WO2012097942A2 - Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique - Google Patents
Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique Download PDFInfo
- Publication number
- WO2012097942A2 WO2012097942A2 PCT/EP2011/073918 EP2011073918W WO2012097942A2 WO 2012097942 A2 WO2012097942 A2 WO 2012097942A2 EP 2011073918 W EP2011073918 W EP 2011073918W WO 2012097942 A2 WO2012097942 A2 WO 2012097942A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat receiver
- receiver tube
- solar energy
- coating
- partial
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/25—Coatings made of metallic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/30—Auxiliary coatings, e.g. anti-reflective coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/74—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Definitions
- HEAT RECEIVER TUBE METHOD FOR MANUFACTURING THE HEAT
- This invention relates to a heat receiver and a method for manufacturing the heat receiver tube. More over a parabolic trough collector and a use of the parabolic trough collector are provided.
- a sun energy collecting unit of a sun field power plant based on the concentrated solar power technique is for instance a parabolic trough collector with parabolic mirrors and a heat receiver tube.
- the heat receiver tube is arranged in a focal line of the mirrors.
- a heat transfer fluid e.g. a thermo-oil or molten salt.
- the energy of the sunlight is coupled into the heat transfer fluid.
- Solar en ⁇ ergy is converted to thermal energy.
- a solar energy absorptive coating is attached on a surface of the heat receiver tube.
- Such an absorptive coating commonly comprises a multilayer stack with sequentially deposited thin film layers having different optical characteristics.
- An essential overall optical characteristic of the absorptive coating is a high solar absorbance (low solar reflectivity) for wavelengths of solar spectrum (absorption radiation) .
- Ad- ditionally a low emissivity (high reflectivity) for infrared radiation is essential.
- Such a coating is called selective solar coating.
- the solar ab- sorptive coating is attached on the surface of the heat re ⁇ ceiver tube by a sequential profile of thin films deposition on the surface using a method like sputtering.
- a further object of the invention is to provide a use of the parabolic trough collector.
- a heat receiver tube for absorbing solar energy and for transferring absorbed solar energy to a heat transfer fluid which can be located inside a core tube of the heat receiver tube comprises at least one first partial core tube surface covered by at least one first solar energy absorptive coating for absorbing a first absorption radiation of a first certain spectrum of the sunlight.
- the core tube comprises additionally at least one second partial core tube surface covered by at least one second solar energy absorptive coating for absorbing a second absorption radia- tion of a second certain spectrum of the sunlight.
- An emis ⁇ sion radiation inhibiting coating for inhibiting an emissiv- ity for infrared radiation is deposited on the second solar energy absorptive coating such that the second solar energy absorptive coating is arranged between the second partial core tube surface and the emission radiation inhibiting coating.
- the first solar energy absorptive coating forms a first partial heat receiver tube surface of the heat receiver tube and the emission radiation inhibiting coating forms a second partial heat receiver tube surface of the heat receiver tube.
- the radiation inhibiting coating is preferably directly attached to the second solar energy absorptive coating leading to a layer stack arranged on the second partial core tube surface of the core tube. This layer stack consists of the second solar energy absorptive coating and the emission ra- diation inhibiting coating.
- the first partial surface is formed by a first segment with a first circumference (segment angle) between 90 and 270° whereas the second partial surface is formed by a second segment with a second circumference between 180° and 90° .
- a method for manufacturing a heat receiver tube comprises following steps: a) Providing an uncovered core tube for a heat receiver tube with the first partial core tube surface and the second par ⁇ tial core tube surface;
- a parabolic trough collector comprising at least one parabolic mirror having a sunlight reflecting surface for concentrating sunlight in a focal line of the para ⁇ bolic mirror and at least one heat receiver tube which is ar ⁇ ranged in the focal line of the parabolic mirror.
- the heat receiver tube is arranged in the focal line such that the first partial heat receiver tube surface with the first solar absorptive coating is at least partially located opposite to the sunlight reflecting surface and the second partial heat receiver tube surface with the emission radiation inhibiting coating is at least partially averted to the sunlight re- fleeting surface.
- the first solar energy absorptive coating and the second solar energy absorptive coating form a common solar energy absorptive coating with common physical and chemical characteristics.
- This common solar energy absorptive coating has all over identical chemical and physical characteristics.
- the use of just one kind of solar ab ⁇ sorptive coating is advantageous as to the manufacturing of heat receiver tube. It is easier to deposit just one kind of solar energy absorptive coating on the overall core tube sur ⁇ face of the core tube.
- the concept of the invention is to optimize thermal charac ⁇ teristics of the heat receiver tube by maximizing a coupling of the solar energy (concentrated radiation energy) into the heat receiver tube via the first partial heat receiver tube surface and by minimizing a loss of thermal energy via the second partial heat receiver tube surface.
- the first solar energy absorptive coating forming the first partial heat re- ceiver tube surface is designed to absorb solar radiation as much as possible (absorbance more than 97%) .
- the emissivity via the second partial heat receiver tube is reduced.
- the heat receiver tube can be arranged in the fo ⁇ cal line of a parabolic mirror such that concentrated solar radiation impinges the first solar absorptive coating of the first partial heat receiver tube surface.
- the part of the heat receiver tube which is not heated by concentrated solar radiation i.e. that part which typically faces the sun and is thus subject only to direct solar radiation
- the emission radiation inhibiting coating is a non-selective coating.
- the first partial surface and/or the second par ⁇ tial surface are aligned along a longitudinal alignment of the heat receiver tube.
- This characteristic is applied to the first core tube surfaces and/or the second core tube surface, too.
- the alignment along the longitudinal alignment of the heat receiver tube and the alignment along the longitudinal alignment the core tube, respectively, is advantageous as to an arrangement of the heat receiver tube in the focal line of the parabolic mirror.
- the coupling of the concentrated radia ⁇ tion energy of the sun into the heart receiver tube is maxi ⁇ mized and the loss of thermal energy of the heat receiver tube is minimized.
- the first partial heat receiver tube surface comprises a first segment of a lateral area of the heat receiver tube with a first circumference which is selected from the range between 50° and 300° and preferably between 60° and 210°.
- the second partial heat receiver tube surface comprises a second segment of the lateral area of the heat receiver tube with a second circumference which is selected from the range between 210° and 60° and preferably between 180° and 90°. These angles are optimized concerning a collector geometry (e.g. RIM angle) .
- the emission radiation inhibiting coating is deposited on the second partial heat energy absorptive coating.
- a magnitude of the emissiv- ity of infrared radiation is reduced.
- the emissivity for in ⁇ frared radiation of the radiation inhibiting coating is less than 30%.
- the emission radiation inhibiting coat- ing comprises an emissivity for infrared radiation which is less than 20%.
- the emission radiation inhibiting coating comprises a metal which is selected from the group existing of Aluminum, Copper, Silver, Gold and Molybdenum.
- the emission radia ⁇ tion inhibiting coating can be metallic and therefore sub ⁇ stantially just consist of a metal.
- the emis ⁇ sion radiation inhibiting coating is a layer consisting of Copper.
- Such a coating with Copper blocks a heat radiation (emissivity) on the "upper" part of the heat receiver tube which is impinged upon by direct solar radiation. This strongly reduces the overall heat loss of the heat receiver tube while losing some of the total radiation impinging thereupon .
- the emission radiation inhibiting coating comprises a layer thickness which is se- lected from the range between 100 nm and 800 nm and prefera ⁇ bly 200 nm and 800 nm. Most preferably the thickness is se ⁇ lected from the range between 300 nm and 800 nm. For instance, the emission radiation inhibiting coating comprises a layer thickness of about 500 nm.
- At least one of the partial heat receiver tube surfaces forms a contiguous area.
- the heat receiver tube is arranged in the focal line in parallel to the longitudinal alignment of the mirror.
- Concentrated solar radiation impinges always the solar absorptive coating of the first par ⁇ tial heat receiver tube surface (intensity about 52 suns) whereas the second partial heat receiver tube surface is not impinged by the concentrated solar radiation (intensity about 0.6 suns) .
- Very small amount of energy could be wasted while gaining much more in heat losses due to overall emissivity.
- the overall ratio of absorption to emissivity of the heat re ⁇ ceiver tube is therefore increased even if some of the direct sun radiation is lost.
- the areas of the first partial heat receiver tube surface and the second partial heat receiver tube surface don't have to have the same extent.
- the extents of the partial heat receiver tube surfaces are easily opti- mized as well as their location on the lateral surface of the heat receiver tube (e.g. due to RIM) .
- the heat receiver tube has an encapsulation which comprises at least one encapsulation wall.
- This encapsulation wall is at least partially transparent for the first absorption ra- diation and/or for the second absorption radiation. At least partially transparent is given in the case that a transmis ⁇ sion for the absorption radiations is more than 80% and pref ⁇ erably more than 90%.
- the encapsulation is preferably a glass tube and the encapsu ⁇ lation wall is a glass tube wall. Between the heat receiver surface and the encapsulation wall there is a receiver gap. This receiver gap is evacuated.
- a gas pres ⁇ sure in the receiver gab is less than 10 ⁇ 2 mbar and prefera- bly less than 10 ⁇ 3 mbar.
- the thermal en ⁇ ergy doesn't dissipate and is substantially completely avail ⁇ able for the heating of the heat transfer fluid.
- a thin film deposition technique is used for the attaching of at least one of the solar energy absorptive coatings and/or for the attaching of the emission radia ⁇ tion inhibiting coating.
- the thin film deposition technique is preferably se- lected from the group consisting of atomic layer deposition, chemical vapor deposition and physical vapor deposition.
- the physical vapor deposition is for instance sputtering.
- structuring deposition techniques are used.
- a layer can be deposited unstructured and after the deposition a structuring is carried out, e.g. by removing deposited material.
- the attaching of at least one of the solar energy absorptive coatings and/or the attaching of the emission ra ⁇ diation inhibiting coating are carried out with the aid of a mask method.
- the first solar energy absorptive coating and the second solar energy absorptive coating form a common, contiguous, the complete core tube covering layer. In this situation the use of a mask method is not necessary.
- Figure 1 shows a cross section of a heat receiver tube and a parabolic through collector with the heat receiver tube.
- Figure 2 shows the heat receiver tube on a side.
- the core tube consists of a core tube wall 103 with steel.
- the core tube 10 comprises a first partial core tube surface 101 which is covered by a first solar energy absorptive coat ⁇ ing (selective coating) 131 for absorbing a first absorption radiation of a first certain spectrum of the sunlight.
- the first solar energy absorptive coating is a multilayer ar- rangement with different layers with different optical char ⁇ acteristics .
- a second partial core tube surface 102 is covered by a second solar energy absorptive coating 132 for absorbing a second absorption radiation of a second certain spectrum of the sunlight.
- the physical and chemical characteristics of the first solar energy absorptive coating and the second solar energy absorptive coating are the same.
- the first solar en ⁇ ergy absorptive coating 131 and the solar energy absorptive coating form a common contiguous solar absorptive coating 13 which is deposited all over the latent area of the core tube surface of the core tube.
- An emission radiation inhibiting coating 14 for inhibiting an emissivity for infrared radiation is deposited on the second selective solar energy coating 132 such that the second se ⁇ lective solar energy coating 132 is arranged between the second partial core tube surface 102 and the emission radiation inhibiting coating 14.
- the emission radiation inhibiting coating consists of Copper. Alternatively the used metal is Aluminum.
- the emission radiation inhibiting coating comprises a layer thickness of about 500 nm.
- the first solar energy absorptive coating 131 forms a first partial heat receiver tube surface 11 of the heat receiver tube 1.
- the emission radiation inhibiting coating 14 forms a second partial heat receiver tube surface 12 of the heat re ⁇ DC tube 1.
- the first partial heat receiver tube surface 11 forms a first segment 161 of the lateral area 16 of the heat receiver tube 1 with a first circumference 1611 of about 180°.
- the second partial heat receiver tube surface 12 forms a second segment 162 of the lateral area 16 of the heat receiver tube 1 with a second circumference 1612 of about 180°.
- the heat receiver tube is enveloped in a glass tube with a glass tube wall.
- the glass tube wall is transparent for the absorption radiations with a transmission of more than 90%.
- a receiver gap is located between the glass tube wall and the receiver sur- face 16 . This receiver gap is evacuated.
- a gas pressure is about 10 ⁇ 3 mbar.
- the heat receiver tube 1 is part of a parabolic trough col ⁇ lector 1000.
- the parabolic trough collector 1000 comprises at least one parabolic mirror 3 with a sunlight reflective sur ⁇ face 31. By the reflective surface 31 sunlight is concen ⁇ trated in the focal line 32 of the parabolic mirror 3.
- the heat receiver tube 1 is located in the focal line 32 of the parabolic mirror 3. Thereby the first partial heat re ⁇ titiver tube surface 11 of the heat receiver tube ("lower” part of the receiver tube 1) is arranged opposite to the sunlight reflective surface 31 of the mirror 3.
- the second partial heat receiver tube surface 12 ("upper" part of the heat receiver tube 1) is averted to the sunlight reflective surface 31 of the mirror 3.
- a heat transfer fluid 2 is lo ⁇ cated. By the solar energy absorptive coating sunlight is ab ⁇ sorbed and transferred into heat. This heat is transferred to the heat transfer fluid.
- the parabolic trough collector is used in a solar power plant for converting solar energy into electrical energy
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Cette invention porte sur un tube récepteur de chaleur destiné à absorber de l'énergie solaire et à transférer l'énergie solaire absorbée à un fluide de transfert de chaleur qui peut être placé dans un tube de noyau du tube récepteur de chaleur. Le tube de noyau présente au moins une première surface partielle de tube de noyau revêtue d'au moins un premier revêtement absorbant l'énergie solaire destinée à absorber un premier rayonnement d'absorption d'un certain premier spectre de la lumière solaire. Le tube de noyau présente au moins une deuxième surface partielle de tube de noyau revêtue d'au moins un deuxième revêtement absorbant l'énergie solaire, destiné à absorber un deuxième rayonnement d'absorption d'un certain deuxième spectre déterminé de la lumière solaire. Un revêtement inhibant le rayonnement d'émission, destiné à inhiber une émissivité pour le rayonnement infrarouge, est déposé sur le deuxième revêtement absorbant l'énergie solaire, de sorte que le deuxième revêtement d'absorption d'énergie solaire soit disposé entre la deuxième surface partielle du tube de noyau et le revêtement inhibant le rayonnement d'émission. Le premier revêtement d'absorption d'énergie solaire forme une première surface partielle de tube récepteur de chaleur et le revêtement inhibant le rayonnement d'émission forme une seconde surface partielle de tube récepteur de chaleur. L'invention porte aussi sur un collecteur en auget parabolique possédant au moins un tube récepteur de chaleur qui est disposé selon une ligne focale d'un miroir parabolique. La première surface partielle du tube récepteur de chaleur et la surface réfléchissant la lumière solaire du miroir sont disposées face à face, la seconde surface de tube récepteur de chaleur étant à l'opposé de la surface réfléchissante du miroir.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES11811545.0T ES2579053T3 (es) | 2011-01-17 | 2011-12-23 | Tubo receptor de calor, método para fabricar el tubo receptor de calor, captador cilindro-parabólico con el tubo receptor y uso del captador cilindro-parabólico |
EP11811545.0A EP2606289B1 (fr) | 2011-01-17 | 2011-12-23 | Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2011/050536 WO2012097863A1 (fr) | 2011-01-17 | 2011-01-17 | Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique |
EPPCT/EP2011/050536 | 2011-01-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2012097942A2 true WO2012097942A2 (fr) | 2012-07-26 |
WO2012097942A3 WO2012097942A3 (fr) | 2014-01-03 |
Family
ID=45529050
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/050536 WO2012097863A1 (fr) | 2011-01-17 | 2011-01-17 | Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique |
PCT/EP2011/073918 WO2012097942A2 (fr) | 2011-01-17 | 2011-12-23 | Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2011/050536 WO2012097863A1 (fr) | 2011-01-17 | 2011-01-17 | Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique |
Country Status (3)
Country | Link |
---|---|
CN (2) | CN202747664U (fr) |
ES (1) | ES2579053T3 (fr) |
WO (2) | WO2012097863A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105283716A (zh) * | 2013-04-29 | 2016-01-27 | 特莫液体公司 | 包括用于防治能量损耗的系统的隔热管状塔式太阳能接收器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012097863A1 (fr) * | 2011-01-17 | 2012-07-26 | Siemens Concentrated Solar Power Ltd. | Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique |
CN107222163B (zh) * | 2017-04-17 | 2018-12-14 | 江苏大学 | 一种基于碟式聚光的复合分频太阳能光伏光热联产装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006015815A1 (fr) * | 2004-08-05 | 2006-02-16 | Schott Ag | Absorbeur solaire |
US20100258111A1 (en) * | 2009-04-07 | 2010-10-14 | Lockheed Martin Corporation | Solar receiver utilizing carbon nanotube infused coatings |
EP2253737A1 (fr) * | 2009-05-20 | 2010-11-24 | SCHOTT Solar AG | Revêtement d'absorption à rayonnement sélectif et tuyau d'absorbeur avec un revêtement d'absorption à rayonnement sélectif |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2503419Y (zh) * | 2001-10-16 | 2002-07-31 | 高复立 | 全玻璃真空太阳能集热管 |
DE102008010316A1 (de) * | 2008-02-21 | 2009-08-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Solarkollektor |
WO2012097863A1 (fr) * | 2011-01-17 | 2012-07-26 | Siemens Concentrated Solar Power Ltd. | Tube récepteur de chaleur, procédé de fabrication de tube récepteur de chaleur, collecteur à miroir parabolique comprenant le tube récepteur de chaleur et utilisation du collecteur à miroir parabolique |
-
2011
- 2011-01-17 WO PCT/EP2011/050536 patent/WO2012097863A1/fr active Application Filing
- 2011-12-23 ES ES11811545.0T patent/ES2579053T3/es active Active
- 2011-12-23 WO PCT/EP2011/073918 patent/WO2012097942A2/fr active Application Filing
-
2012
- 2012-01-17 CN CN2012200200339U patent/CN202747664U/zh not_active Expired - Fee Related
- 2012-01-17 CN CN2012100136799A patent/CN102589169A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006015815A1 (fr) * | 2004-08-05 | 2006-02-16 | Schott Ag | Absorbeur solaire |
US20100258111A1 (en) * | 2009-04-07 | 2010-10-14 | Lockheed Martin Corporation | Solar receiver utilizing carbon nanotube infused coatings |
EP2253737A1 (fr) * | 2009-05-20 | 2010-11-24 | SCHOTT Solar AG | Revêtement d'absorption à rayonnement sélectif et tuyau d'absorbeur avec un revêtement d'absorption à rayonnement sélectif |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105283716A (zh) * | 2013-04-29 | 2016-01-27 | 特莫液体公司 | 包括用于防治能量损耗的系统的隔热管状塔式太阳能接收器 |
EP2993425A4 (fr) * | 2013-04-29 | 2016-10-05 | Termo Fluids S L | Récepteur solaire de tour tubulaire isolé thermiquement avec système d'exploitation des pertes énergétiques |
Also Published As
Publication number | Publication date |
---|---|
WO2012097863A1 (fr) | 2012-07-26 |
CN202747664U (zh) | 2013-02-20 |
ES2579053T3 (es) | 2016-08-04 |
WO2012097942A3 (fr) | 2014-01-03 |
CN102589169A (zh) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2739581B1 (fr) | Tube recepteur de chaleur avec un tube de verre à revetement reflechissant la lumiere infrarouge, procede de fabrication de ce tube de verre, miroir cylindro-parabolique avec tube recepteur de chaleur et utilisation de ce miroir | |
CN101514853B (zh) | 选择性吸收辐射涂层、吸收管及其制造方法 | |
US20110185728A1 (en) | High efficiency solar thermal receiver | |
US20070209658A1 (en) | Solar absorber | |
AU2011364489B2 (en) | Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector | |
EP3091307A1 (fr) | Système hybride de cylindre paramétrique thermosolaire et de récepteur photovoltaïque | |
JP6193688B2 (ja) | 太陽光−熱変換装置及び太陽熱発電装置 | |
WO2012097942A2 (fr) | Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique | |
EP2606289B1 (fr) | Tube récepteur de chaleur, procédé de fabrication du tube récepteur de chaleur, collecteur en auget parabolique équipé du tube récepteur, et utilisation du collecteur en auget parabolique | |
US9857098B2 (en) | Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector | |
JP2003322419A (ja) | 住宅用電力発電システムの太陽光複合集束機 | |
EP2677249A1 (fr) | Tube récepteur de chaleur avec couche de barrière de diffusion | |
EP3255357B1 (fr) | Tube de captation de chaleur solaire, dispositif de conversion lumière solaire/chaleur et dispositif de production d'énergie solaire | |
De Maio et al. | Optimized solar absorber coating for a new concentrating solar collector under high vacuum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11811545 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011811545 Country of ref document: EP |