルドアップ層110間の剥離性が損なわれることを回避することができる。 Desirably, the peel strength between the metal-clad laminate 25 and the buildup layer 110 does not vary greatly even after the buildup layer 110 is laminated. Thereby, it can avoid that the peelability between the base base material 100 and the buildup layer 110 after the lamination process of the buildup layer 110 is impaired.
 例えば220℃で3時間、6時間又は9時間のうちの少なくとも一つの加熱後における、金属張積層板25とビルドアップ層110間の剥離強度が、典型的には10gf/cm以上、好ましくは30gf/cm以上、より好ましくは50gf/cm以上であり、典型的には200g/fcm以下、好ましくは150gf/cm以下、より好ましくは80gf/cm以下である。 For example, the peel strength between the metal-clad laminate 25 and the buildup layer 110 after heating at 220 ° C. for 3 hours, 6 hours, or 9 hours is typically 10 gf / cm or more, preferably 30 gf. / Cm or more, more preferably 50 gf / cm or more, typically 200 g / fcm or less, preferably 150 gf / cm or less, more preferably 80 gf / cm or less.
 220℃での加熱後の剥離強度については、多彩な積層数に対応可能であるという観点から、3時間後及び6時間後の両方、又は6時間及び9時間後の両方において剥離強度が上述した範囲を満たすことが好ましく、3時間、6時間及び9時間後の全ての剥離強度が上述した範囲を満たすことが更に好ましい。 Regarding the peel strength after heating at 220 ° C., the peel strength was described above in both 3 hours and 6 hours, or in both 6 hours and 9 hours, from the viewpoint of being able to cope with various lamination numbers. It is preferable to satisfy the range, and it is further preferable that all peel strengths after 3 hours, 6 hours, and 9 hours satisfy the above-described range.
 本発明において、剥離強度はJIS C6481に規定される90度剥離強度測定方法に準拠して測定する。 In the present invention, the peel strength is measured in accordance with a 90 degree peel strength measuring method defined in JIS C6481.
 従来のCCLでは、樹脂と銅箔のピール強度が高いことが望まれるので、例えば、電解銅箔のマット面(M面)を樹脂との接着面とし、粗化処理等の表面処理を施すことによって化学的及び物理的アンカー効果による接着力向上が図られている。また、樹脂側においても、銅箔との接着力をアップするために各種バインダーが添加される等している。前述したように、本実施形態においてはCCLとは異なり、ベース基材100と絶縁層40を最終的に剥離することが望ましいため、剥離強度が過度に高いのは望ましくない。 In conventional CCL, since it is desired that the peel strength between the resin and the copper foil is high, for example, the matte surface (M surface) of the electrolytic copper foil is used as an adhesive surface with the resin, and surface treatment such as roughening treatment is performed. Thus, the adhesive strength is improved by the chemical and physical anchor effect. On the resin side, various binders are added to increase the adhesive strength with the copper foil. As described above, unlike the CCL, in this embodiment, it is desirable to finally peel the base substrate 100 and the insulating layer 40, and therefore it is not desirable that the peel strength is excessively high.
 金属張積層板25とビルドアップ層110間の剥離強度を上述の好ましい範囲に調節するため、金属箔20の上面の表面粗度を、JIS B 0601(2001)に準拠して測定した金属箔20の上面の十点平均粗さ(Rz jis)で表す場合、3.5μm以下、更に3.0μm以下とすることが好ましい。但し、表面粗度を限りなく小さくするのは手間がかかりコスト上昇の原因となるので、0.1μm以上とするのが好ましく、0.3μm以上とすることがより好ましい。金属箔20として電解銅箔を使用する場合、このような表面粗度に調整すれば、光沢面(S面)及び粗面(M面)の何れを使用することも可能であるが、光沢面を用いた方が上記表面粗度への調整が容易である。 In order to adjust the peel strength between the metal-clad laminate 25 and the build-up layer 110 to the above-described preferable range, the surface roughness of the upper surface of the metal foil 20 was measured in accordance with JIS B 0601 (2001). When expressed by the ten-point average roughness (Rz jis) of the upper surface, it is preferably 3.5 μm or less, more preferably 3.0 μm or less. However, reducing the surface roughness as much as possible takes time and causes a cost increase. Therefore, the surface roughness is preferably 0.1 μm or more, and more preferably 0.3 μm or more. When an electrolytic copper foil is used as the metal foil 20, it is possible to use either a glossy surface (S surface) or a rough surface (M surface) by adjusting to such a surface roughness. Is easier to adjust to the surface roughness.
 実施形態によっては、金属箔20と絶縁層40の各貼り合わせ面に対しては、粗化処理等剥離強度向上のための表面処理は行わない。実施形態によっては、絶縁層40中には、ベース基材100との接着力をアップするためのバインダーは添加されない。 Depending on the embodiment, the surface treatment for improving the peel strength such as the roughening treatment is not performed on the bonding surfaces of the metal foil 20 and the insulating layer 40. Depending on the embodiment, a binder for increasing the adhesive strength with the base substrate 100 is not added to the insulating layer 40.
 図2及び図3を参照して多層プリント配線基板の製造方法について説明する。まず、図1に示すベース基材100を用意する。ベース基材100自体の製造方法は、上述の説明から明らかであり、典型的には、プリプレグ10上に金属箔20をホットプレスにより熱圧着して積層し、その後、金属箔20上に離型剤層30を任意の方法で成膜する。金属箔20は、プリプレグ10の上面の全面に亘り積層されるが、必ずしもこの限りではない。離型剤層30は、金属箔20の上面に全面に亘り積層されるが、必ずしもこの限りではない。 A method for manufacturing a multilayer printed wiring board will be described with reference to FIGS. First, the base substrate 100 shown in FIG. 1 is prepared. The manufacturing method of the base substrate 100 itself is clear from the above description. Typically, the metal foil 20 is laminated on the prepreg 10 by hot pressing with a hot press, and then released onto the metal foil 20. The agent layer 30 is formed by an arbitrary method. Although the metal foil 20 is laminated | stacked over the whole upper surface of the prepreg 10, it is not necessarily this limitation. The release agent layer 30 is laminated over the entire top surface of the metal foil 20, but this is not necessarily the case.
 次に、ベース基材100上にビルドアップ層110を積層し、これにより、金属張積層板25上に離型剤層30を介してビルドアップ層110が積層される。ビルドアップ層110中の配線層50は、金属箔を用いても良い。若しくは、配線層50は、サブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成しても良い。 Next, the buildup layer 110 is laminated on the base substrate 100, whereby the buildup layer 110 is laminated on the metal-clad laminate 25 via the release agent layer 30. The wiring layer 50 in the buildup layer 110 may use a metal foil. Alternatively, the wiring layer 50 may be formed using at least one of a subtractive method, a full additive method, or a semi-additive method.
 サブトラクティブ法とは、任意の基板、例えば、金属張積層板や配線基板(プリント配線板、プリント回路板を含む)上の金属箔の不要部分をエッチング等によって選択的に除去して導体パターンを形成する方法を指す。フルアディティブ法は、無電解めっき及び/又は電解めっきを用いて、パターニングされた導体層である配線層50を形成する方法である。セミアディティブ法は、例えば、金属箔からなるシード層上に無電解金属析出と、電解めっき、エッチング、又はその両者を併用して導体パターンを形成した後、不要なシード層をエッチングして除去することで導体パターンを得る方法である。 The subtractive method is a method of selectively removing unnecessary portions of metal foil on an arbitrary substrate such as a metal-clad laminate or a wiring board (including a printed wiring board and a printed circuit board) by etching or the like. Refers to the method of forming. The full additive method is a method of forming the wiring layer 50 that is a patterned conductor layer by using electroless plating and / or electrolytic plating. In the semi-additive method, for example, an electroless metal deposition and electrolytic plating, etching, or a combination of both are formed on a seed layer made of a metal foil, and then an unnecessary seed layer is etched away. This is a method for obtaining a conductor pattern.
 ビルドアップ層110の構成層として、樹脂、片面あるいは両面配線基板、片面あるいは両面金属張積層板、キャリア付き金属箔、金属箔、又はベース基材100を1つ以上含めても良い。 As a constituent layer of the buildup layer 110, one or more of resin, single-sided or double-sided wiring board, single-sided or double-sided metal-clad laminate, metal foil with carrier, metal foil, or base substrate 100 may be included.
 片面あるいは両面配線基板、片面あるいは両面金属張積層板、キャリア付き金属箔の金属箔、ベース基材100のプリプレグ10又は金属箔20、又は樹脂に穴を開け、当該穴の側面及び底面に導通めっきをする工程を更に含むことができる。また、前記片面あるいは両面配線基板を構成する金属箔、片面あるいは両面金属張積層板を構成する金属箔、及びキャリア付き金属箔を構成する金属箔の少なくとも一つに配線を形成する工程を1回以上行うことを更に含むこともできる。 A hole is made in a single-sided or double-sided wiring board, a single-sided or double-sided metal-clad laminate, a metal foil with a carrier, a prepreg 10 or metal foil 20 of the base substrate 100, or a resin, and conductive plating is performed on the side and bottom surfaces of the hole The process of carrying out can be further included. In addition, the process of forming wiring on at least one of the metal foil constituting the single-sided or double-sided wiring board, the metal foil constituting the single-sided or double-sided metal-clad laminate, and the metal foil constituting the metal foil with carrier is performed once. It can further include performing the above.
 パターニングされた配線層50上に樹脂を積層し、更にベース基材100を金属箔20側から積層する工程を更に含むこともできる。パターニングされた配線層50上に樹脂を積層し、更に、当該樹脂上に金属箔を密着させても良い。また、配線形成された表面の上に、樹脂を積層し、当該樹脂に両面に金属箔を密着させたキャリア付金属箔を積層する工程を更に含むこともできる。なお、「配線形成された表面」とは、ビルドアップを行う過程で都度現れる表面に配線形成された部分を意味し、ビルドアップ基板としては最終製品のものも、その途中のものも包含する。 It may further include a step of laminating a resin on the patterned wiring layer 50 and further laminating the base substrate 100 from the metal foil 20 side. A resin may be laminated on the patterned wiring layer 50, and a metal foil may be adhered to the resin. Moreover, the process of laminating | stacking resin on the surface in which wiring was formed, and laminating | stacking the metal foil with a carrier which made the metal foil adhere | attach both surfaces to the said resin can also be further included. The “surface on which the wiring is formed” means a portion where wiring is formed on the surface that appears every time a buildup is performed, and the buildup substrate includes both a final product and an intermediate product.
 なお、「キャリア付金属箔」は、支持基板として機能する樹脂製のキャリア上に金属箔が離型剤層を介して積層したものである。キャリア付き金属箔においてキャリアと金属箔間を剥離可能に結合する離型剤層は、本願に開示の離型剤層30と同じ材料を用いることができる。キャリア付金属箔は、好適には、キャリア付銅箔である。 The “metal foil with carrier” is obtained by laminating a metal foil with a release agent layer on a resin carrier that functions as a support substrate. The same material as the release agent layer 30 disclosed in the present application can be used for the release agent layer that releasably bonds between the carrier and the metal foil in the metal foil with a carrier. The metal foil with a carrier is preferably a copper foil with a carrier.
 ベース基材100上にビルドアップ層110を積層した積層体をダイシングしても良い。ダイシング深度は、ダイシング対象の積層体を完全に個片化する程度のものである必要はなく、ベース基材100まで到達しない程度であっても構わない。ダイシング対象の積層体を完全に個片化しない場合には、ベース基材100に到達する若しくは到達しない溝が設けられる。ダイシングに用いる機器は、ダイシングブレードを活用したタイプに限らず、ワイヤー、レーザー等の任意の方法を採用できる。 A laminate obtained by laminating the buildup layer 110 on the base substrate 100 may be diced. The dicing depth does not need to be such that the laminated body to be diced is completely separated into pieces, and may not reach the base substrate 100. When the laminated body to be diced is not completely separated, a groove that reaches or does not reach the base substrate 100 is provided. The equipment used for dicing is not limited to the type utilizing a dicing blade, and any method such as wire or laser can be adopted.
 上述のダイシング工程後、ベース基材100とビルドアップ層110を剥離して分離すると良い。ベース基材100がダイシングにより個片化されていない場合、共通のベース基材100から複数の個片化されたビルドアップ層110を個別の多層プリント配線基板として得られる。 After the above-described dicing step, the base substrate 100 and the buildup layer 110 may be separated and separated. When the base substrate 100 is not singulated by dicing, a plurality of individual build-up layers 110 can be obtained from the common base substrate 100 as individual multilayer printed wiring boards.
 ビルドアップ層110内における絶縁層40と配線層50同士は熱圧着により積層させても良い。この熱圧着は、一層ずつ積層するごとに行ってもよいし、ある程度積層させてからまとめて行ってもよいし、最後に一度にまとめて行ってもよい。 The insulating layer 40 and the wiring layer 50 in the buildup layer 110 may be laminated by thermocompression bonding. This thermocompression bonding may be performed every time one layer is stacked, may be performed after being laminated to some extent, or may be performed all at once at the end.
 ビルドアップ層110内に含まれる絶縁層40と配線層50の数や積層順序は任意である。絶縁層40と配線層50の組から成る積層単位の数は、典型的には1以上であり、2以上、3以上、4以上であっても構わない。積層単位の数の増加により多層プリント配線基板の層間位置の精度の維持が困難になる。本実施形態においては、多層プリント配線基板が、ベース基材100上に安定に固定されており、この絶縁層40上にビルドアップ層110を安定に積層することができる。 The number of the insulating layers 40 and the wiring layers 50 included in the buildup layer 110 and the stacking order are arbitrary. The number of stacked units composed of a set of the insulating layer 40 and the wiring layer 50 is typically 1 or more, and may be 2 or more, 3 or more, 4 or more. The increase in the number of laminated units makes it difficult to maintain the accuracy of the interlayer position of the multilayer printed wiring board. In the present embodiment, the multilayer printed wiring board is stably fixed on the base substrate 100, and the buildup layer 110 can be stably laminated on the insulating layer 40.
 配線層50は、非限定的には金属箔若しくはパターニングされた金属箔であり、好適には銅箔若しくはパターニングされた銅箔であるが、めっきにより形成された金属めっき層でも良い。また、通常の半導体プロセス技術を活用して配線層50を形成しても構わない。配線層50は、特に限定を意図するわけではないが、典型的にはCVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)に代表される蒸着等により形成したベタ配線層をフォトリソグラフィー技術の活用によりパターニングして形成される。配線層50を必ずしもパターニングする必要はなく、配線層50をベタ配線層としても構わない。リフトオフ技術を活用してパターニングしても構わない。 The wiring layer 50 is not limited to a metal foil or a patterned metal foil, and is preferably a copper foil or a patterned copper foil, but may be a metal plating layer formed by plating. Further, the wiring layer 50 may be formed by utilizing a normal semiconductor process technology. The wiring layer 50 is not intended to be particularly limited, but typically, a solid wiring layer formed by vapor deposition typified by CVD (Chemical Vapor Deposition) or PVD (Physical Vapor Deposition) is utilized by using photolithography technology. Is formed by patterning. The wiring layer 50 is not necessarily patterned, and the wiring layer 50 may be a solid wiring layer. Patterning may be performed using lift-off technology.
 絶縁層40は、非限定的には樹脂層若しくはビア配線(層間配線)が設けられた樹脂層であり、典型的には熱硬化性樹脂又は感光性樹脂が例示できる。また、絶縁層40はガラス繊維又は無機充填物によって補強されたプリプレグであってもよい。絶縁層40の構成樹脂は、プリプレグ10と同一若しくは類似特性の材料から選定すると良い。ダイコーダーに代表される任意の種類の塗布装置を活用して成膜しても良い。これに代えて、若しくはこれと併用して、通常の半導体プロセス技術を活用して配線層50を形成しても構わない。絶縁層40は、特に限定を意図するわけではないが、典型的にはCVD(Chemical Vapor Deposition)、PVD(Physical Vapor Deposition)に代表される蒸着等により絶縁材料が成膜されてなり、必要に応じて上下の配線層50間の電気的接続を確保するために導電性ビアが埋め込まれる。導電性ビアの絶縁層40中への組み込みの方法は任意である。配線層50上に堆積した絶縁層40上に開口を有するマスク層を形成し、マスク層を介してエッチング処理してマスク層の開口に対応する範囲で絶縁層40を除去し、その後、絶縁層40が除去された範囲で導電性材料を充填する方法が例示できる。このような技術は、半導体プロセス技術の基本であり、当業者には自明である。 The insulating layer 40 is a resin layer provided with a resin layer or via wiring (interlayer wiring), but is not limited thereto, and can typically be exemplified by a thermosetting resin or a photosensitive resin. The insulating layer 40 may be a prepreg reinforced with glass fiber or an inorganic filler. The constituent resin of the insulating layer 40 may be selected from materials having the same or similar characteristics as the prepreg 10. You may form into a film using the application | coating apparatuses of the arbitrary types represented by the die coder. Instead of this, or in combination with this, the wiring layer 50 may be formed by utilizing a normal semiconductor process technology. The insulating layer 40 is not particularly limited, but typically, an insulating material is formed by vapor deposition represented by CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), and the like. Accordingly, conductive vias are embedded to ensure electrical connection between the upper and lower wiring layers 50. The method for incorporating the conductive via into the insulating layer 40 is arbitrary. A mask layer having an opening is formed on the insulating layer 40 deposited on the wiring layer 50. Etching is performed through the mask layer to remove the insulating layer 40 in a range corresponding to the opening of the mask layer. A method of filling the conductive material in a range where 40 is removed can be exemplified. Such technology is the basis of semiconductor process technology and is obvious to those skilled in the art.
 配線層50は、例えば、銅、アルミニウム、ポリシリコン等の導電性材料から成る。絶縁層40は、二酸化シリコン等の絶縁材料から成る。絶縁層40中に組み込まれるビアは、銅、アルミニウム、ポリシリコン等の導電性材料から成る。 The wiring layer 50 is made of a conductive material such as copper, aluminum, or polysilicon. The insulating layer 40 is made of an insulating material such as silicon dioxide. The via incorporated in the insulating layer 40 is made of a conductive material such as copper, aluminum, or polysilicon.
 次に図3に模式的に示すように、ビルドアップ層110とベース基材100を分離する。このようにしてビルドアップ層110を多層プリント配線基板として効率的に製造することができる。 Next, as schematically shown in FIG. 3, the buildup layer 110 and the base substrate 100 are separated. In this way, the buildup layer 110 can be efficiently manufactured as a multilayer printed wiring board.
 多層プリント配線基板の更なる多層化を図るべく、ベース基材100に密着していた多層プリント配線基板の絶縁層40上に別のビルドアップ層を積層しても構わない。また、ベース基材100と密着していた多層プリント配線基板の絶縁層40の表面を他の実装基板への実装面としても良いことは当然であり、実装用のバンプ又はピンを実装することもできる。同様に、ビルドアップ層110とベース基材100の分離により露出したベース基材100の面を他の任意の素子の実装面としても良い。 In order to achieve further multilayering of the multilayer printed wiring board, another buildup layer may be laminated on the insulating layer 40 of the multilayer printed wiring board that has been in close contact with the base substrate 100. Of course, the surface of the insulating layer 40 of the multilayer printed wiring board that has been in close contact with the base substrate 100 may be used as a mounting surface on another mounting board, and mounting bumps or pins may be mounted. it can. Similarly, the surface of the base substrate 100 exposed by the separation of the buildup layer 110 and the base substrate 100 may be used as a mounting surface for other arbitrary elements.
 ビルドアップ層110内の配線層50同士若しくはビルドアップ層110内の配線層50と外部配線間の電気的導通を確保するためにビルドアップ層110にビア配線(層間配線)を形成しても良く、該工程は、ベース基材100上にビルドアップ層110を形成する過程で行っても良いし、所定の積層数のビルドアップ層110をベース基材100上に積層した後に行っても良い。ベース基材100上にビルドアップ層110を積層した状態でビア配線を形成しても良いし、ベース基材100の板状キャリアをビルドアップ層110から剥離した後にビア配線を形成しても良い。例えば、ベース基材100上に下部配線層50、中間絶縁層40、及び上部配線層50を形成した状態において上部配線層50と中間絶縁層40を貫通して下部配線層50に到達するビアホールを形成し、該ビアホールに導電材を堆積等により設け、これにより、下部配線層50と上部配線層50間の電気的導通が確保される。ビアホールの形成は、機械的な切削やレーザー加工等の任意の方法を採用することができる。ビアホールが貫通する絶縁層40の数は任意であり、2以上であっても構わない。ビアホールへの導電材の充填は、電解めっきを活用しても良い。 Via wiring (interlayer wiring) may be formed in the buildup layer 110 in order to ensure electrical continuity between the wiring layers 50 in the buildup layer 110 or between the wiring layer 50 in the buildup layer 110 and external wiring. The process may be performed in the process of forming the buildup layer 110 on the base substrate 100, or may be performed after the buildup layers 110 having a predetermined number of layers are stacked on the base substrate 100. Via wiring may be formed in a state where the buildup layer 110 is laminated on the base substrate 100, or via wiring may be formed after the plate-like carrier of the base substrate 100 is peeled from the buildup layer 110. . For example, in the state where the lower wiring layer 50, the intermediate insulating layer 40, and the upper wiring layer 50 are formed on the base substrate 100, a via hole that penetrates the upper wiring layer 50 and the intermediate insulating layer 40 and reaches the lower wiring layer 50 is formed. Then, a conductive material is provided in the via hole by deposition or the like, thereby ensuring electrical conduction between the lower wiring layer 50 and the upper wiring layer 50. The via hole can be formed by any method such as mechanical cutting or laser processing. The number of insulating layers 40 through which the via hole passes is arbitrary, and may be two or more. Electrolytic plating may be used to fill the via hole with the conductive material.
 以下、更に例示的な形態について説明する。上述のベース基材100上に、所望枚数のプリプレグ、次に金属箔を1回以上順に繰り返して積層し、積層物を一組の平板プレートの間で挟んでホットプレス機にセットし、所定の温度及び圧力で熱圧着成型することによりベース基材上にビルドアップ層を形成することができる。平板プレートとしては例えばステンレス製プレートを使用することができる。プレートは、限定的ではないが、例えば1~10mm程度の厚板を使用することができる。前述したようにビルドアップ層は絶縁層と金属層を1層ずつ形成してもよいし、一度に形成してもよい。 Hereinafter, further exemplary embodiments will be described. On the above-mentioned base substrate 100, a desired number of prepregs and then a metal foil are repeatedly laminated one or more times in order, and the laminate is sandwiched between a set of flat plate plates and set in a hot press machine. A build-up layer can be formed on the base substrate by thermocompression molding at a temperature and pressure. As the flat plate, for example, a stainless plate can be used. Although the plate is not limited, for example, a thick plate of about 1 to 10 mm can be used. As described above, the build-up layer may be formed by one insulating layer and one metal layer, or may be formed at a time.
 必要に応じて配線層50を構成する金属箔の全面を、ハーフエッチングして厚みを調整する工程を含めてもよい。配線層50を構成する金属箔の所定位置にレーザー加工を施して金属箔と樹脂を貫通するビアホールを形成し、ビアホールの中のスミアを除去するデスミア処理を施した後、ビアホール底部、側面及び金属箔の全面又は一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行っても良い。金属箔上の無電解めっき又は電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成しておいてもよい。また、無電解めっき、電解めっき、めっきレジストと金属箔の密着性が不十分である場合には予め金属箔の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、金属箔及び、無電解めっき部、電解めっき部の不要部分をエッチングにより除去することで回路を形成する。このようにしてビルドアップ基板を製造することができる。樹脂、銅箔の積層から回路形成までの工程を複数回繰り返し行って更に多層のビルドアップ基板としてもよい。 If necessary, a step of adjusting the thickness by half-etching the entire surface of the metal foil constituting the wiring layer 50 may be included. Laser processing is performed at a predetermined position of the metal foil constituting the wiring layer 50 to form a via hole penetrating the metal foil and the resin, and after applying a desmear process for removing smear in the via hole, the bottom of the via hole, the side surface and the metal Electroless plating may be performed on the entire surface or a part of the foil to form an interlayer connection, and further electrolytic plating may be performed as necessary. A plating resist may be formed in advance on each portion of the metal foil where electroless plating or electrolytic plating is unnecessary before performing each plating. In addition, when the electroless plating, the electrolytic plating, or the adhesion between the plating resist and the metal foil is insufficient, the surface of the metal foil may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, a circuit is formed by removing unnecessary portions of the metal foil and the electroless plating portion and the electrolytic plating portion by etching. In this way, a build-up substrate can be manufactured. The process from the lamination of the resin and the copper foil to the circuit formation may be repeated a plurality of times to form a multilayer build-up substrate.
 ビルドアップ層110の最上層に、別のベース基材100の離型剤層30側を積層しても良い。 The release agent layer 30 side of another base substrate 100 may be laminated on the top layer of the buildup layer 110.
 好適には、ビルドアップ層110の絶縁層40として、熱硬化性樹脂を含有するプリプレグを用いると良い。 Preferably, a prepreg containing a thermosetting resin may be used as the insulating layer 40 of the buildup layer 110.
 好適には、絶縁層40は、樹脂層、例えば、プリプレグ又は感光性樹脂である。絶縁層40としてプリプレグを用いる場合、レーザー加工によりプリプレグにビアホールを設けても良い。レーザー加工の後、このビアホールの中のスミアを除去するデスミア処理を施すとよい。また、樹脂として感光性樹脂を用いた場合、フォトリソグラフィ法によりビアホールを形成部の樹脂を除去することができる。次に、ビアホール底部、側面及び樹脂の全面又は一部に無電解めっきを施して層間接続を形成して、必要に応じて更に電解めっきを行う。樹脂上の無電解めっき又は電解めっきが不要な部分にはそれぞれのめっきを行う前までに予めめっきレジストを形成しておいてもよい。また、無電解めっき、電解めっき、めっきレジストと樹脂の密着性が不十分である場合には予め樹脂の表面を化学的に粗化しておいてもよい。めっきレジストを使用した場合、めっき後にめっきレジストを除去する。次に、無電解めっき部又は電解めっき部の不要部分をエッチングにより除去することで回路を形成する。 Preferably, the insulating layer 40 is a resin layer, for example, a prepreg or a photosensitive resin. When a prepreg is used as the insulating layer 40, a via hole may be provided in the prepreg by laser processing. After the laser processing, desmear treatment for removing smear in the via hole is preferably performed. When a photosensitive resin is used as the resin, the resin in the via hole forming portion can be removed by a photolithography method. Next, electroless plating is performed on the bottom and side surfaces of the via hole, the entire surface or a part of the resin to form an interlayer connection, and further electrolytic plating is performed as necessary. A plating resist may be formed in advance on each portion of the resin where electroless plating or electrolytic plating is unnecessary before performing each plating. Further, when the adhesion between electroless plating, electrolytic plating, plating resist and resin is insufficient, the surface of the resin may be chemically roughened in advance. When a plating resist is used, the plating resist is removed after plating. Next, a circuit is formed by removing unnecessary portions of the electroless plating portion or the electrolytic plating portion by etching.
<第2実施形態>
 図4及び図5を参照して第2実施形態について説明する。図4は、ベース基材の概略的な断面図である。図5は、ベース基材の両面上にビルドアップ層を積層した状態を示す概略的な断面図である。本実施形態においては、図4に示すように、プリプレグ10の下面(主面)上にも金属箔20、離型剤層30を順に積層したものをベース基材100として採用する。このような場合であっても第1実施形態と同様の効果を得ることができる。本構成の場合、図5に模式的に示すようにベース基材100の両面にビルドアップ層110を積層することができ、ベース基材100の利用効率を効果的に高めることができ、また多層プリント配線基板の製造効率を高めることができる。
Second Embodiment
The second embodiment will be described with reference to FIGS. 4 and 5. FIG. 4 is a schematic cross-sectional view of the base substrate. FIG. 5 is a schematic cross-sectional view showing a state in which build-up layers are laminated on both surfaces of a base substrate. In the present embodiment, as shown in FIG. 4, a base substrate 100 is used in which a metal foil 20 and a release agent layer 30 are sequentially laminated on the lower surface (main surface) of the prepreg 10. Even in such a case, the same effect as the first embodiment can be obtained. In the case of this configuration, as schematically shown in FIG. 5, the buildup layers 110 can be laminated on both surfaces of the base substrate 100, and the utilization efficiency of the base substrate 100 can be effectively increased. The production efficiency of the printed wiring board can be increased.
 なお、プリプレグ10の両面に貼り付けられる各金属箔20の材質や厚みは、同じであっても良いし、異なっていても構わない。この点は、プリプレグ10の上層及び下層に配される離型剤層30の材質や厚みについても同様である。ベース基材100の上層及び下層に形成される各ビルドアップ層110の構成や積層段数についても同様である。 In addition, the material and thickness of each metal foil 20 stuck on both surfaces of the prepreg 10 may be the same or different. This also applies to the material and thickness of the release agent layer 30 disposed in the upper layer and the lower layer of the prepreg 10. The same applies to the configuration and the number of stacked layers of each buildup layer 110 formed in the upper layer and the lower layer of the base substrate 100.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 EXAMPLES Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.
<実験例1>
 複数の電解銅箔(厚さ12μm)を準備し、それぞれの電解銅箔のシャイニー(S)面に対して、下記の条件によるニッケル-亜鉛(Ni-Zn)合金めっき処理及びクロメート(Cr-Znクロメート)処理を施し、S面の十点平均粗さ(Rz jis:JIS B 0601(2001)に準拠して測定)を1.5μmとした。
<Experimental example 1>
A plurality of electrolytic copper foils (thickness 12 μm) were prepared, and nickel-zinc (Ni—Zn) alloy plating treatment and chromate (Cr—Zn) were performed on the shiny (S) surface of each electrolytic copper foil under the following conditions. Chromate) treatment was performed, and the 10-point average roughness (Rz jis: measured according to JIS B 0601 (2001)) of the S surface was set to 1.5 μm.
 (ニッケル-亜鉛合金めっき)
  Ni濃度 17g/L(NiSO4として添加)
  Zn濃度  4g/L(ZnSO4として添加)
  pH    3.1
  液温    40℃
  電流密度  0.1~10A/dm2
  めっき時間 0.1~10秒
(Nickel-zinc alloy plating)
Ni concentration 17g / L (added as NiSO 4 )
Zn concentration 4g / L (added as ZnSO 4 )
pH 3.1
Liquid temperature 40 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 (クロメート処理)
  Cr濃度    1.4g/L(CrO3又はK2CrO7として添加)
  Zn濃度    0.01~1.0g/L(ZnSO4として添加)
  Na2SO4濃度 10g/L
  pH      4.8
  液温      55℃
  電流密度    0.1~10A/dm2
  めっき時間   0.1~10秒
(Chromate treatment)
Cr concentration 1.4g / L (added as CrO 3 or K 2 CrO 7 )
Zn concentration 0.01 to 1.0 g / L (added as ZnSO 4 )
Na 2 SO 4 concentration 10 g / L
pH 4.8
Liquid temperature 55 ℃
Current density 0.1-10A / dm 2
Plating time 0.1 to 10 seconds
 当該S面への離型剤の処理に関しては、離型剤の水溶液をスプレーコーターを用いて塗布してから、100℃の空気中で銅箔表面を乾燥させた。離型剤の使用条件について、離型剤の種類、離型剤を水中に溶解させてから塗布する前までの撹拌時間、水溶液中の離型剤の濃度、水溶液中のアルコール濃度、水溶液のpHを図6の表に示す。 For the treatment of the mold release agent on the S surface, an aqueous solution of the mold release agent was applied using a spray coater, and then the copper foil surface was dried in air at 100 ° C. Regarding the use conditions of the release agent, the type of release agent, the stirring time from when the release agent is dissolved in water to before application, the concentration of the release agent in the aqueous solution, the alcohol concentration in the aqueous solution, the pH of the aqueous solution Is shown in the table of FIG.
 このようにして得た離型剤層付銅箔の離型剤が処理されていない側の面と、板状キャリアとして用いるプリプレグ(南亜プラスティック社製、FR-4プリプレグ)の上面を貼り合わせ、これにより、プリプレグ、銅箔、離型剤層の積層体であるベース基材を得た。 The surface of the copper foil with a release agent layer obtained in this way, the side where the release agent is not treated, and the upper surface of the prepreg (manufactured by Nanya Plastic Co., Ltd., FR-4 prepreg) used as a plate carrier are bonded together Thereby, the base substrate which is a laminated body of a prepreg, copper foil, and a mold release agent layer was obtained.
 ベース基材の離型剤が処理されている側に、絶縁層としてプリプレグ(南亜プラスティック社製、FR-4プリプレグ、厚み62μm)と、配線層として銅箔(JX日鉱日石金属株式会社製、JTC(製品名)、厚み12μm)をホットプレスにより積層してビルドアップ層を形成した。こうして得たベース基材とビルドアップ層からなる積層体に対してビルドアップ層形成などのさらなる加熱処理の際に熱履歴がかかることを想定して、図6に示す表に記載の条件(ここでは、220℃で3時間)の熱処理を行った。得られた積層体、及び更に熱処理を行った後の積層体における、ベース基材とビルドアップ層の絶縁層との界面の剥離強度を測定した。それぞれの結果を図6の表に示す。 On the side of the base substrate where the release agent is treated, a prepreg (manufactured by Nanya Plastic Co., FR-4 prepreg, thickness 62 μm) as an insulating layer and a copper foil (manufactured by JX Nippon Mining & Metals Co., Ltd.) , JTC (product name), thickness 12 μm) was laminated by hot pressing to form a build-up layer. Assuming that a heat history is applied to the laminate comprising the base substrate and the buildup layer thus obtained during further heat treatment such as buildup layer formation, the conditions described in the table shown in FIG. 6 (here Then, heat treatment was performed at 220 ° C. for 3 hours. The peel strength at the interface between the base substrate and the insulating layer of the buildup layer in the obtained laminate and the laminate after further heat treatment was measured. Each result is shown in the table of FIG.
<実験例2~11>
 図6の表に示す銅箔、樹脂(プリプレグ)及び離型剤を用いて、実験例1と同様の手順で、ベース基材とビルドアップ層からなる積層体を作製した。それぞれについて実験例1と同様の評価を行った。結果を図6の表に示す。また、実験例11における当該S面への離型材樹脂塗膜の形成は、図6の表に示した組成を有する樹脂塗膜用の組成物をグラビアコート法により塗布した後、ドクターブレードを用いてその厚みを2~4μmに調節した。また、塗布した樹脂塗膜は、150℃で、30秒間加熱して焼き付け処理を行った。なお、図6の表で示したエポキシ系樹脂としてはビスフェノールA型エポキシ樹脂を用い、メラミン系樹脂としてはメチルエーテル化メラミン樹脂を用い、フッ素樹脂としてはポリテトラフルオロエチレンを用い、ジメチルシリコーンレジンとしてはジメチルポリシロキサンを用いた。
<Experimental Examples 2 to 11>
Using the copper foil, resin (prepreg), and release agent shown in the table of FIG. 6, a laminate composed of a base substrate and a buildup layer was produced in the same procedure as in Experimental Example 1. Each was evaluated in the same way as in Experimental Example 1. The results are shown in the table of FIG. In addition, the formation of the release material resin coating on the S surface in Experimental Example 11 was performed using a doctor blade after applying a resin coating composition having the composition shown in the table of FIG. 6 by the gravure coating method. The thickness was adjusted to 2-4 μm. Moreover, the applied resin coating film was baked by heating at 150 ° C. for 30 seconds. In addition, bisphenol A type epoxy resin is used as the epoxy resin shown in the table of FIG. 6, methyl ether melamine resin is used as the melamine resin, polytetrafluoroethylene is used as the fluororesin, and dimethyl silicone resin is used. Used dimethylpolysiloxane.
 なお、銅箔の離型剤処理面の種別、表面処理の条件及び表面粗さRz jis、離型剤の使用条件、プリプレグの種類、ならびに銅箔とプリプレグとの積層条件は、図6の表に示したとおりである。 The types of copper foil release agent treated surfaces, surface treatment conditions and surface roughness Rz jis, release agent usage conditions, prepreg types, and copper foil and prepreg lamination conditions are shown in the table of FIG. It is as shown in.
 板状キャリアとの貼り合わせ面となる反対側の銅箔マット(M)面の表面処理条件において、粗化処理、クロメート処理、及びエポキシシラン(処理)の具体的な条件は以下である。粗化処理およびエポキシシラン処理後のマット面の表面粗さRz jisは3.7μmであった。 Specific conditions for the roughening treatment, chromate treatment, and epoxysilane (treatment) in the surface treatment conditions of the copper foil mat (M) on the opposite side, which becomes the bonding surface with the plate-like carrier, are as follows. The surface roughness Rz jis of the matte surface after the roughening treatment and the epoxysilane treatment was 3.7 μm.
 (エポキシシラン処理)
 処理液:3-グリシドキシプロピルトリメトキシシラン 0.9体積%水溶液
     pH5.0~9.0
     12時間常温で攪拌したもの
 処理方法:スプレーコーターを用いて処理液を塗布後、100℃の空気中で5分間処理面を乾燥させる。
(Epoxysilane treatment)
Treatment liquid: 3-glycidoxypropyltrimethoxysilane 0.9 volume% aqueous solution pH 5.0 to 9.0
Stirred at room temperature for 12 hours Treatment method: After applying the treatment liquid using a spray coater, the treated surface is dried in air at 100 ° C. for 5 minutes.
 (粗化処理)
  Cu濃度 20g/L(CuSO4として添加)
  H2SO4濃度  50~100g/L
  As濃度 0.01~2.0g/L(亜ヒ酸として添加)
  液温    40℃
  電流密度  40~100A/dm2
  めっき時間 0.1~30秒
(Roughening treatment)
Cu concentration 20 g / L (added as CuSO 4 )
H 2 SO 4 concentration 50 ~ 100g / L
As concentration 0.01-2.0 g / L (added as arsenite)
Liquid temperature 40 ℃
Current density 40-100A / dm 2
Plating time 0.1-30 seconds
  (クロメート処理)
   Cr濃度 1.5g/L(K2Cr27として添加)
   Zn濃度 0.5g/L(硫酸亜鉛として添加)
   pH 3.2~4.3 (硫酸と水酸化カリウムを用いて調整)
   液温 40℃
   電流密度 1~5A/dm2
   めっき時間 0.1~5秒
(Chromate treatment)
Cr concentration 1.5 g / L (added as K 2 Cr 2 O 7)
Zn concentration 0.5g / L (added as zinc sulfate)
pH 3.2 to 4.3 (adjusted using sulfuric acid and potassium hydroxide)
Liquid temperature 40 ℃
Current density 1-5A / dm 2
Plating time 0.1-5 seconds
 図6の表に示すように、実施例1~11において良好な結果を得ることができた。実施例1~8,10においてより良好な結果を得ることができた。実施例1、2、5~7において特に良好な結果を得ることができた。なお、剥離作業性の評価においては、樹脂層である離型剤層が破壊されず、ベース基材100からビルドアップ層110を剥離できたものを「G」で示した。離型剤層が破壊されず、ベース基材100からビルドアップ層110を剥離できたものの、10回中4回以上の確率で剥離操作無しで剥離してしまったものを「-」で示した。離型剤層が破壊され、若しくはベース基材100からビルドアップ層110を剥離できないものを「N」で示した。 As shown in the table of FIG. 6, good results were obtained in Examples 1 to 11. In Examples 1 to 8 and 10, better results could be obtained. In Examples 1, 2, and 5 to 7, particularly good results could be obtained. In the evaluation of the peeling workability, “G” indicates that the release agent layer which is a resin layer was not destroyed and the buildup layer 110 could be peeled from the base substrate 100. Although the release agent layer was not destroyed and the buildup layer 110 could be peeled off from the base substrate 100, “−” indicates that the peeling occurred without peeling operation at a probability of 4 times or more out of 10 times. . A case where the release agent layer was destroyed or the buildup layer 110 could not be peeled from the base substrate 100 was indicated by “N”.
 (実施例12)
 実施例1~11と同様のベース基材の両側に、FR-4プリプレグ(南亜プラスティック社製)、銅箔(JX日鉱日石金属(株)製、JTC12μm(製品名))を順に重ね、3MPaの圧力で所定の加熱条件にてホットプレスを行い、4層銅張積層板を作製した。
Example 12
FR-4 prepreg (manufactured by Nanya Plastic Co., Ltd.) and copper foil (manufactured by JX Nippon Mining & Metals, JTC 12 μm (product name)) are sequentially stacked on both sides of the same base substrate as in Examples 1 to 11. Hot pressing was performed under a predetermined heating condition at a pressure of 3 MPa to prepare a four-layer copper-clad laminate.
 次に、前記4層銅張積層板表面の銅箔とその下の絶縁層(硬化したプリプレグ)を貫通する直径100μmの孔をレーザー加工機を用いて空けた。続いて、前記孔の底部に露出したキャリア付き銅箔上の銅箔表面と、前記孔の側面、前記4層銅張積層板表面の銅箔上に無電解銅めっき、電気銅めっきにより銅めっきを行い、キャリア付銅箔上の銅箔と、4層銅張積層板表面の銅箔との間に電気的接続を形成した。次に、4層銅張積層板表面の銅箔の一部を塩化第二鉄系のエッチング液を用いてエッチングし、回路を形成した。このようにして、4層ビルドアップ基板を得た。 Next, a 100 μm diameter hole penetrating the copper foil on the surface of the four-layer copper-clad laminate and the insulating layer (cured prepreg) thereunder was drilled using a laser processing machine. Subsequently, electroless copper plating on the copper foil surface on the copper foil with carrier exposed at the bottom of the hole, the side surface of the hole, and the copper foil on the surface of the four-layer copper-clad laminate, and copper plating by electrolytic copper plating The electrical connection was formed between the copper foil on the copper foil with a carrier and the copper foil on the surface of the four-layer copper-clad laminate. Next, a part of the copper foil on the surface of the four-layer copper-clad laminate was etched using a ferric chloride-based etchant to form a circuit. In this way, a four-layer buildup substrate was obtained.
 続いて、前記4層ビルドアップ基板において、ベース基材をビルドアップ層から分離することにより、2組の2層ビルドアップ配線板を得た。剥離も良好に行うことができた。 Subsequently, in the four-layer buildup board, two sets of two-layer buildup wiring boards were obtained by separating the base substrate from the buildup layer. Peeling was also good.
 上述の教示を踏まえると、当業者をすれば、各実施形態に対して様々な変更を加えることができる。ビルドアップ層110における絶縁層40と配線層50の積層順番を逆としても構わない。好ましくはビルドアップ層110の最上層には配線層50が位置付けられ、これにより、多層プリント配線基板と外部との電気的接続を簡便に確保することができる。板状キャリアの主面とは典型的には、平板状のキャリアの上面若しくは下面である。 Based on the above teaching, those skilled in the art can make various modifications to the embodiments. The stacking order of the insulating layer 40 and the wiring layer 50 in the buildup layer 110 may be reversed. Preferably, the wiring layer 50 is positioned at the uppermost layer of the buildup layer 110, thereby easily ensuring the electrical connection between the multilayer printed wiring board and the outside. The main surface of the plate carrier is typically the upper surface or the lower surface of the flat carrier.
10   :プリプレグ
20   :金属箔
25   :金属張積層板
30   :離型剤層
40   :絶縁層
50   :配線層

100  :ベース基材
110  :ビルドアップ層
10: Prepreg 20: Metal foil 25: Metal-clad laminate 30: Release agent layer 40: Insulating layer 50: Wiring layer

100: Base substrate 110: Build-up layer

Claims (37)

  1.  樹脂製の板状キャリアを準備する工程と、
     金属箔上に離型剤層が積層した積層体を前記板状キャリアの少なくとも一方の主面上に積層し、若しくは前記板状キャリアの少なくとも一方の主面上に予め積層された金属箔上に離型剤層を積層し、前記板状キャリアの前記主面上に前記金属箔を介して前記離型剤層を積層する工程と、
     を含む、多層プリント配線基板の製造用のベース基材の製造方法。
    A step of preparing a plate carrier made of resin;
    A laminate in which a release agent layer is laminated on a metal foil is laminated on at least one main surface of the plate-like carrier, or on a metal foil previously laminated on at least one main surface of the plate-like carrier. Laminating a release agent layer, and laminating the release agent layer on the main surface of the plate carrier via the metal foil;
    A method for producing a base substrate for producing a multilayer printed wiring board, comprising:
  2.  請求項1に記載の製造方法により得られたベース基材を準備する工程と、
     前記ベース基材の前記離型剤層上に絶縁層と配線層の組を含むビルドアップ層を1層以上積層する工程と、
     を含む多層プリント配線基板の製造方法。
    Preparing a base substrate obtained by the manufacturing method according to claim 1;
    Laminating one or more buildup layers including a combination of an insulating layer and a wiring layer on the release agent layer of the base substrate;
    A method for manufacturing a multilayer printed wiring board including:
  3.  前記ベース基材と前記ビルドアップ層の剥離強度が10gf/cm以上200gf/cm以下である、請求項2に記載の多層プリント配線基板の製造方法。 The manufacturing method of the multilayer printed wiring board of Claim 2 whose peeling strength of the said base base material and the said buildup layer is 10 gf / cm or more and 200 gf / cm or less.
  4.  220℃で3時間、6時間又は9時間のうちの少なくとも一つの加熱後における、前記ベース基材と前記ビルドアップ層の剥離強度が10gf/cm以上200gf/cm以下である、請求項2又は3に記載の多層プリント配線基板の製造方法。 The peel strength between the base substrate and the build-up layer after heating at 220 ° C for 3 hours, 6 hours, or 9 hours is 10 gf / cm or more and 200 gf / cm or less. The manufacturing method of the multilayer printed wiring board as described in 2 ..
  5.  前記金属箔の層厚が、1~400μmの範囲内にある、請求項2乃至4の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 4, wherein the layer thickness of the metal foil is in the range of 1 to 400 µm.
  6.  前記板状キャリアの厚みが、5μm以上1000μm以下である、請求項2乃至5の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 5, wherein the thickness of the plate-like carrier is 5 µm or more and 1000 µm or less.
  7.  前記離型剤層の層厚が、0.001~10μmの範囲内にある、請求項2乃至6の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed circuit board according to any one of claims 2 to 6, wherein the layer thickness of the release agent layer is in the range of 0.001 to 10 µm.
  8.  前記金属箔が、銅箔又は銅合金箔である、請求項2乃至7の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 7, wherein the metal foil is a copper foil or a copper alloy foil.
  9.  前記板状キャリアが、プリプレグである、請求項2乃至8の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 8, wherein the plate-like carrier is a prepreg.
  10.  前記板状キャリアは、120~320℃のガラス転移温度Tgを有する、請求項2乃至9の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 9, wherein the plate-like carrier has a glass transition temperature Tg of 120 to 320 ° C.
  11.  前記ベース基材と前記ビルドアップ層を分離する工程を更に含む、請求項2乃至10の何れか一項に記載の多層プリント配線基板の製造方法。 The manufacturing method of the multilayer printed wiring board as described in any one of Claim 2 thru | or 10 which further includes the process of isolate | separating the said base base material and the said buildup layer.
  12.  請求項11に記載の工程により得られた多層プリント配線基板の面上にビルドアップ層を積層する工程を更に含む、請求項11に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to claim 11, further comprising a step of laminating a buildup layer on the surface of the multilayer printed wiring board obtained by the process according to claim 11.
  13.  前記ビルドアップ層が、1以上の絶縁層と1以上の配線層を含む、請求項2乃至12の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 12, wherein the build-up layer includes one or more insulating layers and one or more wiring layers.
  14.  前記ビルドアップ層に含まれる1以上の配線層が、パターニングされた若しくはパターニングされていない金属箔である、請求項2乃至13の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 13, wherein the one or more wiring layers included in the build-up layer are patterned or unpatterned metal foil.
  15.  前記ビルドアップ層に含まれる1以上の絶縁層が、熱硬化性樹脂である、請求項2乃至14の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 14, wherein the one or more insulating layers included in the buildup layer are thermosetting resins.
  16.  前記ビルドアップ層に含まれる1以上の絶縁層が、プリプレグである、請求項2乃至15の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 15, wherein the one or more insulating layers included in the build-up layer are prepregs.
  17.  前記ビルドアップ層が、1以上の片面あるいは両面金属張積層板を含む、請求項2乃至16の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 16, wherein the build-up layer includes one or more single-sided or double-sided metal-clad laminates.
  18.  前記ビルドアップ層が、サブトラクティブ法又はフルアディティブ法又はセミアディティブ法の少なくとも一方を用いて形成される、請求項2乃至17の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 17, wherein the build-up layer is formed using at least one of a subtractive method, a full additive method, and a semi-additive method.
  19.  前記ベース基材上に前記ビルドアップ層が積層した積層体に対してダイシング処理を施す工程を更に含む、請求項2乃至18の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 18, further comprising a step of performing a dicing process on the laminate in which the buildup layer is laminated on the base substrate.
  20.  前記ダイシング処理により、前記ベース基材上に前記ビルドアップ層が積層した前記積層体には1以上の溝が形成され、当該溝により前記ビルドアップ層が個片化可能である、請求項19に記載の多層プリント配線基板の製造方法。 The dicing process forms one or more grooves in the laminate in which the build-up layer is laminated on the base substrate, and the build-up layer can be separated into pieces by the grooves. The manufacturing method of the multilayer printed wiring board as described.
  21.  前記ビルドアップ層に含まれる1以上の絶縁層に対してビア配線を形成する工程を更に含む、請求項2乃至20の何れか一項に記載の多層プリント配線基板の製造方法。 The method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 20, further comprising a step of forming a via wiring for one or more insulating layers included in the build-up layer.
  22.  前記離型剤層が、次式:
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、又はアルコキシ基、又はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、請求項2乃至21の何れか一項に記載の多層プリント配線基板の製造方法。
    The release agent layer has the following formula:
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
    The manufacturing method of the multilayer printed wiring board as described in any one of Claims 2 thru | or 21 which uses the silane compound shown to these, its hydrolysis product, and the condensate of this hydrolysis product individually or in combination of two or more. .
  23.  前記離型剤層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる、請求項2乃至21の何れか一項に記載の多層プリント配線基板の製造方法。 The method for producing a multilayer printed wiring board according to any one of claims 2 to 21, wherein the release agent layer is formed using a compound having two or less mercapto groups in a molecule.
  24.  前記離型剤層が、次式:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0又は1又は2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、請求項2乃至21の何れか一項に記載の多層プリント配線基板の製造方法。
    The release agent layer has the following formula:
    Figure JPOXMLDOC01-appb-C000002
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
    The aluminate compound, the titanate compound, the zirconate compound, the hydrolysis product thereof, and the condensate of the hydrolysis product shown in any one of claims 2 to 21 are used. Manufacturing method for multilayer printed wiring boards.
  25.  前記離型剤層が、シリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜である、請求項2乃至21の何れか一項に記載の多層プリント配線基板の製造方法。 The any one of Claims 2 thru | or 21 in which the said mold release agent layer is a resin coating film comprised with silicone and any one or several resin selected from an epoxy resin, a melamine resin, and a fluororesin. A method for producing a multilayer printed wiring board according to claim 1.
  26.  請求項2乃至25の何れか一項に記載の多層プリント配線基板の製造方法により製造された多層プリント配線基板。 A multilayer printed wiring board manufactured by the method for manufacturing a multilayer printed wiring board according to any one of claims 2 to 25.
  27.  多層プリント配線基板の製造方法に用いられるベース基材であって、
     樹脂製の板状キャリアと、
     前記板状キャリアの少なくとも一方の主面上に積層した金属箔と、
     前記金属箔を介して前記板状キャリアの前記主面上に積層した離型剤層と、を備える、ベース基材。
    A base substrate used in a method for producing a multilayer printed wiring board,
    A resin plate carrier;
    A metal foil laminated on at least one main surface of the plate carrier;
    And a release agent layer laminated on the main surface of the plate carrier via the metal foil.
  28.  前記金属箔の層厚が、1~400μmの範囲内にある、請求項27に記載のベース基材。 The base substrate according to claim 27, wherein the thickness of the metal foil is in the range of 1 to 400 µm.
  29.  前記板状キャリアの厚みが、5μm以上1000μm以下である、請求項27又は28に記載のベース基材。 The base substrate according to claim 27 or 28, wherein the thickness of the plate-like carrier is 5 µm or more and 1000 µm or less.
  30.  前記離型剤層の層厚が、0.001~10μmの範囲内にある、請求項27乃至29の何れか一項に記載のベース基材。 The base substrate according to any one of claims 27 to 29, wherein a layer thickness of the release agent layer is in a range of 0.001 to 10 µm.
  31.  前記金属箔が、銅箔又は銅合金箔である、請求項27乃至30の何れか一項に記載のベース基材。 The base substrate according to any one of claims 27 to 30, wherein the metal foil is a copper foil or a copper alloy foil.
  32.  前記板状キャリアが、熱硬化性樹脂である、請求項27乃至31の何れか一項に記載のベース基材。 The base substrate according to any one of claims 27 to 31, wherein the plate-like carrier is a thermosetting resin.
  33.  前記板状キャリアが、プリプレグである、請求項27乃至32の何れか一項に記載のベース基材。 The base substrate according to any one of claims 27 to 32, wherein the plate-like carrier is a prepreg.
  34.  前記離型剤層が、次式:
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、R3及びR4はそれぞれ独立にハロゲン原子、又はアルコキシ基、又はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基である。)
    に示すシラン化合物、その加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、請求項27乃至33の何れか一項に記載のベース基材。
    The release agent layer has the following formula:
    Figure JPOXMLDOC01-appb-C000003
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by R 3 and R 4 are each independently a halogen atom, an alkoxy group, or a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group, and an aryl group Or any one of these hydrocarbon groups in which one or more hydrogen atoms are replaced by halogen atoms.)
    The base substrate according to any one of claims 27 to 33, wherein the silane compound, a hydrolysis product thereof, and a condensate of the hydrolysis product are used singly or in combination.
  35.  前記離型剤層が、分子内に2つ以下のメルカプト基を有する化合物を用いてなる、請求項27乃至33の何れか一項に記載のベース基材。 The base substrate according to any one of claims 27 to 33, wherein the release agent layer is formed using a compound having two or less mercapto groups in the molecule.
  36.  前記離型剤層が、次式:
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1はアルコキシ基又はハロゲン原子であり、R2はアルキル基、シクロアルキル基及びアリール基よりなる群から選択される炭化水素基であるか、一つ以上の水素原子がハロゲン原子で置換されたこれら何れかの炭化水素基であり、MはAl、Ti、Zrのうち何れか一つ、nは0又は1又は2、mは1以上Mの価数以下の整数であり、R1の少なくとも一つはアルコキシ基である。なお、m+nはMの価数すなわちAlの場合3、Ti、Zrの場合4である)
    に示すアルミネート化合物、チタネート化合物、ジルコネート化合物、これらの加水分解生成物、該加水分解生成物の縮合体を単独で又は複数組み合わせて用いてなる、請求項27乃至33の何れか一項に記載のベース基材。
    The release agent layer has the following formula:
    Figure JPOXMLDOC01-appb-C000004
    Wherein R 1 is an alkoxy group or a halogen atom, and R 2 is a hydrocarbon group selected from the group consisting of an alkyl group, a cycloalkyl group and an aryl group, or one or more hydrogen atoms are halogen atoms Any one of these hydrocarbon groups substituted by: M is any one of Al, Ti, Zr, n is 0 or 1 or 2, m is an integer from 1 to M valence, At least one of R 1 is an alkoxy group, where m + n is the valence of M, that is, 3 for Al and 4 for Ti and Zr)
    The aluminate compound, the titanate compound, the zirconate compound, the hydrolysis product thereof, and the condensate of the hydrolysis product shown in any one of claims 27 to 33 are used. Base substrate.
  37.  前記離型剤層が、シリコーンと、エポキシ系樹脂、メラミン系樹脂及びフッ素樹脂から選択される何れか1つ又は複数の樹脂とで構成される樹脂塗膜である、請求項27乃至33の何れか一項に記載のベース基材。 34. Any one of claims 27 to 33, wherein the release agent layer is a resin coating film composed of silicone and any one or a plurality of resins selected from an epoxy resin, a melamine resin, and a fluororesin. A base substrate according to claim 1.
PCT/JP2013/077167 2012-10-04 2013-10-04 Production method for multilayer printed wiring board, and base material WO2014054803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014539854A JP6393618B2 (en) 2012-10-04 2013-10-04 Multilayer printed wiring board manufacturing method and base substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012222581 2012-10-04
JP2012-222581 2012-10-04

Publications (1)

Publication Number Publication Date
WO2014054803A1 true WO2014054803A1 (en) 2014-04-10

Family

ID=50435121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077167 WO2014054803A1 (en) 2012-10-04 2013-10-04 Production method for multilayer printed wiring board, and base material

Country Status (3)

Country Link
JP (1) JP6393618B2 (en)
TW (1) TWI576034B (en)
WO (1) WO2014054803A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351065A4 (en) * 2015-09-17 2019-05-08 At&S (China) Co., Ltd. Sacrificial structure with dummy core and two sections of separate material thereon for manufacturing component carriers
EP3351066A4 (en) * 2015-09-17 2019-05-15 At&S (China) Co., Ltd. Component carriers sandwiching a sacrificial structure and having pure dielectric layers next to the sacrificial structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173658A (en) * 2005-12-26 2007-07-05 Kyocer Slc Technologies Corp Method for manufacturing wiring board
JP2011009686A (en) * 2009-06-23 2011-01-13 Kinko Denshi Kofun Yugenkoshi Packaging substrate and fabrication method thereof, and base material thereof
JP2011029585A (en) * 2009-07-23 2011-02-10 Samsung Electro-Mechanics Co Ltd Semiconductor package and method of manufacturing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122644A (en) * 1990-09-12 1992-04-23 Matsushita Electric Works Ltd Laminated board for electrical use
US6596391B2 (en) * 1997-05-14 2003-07-22 Honeywell International Inc. Very ultra thin conductor layers for printed wiring boards
JP3612594B2 (en) * 1998-05-29 2005-01-19 三井金属鉱業株式会社 Composite foil with resin, method for producing the same, multilayer copper-clad laminate using the composite foil, and method for producing multilayer printed wiring board
JP2002292788A (en) * 2001-03-30 2002-10-09 Nippon Denkai Kk Composite copper foil and method for manufacturing the same
JP4582436B2 (en) * 2001-08-27 2010-11-17 Jx日鉱日石金属株式会社 Copper foil with water-soluble resin carrier and printed circuit board using the copper foil
JP2004169181A (en) * 2002-10-31 2004-06-17 Furukawa Techno Research Kk Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
JP5410660B2 (en) * 2007-07-27 2014-02-05 新光電気工業株式会社 WIRING BOARD AND ITS MANUFACTURING METHOD, ELECTRONIC COMPONENT DEVICE AND ITS MANUFACTURING METHOD
CN101803483B (en) * 2007-09-11 2012-10-24 味之素株式会社 Process for producing multilayer printed wiring board
JP4805304B2 (en) * 2008-05-12 2011-11-02 Jx日鉱日石金属株式会社 Metal foil with carrier and method for producing multilayer coreless circuit board
KR20100043547A (en) * 2008-10-20 2010-04-29 삼성전기주식회사 Coreless substrate having filled via pad and a fabricating method the same
JP5135319B2 (en) * 2009-11-09 2013-02-06 日東電工株式会社 LAMINATE, USE AND MANUFACTURING METHOD THEREOF
TW201235402A (en) * 2011-01-07 2012-09-01 Ajinomoto Kk Resin composition for release film
JP6243840B2 (en) * 2012-06-04 2017-12-06 Jx金属株式会社 Manufacturing method of multilayer printed wiring board
WO2014046259A1 (en) * 2012-09-20 2014-03-27 Jx日鉱日石金属株式会社 Metallic foil having carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173658A (en) * 2005-12-26 2007-07-05 Kyocer Slc Technologies Corp Method for manufacturing wiring board
JP2011009686A (en) * 2009-06-23 2011-01-13 Kinko Denshi Kofun Yugenkoshi Packaging substrate and fabrication method thereof, and base material thereof
JP2011029585A (en) * 2009-07-23 2011-02-10 Samsung Electro-Mechanics Co Ltd Semiconductor package and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351065A4 (en) * 2015-09-17 2019-05-08 At&S (China) Co., Ltd. Sacrificial structure with dummy core and two sections of separate material thereon for manufacturing component carriers
EP3351066A4 (en) * 2015-09-17 2019-05-15 At&S (China) Co., Ltd. Component carriers sandwiching a sacrificial structure and having pure dielectric layers next to the sacrificial structure
US10973133B2 (en) 2015-09-17 2021-04-06 At&S (China) Co. Ltd. Sacrificial structure with dummy core and two sections of separate material thereon for manufacturing component carriers
US11051410B2 (en) 2015-09-17 2021-06-29 At&S (China) Co. Ltd. Component carriers sandwiching a sacrificial structure and having pure dielectric layers next to the sacrificial structure

Also Published As

Publication number Publication date
TWI576034B (en) 2017-03-21
JPWO2014054803A1 (en) 2016-08-25
TW201436687A (en) 2014-09-16
JP6393618B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6393619B2 (en) Multilayer printed wiring board manufacturing method and base substrate
JP6373189B2 (en) Metal foil with carrier
JP6204430B2 (en) Metal foil, metal foil with release layer, laminate, printed wiring board, semiconductor package, electronic device and method for manufacturing printed wiring board
JP6096787B2 (en) Metal foil with carrier, laminate made of resinous plate carrier and metal foil, and uses thereof
TW201811557A (en) Copper foil with release layer, laminated material, method for producing printed wiring board, and method for producing electronic apparatus
JP5887420B2 (en) Metal foil with carrier
WO2017051898A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
JP2018122590A (en) Metallic foil with release layer, metallic foil, laminate, printed wiring board, semiconductor package, electronic apparatus and method for manufacturing printed wiring board
JP6393618B2 (en) Multilayer printed wiring board manufacturing method and base substrate
JP6266965B2 (en) Multilayer printed wiring board manufacturing method and base substrate
JP6327840B2 (en) Resin composition comprising a thermosetting resin and a release agent
JP2018121085A (en) Method for manufacturing printed wiring board
JP6498091B2 (en) Surface-treated metal foil, laminate, printed wiring board, semiconductor package, electronic equipment
JP6306865B2 (en) Laminate with resin substrates in close contact with each other in a peelable manner
KR20180111659A (en) Copper foil with release layer, laminate, method of manufacturing printed wiring board and method of manufacturing electronic device
WO2017051897A1 (en) Metal foil, metal foil with mold release layer, laminate, printed wiring board, semiconductor package, electronic device and method for producing printed wiring board
WO2017051908A1 (en) Metal foil, metal foil provided with release layer, laminate body, printed circuit board, semiconductor package, electronic apparatus, and printed circuit board production method
TW201841743A (en) Copper foil with mold release layer, laminated body, manufacturing method of printed circuit board, and manufacturing method of electronic machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014539854

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844093

Country of ref document: EP

Kind code of ref document: A1