WO2014054194A1 - 掘削機械の表示システム及び掘削機械 - Google Patents

掘削機械の表示システム及び掘削機械 Download PDF

Info

Publication number
WO2014054194A1
WO2014054194A1 PCT/JP2012/081203 JP2012081203W WO2014054194A1 WO 2014054194 A1 WO2014054194 A1 WO 2014054194A1 JP 2012081203 W JP2012081203 W JP 2012081203W WO 2014054194 A1 WO2014054194 A1 WO 2014054194A1
Authority
WO
WIPO (PCT)
Prior art keywords
bucket
cutting edge
predetermined range
target surface
tli
Prior art date
Application number
PCT/JP2012/081203
Other languages
English (en)
French (fr)
Inventor
安曇 野村
橋本 隆寛
藤田 悦夫
亮 深野
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to US13/985,451 priority Critical patent/US9043098B2/en
Priority to DE112012000290.3T priority patent/DE112012000290B4/de
Priority to KR1020137014266A priority patent/KR101512254B1/ko
Priority to CN201280003987.1A priority patent/CN103857852B/zh
Publication of WO2014054194A1 publication Critical patent/WO2014054194A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/261Surveying the work-site to be treated
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/264Sensors and their calibration for indicating the position of the work tool
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/49Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an inertial position system, e.g. loosely-coupled

Definitions

  • the present invention relates to an excavating machine display system and an excavating machine equipped with the same.
  • Patent Document 1 describes a technique that allows a depth trajectory of a bucket toe to be held on a monitor screen for a short time when dredging by a backhoe dredger.
  • Patent Document 1 When using a drilling machine such as a hydraulic excavator to set a part of the design surface of the construction target as the target surface and excavating the ground of the work target according to this, the operator of the drilling machine needs information especially in the vicinity of the target surface And
  • the technique of Patent Document 1 since the locus of the toe is displayed from a shallow position to the target heel depth, information other than the vicinity of the target surface is also displayed on the screen of the display device. For this reason, the technique of Patent Document 1 makes it easy for the operator of the excavating machine to excavate the ground to be worked according to the design surface of the construction target as a target surface to easily understand the information related to the construction result. May not be available.
  • the present invention aims to provide an operator with easy-to-understand information on the construction result when the operator of the excavating machine proceeds with the construction according to the design surface.
  • a display system for an excavating machine having a working machine including a bucket and a main body to which the working machine is attached, and a vehicle state detecting unit that detects information related to the current position and posture of the excavating machine.
  • a storage unit that stores position information of a design surface to be worked and position information of a target surface indicating a target shape, and a display unit that displays the bucket, the design surface, and the position information of the target surface on a screen;
  • the position of the cutting edge of the bucket is obtained based on information on the current position and posture of the excavating machine, and at least a part of the bucket enters a predetermined range around the target surface in a direction orthogonal to the target surface
  • a processing unit that displays on the screen of the display unit the locus of the cutting edge present within the predetermined range, which is obtained based on the position of the cutting edge.
  • the processing unit erases the already-displayed locus of the blade edge when the bucket enters the predetermined range again after the bucket comes out of the predetermined range, and the predetermined range It is preferable that the locus of the cutting edge of the bucket that has entered again is displayed on the screen.
  • the processing unit is a space that extends in a direction perpendicular to the target surface, and is based on a positional relationship between the bucket and a predetermined range including an excavation range by the bucket. It is preferable to erase at least a part.
  • the predetermined range including the excavation range is preferably larger than the width of the bucket.
  • the processing unit erases at least a part of the trajectory based on the turning of the upper turning body on which the work implement is mounted.
  • the processing unit erases at least a part of the locus based on the movement of the main body.
  • the processing unit erases the locus displayed on the screen of the display device when the target surface is no longer a work target or when the target surface is changed.
  • the size of the predetermined range is preferably changeable.
  • the size of the predetermined range is preferably a size corresponding to a tolerance in constructing the design surface.
  • the processing unit notifies a sound as a warning based on a distance between the cutting edge of the bucket and the target surface or the design surface.
  • the processing unit changes a mode of notifying the sound based on a distance between the cutting edge of the bucket and the target surface or the design surface.
  • the processing unit displays a guide indicator for indicating the position of the blade edge of the bucket on the screen of the display unit.
  • a drilling machine provided with the above-described drilling machine display system.
  • the present invention can provide the operator with easy-to-understand information on the construction result when the operator of the excavating machine proceeds with the construction according to the design surface.
  • FIG. 1 is a perspective view of a hydraulic excavator 100 according to the present embodiment.
  • FIG. 2 is a side view of the excavator 100.
  • FIG. 3 is a rear view of the excavator 100.
  • FIG. 4 is a block diagram illustrating a control system provided in the excavator 100.
  • FIG. 5 is a diagram showing the design terrain indicated by the design terrain data.
  • FIG. 6 is a diagram illustrating an example of a guidance screen.
  • FIG. 7 is a diagram illustrating an example of a guidance screen.
  • FIG. 8 is a diagram for explaining an example of a method for obtaining the current position of the blade edge P ⁇ b> 3 of the bucket 8.
  • FIG. 1 is a perspective view of a hydraulic excavator 100 according to the present embodiment.
  • FIG. 2 is a side view of the excavator 100.
  • FIG. 3 is a rear view of the excavator 100.
  • FIG. 4 is a block diagram illustrating a
  • FIG. 9 is a diagram for explaining an example of a method for obtaining the current position of the blade tip P3 of the bucket 8.
  • FIG. 10 is a diagram illustrating an example in which the trajectory TLi of the cutting edge P3 of the bucket 8 is displayed on the screen 42P of the display unit 42.
  • FIG. 11 is a flowchart illustrating an example of a display procedure for displaying the blade tip locus TLi on the screen 42P of the display unit 42.
  • FIG. 12 is a diagram illustrating a state of the screen 42P of the display unit 42 on which the cutting edge locus TLi is displayed.
  • FIG. 13 is a diagram illustrating a state of the screen 42P of the display unit 42 on which the blade edge locus TLi is displayed.
  • FIG. 14 is a diagram illustrating a state of the screen 42P of the display unit 42 on which the blade tip locus TLi is displayed.
  • FIG. 15 is a diagram illustrating a state of the screen 42P of the display unit 42 on which the blade edge locus TLi is displayed.
  • FIG. 16 is a diagram illustrating a display mode of the cutting edge locus TLi.
  • FIG. 17 is a view for explaining a predetermined range that is a space that extends in a direction perpendicular to the target surface 70 and includes the excavation range of the target surface 70 by the bucket 8.
  • FIG. 18 is a diagram illustrating a display mode of the blade tip locus TLi when the bucket 8 moves.
  • FIG. 19 is a flowchart illustrating an example of a processing procedure for display control of the blade tip locus TLi when the bucket 8 moves.
  • FIG. 20 is a diagram showing the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 21 is a diagram showing the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 22 is a diagram illustrating the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 23A is a diagram for explaining a predetermined range that is a space that extends in a direction perpendicular to the target surface 70 and includes the excavation range of the target surface 70 by the bucket 8.
  • FIG. 20 is a diagram showing the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 21 is a diagram showing the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 22 is a diagram illustrating the relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 23A is a diagram for explaining a predetermined range that is
  • FIG. 23-2 is a diagram for explaining a predetermined range that is a space extending in a direction perpendicular to the target surface 70 and includes the excavation range of the target surface 70 by the bucket 8.
  • FIG. 24A is a diagram illustrating a relationship between the bucket 8 and the predetermined horizontal range AS.
  • FIG. 24-2 is a diagram showing a relationship between the bucket 8 and the horizontal predetermined range AS.
  • FIG. 1 is a perspective view of a hydraulic excavator 100 according to the present embodiment.
  • FIG. 2 is a side view of the excavator 100.
  • FIG. 3 is a rear view of the excavator 100.
  • FIG. 4 is a block diagram illustrating a control system provided in the excavator 100.
  • FIG. 5 is a diagram showing the design terrain indicated by the design terrain data.
  • a hydraulic excavator 100 as an excavating machine has a vehicle main body 1 and a work implement 2 as main body portions.
  • the vehicle main body 1 includes an upper swing body 3 and a traveling device 5.
  • the upper swing body 3 accommodates devices such as a power generation device and a hydraulic pump (not shown) inside the engine room 3EG.
  • the engine room 3EG is disposed on one end side of the upper swing body 3.
  • the excavator 100 uses, for example, an internal combustion engine such as a diesel engine as a power generation device, but the excavator 100 is not limited to this.
  • the hydraulic excavator 100 may include, for example, a so-called hybrid power generation device in which an internal combustion engine, a generator motor, and a power storage device are combined.
  • the upper swing body 3 has a cab 4.
  • the cab 4 is placed on the other end side of the upper swing body 3. That is, the cab 4 is arranged on the side opposite to the side where the engine room 3EG is arranged.
  • a display input device 38 and an operation device 25 shown in FIG. These will be described later.
  • the traveling device 5 has crawler belts 5a and 5b. The traveling device 5 travels when the hydraulic motor (not shown) is driven and the crawler belts 5a and 5b rotate to travel the hydraulic excavator 100.
  • the work machine 2 is attached to the side of the cab 4 of the upper swing body 3.
  • the hydraulic excavator 100 may include a tire instead of the crawler belts 5a and 5b, and a traveling device capable of traveling by transmitting the driving force of a diesel engine (not shown) to the tire via a transmission.
  • a wheel-type hydraulic excavator may be used as the hydraulic excavator 100 having such a configuration.
  • the hydraulic excavator 100 includes a traveling device having such a tire, a work machine is attached to the vehicle main body (main body portion), and the upper swing body and the swing mechanism thereof are not provided as shown in FIG.
  • a backhoe loader may be used. That is, the backhoe loader is provided with a traveling device having a work machine attached to the vehicle body and constituting a part of the vehicle body.
  • the upper revolving unit 3 is on the front side where the work implement 2 and the cab 4 are arranged, and is on the side where the engine room 3EG is arranged.
  • the left side toward the front is the left of the upper swing body 3, and the right side toward the front is the right of the upper swing body 3.
  • the excavator 100 or the vehicle main body 1 has the traveling device 5 side on the lower side with respect to the upper swing body 3, and the upper swing body 3 side on the basis of the traveling device 5.
  • the lower side is the vertical direction, that is, the gravity direction side
  • the upper side is the opposite side of the vertical direction.
  • the work machine 2 includes a boom 6, an arm 7, a bucket 8, a boom cylinder 10, an arm cylinder 11, and a bucket cylinder 12.
  • a base end portion of the boom 6 is swingably attached to a front portion of the vehicle main body 1 via a boom pin 13.
  • a base end portion of the arm 7 is swingably attached to a tip end portion of the boom 6 via an arm pin 14.
  • a bucket 8 is swingably attached to the tip of the arm 7 via a bucket pin 15.
  • the length of the boom 6, that is, the length from the boom pin 13 to the arm pin 14 is L1.
  • the length of the arm 7, that is, the length from the center of the arm pin 14 to the center of the bucket pin 15 is L2.
  • the length of the bucket 8, that is, the length from the center of the bucket pin 15 to the cutting edge P3 of the bucket 8 is L3.
  • the blade tip P3 is the tip of the blade 8B attached to the bucket 8 on the side opposite to the bucket pin 15.
  • the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 shown in FIG. 1 are hydraulic cylinders that are driven by the pressure of hydraulic oil (hereinafter referred to as hydraulic pressure as appropriate).
  • the boom cylinder 10 drives the boom 6 to raise and lower it.
  • the arm cylinder 11 drives the arm 7 to rotate around the arm pin 14.
  • the bucket cylinder 12 drives the bucket 8 to rotate around the bucket pin 15.
  • a proportional control valve 37 shown in FIG. 4 is arranged between hydraulic cylinders such as the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 and a hydraulic pump (not shown).
  • the work machine electronic control unit 26 to be described later controls the proportional control valve 37 to control the flow rate of the hydraulic oil supplied to the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12. As a result, the operations of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12 are controlled.
  • the boom 6, the arm 7, and the bucket 8 are provided with a first stroke sensor 16, a second stroke sensor 17, and a third stroke sensor 18, respectively.
  • the first stroke sensor 16, the second stroke sensor 17, and the third stroke sensor 18 are posture detection units that detect the posture of the work implement 2.
  • the first stroke sensor 16 detects the stroke length of the boom cylinder 10.
  • the display control device 39 (see FIG. 4), which will be described later, calculates the tilt angle ⁇ 1 of the boom 6 with respect to the Za axis of the vehicle body coordinate system, which will be described later, from the stroke length of the boom cylinder 10 detected by the first stroke sensor 16.
  • the second stroke sensor 17 detects the stroke length of the arm cylinder 11.
  • the display control device 39 calculates the tilt angle ⁇ 2 of the arm 7 with respect to the boom 6 from the stroke length of the arm cylinder 11 detected by the second stroke sensor 17.
  • the third stroke sensor 18 detects the stroke length of the bucket cylinder 12.
  • the display control device 39 calculates the inclination angle ⁇ 3 of the bucket 8 with respect to the arm 7 from the stroke length of the bucket cylinder 12 detected by the third stroke sensor 18.
  • the vehicle body 1 includes a position detection unit 19.
  • the position detector 19 detects the current position of the excavator 100.
  • the position detector 19 includes two antennas 21 and 22 (hereinafter referred to as GNSS antennas 21 and 22 as appropriate) for RTK-GNSS (Real Time Kinematic-Global Navigation Satellite Systems, GNSS is a global navigation satellite system).
  • a three-dimensional position sensor 23 and an inclination angle sensor 24 are provided.
  • the GNSS antennas 21 and 22 are installed in the vehicle main body 1, more specifically, the upper swing body 3.
  • the GNSS antennas 21 and 22 are installed apart from each other by a certain distance along the Ya axis of the vehicle body coordinate system described later.
  • the vehicle state such as the position and posture of the excavating machine can be detected by the position detection unit 19 and the posture detection unit (these vehicle state detection units).
  • the GNSS antennas 21 and 22 are installed on the upper swing body 3 at both end positions separated from each other in the left-right direction of the excavator 100. Further, it may be installed on the upper swing body 3 and behind the counterweight (the rear end of the upper swing body 3) (not shown) or the cab 4. In any case, the detection accuracy of the current position of the excavator 100 is improved when the GNSS antennas 21 and 22 are installed as far as possible. In addition, the GNSS antennas 21 and 22 are preferably installed at positions that do not hinder the visual field of the operator as much as possible. Further, the vehicle state such as the current position and posture of the excavating machine (the hydraulic excavator 100 in the present embodiment) can be detected by the position detection unit 19 and the posture detection unit (these vehicle state detection units).
  • the bucket 8 and the boom 6 can be operated by operating the work implement operating member 31 installed on the right, and the arm 7 and the upper swing can be operated by operating the work implement operating member 31 installed on the left.
  • the body 3 can be operated.
  • the work machine operation detection unit 32 detects the operation content of the work machine operation member 31 and sends it as a detection signal to the work machine electronic control device 26.
  • the traveling operation member 33 is a member for the operator to operate traveling of the excavator 100, and is, for example, a joystick or an operation lever.
  • the traveling operation member 33 and the traveling operation detection unit 34 include two sets (only one set is shown in FIG. 4).
  • a traveling operation member 33 is installed in front of a not-shown operation seat in the cab 4 side by side.
  • the crawler belt 5a on the right side can be operated by operating the traveling operation member 33 installed on the right side, and the crawler belt 5b on the left side can be operated by operating the traveling operation member 33 installed on the left side. it can.
  • the traveling operation detection unit 34 detects the operation content of the traveling operation member 33 and sends it to the work machine electronic control device 26 as a detection signal.
  • the work machine electronic control device 26 includes a work machine side storage unit 35 including at least one of a RAM (Random Access Memory) and a ROM (Read Only Memory), and a calculation unit 36 such as a CPU (Central Processing Unit). .
  • the work machine electronic control device 26 mainly controls the work machine 2.
  • the work implement electronic control device 26 generates a control signal for operating the work implement 2 in accordance with the operation of the work implement operating member 31, and outputs the control signal to the work implement control device 27.
  • the work machine control device 27 has a proportional control valve 37, and the proportional control valve 37 is controlled based on a control signal from the work machine electronic control device 26.
  • the hydraulic oil having a flow rate corresponding to the control signal from the work machine electronic control device 26 flows out of the proportional control valve 37 and is supplied to at least one of the boom cylinder 10, the arm cylinder 11, and the bucket cylinder 12. Then, the boom cylinder 10, the arm cylinder 11 and the bucket cylinder 12 shown in FIG. 1 are driven according to the hydraulic oil supplied from the proportional control valve 37. As a result, the work machine 2 operates.
  • the display system 28 is a system for providing an operator with information for excavating the ground in the work area to form a shape like a design surface described later.
  • the display system 28 includes the boom cylinder 10, arm cylinder 11 and bucket cylinder 12, three-dimensional position sensor 23 and tilt angle sensor 24, first stroke sensor 16, second stroke sensor 17, and third stroke sensor 18 described above.
  • a display input device 38 as a display device, a display control device 39, and a sound generating device 46 including a speaker or the like for informing an alarm sound.
  • the display input device 38 includes a touch panel type input unit 41 and a display unit 42 such as an LCD (Liquid Crystal Display).
  • the display input device 38 displays a guidance screen for providing information for excavation. Various keys are displayed on the guidance screen.
  • An operator who is an operator can execute various functions of the display system 28 by touching various keys on the guidance screen.
  • the guidance screen will be described in detail later.
  • the display control device 39 executes various functions of the display system 28.
  • the display control device 39 is an electronic control device having a storage unit 43 including at least one of a RAM and a ROM, and a processing unit 44 such as a CPU.
  • the storage unit 43 stores work implement data.
  • the work machine data includes the above-described length L1 of the boom 6, the length L2 of the arm 7, and the length L3 of the bucket 8.
  • the work implement data includes the minimum value and the maximum value of the inclination angle ⁇ 1 of the boom 6, the inclination angle ⁇ 2 of the arm 7, and the inclination angle ⁇ 3 of the bucket 8.
  • the display control device 39 and the work machine electronic control device 26 can communicate with each other via a wireless or wired communication means.
  • the storage unit 43 of the display control device 39 stores design terrain data created in advance.
  • the design terrain data is information regarding the shape and position of the three-dimensional design terrain.
  • the design terrain indicates the target shape of the ground to be worked.
  • the display control device 39 displays a guidance screen on the display input device 38 based on the design terrain data and information such as detection results from the various sensors described above.
  • the design landform is composed of a plurality of design surfaces 45 each represented by a triangular polygon. In FIG. 5, only one of the plurality of design surfaces is denoted by reference numeral 45, and the other design surfaces are omitted.
  • the target work object is one or a plurality of design surfaces among these design surfaces 45.
  • the operator selects one or a plurality of design surfaces among these design surfaces 45 as the target surface 70.
  • the target surface 70 is a surface to be excavated from among the plurality of design surfaces 45.
  • the display control device 39 causes the display input device 38 to display a guidance screen for notifying the operator of the position of the target surface 70.
  • ⁇ Guidance screen> 6 and 7 are diagrams illustrating an example of a guidance screen.
  • the guidance screen shows the positional relationship between the target surface 70 and the cutting edge P3 of the bucket 8, and is a screen for guiding the work implement 2 of the excavator 100 so that the ground as the work target has the same shape as the target surface 70. is there.
  • the guide screen includes a rough excavation mode guide screen (hereinafter appropriately referred to as a rough excavation screen 53) and a fine excavation mode guide screen (hereinafter appropriately referred to as a fine excavation screen 54). Including.
  • the rough excavation screen 53 is a top view 53 a showing the design landform of the work area (design surface 45 including the target surface 70) and the current position of the excavator 100, and a side view showing the positional relationship between the target surface 70 and the excavator 100.
  • a top view 53a of the rough excavation screen 53 expresses the design topography in a top view by a plurality of triangular polygons. More specifically, the top view 53a expresses the design terrain using a turning plane that is a plane on which the excavator 100 turns as a projection plane. Therefore, the top view 53a is an overhead view seen from right above the excavator 100, and when the excavator 100 is tilted, the design surface 45 is also tilted.
  • the target surface 70 selected as the target work object from the plurality of design surfaces 45 is displayed in a color different from that of the other design surfaces 45.
  • the current position of the excavator 100 is indicated by the icon 61 of the excavator 100 as viewed from above, but may be indicated by other symbols.
  • the top view 53a includes information for causing the excavator 100 to face the target surface 70.
  • Information for causing the excavator 100 to face the target surface 70 is displayed as a target surface facing compass 73.
  • the target surface facing compass 73 is an icon indicating, for example, a facing direction with respect to the target surface 70 and a direction in which the excavator 100 is to be turned by rotating the arrow-shaped pointer 73I in the direction of the arrow R.
  • the operator of the excavator 100 can confirm the degree of confrontation with respect to the target surface 70 by the target surface confrontation compass 73.
  • the side view 53b of the rough excavation screen 53 includes an image showing the positional relationship between the target surface 70 and the blade tip P3 of the bucket 8, and distance information showing the distance between the target surface 70 and the blade tip P3 of the bucket 8.
  • the side view 53b includes a design surface line 74, a target surface line 79, and an icon 75 of the excavator 100 in a side view.
  • the design surface line 74 indicates a cross section of the design surface 45 other than the target surface 70.
  • a target plane line 79 indicates a cross section of the target plane 70. As shown in FIG.
  • the design surface line 74 and the target surface line 79 are obtained by calculating an intersection line 80 between the plane 77 passing through the current position of the blade tip P ⁇ b> 3 of the bucket 8 and the design surface 45.
  • the intersection line 80 is obtained by the processing unit 44 of the display control device 39. A method for obtaining the current position of the blade tip P3 of the bucket 8 will be described later.
  • the target plane line 79 is displayed in a color different from the design plane line 74.
  • the target surface line 79 and the design surface line 74 are expressed by changing the line type.
  • the region on the ground side with respect to the target surface line 79 and the design surface line 74 and the region on the air side with respect to these line segments are shown in different colors.
  • the difference in color is expressed by hatching a region closer to the ground than the target surface line 79 and the design surface line 74.
  • the distance information indicating the distance between the target surface 70 and the blade tip P3 of the bucket 8 includes numerical information 83 and graphic information 84.
  • the numerical information 83 is a numerical value indicating the shortest distance between the cutting edge P3 of the bucket 8 and the target surface 70.
  • the graphic information 84 is information that graphically represents the distance between the blade edge P3 of the bucket 8 and the target surface 70.
  • the graphic information 84 is a guide index for indicating the position of the blade edge P3 of the bucket 8.
  • the graphic information 84 includes an index bar 84a and an index mark 84b indicating a position in the index bar 84a where the distance between the blade edge P3 of the bucket 8 and the target surface 70 corresponds to zero.
  • Each index bar 84a is turned on according to the shortest distance between the tip of the bucket 8 and the target surface 70. It should be noted that on / off of the display of the graphic information 84 may be changed by operating the input unit 41 by the operator of the excavator 100.
  • the rough excavation screen 53 displays a numerical value indicating the relative positional relationship between the target surface line 79 and the excavator 100 and the shortest distance between the blade tip P3 of the bucket 8 and the target surface line 79.
  • the operator of the excavator 100 can easily excavate so that the current topography becomes the design topography by moving the cutting edge P3 of the bucket 8 along the target plane line 79.
  • the rough excavation screen 53 displays a screen switching key 65 for switching the guide screen. The operator can switch from the rough excavation screen 53 to the fine excavation screen 54 by operating the screen switching key 65.
  • the delicate excavation screen 54 shown in FIG. 7 is displayed on the screen 42P of the display unit 42.
  • the fine excavation screen 54 shows the positional relationship between the target surface 70 and the excavator 100 in more detail than the rough excavation screen 53. That is, the fine excavation screen 54 shows the positional relationship between the target surface 70 and the blade tip P3 of the bucket 8 in more detail than the rough excavation screen 53.
  • the delicate excavation screen 54 includes a front view 54 a showing the target surface 70 and the bucket 8, and a side view 54 b showing the target surface 70 and the bucket 8.
  • the front view 54a of the delicate excavation screen 54 includes an icon 89 indicating the bucket 8 when viewed from the front and a line 78 indicating the cross section of the target surface 70 when viewed from the front (hereinafter referred to as target surface line 78 as appropriate).
  • the front view is a view from a direction orthogonal to the extending direction of the bucket pin 15 shown in FIGS. 1 and 2.
  • the target plane line 78 is obtained as follows. When a perpendicular is drawn from the blade edge P3 of the bucket 8 in the vertical direction (gravity direction), a line of intersection formed when a plane including the perpendicular intersects the target surface 70 is the target surface line 78. That is, the target plane line 78 in the global coordinate system is obtained. On the other hand, when the line is further lowered from the blade edge P3 of the bucket 8 toward the target surface 70 on condition that the vehicle body 1 is in a positional relationship parallel to the vertical line, the plane including the line is the target surface. A line of intersection formed when crossing 70 may be used as the target plane line 78. That is, it becomes the target plane line 78 in the vehicle body coordinate system. Which coordinate system is used to display the target plane line 78 can be selected by operating the switching key (not shown) of the input unit 41 by the operator.
  • the side view 54 b of the delicate excavation screen 54 includes an icon 90 of the bucket 8, a design surface line 74, and a target surface line 79 as viewed from the side. Moreover, the front view 54a and the side view 54b of the delicate excavation screen 54 display information indicating the positional relationship between the target surface 70 and the bucket 8, respectively.
  • the side view means viewing from the extending direction of the bucket pin 15 shown in FIGS. 1 and 2 (the direction of the rotation center axis of the bucket 8).
  • the information indicating the positional relationship between the target surface 70 and the bucket 8 includes distance information 86a and angle information 86b.
  • the distance information 86a indicates the distance in the Za direction in the vehicle main body coordinate system between the cutting edge P3 of the bucket 8 and the target surface 70.
  • the distance information 86a shown in the front view 54a may be a distance in the global coordinate system Z. This distance is the distance between the closest position to the target surface 70 among the positions in the width direction of the blade edge P3 of the bucket 8 and the target surface line 78.
  • the distance information 86a can be set not to be displayed.
  • a mark 86 c indicating the closest position is displayed over the icon 89 of the front view of the bucket 8.
  • the angle information 86 b is information indicating the angle between the target surface 70 and the bucket 8. Specifically, the angle information 86 b is an angle between a virtual line segment passing through the blade edge P ⁇ b> 3 of the bucket 8 and the target surface line 78.
  • information indicating the positional relationship between the target surface 70 and the bucket 8 includes distance information 87a and angle information 87b.
  • the distance information 87a indicates the shortest distance between the cutting edge P3 of the bucket 8 and the target surface 70, that is, the distance between the tip of the bucket 8 and the target surface 70 in the direction perpendicular to the surface of the target surface 70. is there.
  • the distance between the cutting edge of the bucket 8 and the point where the line drawn from the cutting edge in the vertical direction and the target surface 70 intersect may be indicated as the distance information 87a.
  • the angle information 87b is information indicating the angle between the target surface 70 and the bucket 8.
  • the angle information 87 b displayed in the side view 54 b is an angle between the bottom surface of the bucket 8 and the target surface line 79.
  • the delicate excavation screen 54 includes graphic information 84 that graphically indicates the distance between the cutting edge P3 of the bucket 8 and the target surface 70 described above. Similar to the graphic information 84 on the rough excavation screen 53, the graphic information 84 includes an index bar 84a and an index mark 84b. As described above, on the delicate excavation screen 54, the relative positional relationship between the target plane lines 78 and 79 and the blade tip P3 of the bucket 8 is displayed in detail. The operator of the excavator 100 can more easily excavate the current terrain into the same shape as the three-dimensional design terrain by moving the cutting edge P3 of the bucket 8 along the target plane lines 78 and 79. Can do. Note that a screen switching key 65 is displayed on the fine excavation screen 54 in the same manner as the rough excavation screen 53 described above. The operator can switch from the fine excavation screen 54 to the rough excavation screen 53 by operating the screen switching key 65.
  • the target plane line 79 is calculated from the current position of the cutting edge P3 of the bucket 8.
  • the display control device 39 uses the global coordinate system ⁇ X, Y, Z based on the detection results of the three-dimensional position sensor 23, the first stroke sensor 16, the second stroke sensor 17, the third stroke sensor 18, the tilt angle sensor 24, and the like.
  • The current position of the blade edge P3 of the bucket 8 is obtained.
  • the current position of the blade tip P3 of the bucket 8 is obtained as follows.
  • FIGS. 8 and 9 are diagrams for explaining an example of a method for obtaining the current position of the blade tip P3 of the bucket 8.
  • FIG. FIG. 8 is a side view of the excavator 100
  • FIG. 9 is a rear view of the excavator 100.
  • the display control device 39 sets the vehicle body coordinate system ⁇ Xa, Ya, Za ⁇ is obtained.
  • the longitudinal direction of the hydraulic excavator 100 that is, the Ya axis direction of the coordinate system (vehicle body coordinate system) COM of the vehicle main body 1 is inclined with respect to the Y axis direction of the global coordinate system COG.
  • the coordinates of the boom pin 13 in the vehicle main body coordinate system COM are (0, Lb1, -Lb2), and are stored in the storage unit 43 of the display control device 39 in advance.
  • the vehicle main body coordinate system COM is obtained by rotating the vehicle body coordinate system COM about the Ya axis by the roll angle ⁇ 4 described above, and is expressed by the following equation (6).
  • the coordinates (xat, yat, zat) of the cutting edge P3 of the bucket 8 in the vehicle body coordinate system COM are determined by using the inclination angles ⁇ 1, ⁇ 2, ⁇ 3 and the lengths L1, L2, L3 of the boom 6, the arm 7, and the bucket 8. (7), (8), and (9).
  • the blade edge P3 of the bucket 8 is assumed to move in the Ya-Za plane of the vehicle body coordinate system COM.
  • the coordinates of the cutting edge P3 of the bucket 8 in the global coordinate system COG can be obtained by Expression (10).
  • the coordinates of the cutting edge P3 in the global coordinate system COG are the positions of the cutting edge P3.
  • the display control device 39 Based on the current position of the cutting edge P3 of the bucket 8 calculated as described above and the design terrain data stored in the storage unit 43, the display control device 39, as shown in FIG. An intersection line 80 with a plane passing through the eight cutting edges P3 (hereinafter, referred to as a Ya-Za plane 77 as appropriate) is calculated. And the display control apparatus 39 displays the part which passes along the target surface 70 among this intersection 80 as a target surface line 79 mentioned above on a guidance screen. Next, an example will be described in which the display control device 39 shown in FIG. 4 displays the locus of the cutting edge P3 when excavating the ground on which the bucket 8 is a work target on the screen 42P of the display unit 42 of the display input device 38. .
  • FIG. 10 is a diagram illustrating an example in which the trajectory TLi of the cutting edge P3 of the bucket 8 is displayed on the screen 42P of the display unit 42.
  • the display control device 39 more specifically, the processing unit 44 obtains the position of the blade tip P3 of the bucket 8 based on information related to the current position of the excavator 100. Then, the processing unit 44 determines the predetermined range AI obtained based on the position of the blade edge P3 when at least a part of the bucket 8 enters the predetermined range AI around the target surface 70 in the direction orthogonal to the target surface 70.
  • a trajectory of the cutting edge P3 existing inside (hereinafter referred to as a cutting edge trajectory) TLi is displayed on the screen 42P of the display unit 42 as information on the construction result.
  • the operator of the excavator 100 can confirm the state in which the bucket 8 is actually excavated by the cutting edge locus TLi on the screen 42P of the display unit 42.
  • the operator can perform the construction while confirming the current construction status by visually recognizing the cutting edge locus TLi, so that the work efficiency is improved.
  • the locus is not displayed.
  • the display system 28 since unnecessary information other than the vicinity of the design surface (or the target surface) is not displayed on the screen 42P, the display system 28 relates to a construction result to the operator when the operator of the excavator 100 proceeds with the construction according to the design surface. Information can be provided in an easy-to-understand manner.
  • the cutting edge trajectory TLi is displayed on the fine excavation screen 54 described above, but this may be displayed on the rough excavation screen 53.
  • the blade tip trajectory TLi is displayed on the side view 54 b of the delicate excavation screen 54. That is, the cutting edge locus TLi is a locus of the cutting edge P3 of the bucket 8 in a side view.
  • an icon 90 of the bucket 8 in a side view is displayed.
  • a target image line 79 showing a cross section of the target surface 70 in a side view a ground side image line Lu and an underground side image for defining a predetermined range AI in a direction orthogonal to the target surface 70 are shown.
  • a line Ld is displayed (two-dot chain line in FIG. 10).
  • the ground-side image line Lu and the underground-side image line Ld are parallel to the target image line 79.
  • the front view 54a displays an icon 89 of the bucket 8 in a front view, a target image line 78 indicating a cross section of the target surface 70 in a front view, and a first plane Pu and a second plane Pd described later.
  • the predetermined range AI is parallel to the target surface 70 located at a predetermined distance tu from the target surface 70 toward the ground surface in a direction orthogonal to the target surface 70 (direction in which the one-dot chain line n in FIG. 10 extends). It is a range surrounded by the first plane Pu and the second plane Pd parallel to the target surface 70 existing at a predetermined distance td toward the ground.
  • the line of intersection between the first plane Pu and the Ya-Za plane 77 (see FIG. 5) passing through the cutting edge P3 of the bucket 8 is the ground surface side drawing line Lu, and the line of intersection 80 between the second plane Pd and the Ya-Za plane 77. Is the underground side drawing line Ld.
  • the predetermined distances tu and td that define the predetermined range AI may be the same or different.
  • the predetermined distance td is preferably smaller than the predetermined distance tu in order to obtain construction accuracy.
  • the size of the predetermined range AI that is, the size of the predetermined distances tu and td is a size corresponding to a tolerance when the excavator 100 is applied to the target surface 70.
  • the magnitudes of the predetermined distances tu and td may be changeable.
  • the processing unit 44 of the display control device 39 displays a menu for changing the predetermined distances tu and td on the display unit 42 of the display input device 38 shown in FIG. 4, and the operator of the excavator 100 changes the change value from the input unit 41. May be input.
  • the predetermined range AI corresponds to a range indicated by reference numeral 84G among the plurality of index bars 84a included in the graphic information 84. That is, the size corresponding to tu + td, which is the size of the predetermined range AI in the direction orthogonal to the target surface 70, corresponds to the range of the plurality of index bars 84a indicated by reference numeral 84G. In the present embodiment, if the cutting edge P3 of the bucket 8 moves within this range, the target surface 70 is constructed within a tolerance range at the time of design.
  • the plurality of index bars 84 a included in the graphic information 84 displays the positional relationship between the blade tip P ⁇ b> 3 of the bucket 8 and the target surface 70 when the excavator 100 is excavated. That is, the display mode of the index bar 84a changes according to the distance between the cutting edge P3 and the target surface 70. For example, the index bar 84a in the range 84B is displayed in blue, the index bar 84a in the range 84G is displayed in green, the index bar 84a in the range 84Y is displayed in yellow, and the index in the range 84R The bar 84a is displayed in red.
  • the index bar 84a in the range indicated by reference numeral 84B is displayed in blue.
  • the index bar 84a in the range indicated by reference numeral 84B is displayed in blue, and the index bar 84a in the range indicated by reference numeral 84G is displayed in green.
  • the index bar 84a in the range indicated by reference numeral 84B is displayed in blue
  • the index bar 84a in the range indicated by reference numeral 84G is displayed in green
  • the index bar 84a in the range indicated by reference numeral 84Y is displayed in yellow.
  • the display mode of the index bar 84a is changed according to the distance between the blade tip P3 of the bucket 8 and the target surface 70, so that the operator of the excavator 100 can Whether or not the eight cutting edges P3 are excavating beyond the predetermined range AI centered on the target surface 70 can be more easily known.
  • the operator can easily hold the cutting edge P3 of the bucket 8 within the predetermined range AI during excavation, so that the construction accuracy is improved.
  • the cutting edge locus TLi is displayed within the predetermined range AI when the cutting edge P3 of the bucket 8 enters the predetermined range AI.
  • the display control apparatus 39 can show the blade tip locus TLi on the screen 42P of the display unit 42 when the blade tip P3 of the bucket 8 is actually considered to have excavated the predetermined range AI, the hydraulic excavator 100 operators can confirm the construction status within a necessary and sufficient range.
  • the present invention is not limited to this, and the cutting edge trajectory TLi may be displayed in the predetermined range AI when a part of the bucket 8, for example, the rear surface enters the predetermined range AI.
  • the cutting edge trajectory TLi only needs to be displayed when at least a part of the bucket 8 enters the predetermined range AI.
  • the bucket 8 Since the cutting edge trajectory TLi is not displayed outside the predetermined range AI, when the excavation is performed once on the target surface 70, for example, when the slope is the ground to be worked (target surface 70), the bucket 8 is After excavation such as excavating a predetermined depth from the top to the bottom is completed and the cutting edge P3 of the bucket 8 is out of the predetermined range AI, the out-of-range locus TLe outside the predetermined range AI is not displayed. After the cutting edge P3 of the bucket 8 goes out of the predetermined range AI, the display of the cutting edge trajectory TLi displayed in the predetermined range AI is maintained as it is until the cutting edge P3 next enters the predetermined range AI. .
  • the operator of the excavator 100 can confirm on the screen 42P of the display unit 42 the history that the blade tip P3 of the bucket 8 excavated the work target ground. Further, since the display control device 39 does not display the out-of-range locus TLe outside the predetermined range AI, the information in the vicinity of the target surface 70 necessary for the work can be surely recognized by the operator. Further, the display control device 39 does not need to store the data of the out-of-range locus TLe in the storage unit 43 by not displaying the out-of-range locus TLe outside the predetermined range AI. For this reason, the storage capacity of the storage unit 43 can be used efficiently and effectively.
  • the out-of-range locus TLe is not displayed, but the present embodiment is not limited to this.
  • the display control device 39 may display the cutting edge locus TLi and the out-of-range locus TLe on the screen 42P of the display unit 42 in different display modes.
  • the display control device 39 displays the cutting edge locus TLi with a red solid line
  • the out-of-range locus TLe is a color that is less conspicuous than the cutting edge locus TLi (in this example, for example, light blue) and the solid line indicating the cutting edge locus TLi. May be displayed with a thin broken line.
  • the display control apparatus 39 can make the operator of the excavator 100 recognize the cutting edge locus TLi existing within the predetermined range AI. Further, since the operator can visually recognize the out-of-range locus TLe, for example, when the bucket 8 is moved to the work target ground, the operation method of the work implement operation member 31 is improved and the work efficiency is improved. For example, the out-of-range trajectory TLe can be used.
  • the out-of-range trajectory TLe existing outside the predetermined range AI is the predetermined trajectory. It is less conspicuous than the cutting edge locus TLi existing in the range AI. For this reason, even if the operator of the excavator 100 displays the out-of-range locus TLe on the screen 42P, the recognition of the cutting edge locus TLi is hardly hindered. As a result, the display system 28 can provide the operator with easy-to-understand information regarding the construction result when the operator of the excavator 100 proceeds with the construction according to the design surface.
  • the display mode may be different between the cutting edge trajectory TLi within the predetermined range AI and the out-of-range trajectory TLe outside the predetermined range AI.
  • Different display modes include both displaying both and different display forms, as well as displaying only the cutting edge trajectory TLi without displaying the out-of-range trajectory TLe. .
  • the display control device 39 may notify a sound as an alarm based on the distance between the cutting edge P3 of the bucket 8 and the target surface 70 or the design surface 45 that is not set to the target surface 70. For example, when the cutting edge P3 goes out of the predetermined range AI on the underground side of the work target, that is, when the cutting edge P3 moves to the underground side from the underground side drawing line Ld, the display control device 39 is An alarm sound may be notified from the sound generator 46 shown in FIG. Further, if the cutting edge P3 of the bucket 8 excavates the ground beyond the target surface 70 or the design surface 45, troubles such as backfilling occur, so the design surface 45 (target surface 70) is efficiently constructed. It wo n’t happen.
  • the display control device 39 also notifies a sound as an alarm based on the distance between the cutting edge P3 and the design surface 45.
  • the operator of the excavator 100 can be made to the target surface 70 or the design surface 45 by changing the mode. It can be recognized that excavation is too much. Thus, the operator can adjust the amount of excavation to minimize excessive excavation.
  • the display control device 39 increases the alarm sound.
  • the alarm sound level may be higher. That is, the display control device 39 may increase the level of the alarm sound as the distance between the target surface 70 and the blade edge P3 of the bucket 8 increases. In this way, the operator can be made aware of the extent to which the target surface 70 has been excavated too much.
  • FIG. 11 is a flowchart illustrating an example of a display procedure for displaying the blade tip locus TLi on the screen 42P of the display unit 42.
  • FIG. 12 to FIG. 15 are diagrams showing the state of the screen 42P of the display unit 42 on which the cutting edge locus TLi is displayed.
  • the display control device 39 determines the position of the cutting edge P3 of the bucket 8 (hereinafter referred to as the cutting edge as appropriate). Find the position). The method for obtaining the blade edge position is as described above.
  • step S102 the processing unit 44 compares the cutting edge position obtained in step S101 with the position within the predetermined range AI shown in FIG. 12, and when the cutting edge position is within the predetermined range AI (step S102, Yes). ), The process proceeds to step S103.
  • the processing unit 44 repeats Step S101 and Step S102.
  • step S102 the processing unit 44, for example, the position of the blade edge (coordinate of the blade edge P3 in the global coordinate system COG) and the position of the ground-side image line Lu and the underground-side image line Ld shown in FIG. 12 (coordinates in the global coordinate system COG). ), And if there is a cutting edge position between the ground surface side drawing line Lu and the underground side drawing line Ld, it is assumed that the cutting edge position is within the predetermined range AI. Further, the processing unit 44 assumes that the cutting edge position is outside the predetermined range AI if there is no cutting edge position between the ground surface side drawing Lu and the underground side drawing line Ld.
  • the cutting edge position is also within the predetermined range AI even when it is on the ground-side image line Lu or the ground-side image line Ld.
  • the positions of the ground surface side drawing line Lu and the underground side drawing line Ld may be used.
  • step S103 the processing unit 44, if the cutting edge trajectory TLi has already been displayed on the screen 42P of the display unit 42 within the bucket 8, more specifically, the predetermined range AI on the traveling direction side of the cutting edge P3 (step S103). , Yes), the process proceeds to step S104.
  • step S104 the processing unit 44 deletes the cutting edge locus TLi, that is, deletes the display of the cutting edge locus TLi on the screen 42P of the display unit 42, and advances the processing to step S105.
  • step S103 if the cutting edge trajectory TLi is not yet displayed on the screen 42P of the display unit 42 within the predetermined range AI (step S103, No), the processing unit 44 advances the processing to step S105.
  • step S105 the processing unit 44 displays the cutting edge locus TLi on the screen 42P of the display unit 42 based on the current cutting edge position as shown in FIG.
  • the blade tip trajectory TLi is displayed within a predetermined range AI, that is, between the ground-side image line Lu and the underground-side image line Ld.
  • the intersection IN between the blade tip locus TLi and the ground surface side drawing line Lu indicates the position where the blade tip P3 of the bucket 8 is within the predetermined range AI.
  • the processing unit 44 displays, for example, the cutting edge position in the same coordinate system as the ground surface side drawing line Lu and the underground side drawing line Ld, and the cutting edge position already displayed within the predetermined range AI and the newly displayed cutting edge position.
  • the blade tip trajectory TLi can be displayed by connecting them with a line. That is, when the cutting edge P3 moves within the predetermined range AI, the processing unit 44 obtains the cutting edge position at a predetermined cycle, and connects the plurality of obtained cutting edge positions (points) with lines (for example, straight lines). The trajectory TLi is displayed.
  • the processing unit 44 interrupts the processing for obtaining the blade tip position at a predetermined cycle. It is preferable to do. Further, when the movement of the cutting edge P3 is stopped in this way, the processing for obtaining the cutting edge position may not be interrupted and the cutting edge position (point) may not be displayed. In other words, the processing unit 44 does not obtain a new blade edge position as long as it continues to stop even after a predetermined period has elapsed after obtaining the blade edge position where the blade edge has stopped.
  • the blade tip locus TLi is a collection of blade tip positions (points connected by straight lines), and indicates a path along which the blade tip P3 of the bucket 8 has moved within a predetermined range AI.
  • the cutting edge trajectory TLi is formed by connecting a plurality of points with straight lines.
  • a limit is set in advance on the number of points, and a new cutting edge trajectory TLi is obtained after the cutting edge trajectory TLi is obtained at the number of points corresponding to the limitation.
  • the processing unit 44 deletes the oldest point in order and updates and displays the cutting edge locus TLi.
  • step S106 the processing unit 44 obtains the cutting edge position.
  • step S107 the processing unit 44 compares the cutting edge position obtained at step S106 with the position within the predetermined range AI shown in FIG.
  • step S107, Yes the processing unit 44 advances the processing to step S108.
  • step S107, No the processing unit 44 repeats step S105 and step S106. That is, the processing unit 44 continues to display the cutting edge locus TLi within the predetermined range AI based on the obtained cutting edge position until the cutting edge position is outside the predetermined range AI.
  • step S108 the processing unit 44 leaves the cutting edge locus TLi within the predetermined range AI and is outside the predetermined range AI, as shown in FIG. Stops displaying the locus of the blade edge P3.
  • the intersection OUT between the cutting edge trajectory TLi on the terminal side of the cutting edge trajectory TLi and the ground surface side drawing line Lu indicates the position where the cutting edge P3 of the bucket 8 is out of the predetermined range AI.
  • the processing unit 44 may display the trajectory of the cutting edge P3 outside the predetermined range AI in a different manner from the cutting edge trajectory TLi in the predetermined range AI.
  • step S104 erasing of the blade tip locus TLi already displayed on the screen 42P of the display unit 42 in step S104.
  • the bucket 8 once excavates the work target ground and goes out of a predetermined range AI with the target surface 70 as the center.
  • the state in which the blade tip locus TLi is displayed in the predetermined range AI is continued on the screen 42P as shown in FIG.
  • the bucket 8 when cutting the vicinity of the target surface 70 again, as shown in FIG. 15, the bucket 8 approaches the ground surface side drawing line Lu in the vicinity of the target surface 70 (the target surface line 79 in FIG. 15).
  • the processing unit 44 erases the blade tip locus TLi displayed in the predetermined range AI. Then, a new cutting edge trajectory TLi is displayed within the predetermined range AI from the state shown in FIG.
  • the processing unit 44 is already displayed when the bucket 8 (the cutting edge P3 in this example) enters the predetermined range AI again after the bucket 8 (the cutting edge P3 in this example) comes out of the predetermined range AI.
  • the cutting edge locus TLi is erased.
  • the processing unit 44 displays on the screen 42P of the display unit 42 the cutting edge locus TLi of the bucket 8 that has entered the predetermined range AI again.
  • the operator of the excavator 100 can perform the current excavation. It becomes difficult to visually recognize the corresponding cutting edge locus TLi.
  • the processing unit 44 deletes the previous cutting edge trajectory TLi so that the operator can obtain the cutting edge trajectory corresponding to the current excavation. TLi can be reliably recognized. Further, every time the bucket 8 newly enters the predetermined range AI and a new cutting edge trajectory TLi is displayed, the already displayed cutting edge trajectory TLi is erased, so that the storage control unit 43 of the display control device 39 has a memory. The data of the blade tip locus TLi already displayed is also deleted. As a result, it is possible to avoid that the data of the cutting edge trajectory TLi occupies the storage area of the storage unit 43, so that the storage unit 43 can be used efficiently and effectively. This is particularly effective when the storage capacity of the storage unit 43 is small.
  • the processing unit 44 has a cutting edge locus TLi displayed on the screen 42P of the display unit 42 when the current target surface 70 is no longer a work target or when the current target surface 70 is changed elsewhere. May be erased, that is, reset. In this way, when the work target ground is changed, the previous information on the previous cutting edge trajectory TLi is surely erased and the new work target ground is constructed. Can be prevented from being mixed with the current cutting edge locus TLi.
  • the cutting edge trajectory TLi is displayed within the predetermined range AI
  • the cutting edge trajectory TLi is set until the cutting edge trajectory TLi is reset until the cutting edge trajectory P3 of the bucket 8 enters the predetermined range AI again. Display continues.
  • the operator of the excavator 100 can surely confirm the cutting edge locus TLi displayed on the screen 42P.
  • the operator can secure sufficient time for confirming the construction status, confirming the excavation work procedure, confirming the operation procedure of the bucket 8, or examining the operation method of the bucket 8.
  • FIG. 16 is a diagram illustrating a display mode of the cutting edge locus TLi.
  • 17, 23-1, and 23-2 are diagrams for explaining a predetermined range including a space extending in a direction perpendicular to the target surface 70 and an excavation range of the target surface 70 by the bucket 8.
  • FIG. 18 is a diagram illustrating a display mode of the blade tip locus TLi when the bucket 8 moves.
  • the cutting edge trajectory TLi is displayed on the rough excavation screen 53, but may be displayed on the delicate excavation screen 54.
  • a predetermined range hereinafter referred to as a space extending in a direction perpendicular to the target surface 70 and the excavation range of the target surface 70 by the bucket 8.
  • a predetermined range hereinafter referred to as a space extending in a direction perpendicular to the target surface 70 and the excavation range of the target surface 70 by the bucket 8.
  • the horizontal predetermined range AS is a rectangular parallelepiped or cubic region, and is a space extending in a direction perpendicular to the target plane 70, and is A2 (boundary image line Ll and boundary image line shown in FIG. 23-1.
  • the region sandwiched between Lr and the region sandwiched between line LBl and line LBr) are defined as two upper and lower surfaces of a rectangular parallelepiped or a cube, and as shown in FIGS.
  • a range sandwiched between the boundary image line Lr is defined as two opposing side surfaces A1 of a rectangular parallelepiped or a cube.
  • the horizontal predetermined range AS shown in FIGS. 16, 18, and 20 to 22 is an overhead view of the horizontal predetermined range AS as viewed from directly above the excavator 100.
  • a range (A2) sandwiched between the boundary line Ll and the boundary line Lr is the excavation range of the target surface 70.
  • a range that overlaps the target surface 70 in the horizontal predetermined range AS is hatched, but in the direction in which the lines LBl and LBr and the boundary lines Ll and Lr extend, the horizontal predetermined range is shown.
  • the range of AS is not limited.
  • the horizontal predetermined range AS shown in the top view 53a of FIG. 16 is a space extending in a direction perpendicular to the target surface 70 and includes both sides in the width direction of the bucket 8 excavating the target surface 70.
  • the range is defined by the boundary lines Ll and Lr set on both sides in the width direction of the bucket 8 (predetermined range AS in the horizontal direction).
  • the horizontal predetermined range AS includes a range of the target surface 70 that is excavated by the bucket 8.
  • the horizontal predetermined range AS is a range from the width-direction central axis Cl of the bucket 8 to the positions separated by distances Wl and Wr on the left and right sides of the bucket 8 in the width direction.
  • a straight line that is separated from the central axis Cl in the width direction of the bucket 8 by a distance W1 to the left in the width direction and parallel to the central axis Cl in the width direction is the boundary line Ll.
  • a straight line that is separated from the central axis Cl of the bucket 8 by the distance Wr to the right in the width direction and parallel to the central axis Cl of the width is the boundary image line Lr.
  • the sizes of the distances Wr and Wl are not particularly limited, but the sum of the distances Wr and Wl (Wr + Wl) is larger than the width (maximum width) W of the bucket 8.
  • FIG. 16 shows a cutting edge locus TLi in a predetermined range AI.
  • An area AT1 indicated by hatching in the horizontal predetermined range AS in the top view 53a is an area in which the blade tip locus TLi is indicated in the predetermined range AI (the same applies hereinafter).
  • the horizontal predetermined range AS is set, for example, by storing position information (for example, coordinates in the global coordinate system COG) of the boundary image lines Ll and Lr in the storage unit 43.
  • the predetermined range AI and the horizontal direction predetermined range AS once set are maintained until the current target surface 70 is no longer a work target or until the target surface 70 is changed to another target surface. .
  • FIG. 18 shows a state in which the excavator 100 (the icons 61 and 75 in FIGS. 16 and 18) has turned in the right direction (the direction indicated by the arrow R) from the state shown in FIG.
  • the positional relationship between the bucket 8 of the excavator 100 and the target plane 70 changes, so the pointer 73I of the target plane facing compass 73 displayed in the top view 53a is also rotating.
  • the processing unit 44 positions the bucket 8 and the horizontal predetermined range AS. Depending on the relationship, at least a part of the cutting edge locus TLi is erased. In FIG. 18, for the sake of convenience, the erased portion of the blade tip locus TLi is indicated by a dotted line with a symbol TLi ′. How to grasp the positional relationship between the bucket 8 and the horizontal predetermined range AS and erase a part of the blade tip locus TLi will be described in detail later. As shown in FIG.
  • TLi ′ is deleted from the cutting edge locus TLi, and the cutting edge locus TLi is displayed. Accordingly, the size of the area AT2 (see FIG. 18) indicated by hatching in the horizontal predetermined range AS in the top view 53a is also smaller than when the entire bucket 8 is present in the horizontal predetermined range AS. (Region AT2 shown in FIG. 18).
  • the processing unit 44 restores the cutting edge locus TLi. That is, the processing unit 44 displays all of the cutting edge locus TLi. As a result, all the blade tip traces TLi ′ and TLi shown in FIG.
  • FIG. 19 is a flowchart illustrating an example of a processing procedure for display control of the blade tip locus TLi when the bucket 8 moves.
  • FIGS. 24-1, and 24-2 are views showing the relationship between the bucket 8 and the horizontal predetermined range AS. 20 to 22, 24-1 and 24-2 indicate the excavator 100 side, and reference TC indicates the direction in which the boom 6 of the work machine 2 of the excavator 100 faces and the excavator 100. Indicates the side away from.
  • step S201 the processing unit 44 of the display control device 39 illustrated in FIG.
  • step S202 advances the processing to step S202 when the cutting edge locus TLi is being displayed on the screen 42P of the display unit 42 (Yes in step S201).
  • step S201 No
  • the processing unit 44 ends the display control of the cutting edge locus TLi.
  • step S202 the processing unit 44 obtains the current position of the bucket 8, and determines whether or not the obtained current position of the bucket 8 is within the horizontal predetermined range AS.
  • the current position of the bucket 8 can be obtained by using the method for obtaining the position of the blade tip P3 of the bucket 8 described above. That is, the coordinates of the blade edge P3 may be replaced with the coordinates of the position where the bucket 8 is to be obtained.
  • step S202 When the bucket 8 is within the predetermined range AS in the horizontal direction (step S202, Yes), the processing unit 44 advances the processing to step S203.
  • the case where the bucket 8 is within the predetermined horizontal range AS is, for example, the case shown in FIGS. 20, 21, 24-1, and 24-2.
  • FIG. 21 shows a state in which the corner 8 ⁇ / b> C of the bucket 8 is in contact with the boundary line Lr existing on the right side of the bucket 8. Also in this case, as long as the bucket 8 does not exceed the boundary line Lr, the bucket 8 is within the horizontal predetermined range AS.
  • step S203 the processing unit 44 maintains the display of the cutting edge locus TLi as it is.
  • Step S204 If the current position of the bucket 8 is not within the predetermined horizontal range AS, that is, if it is outside the predetermined horizontal range AS (No at Step S202), the processing unit 44 advances the process to Step S204.
  • the case where the bucket 8 is outside the horizontal predetermined range AS is, for example, as shown in FIG. In this case, the end 8T of the bucket 8 intersects the boundary image line Lr existing on the right side of the bucket 8, and a part of the bucket 8 is outside the predetermined horizontal range AS. In such a case, in step S204, the processing unit 44 erases the blade tip locus TLi in accordance with the positional relationship with the bucket 8 existing within the horizontal predetermined range AS.
  • the range erased by the processing unit 44 when the processing unit 44 erases at least a part of the blade tip locus TLi will be described with reference to FIG.
  • a part of the bucket 8 is outside the predetermined horizontal range AS.
  • the processing unit 44 is based on a position that is farthest from the excavator 100 in the horizontal predetermined range AS (in this example, the corner portion 8C of the bucket 8 on the reference TC side), and from this position The part of the blade tip locus TLi that is away from the excavator 100 is erased.
  • the processing unit 44 deletes a portion of the blade tip locus TLi that is farther from the excavator 100 than this position, with reference to the position CP at which the end 8T intersects the boundary line Lr existing on the right side of the bucket 8. May be.
  • An area AT2 indicated by hatching in the horizontal predetermined range AS shown in FIG. 22 is an area where the cutting edge locus TLi is indicated in the predetermined range AI.
  • the length of the region AT2 in the extending direction of the boundary lines Ll and Lr is smaller when the position CP is used as a reference than when the corner portion 8C of the bucket 8 is used as a reference.
  • the length of the cutting edge locus TLi displayed on the screen 42P is also shortened.
  • FIG. 24-1 shows a state in which a part of the bucket 8 is outside the horizontal predetermined range AS, but as shown in FIG. 24-2, the bucket 8 does not go outside the horizontal predetermined range AS.
  • FIG. 24-2 shows a state in which a part of the bucket 8 is outside the horizontal predetermined range AS, but as shown in FIG. 24-2, the bucket 8 does not go outside the horizontal predetermined range AS.
  • at least a part of the blade tip locus TLi can be erased.
  • the processing unit 44 performs the following processing.
  • the processing unit 44 first obtains an intersection PM1 between the boundary line Lr and the center line CLB in the width direction of the bucket 8.
  • the processing unit 44 draws a perpendicular VL to the center line CLB from the intersection PM1 on the boundary image line Lr.
  • the processing unit 44 obtains an intersection PM2 between the width direction central axis Cl of the bucket 8 and the perpendicular VL.
  • the processing unit 44 uses the position farthest from the excavator 100 in the horizontal predetermined range AS (the intersection point PM2 in this example) as a reference, and the cutting edge farther from the excavator 100 than this position.
  • the portion of the trajectory TLi is deleted.
  • a region AT3 indicated by hatching in the horizontal predetermined range AS shown in FIGS. 24-1 and 24-2 is a region where the cutting edge locus TLi is indicated in the predetermined range AI.
  • At least a part of the cutting edge locus TLi is erased based on whether or not at least a part of the bucket 8 is in the horizontal predetermined range AS, but the condition for erasing at least a part of the cutting edge locus TLi is as follows.
  • the present invention is not limited to this.
  • the turning of the upper swing body 3 of the excavator 100 or the movement of the vehicle main body 1 of the excavator (including turning at the same position or moving to a different position) and the like are at least part of the cutting edge locus TLi. It is good also as a condition which erases.
  • the turning of the upper swing body 3 and the movement of the hydraulic excavator 100 are vehicle information of the hydraulic excavator 100. Since it can be obtained from (turning position information obtained from a turning position detection sensor not shown), it is not necessary. For this reason, the determination of this condition is facilitated by setting the turning of the upper swing body 3 or the movement of the excavator 100 as a condition for erasing at least a part of the blade tip locus TLi.
  • the dimension Wr + Wl in the width direction of the horizontal predetermined range AS shown in FIG. 17 is larger than the width W of the bucket 8 and is doubled in the present embodiment, but is not limited to this. After at least a part of the bucket 8 goes out of the horizontal predetermined range AS due to vibration of the excavator 100 or a case where the upper swing body 3 is slightly swung, etc., the bucket 8 immediately returns to the horizontal predetermined range AS. Sometimes. In such a case, if the dimension Wr + Wl is the same as the width W of the bucket 8, at least a part of the cutting edge trajectory TLi is frequently switched and displayed, and there is a possibility that the operator of the excavator 100 is bothered. is there.
  • the switching frequency described above can be reduced.
  • the dimension Wr + Wl By setting the dimension Wr + Wl to at least twice the width W of the bucket 8, and preferably twice, it is possible to suppress frequent switching between erasure and display of at least a part of the blade tip locus TLi.
  • each guidance screen is not limited to the above, and may be changed as appropriate.
  • some or all of the functions of the display control device 39 may be executed by a computer arranged outside the excavator 100.
  • the target work target is not limited to the plane as described above, but may be a point, a line, or a three-dimensional shape.
  • the input unit 41 of the display input device 38 is not limited to a touch panel type, and may be configured by operation members such as hard keys and switches.
  • the work machine 2 has the boom 6, the arm 7, and the bucket 8, but the work machine 2 is not limited to this, and any work machine having at least the bucket 8 may be used.
  • the first stroke sensor 16, the second stroke sensor 17, and the third stroke sensor 18 detect the inclination angles of the boom 6, the arm 7, and the bucket 8. Is not limited to these.
  • an angle sensor that detects the inclination angles of the boom 6, the arm 7, and the bucket 8 may be provided.
  • the bucket 8 is provided, but the bucket is not limited to this and may be a tilt bucket.
  • a tilt bucket is equipped with a bucket tilt cylinder. By tilting the bucket to the left and right, even if the excavator is on a sloping ground, it is possible to form and level the slope and flat ground freely. The bucket can also be pressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)
  • Indicating Measured Values (AREA)

Abstract

 掘削機械の表示システム28は、バケットを含む作業機を備える掘削機械の現在位置及び姿勢に関する情報を検出する車両状態検出部と、作業対象の目標形状を示す目標面の位置情報を記憶する記憶部43と、バケットと設計面及び前記目標面の位置情報を画面に表示する表示部42と、掘削機械の現在位置及び姿勢に関する情報に基づいてバケットの刃先の位置を求め、目標面と直交する方向における目標面の周囲の所定範囲にバケットの少なくとも一部が進入したときに、刃先の位置に基づいて求めた、所定範囲内に存在する刃先の軌跡を表示部42の画面に表示する処理部44と、を含む。

Description

掘削機械の表示システム及び掘削機械
 本発明は、掘削機械の表示システム及びこれを備えた掘削機械に関する。
 一般に、油圧ショベル等の掘削機械は、オペレータが操作レバーを操作することで、バケットを含む作業機が駆動されて、作業対象の地面等を掘削する。例えば、特許文献1には、バックホウ浚渫船による浚渫時に、バケットの爪先の深度の軌跡をモニタ画面に短時間保持可能なようにする技術が記載されている。
特開2009-150218号公報
 油圧ショベル等の掘削機械を用い、施工対象の設計面の一部を目標面とし、これにしたがって作業対象の地面を掘削する場合、掘削機械の操作者は、目標面の近傍における情報を特に必要とする。特許文献1の技術は、浅い位置から目標浚渫深度まで爪先の軌跡が表示されるので、表示装置の画面には、目標面の近傍以外の情報も表示されてしまう。このため、特許文献1の技術は、施工対象の設計面の一部を目標面とし、これにしたがって作業対象の地面を掘削する掘削機械の操作者に対して、施工結果に関する情報を理解しやすく提供できない可能性がある。
 本発明は、掘削機械の操作者が設計面にしたがって施工を進めるにあたって、操作者に対して施工結果に関する情報を理解しやすく提供することを目的とする。
 本発明によれば、バケットを含む作業機と、前記作業機が取り付けられる本体部とを有する掘削機械の表示システムであって、前記掘削機械の現在位置及び姿勢に関する情報を検出する車両状態検出部と、作業対象の設計面の位置情報と目標形状を示す目標面の位置情報とを記憶する記憶部と、前記バケットと前記設計面及び前記目標面の位置情報とを画面に表示する表示部と、前記掘削機械の現在位置及び姿勢に関する情報に基づいて前記バケットの刃先の位置を求め、前記目標面と直交する方向における前記目標面の周囲の所定範囲に前記バケットの少なくとも一部が進入したときに、前記刃先の位置に基づいて求めた、前記所定範囲内に存在する前記刃先の軌跡を前記表示部の画面に表示する処理部と、を含む掘削機械の表示システムが提供される。
 本発明において、前記処理部は、前記所定範囲から前記バケットが出た後、再び前記バケットが前記所定範囲に進入したときに、すでに表示されている前記刃先の軌跡を消去して、前記所定範囲に再び進入した前記バケットの前記刃先の軌跡を前記画面に表示することが好ましい。
 本発明において、前記処理部は、前記目標面に対して垂直な方向に広がる空間であって、かつ前記バケットによる掘削範囲を含む所定の範囲と前記バケットとの位置関係に基づいて、前記軌跡の少なくとも一部を消去することが好ましい。
 本発明において、前記掘削範囲を含む所定の範囲は、前記バケットの幅よりも大きいことが好ましい。
 本発明において、前記処理部は、前記作業機を搭載する上部旋回体が旋回したことに基づいて、前記軌跡の少なくとも一部を消去することが好ましい。
 本発明において、前記処理部は、前記本体部が移動したことに基づいて、前記軌跡の少なくとも一部を消去することが好ましい。
 本発明において、前記処理部は、前記目標面が作業対象でなくなった場合又は前記目標面が変更された場合に、前記表示装置の前記画面に表示された前記軌跡を消去することが好ましい。
 本発明において、前記所定範囲の大きさは変更可能であることが好ましい。
 本発明において、前記所定範囲の大きさは、前記設計面を施工する際の公差に相当する大きさであることが好ましい。
 本発明において、前記処理部は、前記バケットの前記刃先と前記目標面又は前記設計面との距離に基づき、警報として音を報知することが好ましい。
 本発明において、前記処理部は、前記バケットの前記刃先と前記目標面又は前記設計面との距離に基づき、前記音を報知する態様を変更することが好ましい。
 本発明において、前記処理部は、前記表示部の前記画面に、前記バケットの刃先の位置を示すための案内用の指標を表示することが好ましい。
 本発明によれば、上述した掘削機械の表示システムを備えた掘削機械が提供される。
 本発明は、掘削機械の操作者が設計面にしたがって施工を進めるにあたって、操作者に対して施工結果に関する情報を理解しやすく提供することができる。
図1は、本実施形態に係る油圧ショベル100の斜視図である。 図2は、油圧ショベル100の側面図である。 図3は、油圧ショベル100の背面図である。 図4は、油圧ショベル100が備える制御系を示すブロック図である。 図5は、設計地形データによって示される設計地形を示す図である。 図6は、案内画面の一例を示す図である。 図7は、案内画面の一例を示す図である。 図8は、バケット8の刃先P3の現在位置を求める方法の一例を説明するための図である。 図9は、バケット8の刃先P3の現在位置を求める方法の一例を説明するための図である。 図10は、表示部42の画面42Pにバケット8の刃先P3の軌跡TLiを表示した例を示す図である。 図11は、刃先軌跡TLiを表示部42の画面42Pに表示させる表示手順の一例を示すフローチャートである。 図12は、刃先軌跡TLiが表示される表示部42の画面42Pの状態を示す図である。 図13は、刃先軌跡TLiが表示される表示部42の画面42Pの状態を示す図である。 図14は、刃先軌跡TLiが表示される表示部42の画面42Pの状態を示す図である。 図15は、刃先軌跡TLiが表示される表示部42の画面42Pの状態を示す図である。 図16は、刃先軌跡TLiの表示態様を示す図である。 図17は、目標面70に対して垂直な方向に広がる空間であって、かつバケット8による目標面70の掘削範囲を含む所定の範囲を説明するための図である。 図18は、バケット8が移動した場合における刃先軌跡TLiの表示態様を示す図である。 図19は、バケット8が移動した場合における刃先軌跡TLiの表示制御の処理手順の一例を示すフローチャートである。 図20は、バケット8と水平方向所定範囲ASとの関係を示す図である。 図21は、バケット8と水平方向所定範囲ASとの関係を示す図である。 図22は、バケット8と水平方向所定範囲ASとの関係を示す図である。 図23-1は、目標面70に対して垂直な方向に広がる空間であって、かつバケット8による目標面70の掘削範囲を含む所定の範囲を説明するための図である。 図23-2は、目標面70に対して垂直な方向に広がる空間であって、かつバケット8による目標面70の掘削範囲を含む所定の範囲を説明するための図である。 図24-1は、バケット8と水平方向所定範囲ASとの関係を示す図である。 図24-2は、バケット8と水平方向所定範囲ASとの関係を示す図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下の実施形態は、掘削機械の一例として油圧ショベルを説明するが、以下の実施形態で対象とされる掘削機械は、掘削又は埋め戻す機能を有していれば油圧ショベルに限定されるものではない。
<掘削機械の全体構成>
 図1は、本実施形態に係る油圧ショベル100の斜視図である。図2は、油圧ショベル100の側面図である。図3は、油圧ショベル100の背面図である。図4は、油圧ショベル100が備える制御系を示すブロック図である。図5は、設計地形データによって示される設計地形を示す図である。本実施形態において、掘削機械としての油圧ショベル100は、本体部としての車両本体1と作業機2とを有する。車両本体1は、上部旋回体3と走行装置5とを有する。上部旋回体3は、機関室3EGの内部に、図示しない動力発生装置及び油圧ポンプ等の装置を収容している。機関室3EGは、上部旋回体3の一端側に配置されている。
 本実施形態において、油圧ショベル100は、例えばディーゼルエンジン等の内燃機関を動力発生装置としているが、油圧ショベル100はこのようなものに限定されない。油圧ショベル100は、例えば、内燃機関と発電電動機と蓄電装置とを組み合わせた、いわゆるハイブリッド方式の動力発生装置を備えるもの等であってもよい。
 上部旋回体3は、運転室4を有する。運転室4は、上部旋回体3の他端側に載置されている。すなわち、運転室4は、機関室3EGが配置されている側とは反対側に配置されている。運転室4内には、図4に示す、表示入力装置38及び操作装置25が配置される。これらについては後述する。走行装置5は、履帯5a、5bを有している。走行装置5は、図示しない油圧モータが駆動し、履帯5a、5bが回転することにより走行して、油圧ショベル100を走行させる。作業機2は、上部旋回体3の運転室4の側方側に取り付けられている。
 なお、油圧ショベル100は、履帯5a、5bの代わりにタイヤを備え、図示しないディーゼルエンジンの駆動力を、トランスミッションを介してタイヤへ伝達して走行が可能な走行装置を備えたものであってもよい。例えば、このような形態の油圧ショベル100としてホイール式油圧ショベルであってもよい。また、油圧ショベル100は、このようなタイヤを有した走行装置を備え、さらに車両本体(本体部)に作業機が取り付けられ、図1のような上部旋回体及びその旋回機構を備えていない構造を有する、例えばバックホウローダであってもよい。すなわち、バックホウローダは、車両本体に作業機が取り付けられ、車両本体の一部を構成する走行装置を備えたものである。
 上部旋回体3は、作業機2及び運転室4が配置されている側が前であり、機関室3EGが配置されている側が後である。前に向かって左側が上部旋回体3の左であり、前に向かって右側が上部旋回体3の右である。また、油圧ショベル100又は車両本体1は、上部旋回体3を基準として走行装置5側が下であり、走行装置5を基準として上部旋回体3側が上である。油圧ショベル100が水平面に設置されている場合、下は鉛直方向、すなわち重力の作用方向側であり、上は鉛直方向とは反対側である。
 作業機2は、ブーム6とアーム7とバケット8とブームシリンダ10とアームシリンダ11とバケットシリンダ12とを有する。ブーム6の基端部は、ブームピン13を介して車両本体1の前部に揺動可能に取り付けられている。アーム7の基端部は、アームピン14を介してブーム6の先端部に揺動可能に取り付けられている。アーム7の先端部には、バケットピン15を介してバケット8が揺動可能に取り付けられている。
 図2に示すように、ブーム6の長さ、すなわち、ブームピン13からアームピン14までの長さは、L1である。アーム7の長さ、すなわち、アームピン14の中心からバケットピン15の中心までの長さはL2である。バケット8の長さ、すなわち、バケットピン15の中心からバケット8の刃先P3までの長さはL3である。刃先P3は、バケット8のバケットピン15とは反対側に取り付けられた刃8Bの先端である。
 図1に示すブームシリンダ10とアームシリンダ11とバケットシリンダ12とは、それぞれ作動油の圧力(以下、適宜油圧という)によって駆動される油圧シリンダである。ブームシリンダ10はブーム6を駆動して、これを昇降させる。アームシリンダ11は、アーム7を駆動して、アームピン14の周りを回動させる。バケットシリンダ12は、バケット8を駆動して、バケットピン15の周りを回動させる。ブームシリンダ10、アームシリンダ11及びバケットシリンダ12等の油圧シリンダと図示しない油圧ポンプとの間には、図4に示す比例制御弁37が配置されている。後述する作業機用電子制御装置26が比例制御弁37を制御することにより、ブームシリンダ10、アームシリンダ11及びバケットシリンダ12に供給される作動油の流量が制御される。その結果、ブームシリンダ10、アームシリンダ11及びバケットシリンダ12の動作が制御される。
 図2に示すように、ブーム6とアーム7とバケット8とには、それぞれ第1ストロークセンサ16と第2ストロークセンサ17と第3ストロークセンサ18とが設けられている。第1ストロークセンサ16、第2ストロークセンサ17及び第3ストロークセンサ18は、作業機2の姿勢を検出する姿勢検出部である。第1ストロークセンサ16は、ブームシリンダ10のストローク長さを検出する。後述する表示制御装置39(図4参照)は、第1ストロークセンサ16が検出したブームシリンダ10のストローク長さから、後述する車両本体座標系のZa軸に対するブーム6の傾斜角θ1を算出する。第2ストロークセンサ17は、アームシリンダ11のストローク長さを検出する。表示制御装置39は、第2ストロークセンサ17が検出したアームシリンダ11のストローク長さから、ブーム6に対するアーム7の傾斜角θ2を算出する。第3ストロークセンサ18は、バケットシリンダ12のストローク長さを検出する。表示制御装置39は、第3ストロークセンサ18が検出したバケットシリンダ12のストローク長さから、アーム7に対するバケット8の傾斜角θ3を算出する。
 車両本体1は、位置検出部19を備える。位置検出部19は、油圧ショベル100の現在位置を検出する。位置検出部19は、RTK-GNSS(Real Time Kinematic - Global Navigation Satellite Systems、GNSSは全地球航法衛星システムをいう)用の2個のアンテナ21、22(以下、適宜GNSSアンテナ21、22という)と、3次元位置センサ23と、傾斜角センサ24とを有する。GNSSアンテナ21、22は、車両本体1、より具体的には上部旋回体3に設置される。本実施形態において、GNSSアンテナ21、22は、後述する車両本体座標系のYa軸に沿って一定距離だけ離して設置されている。なお、位置検出部19と上記の姿勢検出部(これらの車両状態検出部)により、掘削機械の位置及び姿勢といった車両状態を検出することができる。
 なお、GNSSアンテナ21、22は上部旋回体3の上であって、油圧ショベル100の左右方向に離れた両端位置に設置されることが好ましい。また、上部旋回体3の上であって、図示しないカウンタウエイト(上部旋回体3の後端)又は運転室4の後方に設置されてもよい。いずれにしても、GNSSアンテナ21、22は、可能な限り離れた位置に設置される方が、油圧ショベル100の現在位置の検出精度は向上する。また、GNSSアンテナ21、22は、オペレータの視界を極力妨げない位置に設置されることが好ましい。また、位置検出部19と姿勢検出部(これら車両状態検出部)により、掘削機械(本実施形態では油圧ショベル100)の現在位置及び姿勢といった車両状態を検出することができる。
 GNSSアンテナ21、22が受信したGNSS電波に応じた信号は、3次元位置センサ23に入力される。3次元位置センサ23は、GNSSアンテナ21、22の設置位置P1、P2の位置を検出する。図3に示すように、傾斜角センサ24は、重力の作用する方向、すなわち鉛直方向Ngに対する車両本体1の幅方向の傾斜角θ4(以下、適宜ロール角θ4という)を検出する。なお、本実施形態において、幅方向とは、バケット8の幅方向を意味しており、上部旋回体3の幅方向、すなわち左右方向と一致している。ただし、作業機2が後述するチルトバケットを備える場合には、バケットの幅方向と上部旋回体3の幅方向とが一致しないこともあり得る。
 油圧ショベル100は、操作装置25と、作業機用電子制御装置26と、作業機制御装置27と、掘削機械の表示システム(以下、適宜表示システムという)101とを備える。操作装置25は、作業機操作部材31と、作業機操作検出部32と、走行操作部材33と、走行操作検出部34とを有する。作業機操作部材31は、オペレータが作業機2を操作するための部材であり、例えば、ジョイスティック又は操作レバーである。また、作業機操作部材31及び作業機操作検出部32は、2組(図4では1組のみ図示)ある。運転室4内の図示しないオペシートの左右各々に作業機操作部材31が設置されている。例えば右に設置された作業機操作部材31を操作することで、バケット8及びブーム6を動作させることができ、左に設置された作業機操作部材31を操作することで、アーム7及び上部旋回体3を動作させることができる。作業機操作検出部32は、作業機操作部材31の操作内容を検出して、検出信号として作業機用電子制御装置26へ送る。
 走行操作部材33は、オペレータが油圧ショベル100の走行を操作するための部材であり、例えば、ジョイスティック又は操作レバーである。また、走行操作部材33及び走行操作検出部34は、2組(図4では1組のみ図示)ある。運転室4内の図示しないオペシートの前方に左右に並んで走行操作部材33が設置されている。右側に設置された走行操作部材33を操作することで、右側の履帯5aを動作させることができ、左側に設置された走行操作部材33を操作することで、左側の履帯5bを動作させることができる。走行操作検出部34は、走行操作部材33の操作内容を検出して、検出信号として作業機用電子制御装置26へ送る。
 作業機用電子制御装置26は、RAM(Random Access Memory)及びROM(Read Only Memory)の少なくとも一方を含む作業機側記憶部35及びCPU(Central Processing Unit)等の演算部36を有している。作業機用電子制御装置26は、主として作業機2を制御する。作業機用電子制御装置26は、作業機操作部材31の操作に応じて作業機2を動作させるための制御信号を生成して、作業機制御装置27に出力する。作業機制御装置27は比例制御弁37を有しており、作業機用電子制御装置26からの制御信号に基づいて比例制御弁37が制御される。作業機用電子制御装置26からの制御信号に応じた流量の作動油が比例制御弁37から流出し、ブームシリンダ10、アームシリンダ11及びバケットシリンダ12の少なくとも1つに供給される。すると、図1に示すブームシリンダ10、アームシリンダ11及びバケットシリンダ12は、比例制御弁37から供給された作動油に応じて駆動される。その結果、作業機2が動作する。
<表示システム28>
 表示システム28は、作業エリア内の地面を掘削して後述する設計面のような形状に形成するための情報をオペレータに提供するためのシステムである。表示システム28は、上述したブームシリンダ10、アームシリンダ11及びバケットシリンダ12、3次元位置センサ23及び傾斜角センサ24、第1ストロークセンサ16、第2ストロークセンサ17及び第3ストロークセンサ18の他に、表示装置としての表示入力装置38と、表示制御装置39と、警報音を報知させるためのスピーカ等を含む音発生装置46とを有している。
 表示入力装置38は、タッチパネル式の入力部41と、LCD(Liquid Crystal Display)等の表示部42とを有する。表示入力装置38は、掘削を行うための情報を提供するための案内画面を表示する。また、案内画面には、各種のキーが表示される。操作者であるオペレータ(油圧ショベル100を点検又は修理する際はサービスマン)は、案内画面上の各種のキーに触れることにより、表示システム28の各種の機能を実行させることができる。案内画面については後に詳細に説明する。
 表示制御装置39は、表示システム28の各種の機能を実行する。表示制御装置39は、RAM及びROMの少なくとも一方を含む記憶部43、CPU等の処理部44を有する電子制御装置である。記憶部43は、作業機データを記憶している。作業機データは、上述したブーム6の長さL1、アーム7の長さL2、バケット8の長さL3を含む。また、作業機データは、ブーム6の傾斜角θ1と、アーム7の傾斜角θ2と、バケット8の傾斜角θ3とのそれぞれの最小値及び最大値を含む。
 表示制御装置39と作業機用電子制御装置26とは、無線又は有線の通信手段を介して互いに通信可能となっている。表示制御装置39の記憶部43は、予め作成された設計地形データを記憶している。設計地形データは、3次元の設計地形の形状及び位置に関する情報である。設計地形は、作業対象となる地面の目標形状を示す。表示制御装置39は、設計地形データ及び上述した各種のセンサからの検出結果等の情報に基づいて、案内画面を表示入力装置38に表示させる。具体的には、図5に示すように、設計地形は、三角形ポリゴンによってそれぞれ表現される複数の設計面45によって構成されている。なお、図5では、複数の設計面のうち1つのみに符号45が付されており、他の設計面の符号は省略されている。目標作業対象は、これらの設計面45のうち1つ又は複数の設計面である。オペレータは、これらの設計面45のうち1つ又は複数の設計面を目標面70として選択する。目標面70は、複数の設計面45のうち、これから掘削される面である。表示制御装置39は、目標面70の位置をオペレータに知らせるための案内画面を表示入力装置38に表示させる。
<案内画面>
 図6、図7は、案内画面の一例を示す図である。案内画面は、目標面70とバケット8の刃先P3との位置関係を示し、作業対象である地面が目標面70と同じ形状になるように油圧ショベル100の作業機2を誘導するための画面である。図6及び図7に示すように、案内画面は、粗掘削モードの案内画面(以下、適宜粗掘削画面53という)と、繊細掘削モードの案内画面(以下、適宜繊細掘削画面54という)とを含む。
(粗掘削画面53)
 図6に示す粗掘削画面53は、表示部42の画面42Pに表示される。粗掘削画面53は、作業エリアの設計地形(目標面70を含む設計面45)と油圧ショベル100の現在位置とを示す上面図53aと、目標面70と油圧ショベル100との位置関係を示す側面図53bとを含む。粗掘削画面53の上面図53aは、複数の三角形ポリゴンによって上面視による設計地形を表現している。より具体的には、上面図53aは、油圧ショベル100が旋回する平面である旋回平面を投影面として設計地形を表現している。したがって、上面図53aは、油圧ショベル100の真上から見た俯瞰図であり、油圧ショベル100が傾いたときには設計面45も傾くことになる。
 また、複数の設計面45から目標作業対象として選択された目標面70は、他の設計面45と異なる色で表示される。なお、図6では、油圧ショベル100の現在位置が上面視による油圧ショベル100のアイコン61で示されているが、他のシンボルによって示されてもよい。また、上面図53aは、油圧ショベル100を目標面70に対して正対させるための情報を含んでいる。油圧ショベル100を目標面70に対して正対させるための情報は、目標面正対コンパス73として表示される。目標面正対コンパス73は、例えば、矢印形状の指針73Iが矢印R方向に回転して、目標面70に対する正対方向と油圧ショベル100を旋回させるべき方向とを示すアイコンである。油圧ショベル100のオペレータは、目標面正対コンパス73により、目標面70への正対度を確認することができる。
 粗掘削画面53の側面図53bは、目標面70とバケット8の刃先P3との位置関係を示す画像と、目標面70とバケット8の刃先P3との間の距離を示す距離情報とを含む。具体的には、側面図53bは、設計面線74と、目標面線79と、側面視による油圧ショベル100のアイコン75とを含む。設計面線74は、目標面70以外の設計面45の断面を示す。目標面線79は目標面70の断面を示す。設計面線74と目標面線79とは、図5に示すように、バケット8の刃先P3の現在位置を通る平面77と設計面45との交線80を算出することにより求められる。交線80は、表示制御装置39の処理部44が求める。バケット8の刃先P3の現在位置を求める方法については後に説明する。
 側面図53bにおいて、目標面線79は、設計面線74と異なる色で表示される。なお、図6では線種を変えて、目標面線79と設計面線74とを表現している。また、側面図53bでは、目標面線79及び設計面線74よりも地中側の領域と、これらの線分よりも空中側の領域とは異なる色で示される。図6では、目標面線79及び設計面線74よりも地中側の領域にハッチングを付することにより、色の違いを表現している。
 目標面70とバケット8の刃先P3との間の距離を示す距離情報は、数値情報83とグラフィック情報84とを含む。数値情報83は、バケット8の刃先P3と目標面70との間の最短距離を示す数値である。グラフィック情報84は、バケット8の刃先P3と目標面70との距離をグラフィックで示した情報である。グラフィック情報84は、バケット8の刃先P3の位置を示すための案内用の指標である。具体的には、グラフィック情報84は、インデックスバー84aと、インデックスバー84aのうちバケット8の刃先P3と目標面70との間の距離がゼロに相当する位置を示すインデックスマーク84bとを含む。インデックスバー84aは、バケット8の先端と目標面70との最短距離に応じて、各インデックスバー84aが点灯するようになっている。なお、グラフィック情報84の表示のオン/オフが油圧ショベル100のオペレータによる入力部41の操作により変更可能とされてもよい。
 上述したように、粗掘削画面53では、目標面線79と油圧ショベル100との相対位置関係及びバケット8の刃先P3と目標面線79との最短距離を示す数値が表示される。油圧ショベル100のオペレータは、目標面線79に沿ってバケット8の刃先P3を移動させることによって、現在の地形が設計地形になるように、容易に掘削することができる。なお、粗掘削画面53には案内画面を切り換えるための画面切換キー65が表示される。オペレータは、画面切換キー65を操作することにより、粗掘削画面53から繊細掘削画面54へ切り換えることができる。
(繊細掘削画面54)
 図7に示す繊細掘削画面54は、表示部42の画面42Pに表示される。繊細掘削画面54は、粗掘削画面53よりも目標面70と油圧ショベル100との位置関係を詳細に示している。すなわち、繊細掘削画面54は、粗掘削画面53よりも目標面70とバケット8の刃先P3との位置関係を詳細に示している。繊細掘削画面54は、目標面70とバケット8とを示す正面図54aと、目標面70とバケット8とを示す側面図54bとを含む。繊細掘削画面54の正面図54aには、正面視によるバケット8を示すアイコン89と、正面視による目標面70の断面を示す線78(以下、適宜目標面線78という)とが含まれる。正面視とは、図1、図2に示すバケットピン15の延在方向と直交する方向から見ることである。
 目標面線78は以下のようにして求められる。バケット8の刃先P3から、鉛直方向(重力方向)に垂線を下ろした際、その垂線を含む平面が目標面70と交わった際にできる交線が目標面線78である。すなわち、グローバル座標系における目標面線78となる。一方、車両本体1の上下方向の線と平行な位置関係であることを条件として、さらにバケット8の刃先P3から目標面70に向かって線を下ろした際に、その線を含む平面が目標面70と交わった際にできる交線を目標面線78としてもよい。すなわち、車両本体座標系における目標面線78となる。どちらの座標系で目標面線78を表示させるかは、オペレータが入力部41の図示しない切替キーを操作することで選択することができる。
 繊細掘削画面54の側面図54bには、側面視によるバケット8のアイコン90と、設計面線74と、目標面線79とが含まれる。また、繊細掘削画面54の正面図54aと側面図54bとには、それぞれ、目標面70とバケット8との位置関係を示す情報が表示される。側面視とは、図1、図2に示すバケットピン15の延在方向(バケット8の回動中心軸方向)から見ることである。
 正面図54aにおいて目標面70とバケット8との位置関係を示す情報は、距離情報86aと角度情報86bとを含む。距離情報86aは、バケット8の刃先P3と、目標面70との間の車両本体座標系におけるZa方向における距離を示したものである。ここで、正面図54aに示される距離情報86aは、グローバル座標系Zにおける距離であってもよい。この距離は、バケット8の刃先P3の幅方向における位置のうち目標面70に対する最近接位置と、目標面線78との間の距離である。なお、距離情報86aは、非表示に設定することもできる。正面図54aには、最近接位置を示すマーク86cがバケット8の正面図のアイコン89に重ねて表示される。角度情報86bは、目標面70とバケット8との間の角度を示す情報である。具体的には、角度情報86bは、バケット8の刃先P3を通る仮想線分と目標面線78との間の角度である。
 側面図54bにおいて、目標面70とバケット8との位置関係を示す情報は、距離情報87aと角度情報87bとを含む。距離情報87aは、バケット8の刃先P3と目標面70との間の最短距離、すなわち目標面70の面に垂直な方向におけるバケット8の先端と目標面70との間の距離を示したものである。あるいは、側面図54bにおいて、バケット8の刃先と、その刃先から鉛直方向に降ろした線と目標面70とが交わる点との距離を距離情報87aとして示してもよい。また、角度情報87bは、目標面70とバケット8との間の角度を示す情報である。具体的には、側面図54bに表示される角度情報87bは、バケット8の底面と目標面線79との間の角度である。
 繊細掘削画面54は、上述したバケット8の刃先P3と目標面70との距離をグラフィックで示すグラフィック情報84を含む。グラフィック情報84は、粗掘削画面53のグラフィック情報84と同様に、インデックスバー84aとインデックスマーク84bとを有する。上述したように、繊細掘削画面54では、目標面線78、79とバケット8の刃先P3との相対位置関係が詳細に表示される。油圧ショベル100のオペレータは、目標面線78、79に沿ってバケット8の刃先P3を移動させることによって、現在の地形が3次元の設計地形と同じ形状になるように、さらに容易に掘削することができる。なお、繊細掘削画面54には、上述した粗掘削画面53と同様に画面切換キー65が表示される。オペレータは、画面切換キー65を操作することにより、繊細掘削画面54から粗掘削画面53へ切り換えることができる。
<バケット8の刃先P3の現在位置を求める方法>
 目標面線79はバケット8の刃先P3の現在位置から算出される。表示制御装置39は、3次元位置センサ23、第1ストロークセンサ16、第2ストロークセンサ17、第3ストロークセンサ18及び傾斜角センサ24等の検出結果に基づき、グローバル座標系{X、Y、Z}でのバケット8の刃先P3の現在位置を求める。本実施形態において、バケット8の刃先P3の現在位置は、次のようにして求められる。
 図8、図9は、バケット8の刃先P3の現在位置を求める方法の一例を説明するための図である。図8は、油圧ショベル100の側面図であり、図9は、油圧ショベル100の背面図である。バケット8の刃先P3の現在位置を求めるにあたって、表示制御装置39は、図8、図9に示すように、上述したGNSSアンテナ21の設置位置P1を原点とする車両本体座標系{Xa、Ya、Za}を求める。本例では、油圧ショベル100の前後方向、すなわち車両本体1の座標系(車両本体座標系)COMのYa軸方向が、グローバル座標系COGのY軸方向に対して傾斜しているものとする。また、車両本体座標系COMでのブームピン13の座標は(0、Lb1、-Lb2)であり、予め表示制御装置39の記憶部43に記憶されている。
 図2及び図4に示す3次元位置センサ23は、GNSSアンテナ21、22の設置位置P1、P2を検出する。検出された設置位置P1、P2の座標位置から、式(1)によってYa軸方向の単位ベクトルが算出される。
Figure JPOXMLDOC01-appb-M000001
 図8に示すように、YaとZとの2つのベクトルで表される平面を通り、Yaと垂直なベクトルZ’を導入すると、式(2)及び式(3)の関係が成り立つ。式(3)のcは定数である。式(2)及び式(3)から、Z’は式(4)のように表される。さらに、Ya及びZ’と垂直なベクトルをX’とすると、X’は式(5)で示すようになる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 図9に示すように、車両本体座標系COMは、これをYa軸周りに、上述したロール角θ4だけ回転させたものであるから、式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 また、第1ストロークセンサ16、第2ストロークセンサ17及び第3ストロークセンサ18の検出結果から、上述したブーム6、アーム7、バケット8の現在の傾斜角θ1、θ2、θ3が算出される。車両本体座標系COM内におけるバケット8の刃先P3の座標(xat、yat、zat)は、傾斜角θ1、θ2、θ3及びブーム6、アーム7、バケット8の長さL1、L2、L3を用いて、式(7)、式(8)及び式(9)で求めることができる。バケット8の刃先P3は、車両本体座標系COMのYa-Za平面内を移動するものとする。グローバル座標系COGにおけるバケット8の刃先P3の座標は、式(10)で求めることができる。グローバル座標系COGにおける刃先P3の座標が刃先P3の位置である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 表示制御装置39は、上記のように算出したバケット8の刃先P3の現在位置と、記憶部43に記憶された設計地形データとに基づいて、図5に示すように、3次元設計地形とバケット8の刃先P3を通る平面(以下、適宜Ya-Za平面77という)との交線80を算出する。そして、表示制御装置39は、この交線80のうち目標面70を通る部分を上述した目標面線79として案内画面に表示する。次に、図4に示す表示制御装置39が、バケット8が作業対象となる地面を掘削するときの刃先P3の軌跡を、表示入力装置38の表示部42の画面42Pに表示させる例について説明する。
<バケット8の刃先P3の軌跡表示>
 図10は、表示部42の画面42Pにバケット8の刃先P3の軌跡TLiを表示した例を示す図である。本実施形態において、表示制御装置39、より具体的には処理部44は、油圧ショベル100の現在位置に関する情報に基づいてバケット8の刃先P3の位置を求める。そして、処理部44は、目標面70と直交する方向における目標面70の周囲の所定範囲AIにバケット8の少なくとも一部が進入したときに、刃先P3の位置に基づいて求めた、所定範囲AI内に存在する刃先P3の軌跡(以下、適宜刃先軌跡という)TLiを、施工結果に関する情報として表示部42の画面42Pに表示する。このようにすることで、油圧ショベル100のオペレータは、刃先軌跡TLiによって実際にバケット8が掘削した状態を表示部42の画面42Pで確認することができる。その結果、オペレータは、刃先軌跡TLiを視認することで現在の施工状況を確認しながら施工を行うことができるので、作業効率が向上する。また、所定範囲AIの外に刃先P3が存在する場合、その軌跡は表示されない。すなわち、設計面(又は目標面)近傍以外の余計な情報は画面42Pに表示されないので、表示システム28は、油圧ショベル100のオペレータが設計面にしたがって施工を進めるにあたって、オペレータに対して施工結果に関する情報を理解しやすく提供することができる。
 本実施形態においては、上述した繊細掘削画面54に刃先軌跡TLiを表示する例を説明するが、粗掘削画面53にこれを表示してもよい。図10に示すように、刃先軌跡TLiは、繊細掘削画面54の側面図54bに表示される。すなわち、刃先軌跡TLiは、側面視におけるバケット8の刃先P3の軌跡である。
 側面図54bには、側面視によるバケット8のアイコン90が表示されている。また、側面図54bには、側面視による目標面70の断面を示す目標画線79と、目標面70と直交する方向における所定範囲AIを規定するための地表側画線Lu及び地中側画線Ldが表示されている(図10の二点鎖線)。地表側画線Lu及び地中側画線Ldは、目標画線79と平行である。正面図54aには、正面視によるバケット8のアイコン89及び正面視による目標面70の断面を示す目標画線78と、後述する第1平面Pu及び第2平面Pdとが表示されている。
 所定範囲AIは、目標面70と直交する方向(図10の一点鎖線nが延在する方向)において、目標面70から地表面に向かって所定距離tuの位置に存在する目標面70に平行な第1平面Puと、地面内に向かって所定距離tdの距離に存在する目標面70に平行な第2平面Pdとで囲まれる範囲である。第1平面Puとバケット8の刃先P3を通るYa-Za平面77(図5参照)との交線が地表側画線Luであり、第2平面PdとYa-Za平面77との交線80が地中側画線Ldである。
 図10において、刃先軌跡TLiは、所定範囲AI内に描かれた実線である。図10において、所定範囲AIの外側(この例では地表側画線Luよりも外側)に描かれた破線も、バケット8の刃先P3の軌跡(以下、適宜範囲外軌跡という)TLeである。この例において、範囲外軌跡TLeは、便宜上記載してあるが、表示部42の実際の画面42Pには表示されない。
 所定範囲AIを規定する所定距離tu、tdは同じ大きさでもよいし、異なっていてもよい。所定距離tu、tdの大きさが異なる場合は、施工の精度を得るために、所定距離tdの方が所定距離tuよりも小さい方が好ましい。本実施形態において、所定距離tu、tdは同じ大きさ、すなわち、tu=tdである。本実施形態において、所定範囲AIの大きさ、すなわち、所定距離tu、tdの大きさは、油圧ショベル100が目標面70に施工する際の公差に相当する大きさとしている。このようにすることで、設計面45(目標面70)を過度に掘削する可能性を低減して、施工の精度低下を抑制することができる。また、所定距離tu、tdの大きさは、変更可能としてもよい。例えば、表示制御装置39の処理部44は、図4に示す表示入力装置38の表示部42に所定距離tu、tdを変更するメニューを表示させ、油圧ショベル100のオペレータが入力部41から変更値を入力するようにしてもよい。このようにすることで、設計変更又は実際の施工場所の状況等によって所定範囲AIを変更する必要が生じた場合でも、柔軟に対応することができるので、作業効率が向上する。
 本実施形態において、所定範囲AIは、グラフィック情報84が有する複数のインデックスバー84aのうち、符号84Gで示す範囲に対応している。すなわち、目標面70と直交する方向における所定範囲AIの大きさであるtu+tdに相当する大きさが、符号84Gで示す複数のインデックスバー84aの範囲に対応している。本実施形態においては、バケット8の刃先P3がこの範囲で移動すれば、目標面70は設計時における公差の範囲内で施工される。
 グラフィック情報84が有する複数のインデックスバー84aのうち、符号84Bで示す範囲は、所定範囲AIの地表側における外側を示している。グラフィック情報84が有する複数のインデックスバー84aのうち、符号84Yで示す範囲は、所定範囲AIの地中側における外側を示している。この範囲は、目標面70の設計時における公差の範囲を超えて目標面70を掘削したことを示す。グラフィック情報84が有する複数のインデックスバー84aのうち、符号84Rで示す範囲は、所定範囲AIの最も地中側における外側を示している。この範囲は、目標面70の設計時における公差の範囲を大きく超えて目標面70を掘削したことを示す。
 グラフィック情報84が有する複数のインデックスバー84aは、油圧ショベル100の掘削時において、バケット8の刃先P3と目標面70との位置関係を表示する。すなわち、刃先P3と目標面70との距離に応じて、インデックスバー84aの表示の態様が変化する。例えば、符号84Bの範囲のインデックスバー84aは青色に表示され、符号84Gの範囲のインデックスバー84aは緑色に表示され、符号84Yの範囲のインデックスバー84aは黄色に表示され、符号84Rの範囲のインデックスバー84aは赤色に表示される。
 したがって、バケット8の刃先P3が所定範囲AIの地表側における外側にある場合、符号84Bで示す範囲のインデックスバー84aが青色に表示される。また、バケット8の刃先P3が所定範囲AI内にある場合、符号84Bで示す範囲のインデックスバー84aが青色に表示されるとともに、符号84Gで示す範囲のインデックスバー84aが緑色に表示される。バケット8の刃先P3が所定範囲AIの地中側における外側ある場合、符号84Bで示す範囲のインデックスバー84aが青色に表示され、符号84Gで示す範囲のインデックスバー84aが緑色に表示され、さらに、符号84Yで示す範囲のインデックスバー84aが黄色に表示される。このように、刃先軌跡TLiの表示に加えて、バケット8の刃先P3と目標面70との距離に応じてインデックスバー84aの表示の態様が変更されることにより、油圧ショベル100のオペレータは、バケット8の刃先P3が目標面70を中心とした所定範囲AIを超えて掘削しているか否かをさらに容易に知ることができる。その結果、オペレータは、掘削中において所定範囲AI内にバケット8の刃先P3を保持しやすくなるので、施工の精度が向上する。
 刃先軌跡TLiは、バケット8の刃先P3が所定範囲AI内に進入したときに、所定範囲AI内に表示される。このようにすることで、表示制御装置39は、バケット8の刃先P3が実際所定範囲AIを掘削したと考えられる場合の刃先軌跡TLiを表示部42の画面42Pに示すことができるので、油圧ショベル100のオペレータは、必要十分な範囲で施工状況を確認できる。なお、これに限定されず、刃先軌跡TLiは、バケット8の一部、例えば背面が所定範囲AI内に進入したときに所定範囲AI内に表示されてもよい。このように、本実施形態において、刃先軌跡TLiは、少なくともバケット8の一部が所定範囲AI内に進入したときに表示されていればよい。
 刃先軌跡TLiは、所定範囲AIの外では表示されないので、目標面70に対する一回の掘削、例えば、法面が作業対象となる地面(目標面70)である場合に、バケット8で法面の上から下にかけて所定の深さを掘って削るような掘削が終了し、バケット8の刃先P3が所定範囲AIの外に出た後は、所定範囲AIの外側における範囲外軌跡TLeは表示されない。バケット8の刃先P3が所定範囲AIの外に出た後は、所定範囲AI内に表示された刃先軌跡TLiは、次に刃先P3が所定範囲AI内に進入するまで、そのまま表示が維持される。このようにすることで、油圧ショベル100のオペレータは、バケット8の刃先P3が作業対象の地面を掘削した履歴を表示部42の画面42Pで確認できる。また、表示制御装置39は、所定範囲AIの外側における範囲外軌跡TLeを表示しないので、作業に必要な目標面70近傍の情報を、オペレータに対して確実に認識させることができる。また、表示制御装置39は、所定範囲AIの外側における範囲外軌跡TLeを表示しないことにより、範囲外軌跡TLeのデータを記憶部43に保存しておく必要はない。このため、記憶部43の記憶容量を効率的かつ有効に利用することができる。
 上述した例では、範囲外軌跡TLeは表示されないとしたが、本実施形態はこれに限定されない。例えば、表示制御装置39は、刃先軌跡TLiと範囲外軌跡TLeとを、それぞれの表示態様を異ならせて表示部42の画面42Pに表示してもよい。一例として、表示制御装置39は、刃先軌跡TLiを赤色の実線で表示し、範囲外軌跡TLeを刃先軌跡TLiよりも目立たない色(本例では、例えば薄い水色)かつ刃先軌跡TLiを示す実線よりも細い破線で表示してもよい。このようにすることで、表示制御装置39は、所定範囲AI内に存在する刃先軌跡TLiを油圧ショベル100のオペレータに対して認識させることができる。また、オペレータは、範囲外軌跡TLeを視認することができるので、例えば、バケット8を作業対象の地面に移動させる場合において、作業機操作部材31の操作方法を改善し作業効率の向上を図ること等に範囲外軌跡TLeを役立てることも可能である。
 このように、刃先軌跡TLiと範囲外軌跡TLeとを、それぞれの表示態様を異ならせて表示部42の画面42Pに表示しても、所定範囲AIの外に存在する範囲外軌跡TLeは、所定範囲AI内に存在する刃先軌跡TLiよりも目立ちにくくなっている。このため、油圧ショベル100のオペレータは、範囲外軌跡TLeが画面42Pに表示されていても、刃先軌跡TLiの認識はほとんど妨げられない。その結果、表示システム28は、油圧ショベル100のオペレータが設計面にしたがって施工を進めるにあたって、オペレータに対して施工結果に関する情報を理解しやすく提供することができる。
 上述した通り、本実施形態では、所定範囲AI内における刃先軌跡TLiと、所定範囲AIの外における範囲外軌跡TLeとで、表示態様が異なっていればよい。両者の表示態様を異ならせることには、両者を表示した上でそれぞれの表示形態を異ならせることの他、範囲外軌跡TLeを表示せず、刃先軌跡TLiのみを表示することの両方が含まれる。
 本実施形態において、表示制御装置39は、バケット8の刃先P3と目標面70又は目標面70に設定されていない設計面45との距離に基づき、警報として音を報知してもよい。例えば、刃先P3が作業対象の地中側において、所定範囲AIの外に出たとき、すなわち、刃先P3が地中側画線Ldよりも地中側に移動したときに、表示制御装置39は、図4に示す音発生装置46から警報音を報知させてもよい。また、目標面70又は設計面45を超えてバケット8の刃先P3が地面を掘削してしまうと、埋戻し等の手間が発生するため、設計面45(目標面70)を効率的に施工することにならない。このため、表示制御装置39は、刃先P3と設計面45との距離に基づく警報として音も報知する。このように、刃先P3と目標面70又は設計面45との距離に基づき、警報としての音を報知する態様を変更することで、油圧ショベル100のオペレータに、目標面70又は設計面45に対して掘削し過ぎていることを認識させることができる。したがって、オペレータは、掘削量を調整して過度な掘削を最小限に抑えることができる。
 また、刃先P3がさらに地中側へ移動した場合、すなわち、バケット8の刃先P3が目標面70から地中側へさらに遠ざかった場合、表示制御装置39は、警報音をより大きくする等して警報音のレベルをより高くしてもよい。すなわち、表示制御装置39は、目標面70とバケット8の刃先P3との距離が大きくなるほど、警報音のレベルを高くしてもよい。このようにすることで、目標面70を掘削し過ぎた程度をオペレータに対して認識させることができる。次に、刃先軌跡TLiの表示手順の一例を説明する。
<刃先軌跡TLiの表示手順>
 図11は、刃先軌跡TLiを表示部42の画面42Pに表示させる表示手順の一例を示すフローチャートである。図12から図15は、刃先軌跡TLiが表示される表示部42の画面42Pの状態を示す図である。刃先軌跡TLiを図4に示す表示部42の画面42Pに表示させるにあたり、ステップS101において、表示制御装置39、より具体的には処理部44は、バケット8の刃先P3の位置(以下、適宜刃先位置という)を求める。刃先位置の求め方は上述した通りである。
 次に、ステップS102において、処理部44は、ステップS101で求めた刃先位置と図12に示す所定範囲AI内の位置とを比較し、刃先位置が所定範囲AI内にある場合(ステップS102、Yes)、処理をステップS103に進める。刃先位置が所定範囲AI内にない場合(ステップS102、No)、処理部44は、ステップS101及びステップS102を繰り返す。
 ステップS102において、処理部44は、例えば、刃先位置(グローバル座標系COGにおける刃先P3の座標)と図12に示す地表側画線Lu及び地中側画線Ldの位置(グローバル座標系COGにおける座標)とを比較し、地表側画線Luと地中側画線Ldとの間に刃先位置があれば、刃先位置が所定範囲AI内にあるとする。また、処理部44は、地表側画線Luと地中側画線Ldとの間に刃先位置がなければ、刃先位置が所定範囲AI外にあるとする。本実施形態において、刃先位置が地表側画線Luの上又は地中側画線Ldの上にある場合も、所定範囲AI内にあるとする。地表側画線Lu及び地中側画線Ldの位置の代わりに、図10に示す第1平面Pu及び第2平面Pdの位置(グローバル座標系COGにおける座標)を用いてもよい。
 ステップS103において、処理部44は、バケット8、より具体的には刃先P3の進行方向側の所定範囲AI内において、すでに刃先軌跡TLiが表示部42の画面42Pに表示されていれば(ステップS103、Yes)、処理をステップS104に進める。ステップS104において、処理部44は、刃先軌跡TLiを消去、すなわち、表示部42の画面42Pへの刃先軌跡TLiの表示を消去して、処理をステップS105に進める。ステップS103において、処理部44は、所定範囲AI内において、刃先軌跡TLiがまだ表示部42の画面42Pに表示されていなければ(ステップS103、No)、処理をステップS105に進める。
 ステップS105において、処理部44は、図13に示すように、現在の刃先位置に基づいて刃先軌跡TLiを表示部42の画面42Pに表示する。このとき、刃先軌跡TLiは、所定範囲AI内、すなわち、地表側画線Luと地中側画線Ldとの間に表示される。図13中、刃先軌跡TLiと地表側画線Luとの交点INは、バケット8の刃先P3が所定範囲AI内に入った位置を示す。
 処理部44は、例えば、地表側画線Lu及び地中側画線Ldと同じ座標系に刃先位置を表示し、かつすでに所定範囲AI内に表示されている刃先位置と新たに表示した刃先位置との間を線で結ぶようにして表示することにより、刃先軌跡TLiを表示することができる。つまり、処理部44は、所定範囲AI内で刃先P3が移動する際、所定の周期で刃先位置を求めて、求められた複数の刃先位置(点)を線(例えば直線)で結ぶことで刃先軌跡TLiを表示する。なお、所定範囲AI内で刃先P3の移動が停止した場合(例えば、オペレータが、作業機操作部材31の操作を停止した場合)、処理部44は、所定の周期で刃先位置を求める処理を中断することが好ましい。また、このように刃先P3の移動が停止した場合、刃先位置を求める処理は中断せずに、その刃先位置(点)の表示をさせないようにしてもよい。すなわち、処理部44は、刃先が停止した場所での刃先位置を求めた後、所定の周期が経過しても停止し続ける限りは、新たな刃先位置を求めない。これは、新たな刃先位置を求めて点を表示すると、複数の点がほぼ同じ位置に重ねて表示されることになるため、刃先軌跡TLiが視認しにくくなるからである。つまり、所定範囲AI内に初めて刃先位置が表示される場合、その刃先位置が刃先軌跡TLiに相当する。刃先軌跡TLiは、刃先位置の集合体(点を直線で結んだもの)であって、バケット8の刃先P3が所定範囲AI内で移動した経路を示す。なお、刃先軌跡TLiは、複数の点を直線で結んだものであるが、その点の数に予め制限を設け、その制限に相当する数の点で刃先軌跡TLiが求められた後に、新たな刃先位置を示す点が求められた場合、処理部44は、古い点から順に削除して刃先軌跡TLiを更新し表示する。
 次に、ステップS106において、処理部44は、刃先位置を求める。次に、ステップS107に進み、処理部44は、ステップS106で求めた刃先位置と図13に示す所定範囲AI内の位置とを比較する。刃先位置が所定範囲AI外にある場合(ステップS107、Yes)、処理部44は、処理をステップS108に進める。刃先位置が所定範囲AI外にない場合(ステップS107、No)、すなわち、刃先位置が所定範囲AI内にある場合、処理部44は、ステップS105及びステップS106を繰り返す。すなわち、処理部44は、刃先位置が所定範囲AIの外になるまで、求めた刃先位置に基づいて所定範囲AI内への刃先軌跡TLiの表示を継続する。
 刃先位置が所定範囲AI外にある場合(ステップS107、Yes)、ステップS108において、処理部44は、図14に示すように、所定範囲AI内の刃先軌跡TLiを残して所定範囲AIの外においては刃先P3の軌跡の表示を停止する。図14中、刃先軌跡TLiの終端側における刃先軌跡TLiと地表側画線Luとの交点OUTは、バケット8の刃先P3が所定範囲AI内から出た位置を示す。なお、上述したように、処理部44は、所定範囲AIの外において、刃先P3の軌跡を、所定範囲AI内の刃先軌跡TLiとは態様を異ならせて表示してもよい。
 次に、ステップS104における、すでに表示部42の画面42Pに表示されている刃先軌跡TLiの消去について説明する。例えば、バケット8が作業対象の地面を一度掘削し、目標面70を中心とした所定範囲AIの外に出た場合を考える。この場合、上述したステップS108によって、図15に示すように、画面42Pには、所定範囲AI内に刃先軌跡TLiが表示された状態が継続されている。この状態で、再び目標面70の近傍を切削する場合、図15に示すように、バケット8が目標面70(図15では目標面線79)の近傍の地表側画線Luに接近する。そして、バケット8の少なくとも一部、例えば、刃先P3が地表側画線Luを超えて所定範囲AI内に進入すると、処理部44は、所定範囲AI内に表示されていた刃先軌跡TLiを消去して、図12に示すような状態から新たな刃先軌跡TLiを所定範囲AI内に表示する。
 このように、処理部44は、所定範囲AIからバケット8(本例では刃先P3)が出た後、再びバケット8(本例では刃先P3)が所定範囲AIに進入したときに、すでに表示されている刃先軌跡TLiを消去する。そして、処理部44は、所定範囲AIに再び進入したバケット8の刃先軌跡TLiを表示部42の画面42Pに表示する。バケット8で作業対象の地面を複数回掘削する場合、前回表示した刃先軌跡TLiを消去しないと複数の刃先軌跡TLiが画面42Pに表示されるため、油圧ショベル100の作業者は、現在の掘削に対応する刃先軌跡TLiを視認しにくくなる。
 上述したように、2回目以降の掘削に対応する刃先軌跡TLiを画面42Pに表示させる場合、処理部44が前回の刃先軌跡TLiを消去することにより、オペレータは、現在の掘削に対応する刃先軌跡TLiを確実に認識することができる。また、バケット8が新たに所定範囲AI内に入って新たに刃先軌跡TLiを表示させる毎に、すでに表示されている刃先軌跡TLiが消去されることにより、表示制御装置39が有する記憶部43から、すでに表示されている刃先軌跡TLiのデータも消去される。その結果、刃先軌跡TLiのデータが記憶部43の記憶領域を占有することを回避することができるので、記憶部43を効率的かつ有効に利用することができる。特に、記憶部43の記憶容量が小さい場合には有効である。
 本実施形態において、処理部44は、現在の目標面70が作業対象でなくなった場合又は現在の目標面70が他に変更された場合に、表示部42の画面42Pに表示された刃先軌跡TLiを消去、すなわちリセットするようにしてもよい。このようにすることで、作業対象の地面が変更された場合等には、以前の刃先軌跡TLiの表示を確実に消去して、新たな作業対象の地面を施工する際には、以前の情報が現在の刃先軌跡TLiと混在しないようにすることができる。
 さらに、本実施形態では、一度所定範囲AI内に刃先軌跡TLiが表示されると、バケット8の刃先P3が再び所定範囲AIに進入するまでは、刃先軌跡TLiがリセットされない限り、刃先軌跡TLiの表示が継続される。このため、油圧ショベル100のオペレータは、画面42Pに表示された刃先軌跡TLiを確実に確認することができる。その結果、オペレータは、施工状況の確認、掘削の作業手順の確認、バケット8の操作手順の確認又はバケット8の操作方法の検討のための十分な時間を確保できる。
<バケット8が移動した場合における刃先軌跡TLiの表示>
 図16は、刃先軌跡TLiの表示態様を示す図である。図17、図23-1、図23-2は、目標面70に対して垂直な方向に広がる空間、かつバケット8による目標面70の掘削範囲を含む所定の範囲を説明するための図である。図18は、バケット8が移動した場合における刃先軌跡TLiの表示態様を示す図である。この例において、刃先軌跡TLiは粗掘削画面53に表示されるが、繊細掘削画面54に表示されてもよい。本実施形態において、図4に示す表示制御装置39の処理部44は、目標面70に対して垂直な方向に広がる空間、かつバケット8による目標面70の掘削範囲を含む所定の範囲(以下、適宜水平方向所定範囲)として定義される範囲ASからバケット8(アイコン90)の少なくとも一部が出た場合に、刃先軌跡TLiの少なくとも一部を消去する。
 図23-1、図23-2に示すように、目標面70の面内を通る線LBl、LBr及び目標面70に平行かつ線LBl、LBrに平行な境界画線Llと境界画線Lrとで囲まれる領域を水平方向所定範囲ASと定義する。つまり、水平方向所定範囲ASとは、直方体又は立方体の領域であり、目標面70に対して垂直な方向に広がる空間であって、図23-1に示すA2(境界画線Llと境界画線Lrとで挟まれる範囲及び線LBlと線LBrとで挟まれる領域)を直方体又は立方体の上下2つの面として、図23-1、図23-2に示すように目標面70と境界画線Ll及び境界画線Lrとで挟まれる範囲を直方体又は立方体の対向する2つの側面A1とするものである。そして、図16、図18、図20~図22で示す水平方向所定範囲ASは、このような水平方向所定範囲ASを油圧ショベル100の真上から見た俯瞰図で表現したものである。境界画線Llと境界画線Lrとで挟まれる範囲(A2)が、目標面70の掘削範囲である。図23-1では、水平方向所定範囲ASのうち目標面70と重なる範囲にハッチングを付しているが、線LBl、LBr及び境界画線Ll、Lrが延在する方向において、水平方向所定範囲ASの範囲は制限を受けない。
 つまり、図16の上面図53aに示す水平方向所定範囲ASは、目標面70に対して垂直な方向に広がる空間であって、目標面70を掘削するバケット8の幅方向両側を含むもので、図16に示す上面図53aに示すように、バケット8の幅方向両側に設定される境界画線Ll、Lrで囲まれる範囲(水平方向所定範囲AS)である。水平方向所定範囲ASは、目標面70のうち、バケット8で掘削される範囲を含んでいる。
 さらに、水平方向所定範囲ASについて詳細に説明する。水平方向所定範囲ASは、図17に示すように、バケット8の幅方向中心軸Clからバケット8の幅方向左側と右側とに、それぞれ距離Wl、Wr離れた位置までの範囲である。バケット8の幅方向中心軸Clから幅方向左側に距離Wlだけ離れ、かつ幅方向中心軸Clと平行な直線が境界画線Llである。また、バケット8の幅方向中心軸Clから幅方向右側に距離Wrだけ離れ、かつ幅方向中心軸Clと平行な直線が境界画線Lrである。距離Wr、Wlの大きさは特に限定されないが、距離WrとWlの合計(Wr+Wl)はバケット8の幅(最大幅)Wよりも大きい。本実施形態では、距離WrとWlとバケット8の幅Wとは等しい(Wr=Wl=W)設定としている。すなわち、距離WrとWlの合計は、バケット8の幅Wの2倍(Wl+Wr=2×W)である。また、距離Wr、Wlの大きさは可変としてもよい。
 図16の側面図53bには、所定範囲AIに刃先軌跡TLiが示されている。上面図53aの水平方向所定範囲ASにハッチングで示した領域AT1は、所定範囲AIに刃先軌跡TLiが示された領域である(以下同様)。所定範囲AI及び水平方向所定範囲ASは、目標面70が設定されると、同時に設定されて、図4に示す表示制御装置39の記憶部43に記憶される。水平方向所定範囲ASは、例えば、境界画線Ll、Lrの位置情報(例えば、グローバル座標系COGにおける座標)が記憶部43に記憶されることにより設定される。本実施形態において、一度設定された所定範囲AI及び水平方向所定範囲ASは、現在の目標面70が作業対象でなくなった場合又は目標面70が他の目標面に変更されるまでは維持される。
 図18は、図16に示す状態から、油圧ショベル100(図16、図18ではアイコン61、75)が右方向(矢印Rで示す方向)に旋回した状態を示している。この旋回にともない、油圧ショベル100のバケット8と目標面70との位置関係が変化するため、上面図53aに表示された目標面正対コンパス73の指針73Iも回転している。
 図18の側面図53bに示すように、油圧ショベル100の旋回によってバケット8の少なくとも一部が水平方向所定範囲ASから出た場合、処理部44は、バケット8と水平方向所定範囲ASとの位置関係に応じて、刃先軌跡TLiの少なくとも一部を消去する。図18では、便宜上、刃先軌跡TLiの消去した部分は、符号TLi’を付した点線で示してある。バケット8と水平方向所定範囲ASとの位置関係をどのようにとらえて、刃先軌跡TLiの一部を消去するかについては後に詳述する。図18に示すように、刃先軌跡TLiのうちTLi´が消去され、刃先軌跡TLiが表示さる。これにともなって、上面図53aの水平方向所定範囲ASにハッチングで示した領域AT2(図18参照)の大きさも、バケット8の全体が水平方向所定範囲ASに存在する場合と比較して小さくなっている(図18に示す領域AT2)。この状態から油圧ショベル100が左方向に旋回し、バケット8のすべてが水平方向所定範囲ASに入った場合、処理部44は、刃先軌跡TLiを元に戻す。すなわち、処理部44は、刃先軌跡TLiのすべてを表示する。その結果、図18で示した刃先軌跡TLi´とTLiとが刃先軌跡TLiとしてすべて表示される。なお、バケット8のすべてが水平方向所定範囲ASから出た場合、刃先軌跡TLiのすべての表示が消去される。なお、本例は、油圧ショベル100全体が旋回した場合であるが、走行装置5は動作させず、上部旋回体3のみが旋回した場合も同様である。
 このようにすることで、油圧ショベル100のオペレータが掘削以外の作業を行う場合、刃先軌跡TLiの少なくとも一部が消去されることで、掘削作業に関係のない表示は画面42Pに表示されなくなる。その結果、表示部42の画面42Pを確認するオペレータに煩雑な印象を与える可能性を低減できる。掘削以外の作業を行う場合とは、例えば、バケット8が掘削した土砂等をダンプトラック等に積載するため油圧ショベル100を旋回させた場合である。次に、バケット8が移動した場合における刃先軌跡TLiの表示制御の処理手順について説明する。
 バケット8と水平方向所定範囲ASとの関係について、図19~図22、図24-1、図24-2を用いて説明する。図19は、バケット8が移動した場合における刃先軌跡TLiの表示制御の処理手順の一例を示すフローチャートである。図20から図22、図24-1及び図24-2は、バケット8と水平方向所定範囲ASとの関係を示す図である。図20~図22、図24-1及び図24-2の符号LCは油圧ショベル100側を示し、符号TCは油圧ショベル100の作業機2のブーム6が向いている方向であって油圧ショベル100から離れた側を示す。ステップS201において、図4に示す表示制御装置39の処理部44は、刃先軌跡TLiを表示部42の画面42Pに表示中である場合(ステップS201、Yes)、処理をステップS202に進める。刃先軌跡TLiが表示部42の画面42Pに表示中でない場合(ステップS201、No)、処理部44は、刃先軌跡TLiの表示制御を終了する。
 ステップS202において、処理部44は、バケット8の現在位置を求め、求めたバケット8の現在位置が水平方向所定範囲AS内にあるか否を判断する。バケット8の現在位置は、上述したバケット8の刃先P3の位置を求める手法を用いて求めることができる。すなわち、刃先P3の座標を、バケット8の求めたい位置の座標に置き換えればよい。
 バケット8が水平方向所定範囲AS内にある場合(ステップS202、Yes)、処理部44は、処理をステップS203に進める。バケット8が水平方向所定範囲AS内にある場合は、例えば、図20、図21、図24-1、図24-2に示すような場合である。図21は、バケット8の角部8Cがバケット8の右側に存在する境界画線Lrと接している状態を示している。この場合も、バケット8が境界画線Lrを超えない限り、バケット8は、水平方向所定範囲AS内にある。このような場合、ステップS203において、処理部44は、刃先軌跡TLiの表示を現状のまま維持する。
 バケット8の現在位置が水平方向所定範囲AS内にない場合、すなわち、水平方向所定範囲ASの外にある場合(ステップS202、No)、処理部44は、処理をステップS204に進める。バケット8が水平方向所定範囲ASの外にある場合は、例えば、図22に示すような場合である。この場合、バケット8の端部8Tが、バケット8の右側に存在する境界画線Lrと交差しており、バケット8の一部が水平方向所定範囲ASの外にある。このような場合、ステップS204において、処理部44は、水平方向所定範囲AS内に存在するバケット8との位置関係に応じて刃先軌跡TLiを消去する。
 処理部44が刃先軌跡TLiの少なくとも一部を消去する場合に処理部44が消去する範囲について、図22を用いて説明する。上述した通り、図22に示す例は、バケット8の一部が水平方向所定範囲ASの外にある。この場合、処理部44は、水平方向所定範囲AS内にある部分で最も油圧ショベル100から離れている位置(この例では符号TC側におけるバケット8の角部8C)を基準とし、この位置よりも油圧ショベル100から離れている刃先軌跡TLiの部分を消去する。また、処理部44は、端部8Tがバケット8の右側に存在する境界画線Lrと交差する位置CPを基準として、この位置よりも油圧ショベル100から離れている刃先軌跡TLiの部分を消去してもよい。
 図22に示す水平方向所定範囲ASにハッチングで示した領域AT2は、所定範囲AIに刃先軌跡TLiが示された領域である。この例において、バケット8の角部8Cを基準とするよりも、位置CPを基準とした方が、境界画線Ll、Lrの延在方向における領域AT2の長さは小さくなるので表示部42の画面42Pに表示される刃先軌跡TLiの長さも短くなる。
 また、処理部44が刃先軌跡TLiの少なくとも一部を消去する他の例を示す。ここで、刃先軌跡TLiを消去する範囲について、図24-1、図24-2を用いて説明する。図24-1には、バケット8の一部が水平方向所定範囲ASの外にある様子を示すが、図24-2に示すように、バケット8が水平方向所定範囲ASの外に出なくても、以下に説明する処理によれば、刃先軌跡TLiの少なくとも一部を消去できる。
 刃先軌跡TLiの少なくとも一部を消去するにあたって、処理部44は以下の処理を行う。処理部44は、まず、境界画線Lrとバケット8の幅方向の中心線CLBとの交点PM1を求める。次に、処理部44は、その境界画線Lr上の交点PM1から中心線CLBに対する垂線VLを引く。さらに、処理部44は、バケット8の幅方向中心軸Clと垂線VLとの交点PM2を求める。その結果、処理部44は、水平方向所定範囲AS内にある部分で最も油圧ショベル100から離れている位置(この例では交点PM2)を基準とし、この位置よりも油圧ショベル100から離れている刃先軌跡TLiの部分を消去する。図24-1、図24-2に示す水平方向所定範囲ASにハッチングで示した領域AT3は、所定範囲AIに刃先軌跡TLiが示された領域である。
 本実施形態においては、バケット8の少なくとも一部が水平方向所定範囲ASにあるか否かに基づいて刃先軌跡TLiの少なくとも一部を消去したが、刃先軌跡TLiの少なくとも一部を消去する条件は、これに限定されない。例えば、油圧ショベル100の上部旋回体3が旋回したこと又は油圧ショベルの車両本体1が移動したこと(同じ位置での旋回又は異なる位置への移動を含む)等を、刃先軌跡TLiの少なくとも一部を消去する条件としてもよい。バケット8の少なくとも一部が水平方向所定範囲ASにあるか否かは、バケット8の位置を求める必要があるが、上部旋回体3の旋回及び油圧ショベル100の移動は、油圧ショベル100の車両情報(図示しない旋回位置検出センサから得られる旋回位置情報等)から取得できるため、その必要はない。このため、上部旋回体3の旋回又は油圧ショベル100の移動を、刃先軌跡TLiの少なくとも一部を消去する条件とすることにより、この条件の判定が容易になる。
 図17に示す、水平方向所定範囲ASの幅方向における寸法Wr+Wlは、バケット8の幅Wよりも大きく、本実施形態では2倍としているがこれに限定されるものではない。油圧ショベル100の振動又は上部旋回体3がわずかに旋回した場合等の原因で、バケット8の少なくとも一部が水平方向所定範囲ASの外に出た後、すぐに水平方向所定範囲AS内に戻ることがある。このような場合、寸法Wr+Wlをバケット8の幅Wと同一とすると、刃先軌跡TLiの少なくとも一部の消去と表示とが頻繁に切り換えられて、油圧ショベル100のオペレータに煩わしさを与える可能性がある。寸法Wr+Wlをバケット8の幅Wよりも大きくすることで、前述した切り替えの頻度を低減することができる。寸法Wr+Wlをバケット8の幅Wの2倍以上、好ましくは2倍とすることにより、刃先軌跡TLiの少なくとも一部の消去と表示との頻繁な切り替えを抑制することができる。
 以上、本実施形態を説明したが、上述した内容により本実施形態が限定されるものではない。また、上述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、上述した構成要素は適宜組み合わせることが可能である。さらに、本実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。
 例えば、各案内画面の内容は上記のものに限られず、適宜、変更されてもよい。また、表示制御装置39の機能の一部又はすべてが、油圧ショベル100の外部に配置されたコンピュータによって実行されてもよい。また、目標作業対象は、上述したような平面に限らず、点、線又は3次元の形状であってもよい。表示入力装置38の入力部41は、タッチパネル式のものに限られず、ハードキーやスイッチなどの操作部材によって構成されてもよい。
 上記の実施形態では、作業機2は、ブーム6、アーム7、バケット8を有しているが、作業機2はこれに限られず、少なくともバケット8を有するものであればよい。また、上記の実施形態では、第1ストロークセンサ16、第2ストロークセンサ17及び第3ストロークセンサ18によって、ブーム6、アーム7、バケット8の傾斜角を検出しているが、傾斜角の検出手段はこれらに限られない。例えば、ブーム6、アーム7、バケット8の傾斜角を検出する角度センサが備えられてもよい。
 上記の実施形態では、バケット8を有しているが、バケットはこれに限られず、チルトバケットであってもよい。チルトバケットとは、バケットチルトシリンダを備え、バケットが左右にチルト傾斜することで油圧ショベルが傾斜地にあっても、斜面、平地を自由な形に成形、整地をすることができ、底板プレートによる転圧作業もできるバケットである。
1 車両本体
2 作業機
3 上部旋回体
4 運転室
5 走行装置
8 バケット
8B 刃
19 位置検出部
21、22 アンテナ
23 3次元位置センサ
24 傾斜角センサ
28 掘削機械の表示システム(表示システム)
38 表示入力装置
39 表示制御装置
41 入力部
42 表示部
42P 画面
43 記憶部
44 処理部
45 設計面
46 音発生装置
70 目標面
78 線(目標面線)
79 目標面線
84 グラフィック情報
100 油圧ショベル
AI 所定範囲
AS 水平方向所定範囲
AT1、AT2 領域
Ld 地中側画線
Ll、Lr 境界画線
Lu 地表側画線
P3 刃先
TLe 範囲外軌跡
TLi 刃先軌跡

Claims (13)

  1.  バケットを含む作業機と、前記作業機が取り付けられる本体部とを有する掘削機械の表示システムであって、
     前記掘削機械の現在位置及び姿勢に関する情報を検出する車両状態検出部と、
     作業対象の設計面の位置情報と目標形状を示す目標面の位置情報とを記憶する記憶部と、
     前記バケットと前記設計面及び前記目標面の位置情報とを画面に表示する表示部と、
     前記掘削機械の現在位置及び姿勢に関する情報に基づいて前記バケットの刃先の位置を求め、前記目標面と直交する方向における前記目標面の周囲の所定範囲に前記バケットの少なくとも一部が進入したときに、前記刃先の位置に基づいて求めた、前記所定範囲内に存在する前記刃先の軌跡を前記表示部の画面に表示する処理部と、
     を含む掘削機械の表示システム。
  2.  前記処理部は、
     前記所定範囲から前記バケットが出た後、再び前記バケットが前記所定範囲に進入したときに、すでに表示されている前記刃先の軌跡を消去して、前記所定範囲に再び進入した前記バケットの前記刃先の軌跡を前記画面に表示する、請求項1に記載の掘削機械の表示システム。
  3.  前記処理部は、
     前記目標面に対して垂直な方向に広がる空間であって、かつ前記バケットによる掘削範囲を含む所定の範囲と前記バケットとの位置関係に基づいて、前記軌跡の少なくとも一部を消去する、請求項1又は2に記載の掘削機械の表示システム。
  4.  前記掘削範囲を含む所定の範囲は、前記バケットの幅よりも大きい、請求項3に記載の掘削機械の表示システム。
  5.  前記処理部は、
     前記作業機を搭載する上部旋回体が旋回したことに基づいて、前記軌跡の少なくとも一部を消去する、請求項1又は2に記載の掘削機械の表示システム。
  6.  前記処理部は、
     前記本体部が移動したことに基づいて、前記軌跡の少なくとも一部を消去する、請求項1又は2に記載の掘削機械の表示システム。
  7.  前記処理部は、
     前記目標面が作業対象でなくなった場合又は前記目標面が変更された場合に、前記表示部の前記画面に表示された前記軌跡を消去する、請求項1から6のいずれか1項に記載の掘削機械の表示システム。
  8.  前記所定範囲の大きさは変更可能である、請求項1から7のいずれか1項に記載の掘削機械の表示システム。
  9.  前記所定範囲の大きさは、前記設計面を施工する際の公差に相当する大きさである、請求項8に記載の掘削機械の表示システム。
  10.  前記処理部は、
     前記バケットの前記刃先と前記目標面又は前記設計面との距離に基づき、警報として音を報知する、請求項1から9のいずれか1項に記載の掘削機械の表示システム。
  11.  前記処理部は、
     前記バケットの前記刃先と前記目標面又は前記設計面との距離に基づき、前記音を報知する態様を変更する、請求項10に記載の掘削機械の表示システム。
  12.  前記処理部は、前記表示部の前記画面に、前記バケットの刃先の位置を示すための案内用の指標を表示する、請求項1から11のいずれか1項に記載の掘削機械の表示システム。
  13.  請求項1から12のいずれか1項に記載の掘削機械の表示システムを備えた掘削機械。
PCT/JP2012/081203 2012-10-05 2012-11-30 掘削機械の表示システム及び掘削機械 WO2014054194A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/985,451 US9043098B2 (en) 2012-10-05 2012-11-30 Display system of excavating machine and excavating machine
DE112012000290.3T DE112012000290B4 (de) 2012-10-05 2012-11-30 Anzeigesystem einer Erdbewegungsmaschine und Erdbewegungsmaschine
KR1020137014266A KR101512254B1 (ko) 2012-10-05 2012-11-30 굴삭 기계의 표시 시스템 및 굴삭 기계
CN201280003987.1A CN103857852B (zh) 2012-10-05 2012-11-30 挖掘机械的显示系统及挖掘机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012223499A JP5426742B1 (ja) 2012-10-05 2012-10-05 掘削機械の表示システム及び掘削機械
JP2012-223499 2012-10-05

Publications (1)

Publication Number Publication Date
WO2014054194A1 true WO2014054194A1 (ja) 2014-04-10

Family

ID=50287332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081203 WO2014054194A1 (ja) 2012-10-05 2012-11-30 掘削機械の表示システム及び掘削機械

Country Status (5)

Country Link
JP (1) JP5426742B1 (ja)
KR (1) KR101512254B1 (ja)
CN (1) CN103857852B (ja)
DE (1) DE112012000290B4 (ja)
WO (1) WO2014054194A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089388A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業支援画像生成装置、及びそれを備えた作業機械の遠隔操縦システム
JP2019163602A (ja) * 2018-03-19 2019-09-26 コベルコ建機株式会社 建設機械
JP2019163603A (ja) * 2018-03-19 2019-09-26 コベルコ建機株式会社 建設機械
WO2020054421A1 (ja) * 2018-09-12 2020-03-19 株式会社小松製作所 作業機械、制御装置、および制御方法
CN114164888A (zh) * 2018-03-12 2022-03-11 日立建机株式会社 液压挖掘机
CN114960793A (zh) * 2021-02-25 2022-08-30 现代斗山英维高株式会社 机器引导程序及利用其的挖掘机
WO2022230417A1 (ja) * 2021-04-28 2022-11-03 日立建機株式会社 作業機械

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102389935B1 (ko) 2014-06-20 2022-04-21 스미도모쥬기가이고교 가부시키가이샤 쇼벨 및 그 제어방법
US10161111B2 (en) 2014-09-09 2018-12-25 Komatsu Ltd. Display system of excavation machine, excavation machine, and image display method
EP3272947B1 (en) * 2015-03-19 2022-01-26 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Excavator
WO2016158539A1 (ja) * 2015-03-27 2016-10-06 住友建機株式会社 ショベル
JP6615473B2 (ja) * 2015-03-27 2019-12-04 住友建機株式会社 ショベル
KR102498986B1 (ko) 2015-08-10 2023-02-13 스미토모 겐키 가부시키가이샤 쇼벨
CN108026715B (zh) * 2015-09-15 2021-06-18 住友建机株式会社 挖土机
JP6096980B2 (ja) * 2015-12-18 2017-03-15 株式会社小松製作所 施工情報表示装置および施工情報の表示方法
JP6620011B2 (ja) * 2015-12-25 2019-12-11 株式会社小松製作所 作業車両および表示制御方法
JP6626710B2 (ja) * 2015-12-25 2019-12-25 株式会社小松製作所 作業車両および作業車両の制御方法
EP3680400B1 (en) 2015-12-28 2021-09-22 Sumitomo (S.H.I.) Construction Machinery Co., Ltd. Shovel
AU2016224353B2 (en) 2016-03-28 2019-10-31 Komatsu Ltd. Evaluation Device
DE112016000064B4 (de) * 2016-03-29 2020-10-22 Komatsu Ltd. Steuervorrichtung für Arbeitsmaschine, Arbeitsmaschine und Verfahren zur Steuerung der Arbeitsmaschine
WO2017170900A1 (ja) * 2016-03-31 2017-10-05 住友建機株式会社 ショベル
JP6615679B2 (ja) * 2016-04-08 2019-12-04 東亜建設工業株式会社 鋼板セルの据え付け方法およびシステム
JP6923144B2 (ja) * 2016-09-02 2021-08-18 株式会社小松製作所 作業機械の画像表示システム
JP6794193B2 (ja) 2016-09-02 2020-12-02 株式会社小松製作所 作業機械の画像表示システム
JP6550358B2 (ja) * 2016-09-16 2019-07-24 日立建機株式会社 建設機械の施工時間予測システム
JP6770862B2 (ja) * 2016-09-23 2020-10-21 日立建機株式会社 建設機械の制御装置
CN107447800A (zh) * 2017-08-17 2017-12-08 山东省环科院环境工程有限公司 一种季节性河流污染底泥精确控制疏浚方法
US11299870B2 (en) * 2017-08-31 2022-04-12 Komatsu Ltd. Display system for excavation machine, excavation machine, and display method for excavation machine
JP6878226B2 (ja) * 2017-09-19 2021-05-26 日立建機株式会社 作業機械
CN107916684A (zh) * 2017-12-26 2018-04-17 青岛雷沃工程机械有限公司 高精度坐标测量挖掘机
JP6860471B2 (ja) * 2017-12-26 2021-04-14 日立建機株式会社 作業機械
JP7317926B2 (ja) * 2018-02-28 2023-07-31 株式会社小松製作所 施工管理装置、表示装置および施工管理方法
JP6974217B2 (ja) * 2018-02-28 2021-12-01 株式会社小松製作所 施工管理装置
US11124942B2 (en) * 2019-05-03 2021-09-21 Caterpillar Inc. System for controlling the position of a work implement
CN115698440A (zh) * 2020-06-11 2023-02-03 日本精机株式会社 作业辅助系统、作业辅助方法
JP6964168B1 (ja) * 2020-09-11 2021-11-10 あおみ建設株式会社 重機の施工管理システム
DE102020212122A1 (de) 2020-09-25 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer mobilen Arbeitsmaschine und mobile Arbeitsmaschine
JP2022067404A (ja) * 2020-10-20 2022-05-06 株式会社シーティーエス 敷均し転圧管理システム
CN114879234B (zh) * 2021-10-14 2023-01-06 电子科技大学 一种复杂gps轨迹中的重要地点挖掘方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114869A1 (ja) * 2011-02-22 2012-08-30 株式会社小松製作所 油圧ショベルの表示システム及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5850341A (en) 1994-06-30 1998-12-15 Caterpillar Inc. Method and apparatus for monitoring material removal using mobile machinery
US7532967B2 (en) 2002-09-17 2009-05-12 Hitachi Construction Machinery Co., Ltd. Excavation teaching apparatus for construction machine
CN100464036C (zh) * 2005-03-28 2009-02-25 广西柳工机械股份有限公司 用于液压挖掘机工作装置的轨迹控制系统及方法
US8243127B2 (en) 2006-10-27 2012-08-14 Zecotek Display Systems Pte. Ltd. Switchable optical imaging system and related 3D/2D image switchable apparatus
JP2009150218A (ja) * 2009-04-02 2009-07-09 Toa Harbor Works Co Ltd 浚渫における施工管理方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114869A1 (ja) * 2011-02-22 2012-08-30 株式会社小松製作所 油圧ショベルの表示システム及びその制御方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016089388A (ja) * 2014-10-30 2016-05-23 日立建機株式会社 作業支援画像生成装置、及びそれを備えた作業機械の遠隔操縦システム
CN114164888A (zh) * 2018-03-12 2022-03-11 日立建机株式会社 液压挖掘机
JP2019163602A (ja) * 2018-03-19 2019-09-26 コベルコ建機株式会社 建設機械
JP2019163603A (ja) * 2018-03-19 2019-09-26 コベルコ建機株式会社 建設機械
JP7127313B2 (ja) 2018-03-19 2022-08-30 コベルコ建機株式会社 建設機械
JP7119457B2 (ja) 2018-03-19 2022-08-17 コベルコ建機株式会社 建設機械
JP7088792B2 (ja) 2018-09-12 2022-06-21 株式会社小松製作所 作業機械、制御装置、および制御方法
JP2020041354A (ja) * 2018-09-12 2020-03-19 株式会社小松製作所 作業機械、制御装置、および制御方法
WO2020054421A1 (ja) * 2018-09-12 2020-03-19 株式会社小松製作所 作業機械、制御装置、および制御方法
US11946219B2 (en) 2018-09-12 2024-04-02 Komatsu Ltd. Work machine, control device, and control method
CN114960793A (zh) * 2021-02-25 2022-08-30 现代斗山英维高株式会社 机器引导程序及利用其的挖掘机
CN114960793B (zh) * 2021-02-25 2024-03-12 现代英维高株式会社 机器引导程序及利用其的挖掘机
WO2022230417A1 (ja) * 2021-04-28 2022-11-03 日立建機株式会社 作業機械
JP7488962B2 (ja) 2021-04-28 2024-05-22 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
KR20140088043A (ko) 2014-07-09
CN103857852B (zh) 2015-06-24
CN103857852A (zh) 2014-06-11
DE112012000290B4 (de) 2015-07-16
KR101512254B1 (ko) 2015-04-14
DE112012000290T5 (de) 2014-08-28
JP2014074315A (ja) 2014-04-24
JP5426742B1 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5426742B1 (ja) 掘削機械の表示システム及び掘削機械
US9043098B2 (en) Display system of excavating machine and excavating machine
JP5476450B1 (ja) 掘削機械の表示システム及び掘削機械
JP5624101B2 (ja) 掘削機械の表示システム、掘削機械及び掘削機械の表示用コンピュータプログラム
JP5789279B2 (ja) 掘削機械の施工管理装置、油圧ショベルの施工管理装置、掘削機械及び施工管理システム
KR101513382B1 (ko) 굴삭 기계의 표시 시스템 및 굴삭 기계
JP5847340B2 (ja) 掘削機械の表示システム、掘削機械及び画像表示方法
JP5624108B2 (ja) 掘削機械の表示システム及び掘削機械
KR101678759B1 (ko) 굴삭 기계의 표시 시스템 및 굴삭 기계
JP5054832B2 (ja) 油圧ショベルの表示システム及びその制御方法
KR101654113B1 (ko) 굴삭 기계의 표시 시스템 및 그 제어 방법
JP5781668B2 (ja) 油圧ショベルの表示システム
JP5555190B2 (ja) 油圧ショベルの表示システム及びその制御方法
JP5054833B2 (ja) 油圧ショベルの表示システム及びその制御方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137014266

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120002903

Country of ref document: DE

Ref document number: 112012000290

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13985451

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886144

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12886144

Country of ref document: EP

Kind code of ref document: A1