WO2014053316A2 - Procédé permettant de faire fonctionner un groupe motopropulseur - Google Patents

Procédé permettant de faire fonctionner un groupe motopropulseur Download PDF

Info

Publication number
WO2014053316A2
WO2014053316A2 PCT/EP2013/069323 EP2013069323W WO2014053316A2 WO 2014053316 A2 WO2014053316 A2 WO 2014053316A2 EP 2013069323 W EP2013069323 W EP 2013069323W WO 2014053316 A2 WO2014053316 A2 WO 2014053316A2
Authority
WO
WIPO (PCT)
Prior art keywords
electric drive
machines
vehicle
electric
forecast
Prior art date
Application number
PCT/EP2013/069323
Other languages
German (de)
English (en)
Other versions
WO2014053316A3 (fr
Inventor
Stephen Jones
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to JP2015534952A priority Critical patent/JP6314143B2/ja
Priority to DE201311004081 priority patent/DE112013004081A5/de
Publication of WO2014053316A2 publication Critical patent/WO2014053316A2/fr
Publication of WO2014053316A3 publication Critical patent/WO2014053316A3/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/62Vehicle position
    • B60L2240/622Vehicle position by satellite navigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/52Control modes by future state prediction drive range estimation, e.g. of estimation of available travel distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/50Control modes by future state prediction
    • B60L2260/54Energy consumption estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a method for operating a drive train of a vehicle that can be driven via at least two primary, preferably electric, drive machines, wherein a prognosis is made about the future temperatures of electrical components and the drive train is operated as a function of the predicted temperatures.
  • a hybrid drive system which has an internal combustion engine, an electric machine, as well as a power electronics with a number of electrical circuits, and a cooling system.
  • a method for managing the thermal energy of the power electronics has a plurality of temperature sensors for measuring the temperature in the power electronics, wherein the electrical energy of the power electronics monitors input and output side and a forecast of future temperatures for the electronic circuits is created and the hybrid drive system in dependence Predicted temperatures is operated.
  • this is done by making a prognosis of the future load and / or load duration of at least two electric drive machines and that, depending on the prognosis, at least one operating mode for the electric drive machines is selected and operated by means of an activation and deactivation strategy such that an optimal operating temperature range and / or efficiency range for the electrical machines is maintained during a selected route.
  • operating modes can provide that at least two electric drive machines - at least temporarily - are operated alternately, or that at least two electric drive machines - at least temporarily - are operated together.
  • operating modes can also provide that - at least temporarily - only one of several electrically driven axles - ie the front axle or the rear axle - or all electrically driven axles are also driven.
  • the forecast is generated in response to a planned route, preferably with the aid of satellite navigation, for example GPS, and / or digital road maps or with the assistance of a vehicle communication system, for example a C2X (car to car or car to infrastructure) communication system.
  • vehicle communication system provides information about accidents, construction sites, detours, traffic restrictions, weather conditions, weather reports, or the like, which are included in the forecast.
  • radar systems, video systems, telephone systems or the like can also be used to obtain information.
  • in-vehicle data such as the thermal characteristic curve and / or the efficiency curve of the vehicle battery can also be included in the prognosis.
  • the temperature of at least one electrical machine, the power electronics and / or the cooling medium can be taken into account in the prognosis.
  • Each power request is assigned an operating mode for the electrical machines.
  • the electrical machines are operated alternately or simultaneously so that the operation of the individual electric machines takes place in the optimum temperature range.
  • the temperature of each individual machine can be maintained in a medium temperature range. If little drive power is requested (for example, when driving on the street or when limiting the speed or in poor weather conditions), it may be more advantageous to activate only a few or only one electric machine.
  • the cooling effort can be kept very low by a separate cooling medium and the vehicle can always be operated in the optimum efficiency range.
  • the consumption and the battery size can be reduced and the range can be increased.
  • FIG. 2 shows a motor vehicle for using the method according to the invention
  • Fig. 3 shows the inventive method in detail.
  • the Fig. 1 shows schematically the method according to the invention for operating a drive train of a vehicle drivable via at least two electric drive machines.
  • a route is selected.
  • C2X is used to describe vehicle to vehicle communication systems (C2C) and vehicle to infrastructure communication systems (C2I).
  • C2C vehicle to vehicle communication systems
  • C2I vehicle to infrastructure communication systems
  • Such communication systems enable the real-time transmission of route-relevant data such as construction sites, accidents, speed limits, diversions, congestion, weather, road conditions, temperature, etc.
  • the navigation system 3 provides topographic information, information about the roads used, road layout, gradients, etc.
  • the vehicle communication system provides up-to-date supplementary information about construction sites, accidents, detours, road conditions, weather conditions, temperatures, and weather forecasts.
  • step 5 a prognosis is prepared for each route section for the expected service requirement-both the service level and the duration.
  • the power requirement serves as an input variable for a computer model 6 on the load of the individual electrical machines, depending on different operating modes, as further input variables, the thermal characteristic 7, the efficiency curve 8 and the temperatures 9 of the electrical machines, the power electronics and / or the cooling medium of the Cooling system can be used.
  • the result of the calculation from step 6 is an optimal operating mode 10 for the electric machines, for each stretch of the travel route, wherein the drive torque is divided between the electric drive axes according to a mathematical algorithm.
  • 2 shows schematically a vehicle 50 with a front axle 52 and a rear axle 54. The drive wheels are respectively designated by 58.
  • Each drivable axle 52, 54 of the vehicle 50 is associated with an electric drive machine EM I, EM2.
  • the prime movers EM I, EM2 are operated via power electronics 60 and a control unit 62.
  • a prediction unit 64 generates, depending on the route and using data from a satellite navigation system 3 and a vehicle communication system 4, a forecast of the future load request and the expected load for each prime mover EM I, EM2, as a function of different operating modes and depending on the actual operating load. State (for example, the temperatures) of the electric drive machines EM I, EM2 and the vehicle battery 66.
  • the optimum operating mode is determined for each section of the route. In accordance with the operating mode determined in each case, the electric drive machines EM I, EM2 are operated via the control unit 62 and the power electronics 60 in accordance with an activation and deactivation strategy in each route section.
  • the switchover from one operating mode to the other takes place in a grinding manner and, as far as possible, seamlessly by slowly switching the driving machines EM I, EM 2 on or off so that sudden transitions and thus losses in ride comfort and safety are avoided.
  • u f max ⁇ for all n EM / f , ⁇ ⁇ / ⁇ , M f , M r (4) where u f: the torque split factor for the front axle 52 u r: the torque split factor for the rear axle 54
  • M r the rear electric drive machine torque demand EM2 ⁇ ⁇ : the front electric machine efficiency for a given operating point ⁇ ⁇ : the rear electric machine efficiency for a specific operating point ⁇ 9 the global efficiency for certain of the torque split factors U f: and U r:
  • u f is the optimum torque distribution for the front axle n E M
  • f is the speed of the front electric drive machine EM I ⁇ ⁇ / ⁇ is the speed of the rear electric drive machine EM2.
  • the calculation method enables the calculation of optimal values for the torque split factors u f: and u r at which a maximum global efficiency ⁇ 9 is achieved. In this calculation, however, the temperature behavior of the powertrain elements due to the thermal reactions is not taken into account. The efficiency values apply to normal average temperatures.
  • the efficiencies of the electric machines are highly dependent on the thermal behavior of the electric machines. Therefore, the forecast of the future load of the electric machines allows a prediction of the future internal temperatures of the electrical components (for example, the stator, the rotor and the power electronics) as well as the battery. Thus, consideration of the thermal behavior also allows for better scheduling and control of the torque split to further improve the efficiency of the system.
  • the electrical components for example, the stator, the rotor and the power electronics
  • the predicted velocity profile and topographical profile have a strong influence on the determination of the operating points of the electrical machines and thus on their thermal behavior.
  • External information about the environment - which is provided, for example, via C2X systems or other sources - such as traffic density, speed limits, construction sites, topology, etc. are the main factors influencing the calculation of future electrical load requirements.
  • the calculation method is shown schematically in FIG.
  • the driver specifies a destination F.
  • the road characteristic SC taking into account the average speed over C2I structures on the one hand and the topography and speed limits from digital road maps on the other hand.
  • a speed profile v (s) and an inclination profile a (s) of the route are calculated, and from this a speed profile n (s) and the torque requirements Mdemand (s) to the electric machines EM are determined in a first prediction step PR1.
  • the predicted speed profile n (s) and the torque requirements M de mand (s) to the electric machines EM are supplied to a thermal prediction model, which in a second prediction step - including current temperatures of the battery T Ba t (s) measured by temperature sensors MTS , the electric power electronics T PE
  • (s), the stators T stator (s), and the rotors T ro t 0 r (s) are used together with the speed profile n (s ) and over the route s predicted torque requirements Mdemand (s) as input to a calculation OPM of the optimized torque splits u f * and u r * .
  • control signals are transmitted to the electric machines EM I and EM2.
  • the optimal torque split involving the thermal behavior of the EM2 electric machines and the battery, can be performed by the following alternative methods:
  • the modeled predictive control continuously calculates the thermal state of the components based on a thermal model along a predefined event horizon at certain polling instants.
  • This event horizon can be predetermined, for example, by a defined distance or travel time.
  • a defined optimization target for example, maximum efficiency
  • the optimal torque distribution is determined and corresponding control signals are transmitted to the electric machines EM I, EM2.
  • the event horizon is moved one step and the optimization process is repeated.
  • the entire driving maneuver is divided into fixed segments (for example x km segments). For each segment, a velocity profile is determined. Then, using the slope profile, the load requirement and the thermal load for the electrical components are calculated. Finally, an optimal torque distribution is calculated along for each segment and applied the calculated torque distribution. The process is repeated for each additional new segment.
  • the present method makes it possible to carry out recuperative braking with the best possible efficiency.
  • a forward, red-switching traffic lights would allow for recuperative operation of the rear electric drive machine
  • this rear electric drive machine could be maintained at low temperature (advantageous for efficiency) until recuperatively using the front axle electric drive machine for propulsion becomes.
  • the switching point between the two electric machines at the red light ahead can be calculated in advance by using information about the traffic lights and the traffic volume - for example, C2X, GPS and / or navigation systems.
  • the inventive method has been explained for a drive with two electric drive machines via a front axle and a rear axle, but is not limited to this type of drive. Rather, the method can be used for all drive trains with at least two primary drive machines. Therefore, the method can also be used in hybrid vehicles and also other electric vehicles with at least two primary drive machines. For example, optimal torque distribution between the engine and the electric drive machine can be performed taking into account the thermal behavior of the drive system in hybrid vehicles.
  • the method can be used both with existing fixed cooling systems and with the management of the cooling system. This makes it possible to minimize the cooling effort, which has an advantageous effect on weight, space and production costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Navigation (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

Procédé permettant de faire fonctionner un groupe motopropulseur d'un véhicule automobile (50) pouvant être entraîné par deux machines d'entraînement primaires (EM1, EM2), de préférence électriques, une prévision relative aux températures futures de composants électriques étant établie et le groupe motopropulseur étant amené à fonctionner en fonction des températures prévues. L'objet de la présente invention est de réduire les besoins de refroidissement d'un véhicule automobile comportant plusieurs machines d'entraînement électriques. À cet effet, un itinéraire routier est sélectionné, une prévision relative à la sollicitation et/ou durée de sollicitation futures d'au moins deux machines d'entraînement électriques (EM1, EM2) sur cet itinéraire routier est établie et au moins un mode de fonctionnement pour les machines d'entraînement électriques (EM1, EM2) est sélectionné en fonction de la prévision, lesdites machines étant amenées à fonctionner sur la base d'une stratégie d'activation et de désactivation de manière telle qu'une plage de température de fonctionnement et/ou une plage de rendement optimales pour les machines électriques (EM1, EM2) sont respectées sur un itinéraire routier sélectionné.
PCT/EP2013/069323 2012-10-02 2013-09-18 Procédé permettant de faire fonctionner un groupe motopropulseur WO2014053316A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015534952A JP6314143B2 (ja) 2012-10-02 2013-09-18 ドライブトレインを稼動する方法
DE201311004081 DE112013004081A5 (de) 2012-10-02 2013-09-18 Verfahren zum Betreiben eines Antriebsstranges, zum Einhalten von Betriebsparametern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50423/2012 2012-10-02
ATA50423/2012A AT513478B1 (de) 2012-10-02 2012-10-02 Verfahren zum Betreiben eines Antriebsstranges

Publications (2)

Publication Number Publication Date
WO2014053316A2 true WO2014053316A2 (fr) 2014-04-10
WO2014053316A3 WO2014053316A3 (fr) 2014-07-03

Family

ID=49231441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/069323 WO2014053316A2 (fr) 2012-10-02 2013-09-18 Procédé permettant de faire fonctionner un groupe motopropulseur

Country Status (4)

Country Link
JP (1) JP6314143B2 (fr)
AT (1) AT513478B1 (fr)
DE (1) DE112013004081A5 (fr)
WO (1) WO2014053316A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193172A1 (fr) * 2014-06-16 2015-12-23 Bayerische Motoren Werke Aktiengesellschaft Procédé et dispositif de contrôle pour contrôler la perte de chaleur générée par un véhicule électrique
EP3566893A1 (fr) * 2018-05-07 2019-11-13 Audi AG Système d'entraînement électrique refroidi par liquide
FR3105115A1 (fr) * 2019-12-19 2021-06-25 Psa Automobiles Sa Procede de commande d'une chaîne de traction d’un vehicule
WO2022268552A1 (fr) * 2021-06-22 2022-12-29 Man Truck & Bus Se Procédé et dispositif pour déterminer une stratégie de fonctionnement d'un véhicule à propulsion électrique, de préférence d'un véhicule à pile à combustible
SE2250712A1 (en) * 2022-06-14 2023-12-15 Scania Cv Ab Method and control arrangement for controllring a speed of a vehicle in a downhill road section followed by an uphill road section

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2566962B (en) 2017-09-28 2020-08-12 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
GB201715702D0 (en) * 2017-09-28 2017-11-15 Jaguar Land Rover Ltd Method and apparatus for controlling electric machines
DE102020102193A1 (de) * 2020-01-30 2021-08-05 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein zumindest zeitweise straßengekoppelt allradangetriebenes Elektrofahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133032A1 (fr) * 2007-04-12 2008-11-06 Toyota Jidosha Kabushiki Kaisha Véhicule et son procédé de commande
EP2177389A1 (fr) * 2007-08-09 2010-04-21 Toyota Jidosha Kabushiki Kaisha Voiture équipée d'un dispositif de batterie rechargeable, et procédé de régulation thermique du dispositif de batterie rechargeable
JP2010243327A (ja) * 2009-04-06 2010-10-28 Denso Corp ナビゲーション装置及びナビゲーション装置の経路計算方法
US20130151046A1 (en) * 2011-12-09 2013-06-13 Kia Motors Corporation System and method for eco driving of electric vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019462A (ja) * 2002-06-12 2004-01-22 Toyota Motor Corp 内燃機関
JP4249037B2 (ja) * 2004-01-06 2009-04-02 アルパイン株式会社 周辺車両表示装置、ナビゲーション装置及び車両表示方法
JP2006115664A (ja) * 2004-10-18 2006-04-27 Toyota Motor Corp 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
JP4961713B2 (ja) * 2005-10-14 2012-06-27 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP4802715B2 (ja) * 2006-01-10 2011-10-26 トヨタ自動車株式会社 温度上昇予測装置およびこれを備える経路案内システム並びにこれを搭載する車両、温度上昇予測方法、経路案内方法、熱負荷予測装置
JP5115451B2 (ja) * 2008-11-07 2013-01-09 トヨタ自動車株式会社 車両の駆動制御装置
JP5218193B2 (ja) * 2009-03-24 2013-06-26 株式会社デンソー ナビゲーション装置,電気自動車の駆動用モータ制御システム及び駆動用モータの制御方法
JP2011010391A (ja) * 2009-06-23 2011-01-13 Toyota Motor Corp 車載原動機の温度制御装置
WO2012000472A1 (fr) * 2010-06-28 2012-01-05 Schaeffler Technologies Gmbh & Co. Kg Actionneur hydrostatique et procédé de commande d'un actionneur hydrostatique
JP2012095378A (ja) * 2010-10-25 2012-05-17 Mitsubishi Motors Corp 電動車両のモータ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133032A1 (fr) * 2007-04-12 2008-11-06 Toyota Jidosha Kabushiki Kaisha Véhicule et son procédé de commande
EP2177389A1 (fr) * 2007-08-09 2010-04-21 Toyota Jidosha Kabushiki Kaisha Voiture équipée d'un dispositif de batterie rechargeable, et procédé de régulation thermique du dispositif de batterie rechargeable
JP2010243327A (ja) * 2009-04-06 2010-10-28 Denso Corp ナビゲーション装置及びナビゲーション装置の経路計算方法
US20130151046A1 (en) * 2011-12-09 2013-06-13 Kia Motors Corporation System and method for eco driving of electric vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193172A1 (fr) * 2014-06-16 2015-12-23 Bayerische Motoren Werke Aktiengesellschaft Procédé et dispositif de contrôle pour contrôler la perte de chaleur générée par un véhicule électrique
CN106132764A (zh) * 2014-06-16 2016-11-16 宝马股份公司 用于控制由电动车辆产生的损耗热量的方法和控制设备
CN106132764B (zh) * 2014-06-16 2018-01-05 宝马股份公司 用于控制由电动车辆产生的损耗热量的方法和控制设备
US10183580B2 (en) 2014-06-16 2019-01-22 Bayerische Motoren Werke Aktiengesellschaft Method and control device for controlling the waste heat generated by an electric vehicle
EP3566893A1 (fr) * 2018-05-07 2019-11-13 Audi AG Système d'entraînement électrique refroidi par liquide
US10766346B2 (en) 2018-05-07 2020-09-08 Audi Ag Liquid-cooled electric drive system
FR3105115A1 (fr) * 2019-12-19 2021-06-25 Psa Automobiles Sa Procede de commande d'une chaîne de traction d’un vehicule
WO2022268552A1 (fr) * 2021-06-22 2022-12-29 Man Truck & Bus Se Procédé et dispositif pour déterminer une stratégie de fonctionnement d'un véhicule à propulsion électrique, de préférence d'un véhicule à pile à combustible
SE2250712A1 (en) * 2022-06-14 2023-12-15 Scania Cv Ab Method and control arrangement for controllring a speed of a vehicle in a downhill road section followed by an uphill road section
SE545802C2 (en) * 2022-06-14 2024-02-06 Scania Cv Ab Method and control arrangement for controllring a speed of a vehicle in a downhill road section followed by an uphill road section

Also Published As

Publication number Publication date
AT513478B1 (de) 2015-06-15
DE112013004081A5 (de) 2015-05-07
JP6314143B2 (ja) 2018-04-18
JP2015536128A (ja) 2015-12-17
AT513478A1 (de) 2014-04-15
WO2014053316A3 (fr) 2014-07-03

Similar Documents

Publication Publication Date Title
AT513477B1 (de) Verfahren zum Betreiben eines Antriebsstranges
AT513478B1 (de) Verfahren zum Betreiben eines Antriebsstranges
DE102018116826B4 (de) Fahrzeug mit modellbasierter Streckenenergievorhersage, -korrektur und -optimierung
DE102015223733B4 (de) System und Verfahren zum Steuern eines Hybridfahrzeugs
DE102014221328B4 (de) Fahrzeugenergieverwaltungsvorrichtung
EP2139739B1 (fr) Procédé et dispositif de commande et/ou de régulation prédictive d'un entraînement hybride dans un véhicule automobile et véhicule automobile hybride
DE102015203280A1 (de) Hybridantriebsstrang-Betriebsartbestimmung auf der Basis einer Ortsraum-Streckensegmentierung
EP2323887B2 (fr) Procédé pour commander un groupe propulseur hybride dans un véhicule ferroviaire
DE102018216091A1 (de) Verfahren und vorrichtung zur steuerung elektrischer maschinen
DE102014222059A1 (de) In der raumdomäne optimale elektro- und hybrid-elektrofahrzeugsteuerung mit wegvorausberechnung
DE102011018182A1 (de) Selbstlernendes durch eine Satellitennavigation unterstütztes Hybridfahrzeug-Steuersystem
DE102012214598A1 (de) System und Verfahren für das Unterstützen des Fahrers beim Fahren eines elektrischen Fahrzeugs in einer umweltfreundlicheren effizienten Weise
DE102015208380A1 (de) Fahrzeugenergie-Handhabungsvorrichtung
DE102014214763A1 (de) Echtzeit-kraftstoffverbrauchsschätzung
EP1917171A1 (fr) Procede pour piloter un vehicule hybride et vehicule hybride
DE102014014851B4 (de) Verfahren zum Betrieb eines Navigationssystems eines Hybridkraftfahrzeugs und Hybridkraftfahrzeug
EP3566922B1 (fr) Procédé de détermination des informations d'accélération prévues dans un véhicule automobile électrique et véhicule automobile électrique
DE112012005988T5 (de) Fahrzeugsteuervorrichtung
WO2011107125A1 (fr) Dispositif d'entraînement de véhicule automobile
WO2022268552A1 (fr) Procédé et dispositif pour déterminer une stratégie de fonctionnement d'un véhicule à propulsion électrique, de préférence d'un véhicule à pile à combustible
EP3668747B1 (fr) Procédé permettant de faire fonctionner un système de gestion de batterie, système de gestion de batterie et véhicule automobile
DE102020128815A1 (de) System und verfahren zur routenbasierten optimierung für batterieelektrofahrzeuge
DE102005047011A1 (de) Energiesteuervorrichtung für ein Kraftfahrzeug
CN113511203B (zh) 车辆编队跟驰行驶控制方法、系统、设备及存储介质
EP2669632B1 (fr) Procédé de calcul d'une route et appareil de navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13766258

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112013004081

Country of ref document: DE

Ref document number: 1120130040816

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2015534952

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13766258

Country of ref document: EP

Kind code of ref document: A2