WO2014053250A1 - Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique - Google Patents

Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique Download PDF

Info

Publication number
WO2014053250A1
WO2014053250A1 PCT/EP2013/054460 EP2013054460W WO2014053250A1 WO 2014053250 A1 WO2014053250 A1 WO 2014053250A1 EP 2013054460 W EP2013054460 W EP 2013054460W WO 2014053250 A1 WO2014053250 A1 WO 2014053250A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass body
infrared light
tube
glass
light reflective
Prior art date
Application number
PCT/EP2013/054460
Other languages
English (en)
Inventor
Yuval Ofir
Original Assignee
Siemens Aktiengesellschaft
Siemens Concentrated Solar Power Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Concentrated Solar Power Ltd. filed Critical Siemens Aktiengesellschaft
Publication of WO2014053250A1 publication Critical patent/WO2014053250A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/004Coating the inside
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/42Coatings comprising at least one inhomogeneous layer consisting of particles only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/86Arrangements for concentrating solar-rays for solar heat collectors with reflectors in the form of reflective coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • This invention relates to a glass body and a method for manufacturing the glass body. Moreover, a heat receiver tube with the glass body, a parabolic trough collector with the heat receiver tube and a use of the parabolic through collector are provided.
  • a sun energy collecting unit of a sun field power plant based on the concentrated solar power technique is for instance a parabolic trough collector with parabolic mirrors and a heat receiver tube.
  • the heat receiver tube is arranged in a focal line of the mirrors.
  • a heat transfer fluid e.g. a thermo-oil or molten salt.
  • the heat receiver tube absorbs energy from the sun. Energy from the sun is efficiently coupled into the heat transfer fluid. Solar energy is converted to thermal energy.
  • the heat re- ceiver tube comprises an encapsulating outer glass body
  • the glass tube which is transparent for the sunlight, is arranged coaxially around an inner, central stainless tube of the heat receiver tube.
  • the space between the inner tube and the glass tube is evacuated, to minimize convection .
  • a glass body with a glass body surface is provided, wherein at least one infrared light reflective coating is attached to the glass body surface and the infrared light reflective coating comprises a network of at least one nanomaterial .
  • the glass body is a glass tube with a glass tube wall and the glass tube wall comprises the glass body surface.
  • the glass tube wall comprises the glass body surface.
  • an inner surface of the glass tube wall comprises the glass body surface.
  • the inner surface of the glass tube wall comprises at least partially at least one infrared light reflective coating and the infrared light reflective coating comprises the network of the nanomaterial.
  • the infrared light reflective coating comprises a transmission for solar radiation with a wavelength between 300-2500 nm, which is selected from the range between 0.5 and 0.99 and preferably selected form the range between is 0.8 and 0.95.
  • the infrared light reflective coating is more or less transparent for the sunlight radiation in this wavelength area.
  • a heat receiver tube for absorbing solar energy and for transferring absorbed solar energy to a heat transfer fluid which can be located inside a core tube of the heat receiver tube, is provided.
  • the core tube comprises a core tube surface with a solar energy absorptive coating for ab- sorbing solar absorption radiation of the sunlight.
  • the core tube is enveloped by an encapsulation with the glass tube with the infrared light reflective coating.
  • the core tube surface and the encapsulation are arranged in a distance between the core tube surface and the inner surface of the en- capsulation wall with the infrared reflective surface such, that the solar absorption radiation can penetrate the encapsulation with the infrared light reflective coating and can impinge the solar energy absorptive coating.
  • a parabolic trough collector is provided comprising at least one parabolic mirror having a sunlight reflecting surface for concentrating sunlight in a focal line of the sunlight reflecting surface and at least one heat receiver tube, which is arranged in the focal line of the parabolic mirror.
  • a solar collector with linear Fresnel technology can be realized.
  • a linear Fresnel mirror collector with at least one Fresnel mirror having a sunlight reflecting surface for concentrating sunlight in a focal line of the sunlight reflecting surface and at least one heat re-ordinatever tube, which is arranged in the focal line of the Fresnel mirror.
  • the glass body for instance the glass tube with the glass tube wall, is transparent for a wide wavelength range of the rays of the sun.
  • the glass tube wall of the glass tube comprises glass (SiO x ) .
  • Other transparent materials are possible, too.
  • the infrared light reflective coating which is attached to the inner and/or outer surface of the glass tube, acts as a mirror for infrared light. By this, infrared light, which is radiated by the core tube of a heat receiver tube, is reflected back to the core tube. The overall thermal loss of the heat receiver tube by infrared light radiation of the core tube of the heat receiver tube is reduced.
  • the inner surface can comprise the infrared reflective coating on its complete circumference. But it is also possible that the inner surface of the glass tube wall comprises the infrared light reflective coating is just on a part the circumference of the inner glass tube surface. For instance the inner surface of the glass tube is half covered by the infrared reflective coating.
  • the heat receiver tube is arranged in a focal line of parabolic mirrors . Since the sun incident to the trough parabola downwards, rays of the sunlight are collimated onto a lower half of the core tube circumference. An upper half of the core tube circumference is directly hit by rays of the sun (estimated to be about 1.2% from total incident rays) and stray rays, which come from mirror distortion and statistical aberration (estimated to be about 0%-2% (This depends on the two segmental coatings) of the total in- cident rays) . So, it is preferable to divide the inner surface of the glass tube wall into two areas.
  • the infrared light reflective coating can comprise a network of nanomaterials .
  • the nanomaterial is selected from the group consisting of nanoparticles, nanorods and nanowires. Mixtures of these materials are possible.
  • the nanomaterial comprises metallic nanomaterials such as nanowires, nanoparticles, and their mixtures.
  • This nanomaterial comprises metals.
  • This metallic nanomaterial comprises at least one metal selected from the group consisting of silver, gold and copper. Mixtures of these metals or other metals are possible, too.
  • the nanomaterial comprises fullerenes and/or sin- gle/double/multiwall carbon nanotubes. These are materials based on carbon.
  • the infrared light reflective layer can be attached directly onto the glass body surface of the glass body. But in a preferred embodiment an intermediate layer with intermediate material is arranged between the glass body surface of the glass body and the infrared light reflective coating. For instance, the intermediate layer improves the adherence of the infrared reflective coating onto the glass body surface of the glass body or it makes the manufacturing easy.
  • various materials can be coated before or after the deposition of the nanomaterials.
  • SAM can incorporate a functional group that will react with the nanomaterials and adhere it to the glass.
  • Nanoparticles and nanowires materials that can be used include metallic materials such gold, silver, copper, and other noble metals on one side, and organic nanomaterials such as fullerenes (C60) and carbon nanotubes .
  • Nanowires e.g. Ag nanowires
  • Various deposition methods can be used for fabricating nanowire films from solution such as Mayer rod coating, filtration, drop coating, spray coating, printing and transfer printing.
  • junction resistance Various methods to decrease the junction resistance can be used, such as electrochemical annealing, electroless deposition, heat treatment, rapid thermal annealing, electron beam/UV/IR flood exposures, and addition of a conducting polymer coating (e.g. PEDOT-PSS system).
  • electrochemical annealing electroless deposition
  • heat treatment rapid thermal annealing
  • electron beam/UV/IR flood exposures and addition of a conducting polymer coating (e.g. PEDOT-PSS system).
  • PEDOT-PSS system e.g. PEDOT-PSS system
  • a big advantage of using Ag NWs (Silver nanowires) based IR reflector is the fact that the transmittance curve of the Ag NW is flat in the near infrared regions, while the transmittance for the Indium Tin Oxide (ITO) electrode decreases for wavelengths >1100 nm.
  • ITO Indium Tin Oxide
  • NW materials includes copper, which possesses a comparable conductivity with silver, is 1000 times more abundant than indium or silver, and is 100 times less expensive. Therefore, copper-based nanomaterials hold great promise as cheap and scalable transparent conductors/IR reflectors .
  • various materials can be coated before or after the deposition of the nanomapterials . For example deposition of a functional self assembled monolayer (SAM) on the inside of the glass tube that can chemically bind to the nanomaterials.
  • SAM self assembled monolayer
  • the nanomaterials can be further incorporated into optically transparent polymers or optical adhesives and then coated on the tube to form the transparent conducting and IR reflecting film.
  • Figure 1 shows a cross section of a glass tube from the side.
  • Figure 2 shows a cross section of a parabolic through collector with the heat receiver tube comprising an encapsulation with the glass tube.
  • Figures 3a to 3c show schematically transparent conductive and IR reflective films coated on a full circumference and a sectional circumference of a glass tube. These figures show the use of these films by nanowires (3a), both nanowires and nanoparticles (3b) , and only nanoparticles (3c) .
  • Figure 4 shows the infra-red reflectance of an example of bar-coated film of silver nanowires with an optical transmission of 60% (300-2500nm) which comes to about 63%.
  • a glass body in form of a glass tube 1 with a glass tube wall 10.
  • the glass body surface is the inner surface 11 of the glass tube.
  • the glass tube wall 10 comprises at least partially at least one infrared light reflective coating 12.
  • the glass tube 1 is an encapsulation 20 of a heat receiver tube 2.
  • the infrared light reflective coating 12 comprises at least one nanomaterial based network film out of Silver.
  • the thickness of the infrared light reflective coating 12 is about 50- lOOOnm.
  • the infrared light reflective coating 12 is covered by an additional layer 13.
  • This additional layer 13 is an antireflec- tive layer.
  • This intermediate layer comprises is a Self Assembled Monolayer, a polymeric film, an inorganic coating.
  • the core tube 21 of the heat receiver tube 2 which is enveloped by the glass tube 1 is made of steel . Additionally the core tube surface of the core tube comprises an absorptive coating for absorbing sunlight (not shown) .
  • the heat receiver tube 2 is part of a parabolic trough collector 1000.
  • the parabolic trough collector 1000 comprises at least one parabolic mirror 3 with a sunlight reflective surface 31. By the reflective surface 31 sunlight is concentrated in the focal line 32 of the parabolic mirror 3. The concentrated sunlight is absorbed by the heat receiver tube
  • the parabolic trough collector (and the Fresnel mirror collector, respectively) is used in a solar power plant for con- verting solar energy into electrical energy.
  • the heated heat transfer fluid is used to produce steam via a heat exchanger.
  • the steam is driving a turbine, which is connected to a generator.
  • the generator produces current.

Abstract

L'invention concerne un corps en verre comprenant une surface de corps en verre, au moins un revêtement réfléchissant la lumière infrarouge étant attaché à la surface du corps en verre et le revêtement réfléchissant la lumière infrarouge comprenant un réseau d'au moins un nanomatériau. Le procédé de fabrication du corps en verre comprend les étapes suivantes : a) la préparation d'un corps en verre et b) la fixation du revêtement réfléchissant la lumière infrarouge sur une surface du corps en verre. Le corps en verre est par exemple un tube en verre comprenant une paroi de tube en verre. Un tube receveur de chaleur pour l'absorption d'énergie solaire et pour la transmission de l'énergie solaire absorbée vers un fluide de transfert de chaleur qui peut être disposé à l'intérieur d'un tube central du tube receveur de chaleur est décrit. Le tube central comprend une surface de tube central munie d'un revêtement absorbant l'énergie solaire pour absorber le rayonnement solaire de la lumière du soleil. Le tube central est enveloppé par encapsulation avec le corps en verre. Un collecteur cylindro-parabolique est décrit, comprenant au moins un tube receveur de chaleur, qui est agencé dans une ligne focale d'un miroir parabolique. Le collecteur cylindro-parabolique est utilisé dans une centrale hélioélectrique pour transformer l'énergie solaire en énergie électrique.
PCT/EP2013/054460 2012-10-02 2013-03-06 Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique WO2014053250A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12187012 2012-10-02
EP12187012.5 2012-10-02

Publications (1)

Publication Number Publication Date
WO2014053250A1 true WO2014053250A1 (fr) 2014-04-10

Family

ID=47018851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/054460 WO2014053250A1 (fr) 2012-10-02 2013-03-06 Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique

Country Status (1)

Country Link
WO (1) WO2014053250A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505628A (ja) * 2017-01-11 2020-02-20 ルクセンブルク インスティトゥート オブ サイエンス アンド テクノロジー(リスト) 赤外線反射ならびに導電性複合膜及びその製造方法
CN111847898A (zh) * 2020-07-28 2020-10-30 虞晖 一种高红外反射镀膜玻璃及其制备工艺
CN113667187A (zh) * 2021-08-13 2021-11-19 广州中达新材料科技有限公司 一种光反射材料及其制备方法和应用
CN114394758A (zh) * 2021-12-21 2022-04-26 中国建材国际工程集团有限公司 一种光伏热管理玻璃及其制备方法
CN114622405A (zh) * 2020-12-14 2022-06-14 清华大学 红外隐身布料及红外隐身服装

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134501A1 (en) * 2005-12-13 2007-06-14 Mcmaster Alan J Self-cleaning coatings applied to solar thermal devices
US20080118634A1 (en) * 2006-11-22 2008-05-22 Tsinghua University Method for manufacturing transparent conductive film
WO2008087077A1 (fr) * 2007-01-16 2008-07-24 Nv Bekaert Sa Dispositif thermochromique
US20080272682A1 (en) * 2007-05-01 2008-11-06 Deeder Aurongzeb Wavelength filtering high temperature nanostructure
WO2010130252A2 (fr) * 2009-05-14 2010-11-18 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Tube de capteur sous vide et procédé de fabrication d'un tel tube de capteur sous vide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070134501A1 (en) * 2005-12-13 2007-06-14 Mcmaster Alan J Self-cleaning coatings applied to solar thermal devices
US20080118634A1 (en) * 2006-11-22 2008-05-22 Tsinghua University Method for manufacturing transparent conductive film
WO2008087077A1 (fr) * 2007-01-16 2008-07-24 Nv Bekaert Sa Dispositif thermochromique
US20080272682A1 (en) * 2007-05-01 2008-11-06 Deeder Aurongzeb Wavelength filtering high temperature nanostructure
WO2010130252A2 (fr) * 2009-05-14 2010-11-18 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Tube de capteur sous vide et procédé de fabrication d'un tel tube de capteur sous vide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020505628A (ja) * 2017-01-11 2020-02-20 ルクセンブルク インスティトゥート オブ サイエンス アンド テクノロジー(リスト) 赤外線反射ならびに導電性複合膜及びその製造方法
JP7153355B2 (ja) 2017-01-11 2022-10-14 ルクセンブルク インスティトゥート オブ サイエンス アンド テクノロジー(リスト) 赤外線反射ならびに導電性複合膜及びその製造方法
CN111847898A (zh) * 2020-07-28 2020-10-30 虞晖 一种高红外反射镀膜玻璃及其制备工艺
CN111847898B (zh) * 2020-07-28 2021-09-28 乐清市川嘉电气科技有限公司 一种高红外反射镀膜玻璃及其制备工艺
CN114622405A (zh) * 2020-12-14 2022-06-14 清华大学 红外隐身布料及红外隐身服装
CN113667187A (zh) * 2021-08-13 2021-11-19 广州中达新材料科技有限公司 一种光反射材料及其制备方法和应用
CN113667187B (zh) * 2021-08-13 2022-08-05 广州中达新材料科技有限公司 一种光反射材料及其制备方法和应用
CN114394758A (zh) * 2021-12-21 2022-04-26 中国建材国际工程集团有限公司 一种光伏热管理玻璃及其制备方法
CN114394758B (zh) * 2021-12-21 2023-08-11 中国建材国际工程集团有限公司 一种光伏热管理玻璃及其制备方法

Similar Documents

Publication Publication Date Title
EP2739581B1 (fr) Tube recepteur de chaleur avec un tube de verre à revetement reflechissant la lumiere infrarouge, procede de fabrication de ce tube de verre, miroir cylindro-parabolique avec tube recepteur de chaleur et utilisation de ce miroir
WO2014053249A1 (fr) Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique
CA2183440C (fr) Modules et cellules solaires a fibres a semi-conducteurs
WO2014053250A1 (fr) Corps en verre muni d'un revêtement réfléchissant la lumière infrarouge contenant du graphène, procédé de fabrication du corps en verre, tube receveur de chaleur comprenant le corps en verre, collecteur cylindro-parabolique comprenant le tube receveur de chaleur et utilisation du collecteur cylindro-parabolique
Zhou et al. Metal-core/semiconductor-shell nanocones for broadband solar absorption enhancement
Li et al. Spectrally selective absorbers/emitters for solar steam generation and radiative cooling‐enabled atmospheric water harvesting
EP2153474B1 (fr) Appareil photovoltaïque à collecte de lumière améliorée
JP2017003254A (ja) メタマテリアルによって改良された受動的な放射冷却パネル
US20110185728A1 (en) High efficiency solar thermal receiver
CN101561189B (zh) 太阳能集热器
US20140242744A1 (en) Substrate and superstrate design and process for nano-imprinting lithography of light and carrier collection management devices
CN105229392B (zh) 阳光‑热转换部件、阳光‑热转换层叠体、阳光‑热转换装置及太阳热发电装置
AU2011364489B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
EP2897180B1 (fr) Dispositif photovoltaïque avec réseau de fibres pour suivi du soleil
US20110226322A1 (en) Solar battery unit
WO2012097942A2 (fr) Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique
WO2015081961A1 (fr) Concentrateur solaire de fresnel flexible
JP5328978B2 (ja) 真空コレクターチューブおよびこのような真空コレクターチューブの製造法
Tian et al. Harnessing complex photonic systems for renewable energy
US9857098B2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
EP2606289A2 (fr) Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique
TWI387713B (zh) 太陽能集熱器
CN107208934B (zh) 太阳能集热管、太阳光-热转换装置以及太阳能发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13709843

Country of ref document: EP

Kind code of ref document: A1