WO2014051119A1 - 電縫溶接鋼管 - Google Patents

電縫溶接鋼管 Download PDF

Info

Publication number
WO2014051119A1
WO2014051119A1 PCT/JP2013/076422 JP2013076422W WO2014051119A1 WO 2014051119 A1 WO2014051119 A1 WO 2014051119A1 JP 2013076422 W JP2013076422 W JP 2013076422W WO 2014051119 A1 WO2014051119 A1 WO 2014051119A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel pipe
martensite
welded steel
electric resistance
Prior art date
Application number
PCT/JP2013/076422
Other languages
English (en)
French (fr)
Inventor
篠原 康浩
健介 長井
雅和 尾▲崎▼
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020147032630A priority Critical patent/KR101605152B1/ko
Priority to CN201380030721.0A priority patent/CN104350168B/zh
Priority to JP2014500584A priority patent/JP5516834B1/ja
Priority to EP13840703.6A priority patent/EP2902519A4/en
Priority to US14/420,971 priority patent/US9726305B2/en
Priority to CA2881372A priority patent/CA2881372C/en
Publication of WO2014051119A1 publication Critical patent/WO2014051119A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/08Seam welding not restricted to one of the preceding subgroups
    • B23K11/087Seam welding not restricted to one of the preceding subgroups for rectilinear seams
    • B23K11/0873Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12292Workpiece with longitudinal passageway or stopweld material [e.g., for tubular stock, etc.]

Definitions

  • the present invention relates to an electric resistance welded steel pipe having excellent low temperature toughness and low yield ratio, which is optimal for uses such as oil and natural gas transportation line pipes.
  • the ERW welded steel pipe used for the pipeline is required to be thicker and higher in strength.
  • bending and unbending may be applied to the ERW welded steel pipe, so a low yield ratio is required to prevent buckling.
  • the yield ratio is an index of durability performance until the material is subjected to a stress larger than the yield stress and yields the material and then buckles and breaks. The lower the yield ratio, the less the steel pipe is buckled.
  • the yield ratio (hereinafter also referred to as “YR”) is a value represented by the ratio (YS / TS) of yield stress (hereinafter also referred to as “YS”) and tensile strength (hereinafter also referred to as “TS”).
  • YR decreases if the metal structure of the steel material is made of a multiphase structure consisting of a soft phase and a hard phase. Has been.
  • Patent Document 1 discloses a low-yield ratio ERW steel pipe in which island-like martensite and retained austenite are generated as the second phase.
  • Patent Document 2 discloses a hot rolled steel sheet having a low yield ratio, which is a material for line pipes manufactured by spiral pipe making or UO pipe making.
  • the present invention has been made in view of such circumstances, and provides a thick-walled electric-welded steel pipe that can maintain a low yield ratio even when the pipe is formed, and a method for manufacturing the same.
  • Nb was added to ensure the strength by precipitating NbC in ferrite.
  • Nb increases the yield stress of the hot-rolled steel sheet that is the material of the steel pipe, and as a result, it is difficult to achieve a low yield ratio after pipe forming. It was. Therefore, the present inventors have studied to increase the strength and reduce the yield ratio not by precipitation strengthening but by the hard phase of the second phase.
  • ⁇ Dual phase steel undergoes work hardening by introducing dislocations into the soft phase around the hard phase during plastic deformation. Therefore, if the deformation of the hard phase is suppressed, the accumulation of dislocations into the soft phase is promoted, and the work hardening rate can be increased. Accordingly, in the ferrite-martensitic duplex stainless steel, the harder the martensite (hard phase) that is the second phase, the higher the work hardening rate of the ferrite, and the work hardening characteristics of the steel sheet and the steel pipe are improved.
  • the present inventors examined in detail the yield ratio exerted by the hard phase of the second phase.
  • the cooling after hot rolling is a two-stage cooling in which the cooling rate is changed at 650 ° C., and the coiling temperature after hot rolling is made low so that the hard phase is refined and hardened. And found that the yield ratio can be lowered.
  • the present inventors have controlled the hot rolling conditions and reduced the ferrite grain size. As a result, it was found that the deterioration of the toughness of the steel pipe can be suppressed by refining the hard phase after winding.
  • the composition of the base material is mass%, C: 0.05 to 0.10%, Mn: 1.00 to 1.60%, Ti: 0.005 to 0.030%, Nb: 0.005% or more and less than 0.035%, and N: 0.001 to 0.008% In addition, Si: 0.01 to 0.60%, and Al: 0.001 to 0.10% One or both of P: 0.02% or less, S: limited to 0.005% or less, and The balance is iron and inevitable impurities, Ceq represented by the following (formula 1) satisfies 0.23 ⁇ Ceq ⁇ 0.38, and An electric resistance welded steel pipe characterized in that the metal structure of the base metal contains 3 to 13% martensite in area ratio, and the balance is ferrite.
  • Ceq C + Mn / 6 + (Cr + Mo + V) / 5 + (Ni + Cu) / 15 (Formula 1)
  • C, M, Cr, Mo, V, Ni, and Cu in (Expression 1) are values representing the content of each element in mass%.
  • the component composition of the base material is further mass%, Ni: 1.0% or less, Cu: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, V: 0.2% or less, One or more of Ca: 0.006% or less and REM: 0.006% or less are contained.
  • the composition of the base material is Mn: 1.00 to 1.50%, Si: 0.40% or less, Meet, and 0.23 ⁇ Ceq ⁇ 0.30
  • the average value of the equivalent circle diameter of the martensite of the metal structure of the base material is 0.5 to 1.5 ⁇ m, and
  • composition of the base material is Nb: 0.005 to 0.020% (3)
  • the component composition of the base material is further mass%, Ni: 0.5% or less, Cu: 0.5% or less, Cr: 0.5% or less, Mo: 0.2% or less, V: 0.1% or less,
  • the strength level is X60-X70 grade (American Petroleum Institute (API) standard) (the tensile strength of the steel pipe is 520-790 MPa), it has sufficient low temperature toughness, and the yield ratio can be improved even when the pipe is still formed. It is possible to provide an electric resistance welded steel pipe that can be reduced to 90% or less and a method for manufacturing the same.
  • API American Petroleum Institute
  • FIG. 2A is an optical micrograph of a conventional ERW welded steel pipe having high Nb and high C
  • FIG. 2B is an optical micrograph observed after repeller etching
  • FIG. 3A is an optical micrograph of an electric resistance welded steel pipe having a composition within the scope of the present invention
  • FIG. 3B is an optical micrograph observed after repeller etching.
  • the metal structure of the hot-rolled steel sheet as a base material into a multiphase structure composed of a soft phase and a hard phase.
  • the soft phase is ferrite and the hard phase is martensite.
  • a yield ratio can be reduced by reducing the coiling temperature of hot rolling.
  • Martensite can be observed as a whitened phase with an optical microscope if it is subjected to repeller etching. Therefore, the area ratio of martensite can be obtained from the structure photograph.
  • FIG. 2 (a) is an optical micrograph of a conventional high-Nb and high-C ERW welded steel pipe with excessive addition of Nb and C
  • FIG. 2 (b) is after repeller etching. It is the optical microscope photograph observed.
  • FIG. 3A is an optical micrograph of an electric resistance welded steel pipe having a composition within the scope of the present invention
  • FIG. 3B is an optical micrograph observed after repeller etching. As can be seen by comparing FIG. 2 (b) and FIG.
  • the volume ratio of the retained austenite in FIG. 3B was measured by the X-ray diffraction method. As a result, the volume ratio of retained austenite was 1% or less. If the volume fraction of retained austenite is 1% or less, the properties of the electric resistance welded steel pipe of the present invention are not affected.
  • the yield ratio was determined by performing a tensile test and obtaining YS / TS, and expressed as a percentage.
  • the result of investigating the relationship between the area ratio of martensite and the yield ratio is shown in FIG. As shown in FIG. 1, when the area ratio of martensite is 3% or more, the yield ratio is 90% or less. Furthermore, when the area ratio of martensite is 8% or more, the yield ratio is drastically lowered, and the yield ratio can be lowered to 80% or less.
  • the component of the hot rolled steel sheet which is the material of the ERW steel pipe, is the same as that of the base material of the ERW welded steel pipe.
  • “%” represents “mass%”.
  • C is a useful element that increases the strength of the steel, increases martensite, hardens the steel, and contributes to a decrease in the yield ratio, so the lower limit is made 0.05%. If the amount of C exceeds 0.10%, the on-site weldability is deteriorated, the area ratio of martensite is increased, the strength becomes too high, and the toughness is deteriorated, so the upper limit is made 0.10%. From the viewpoint of ensuring strength, the C content is preferably 0.06% or more. From the viewpoint of ensuring toughness without excessively increasing the strength, the C content is preferably 0.08% or less.
  • Mn is an element that enhances the hardenability of steel and contributes to the formation of martensite.
  • 1.00% or more of Mn is added to ensure strength. If Mn is added excessively, the area ratio of martensite increases and the toughness deteriorates, so the upper limit is made 1.60%.
  • the Mn content is preferably 1.10% or more, more preferably 1.20% or more.
  • the amount of Mn is preferably 1.50% or less, and more preferably 1.40% or less.
  • Ti is an element that forms carbonitrides, refines the structure, and contributes to improved toughness.
  • a thick steel plate is used.
  • the Ti content is preferably 0.008% or more, and more preferably 0.010% or more.
  • the Ti content is preferably 0.025% or less, and more preferably 0.020% or less.
  • Nb is an element that lowers the recrystallization temperature, and suppresses the recrystallization of austenite and contributes to the refinement of the structure during hot rolling, so 0.005% or more is added. If Nb is added excessively, the yield stress increases due to excessive precipitation strengthening and the yield ratio increases, so the content is made less than 0.035%. From the viewpoint of reducing the yield ratio, the Nb content is more preferably 0.025% or less, and further preferably 0.020% or less.
  • N is an element that forms nitrides, particularly TiN, and contributes to the refinement of the structure, and contains 0.001% or more. In order to make the structure fine, it is preferable to contain 0.002% or more of N, more preferably 0.003% or more. If the amount of N becomes excessive, coarse nitrides are formed and the toughness is impaired, so the upper limit is made 0.008%.
  • the upper limit of N content is preferably 0.007%, more preferably 0.006%.
  • one or two of Si and Al are used as a deoxidizing element.
  • Si is effective as a deoxidizer.
  • Al addition is not essential.
  • addition of 0.01% or more is preferable.
  • Si is an element that increases the strength by solid solution strengthening, addition of 0.05% or more is more preferable, and addition of 0.10% or more is more preferable. If Si is added in an amount exceeding 0.60%, ductility, toughness, and electroweldability are impaired, so the upper limit is made 0.60%. From the viewpoint of ensuring toughness, the Si content is preferably 0.40% or less, and more preferably 0.30% or less.
  • Al is effective as a deoxidizer.
  • Si is added, addition is not essential.
  • 0.001% or more of addition is preferable.
  • 0.005% or more of Al is preferably added, and 0.01% or more of addition is more preferable.
  • Al is added in excess of 0.10%, inclusions increase and ductility and toughness are impaired, so the content is limited to 0.10% or less. From the viewpoint of ensuring toughness, the Al content is preferably 0.05% or less, and more preferably 0.03% or less.
  • the content of impurities P and S is limited.
  • P and S are not intentionally added elements, but P and S contained in the raw materials are mixed.
  • both contents are large, the following restrictions are imposed.
  • P is an impurity, and the upper limit of the content is 0.02%. Since the grain boundary fracture is prevented and the toughness is improved by reducing the amount of P, the amount of P is preferably 0.015% or less, and more preferably 0.010% or less. Since it is preferable that the amount of P is small, there is no lower limit. Usually, 0.001% or more is contained from the balance between characteristics and cost.
  • S is an impurity, and the upper limit of the content is 0.005%.
  • the amount of S is preferably 0.003% or less, and more preferably 0.002% or less. Since a smaller amount of S is preferable, no lower limit is provided. Usually, 0.0001% or more is contained from the balance between characteristics and cost.
  • Ceq is an index of hardenability and may be used as an index of strength. It calculates
  • the lower limit of Ceq is preferably 0.25 or more.
  • the upper limit of Ceq is preferably 0.35 or less, and more preferably 0.30 or less.
  • C, Mn, Cr, Mo, V, Ni, and Cu are the content [% by mass] of each element.
  • Cr, Mo, V, Ni, and Cu are elements that are selectively added in the present invention.
  • Cr is calculated as 0 in the above (Equation 1).
  • one or more of Ni, Cu, Cr, Mo, and V can be added to improve the hardenability of the steel and increase the strength.
  • 1 type, or 2 or more types of Ca and REM can be added. Since these elements are elements that are arbitrarily added and are not essential additive elements, the lower limit of the content is not specified. In the following description, a preferable lower limit value is described. This is a preferable lower limit value for obtaining the effect of improving the hardenability and increasing the strength by adding each element. Even if the content of each element is less than the preferred lower limit, the steel is not adversely affected.
  • Ni is an element that improves the hardenability of steel and contributes to the improvement of toughness.
  • the Ni content is preferably 0.05% or more.
  • the upper limit is made 1.0%, more preferably 0.5% or less, and even more preferably 0.3% or less.
  • Cu is an element that improves the hardenability of steel and contributes to solid solution strengthening, so 0.05% or more is preferably added. If Cu is added excessively, the surface properties of the steel sheet may be impaired, so the upper limit is made 1.0% or less. From the economical viewpoint, the upper limit of the amount of Cu is more preferably 0.5%, and further preferably 0.3% or less. When adding Cu, it is preferable to add Ni simultaneously from the viewpoint of preventing deterioration of surface properties.
  • Cr is an element effective for improving the strength, and it is preferable to add 0.05% or more. If Cr is added excessively, the weldability may deteriorate when the ends of the steel pipe are butted together (on-site welding), so 1.0% is made the upper limit. More preferably, it is 0.5% or less, More preferably, it is 0.2% or less.
  • Mo is an element that contributes to increasing the strength of steel, and it is preferable to add 0.05% or more.
  • Mo is an expensive element, and the upper limit is 0.5%.
  • a more preferable upper limit of the Mo amount is 0.3% or less, and further preferably 0.1% or less.
  • V is an element that generates carbides and nitrides and improves the strength of the steel by precipitation strengthening. In order to effectively increase the strength, it is preferable to add 0.01% or more. If V is added excessively, carbides and nitrides become coarse and the yield ratio may increase, so the upper limit of the V amount is 0.2%. From the viewpoint of reducing the yield ratio, the upper limit of the V amount is more preferably 0.1% or less, and even more preferably 0.05% or less.
  • Ca and REM control the form of sulfide inclusions, improve the low temperature toughness, and further refine the oxide of the ERW weld to improve the toughness of the ERW weld, so one or both Is preferably added in an amount of 0.001% or more. If Ca and REM are added excessively, oxides and sulfides increase and adversely affect toughness. Therefore, the upper limit of the addition amount is set to 0.006%.
  • REM is a general term for Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • the remainder of the composition of the base material of the ERW welded steel pipe according to the present invention other than those described above is iron and unavoidable impurities.
  • Inevitable impurities are components contained in raw materials or mixed in during the manufacturing process, and are components not intentionally contained in steel.
  • P and S must be controlled to be 0.02% or less and 0.005% or less, respectively. It is preferable to control O to be 0.006% or less.
  • Sb, Sn, W, Co, and As are usually unavoidable 0.1% or less, Mg, Pb, and Bi are 0.005% or less, and B and H are 0.0005% or less. There may be contamination as an impurity, but there is no need to control in the normal range.
  • Si, Al, Ni, Cu, Cr, Mo, V, Ca, and REM which are optional elements or optional elements in the steel pipe of the present invention, are mixed as inevitable impurities even if they are not intended to be contained.
  • the steel pipe of the present invention is not adversely affected as long as it is below the upper limit of the content when intentionally contained.
  • N may be treated as an inevitable impurity in steel, but in the electric resistance welded steel pipe of the present invention, it is necessary to control it within a certain range as described above.
  • the base metal structure of the electric resistance welded steel pipe of the present invention is a martensite and the balance is a multiphase structure made of ferrite.
  • the area ratio of martensite is 3% or more in order to reduce the yield ratio.
  • the area ratio of martensite is preferably 5% or more, and more preferably 8% or more. Since the toughness decreases when the martensite increases, the upper limit of the martensite area ratio is set to 13%.
  • the area ratio of martensite is preferably 12% or less, and more preferably 10% or less.
  • the area ratio of martensite is obtained with an optical microscope after performing repeller etching. As the retained austenite increases, the martensite hardness decreases and the yield ratio increases. Therefore, in the present invention, the volume fraction of retained austenite is measured by an X-ray diffraction method, and if the volume fraction of retained austenite is 1% or less, it is determined that the metal structure is a multiphase structure composed of martensite and ferrite. It shall be.
  • Martensite is preferably dispersed in ferrite with an average equivalent circle diameter of 0.5 to 1.5 ⁇ m.
  • the average value of the equivalent circle diameter of martensite is less than 0.5 ⁇ m, it does not contribute to the decrease in the yield ratio.
  • the average value of the equivalent circle diameter of martensite exceeds 1.5 ⁇ m, the low temperature toughness is impaired.
  • the average value of the equivalent circle diameter of martensite is more preferably 0.7 to 1.1 ⁇ m.
  • the maximum equivalent circle diameter is 7 ⁇ m or less, more preferably 5 ⁇ m or less, and the standard deviation is 1 ⁇ m or less, more preferably 0.8 ⁇ m or less.
  • the steel slab is heated and hot-rolled, controlled cooling, wound and air-cooled to produce a hot-rolled steel sheet.
  • the heating temperature of the steel slab is preferably 1150 ° C. or higher in order to dissolve elements forming carbides such as Nb in the steel. If the heating temperature is too high, the structure becomes coarse. Therefore, 1250 ° C. or lower is preferable in order to prevent coarsening of the ferrite grain size.
  • Hot rolling needs to be performed in a temperature range where the steel structure is an austenite phase. This is because if the rolling is performed after the ferrite transformation has started, processed ferrite is generated and the anisotropy of the characteristics is increased. Therefore, the finishing temperature of hot rolling is preferably Ar 3 or higher at which ferrite transformation during cooling starts. If the finishing temperature is too high, the structure becomes coarse, so Ar 3 + 50 ° C. or lower is preferable.
  • Ar 3 can be obtained from the thermal expansion behavior when heated and cooled using a test material having the same component as the base steel plate. Moreover, it is also possible to obtain
  • C, Mn, Ni, Cu, Cr, and Mo are the content [% by mass] of each element.
  • Ni, Cu, Cr, and Mo are arbitrary additive elements in the present invention. When these elements are not added intentionally, the calculation is made as 0 in the above (Formula 2).
  • the amount of reduction at 950 ° C. or lower is 70% or more. Depending on the thickness of the steel slab, hot rolling may be performed at a temperature exceeding 950 ° C. However, in order to promote ferrite transformation, it is preferable to increase the amount of rolling at 950 ° C. or less to accumulate strain.
  • the amount of reduction at 950 ° C. or lower is obtained as a percentage by dividing the difference between the plate thickness at 950 ° C. and the plate thickness after finish rolling by the plate thickness after finish rolling.
  • accelerated cooling is performed from a temperature of 750 ° C. or higher, preferably Ar 3 or higher, in order to generate martensite. If the temperature is lowered too much after hot rolling, coarse polygonal ferrite is produced, and the strength may be lowered or the toughness may be deteriorated.
  • the accelerated cooling is a two-stage cooling in which the average cooling of the previous stage up to 650 ° C. is 10 to 25 ° C./s, and the average cooling speed of the latter stage is 20 to 50 ° C./s until the accelerated cooling is stopped below 650 ° C. .
  • the cooling rate of the latter stage is 1.5 times or more, preferably 2 times or more the cooling rate of the former stage.
  • the above-mentioned two-stage cooling is achieved by generating ferrite in the first stage cooling and increasing the cooling rate in the second stage, thereby generating martensite without generating pearlite and without remaining austenite. This is because a multiphase structure of ferrite and martensite is obtained.
  • Accelerated cooling stop temperature is set to 300 ° C. or lower, which is sufficiently lower than the Ms point, and by producing a hot-rolled steel strip by winding, hard martensite can be generated and the yield ratio can be lowered.
  • the accelerated cooling stop temperature exceeds 100 ° C., the area ratio of martensite is insufficient or austenite remains excessively, and the yield ratio is not sufficiently lowered.
  • the obtained hot-rolled steel strip is air-cooled, formed into a tube in the cold, and the ends are butt-welded and electro-welded to produce an electro-welded steel pipe.
  • the present invention is an invention assuming a thick-walled ERW steel pipe having a small outer diameter.
  • the ratio t / D of the thickness t of the base metal and the outer diameter D of the ERW steel pipe is about 2.0 to 6.0%, and is required for pipelines laid in the deep sea.
  • T is 12.5 mm or more and t / D is 5.0% or more.
  • a seam heat treatment may be applied in which only the ERW weld is heated and accelerated.
  • ERW welding the butt portion is heated and melted, pressure is applied, and solid phase bonding is performed. Therefore, the vicinity of the ERW weld portion is plastically deformed at a high temperature and then rapidly cooled. Therefore, the ERW welded part is harder than the base metal, and the low temperature toughness and deformation performance of the ERW steel pipe can be further improved by performing seam heat treatment.
  • Steel having chemical components shown in Table 1 was cast into a steel slab. These steel slabs were heated to the heating temperature shown in Table 2, hot rolling was performed at a rolling finishing temperature (FT in Table 2) of 3 or more Ar points, and accelerated cooling was performed to obtain a base steel plate.
  • the accelerated cooling is a two-stage cooling in which the cooling rate is changed at 650 ° C., and the average cooling rate in the latter stage (up to 650 ° C.) is about twice the average cooling rate in the previous stage (up to 650 ° C.).
  • the steel plate after accelerated cooling was wound at a winding temperature (CT) shown in Table 2 to obtain a hot-rolled steel strip.
  • CT winding temperature
  • the obtained hot-rolled steel strip was air-cooled, it was formed into a tubular shape in a continuous roll forming process, and the ends of the hot-rolled steel strip were butted together and subjected to electric resistance welding. Then, if necessary, the electrowelded part was heated, accelerated and cooled, and subjected to seam heat treatment.
  • the amount of reduction” in Table 2 is the amount of reduction at 950 ° C. or lower in the hot rolling process, and the difference between the plate thickness at 950 ° C. and the plate thickness after finish rolling is the plate thickness after finish rolling. The percentage is obtained by dividing by. “T” indicates the thickness of the steel sheet, and “D” indicates the outer diameter of the steel pipe after pipe making.
  • Ar 3 in Table 1 was determined from the content [% by mass] of C, Mn, Ni, Cu, Cr, and Mo shown in Table 1.
  • Ni, Cu, Cr, and Mo are arbitrary additive elements in the present invention. As shown in the blank in Table 1, when not intentionally added, calculation was made as 0 in the following (Formula 2). .
  • all of the examples of the present invention have a metal structure composed of martensite and ferrite having an appropriate area ratio, and the tensile strength of the ERW welded steel pipe is X56 or more (tensile strength of 490 MPa or more). The yield ratio is good at 90% or less.
  • all of the inventive examples exhibited high Charpy absorbed energy of 190 J or more even at ⁇ 30 ° C. and good toughness.
  • No. No. 21 is an example in which since the amount of C is small, the strength is lowered, the generation of martensite is insufficient, and the yield ratio is increased.
  • No. No. 22 has a large amount of C.
  • No. 23 is an example in which the amount of Mn is large, martensite is excessively generated, and the toughness is lowered.
  • No. No. 24 is an example in which the strength is reduced because the amount of Mn is small.
  • No. No. 25 is an example in which Ceq is too high, martensite is excessively generated, and toughness is lowered.
  • No. No. 26 is an example in which the strength is lowered because Ceq is too low.
  • No. No. 27 is an example in which the toughness is reduced because the Ti amount is small, and the bainite is generated in addition to the ferrite and the yield ratio is increased because the Nb amount is large.
  • No. No. 28 is 650 ° C. or lower; martensite is not generated because the cooling speed is slow, and the yield ratio is increased.
  • no. No. 29 is an example in which the accelerated cooling rate is as high as 450 ° C. and martensite is not generated and the yield ratio is increased.
  • an ERW welded steel pipe having X60 to 70 grade strength that can be used for pipelines laid in the deep sea, etc., sufficient low temperature toughness, and low yield ratio. Therefore, industrial applicability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 深海へ敷設するラインパイプに好適な、十分な強度、低温靭性と低い降伏比を有する電縫溶接鋼管であって、母材の成分が、質量%で、C:0.05~0.10%、Mn:1.00~1.60%、Nb:0.005%以上、0.035%未満を含有し、Ceqが0.23~0.38であり、母材の金属組織は、面積率で3~13%のマルテンサイトと、残部フェライトからなることを特徴とする。

Description

電縫溶接鋼管
 本発明は、石油、天然ガス等の輸送用ラインパイプ等の用途に最適な、低温靭性に優れ、かつ、降伏比の低い電縫溶接鋼管に関するものである。
 石油、天然ガスを長距離にわたって輸送するパイプラインでは、高圧化による輸送効率の向上や深海への敷設が進められている。そのため、パイプラインに使用される電縫溶接鋼管には、厚肉化や高強度化が要求される。また、パイプラインを深海に敷設する際には電縫溶接鋼管に曲げ及び曲げ戻しが負荷されることがあるので、座屈しないように低降伏比化が要求される。
 電縫鋼管が厚肉になると、熱延鋼板から電縫鋼管を製造する時に導入される加工歪みが大きくなる。そのため、降伏比の上昇を抑制することが難しくなる。降伏比は、降伏応力よりも大きな応力が材料に付加され、材料が降伏した後、座屈や破断に至るまでの耐久性能の指標であり、降伏比が低いほど、鋼管は座屈しにくい。降伏比(以下「YR」ともいう)とは、降伏応力(以下「YS」ともいう)と引張強度(以下「TS」ともいう)の比(YS/TS)で表される値である。
 一般に、鋼材の金属組織を軟質相と硬質相とからなる複相組織にすれば、YRが低下することが知られており、母材の金属組織を複相組織とした電縫溶接鋼管が提案されている。
 特許文献1には、第2相として島状マルテンサイト及び残留オーステナイトを生成させた、低降伏比電縫鋼管が開示されている。特許文献2には、スパイラル造管やUO造管によって製造されるラインパイプ用の素材となる低降伏比の熱延鋼板が開示されている。
特開平5-105952号公報 特開平10-176239号公報
 電縫溶接鋼管の母材が厚くなり、外径が小さくなると、鋼板や鋼帯を管状に成形する際に導入される加工歪みが大きくなるため、造管後、低降伏比を維持することが困難になる。特に、強度レベルが米国石油協会(API)規格でX60級(引張強度520MPa以上)であり、肉厚tと外径Dとの比t/Dが5%以上である電縫溶接鋼管を造管ままで製造する場合、降伏比を90%以下に維持することは困難であった。
 また、降伏比を低下させるためには、軟質相と硬質相とからなる複相組織とすることが必要であるが、フェライトとマルテンサイトとからなる複相組織は、低温靱性の確保が難しい。しかしながら、パイプラインに使用される電縫溶接鋼管には、低降伏比化と併せて、優れた靭性も要求されており、これらの特性と両立させた電縫溶接鋼管が要求されている。
 本発明はこのような実情に鑑みてなされたものであり、造管ままでも低降伏比を維持することができる、厚肉の電縫溶接鋼管及びその製造方法を提供するものである。
 従来の複相組織を有する電縫溶接鋼管においては、Nbを添加し、NbCをフェライト中に析出させることにより強度を確保していた。しかしながら、本発明者の検討の結果、多量のNb添加は鋼管の素材である熱延鋼板の降伏応力を高め、その結果、造管後の低降伏比化を図ることが困難になることを見出した。そこで、本発明者らは、析出強化によってではなく、第二相の硬質相により高強度化及び低降伏比を図ることを検討した。
 二相鋼は、塑性変形中に硬質相の周りの軟質相に転位が導入されて加工硬化する。そのため、硬質相の変形を抑制すると、軟質相への転位の蓄積が促進され、加工硬化率を高めることができる。したがって、フェライト-マルテンサイト二相鋼は、第二相であるマルテンサイト(硬質相)が硬質であるほどフェライトの加工硬化率が高くなり、鋼板、鋼管の加工硬化特性が向上する。
 鋼を熱延した後、室温まで加速冷却することによって、パーライト変態やベイナイト変態を抑制し、硬質なマルテンサイト(硬質相)を生成させることができる。一方、冷却後、マルテンサイトに変態せず、硬質相に残留オーステナイトが含まれると、加工硬化特性が低下する。
 そこで、本発明者らは、上述したようにNbの添加量を抑えるとともに、C量も低減して、残留オーステナイトの生成を抑制した複相組織とすることに着目し鋭意検討した結果、X60~X70級の強度を有し、かつ降伏比の低いフェライト-マルテンサイト二相鋼を得うることを見出した。
 さらに、本発明者らは第二相の硬質相が及ぼす降伏比について詳細に検討した。その結果、熱間圧延後の冷却を650℃を境に冷却速度を変化させる2段冷却とし、熱間圧延後の巻取温度を低温とすることにより、硬質相の微細化、硬質化を図ることができ、降伏比を低くすることができることを見出した。
 また、本発明者らは、上述してきたような高強度化や低降伏比に併せて、良好な靭性も両立させるべく検討した結果、熱間圧延条件を制御して、フェライト粒径を微細なものとし、その結果、巻き取り後の硬質相を微細化させることにより鋼管の靭性劣化を抑制できることを見出した。
 以上の知見に基づき、本発明者らは本発明を完成した。その要旨は以下のとおりである。
 (1)母材の成分組成が、質量%で、
  C :0.05~0.10%、
  Mn:1.00~1.60%、
  Ti:0.005~0.030%、
  Nb:0.005%以上、0.035%未満、及び
  N :0.001~0.008%
を含有し、さらに、
  Si:0.01~0.60%、及び
  Al:0.001~0.10%
の一方又は双方を含有し、
  P :0.02%以下、
  S :0.005%以下、及び
に制限され、
 残部が鉄及び不可避的不純物であり、
 下記(式1)で表わされるCeqが、0.23≦Ceq≦0.38を満たし、かつ、
 母材の金属組織が、面積率で3~13%のマルテンサイトを含有し、残部がフェライトである
ことを特徴とする電縫溶接鋼管。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(式1)
 ここで、(式1)におけるC、M、Cr、Mo、V、Ni、Cuは、各元素の含有量を質量%で表した値である。
 (2)前記母材の成分組成が、さらに、質量%で、
  Ni:1.0%以下、
  Cu:1.0%以下、
  Cr:1.0%以下、
  Mo:0.5%以下、
  V :0.2%以下、
  Ca:0.006%以下、及び
  REM:0.006%以下
のうち1種又は2種以上を含有することを特徴とする前記(1)の電縫溶接鋼管。
 前記母材の成分組成が、
  Mn:1.00~1.50%、
  Si:0.40%以下、
を満たし、さらに、
  0.23≦Ceq≦0.30
を満たし、
 前記母材の金属組織のマルテンサイトの円相当径の平均値が0.5~1.5μmであり、かつ、
 鋼管の引張強度が520~790MPaである
ことを特徴とする前記(1)の電縫溶接鋼管。
 (4)前記母材の成分組成が、
  Nb:0.005~0.020%
を満たすことを特徴とする前記(3)の電縫溶接鋼管。
 (5)前記母材の成分組成が、さらに、質量%で、
  Ni:0.5%以下、
  Cu:0.5%以下、
  Cr:0.5%以下、
  Mo:0.2%以下、
  V :0.1%以下、
  Ca:0.006%以下、及び
  REM:0.006%以下
のうち1種又は2種以上を含有することを特徴とする前記(3)又は(4)の電縫溶接鋼管。
 本発明によれば、強度レベルが米国石油協会(API)規格でX60~X70級(鋼管の引張強度が520~790MPa)であり、十分な低温靭性を有し、造管ままでも、降伏比を90%以下にできる電縫溶接鋼管及びその製造方法を提供することができる。
マルテンサイトの面積率と降伏比との関係を説明する図である。 図2(a)は、高Nbかつ高Cである従来の電縫溶接鋼管の光学顕微鏡写真であり、図2(b)はそれをレペラーエッチングした後に観察した光学顕微鏡写真である。 図3(a)は、本発明の範囲内の組成を有する電縫溶接鋼管の光学顕微鏡写真であり、図3(b)はそれをレペラーエッチングした後に観察した光学顕微鏡写真である。
 電縫溶接鋼管の降伏比を低下させるには、母材となる熱延鋼板の金属組織を軟質相と硬質相からなる複相組織とすることが重要である。本発明では、軟質相をフェライト、硬質相をマルテンサイトとする。そして、熱間圧延の巻取温度を低下させることにより、降伏比を低下させることができる。
 図2、図3に、従来の電縫鋼管、及び本発明の電縫鋼管の、マルテンサイトの観察結果を示す。マルテンサイトは、レペラーエッチングを行えば、光学顕微鏡によって白くなった相として観察することが可能である。したがって、組織写真からマルテンサイトの面積率を求めることができる。
 図2(a)は、Nb量及びC量を過剰に添加した従来の高Nbかつ高Cである電縫溶接鋼管の光学顕微鏡写真であり、図2(b)はそれをレペラーエッチングした後に観察した光学顕微鏡写真である。
 図3(a)は、本発明の範囲内の組成を有する電縫溶接鋼管の光学顕微鏡写真であり、図3(b)はそれをレペラーエッチングした後に観察した光学顕微鏡写真である。
 図2(b)、図3(b)を比較して分かるように、NbC等の析出物を利用して高強度化を図る従来の電縫溶接鋼管の場合、レペラーエッチングにより白くなった相、つまりマルテンサイトはほとんど観察されなかったが、図3(b)の本発明の場合は、マルテンサイトが観察された。
 なお、レペラーエッチングでは残留オーステナイトも白くなった相として観察されるため、X線回折法によって、図3(b)の残留オーステナイトの体積率を測定した。その結果、残留オーステナイトの体積率は1%以下であった。残留オーステナイトの体積率が1%以下であれは、本発明の電縫鋼管の特性には影響を及ぼさない。
 降伏比は、引張試験を行い、YS/TSを求め、百分率で表した。マルテンサイトの面積率と降伏比の関係を調査した結果を図1に示す。図1に示すように、マルテンサイトの面積率が3%以上になると、降伏比が90%以下となる。さらに、マルテンサイトの面積率が8%以上になると、降伏比が急激に低下し、降伏比を80%以下に低下させることができる。
 以下、本発明の電縫溶接鋼管及びその製造方法について詳細に説明する。
 まず、本発明の電縫溶接鋼管の母材の成分について説明する。電縫鋼管の素材である熱延鋼板の成分は、電縫溶接鋼管の母材の成分と同一である。以下「%」は「質量%」を表すものとする。
 <C:0.05~0.10%>
 Cは、鋼の強度を高める有用な元素であり、マルテンサイトを増加させ鋼を硬質化し、降伏比の低下にも寄与するので、下限を0.05%とする。C量が0.10%を超えると現地溶接性が悪くなると共に、マルテンサイトの面積率が増加して、強度が高くなりすぎ、靭性が劣化するので、上限を0.10%とする。強度を確保する観点からは、C量を0.06%以上にすることが好ましい。強度を過剰に上昇させず、靱性を確保する観点からは、C量を0.08%以下にすることが好ましい。
 <Mn:1.00~1.60%>
 Mnは、鋼の焼入れ性を高める元素であり、マルテンサイトの生成に寄与する。本発明では、強度を確保するために、1.00%以上のMnを添加する。Mnを過度に添加すると、マルテンサイトの面積率が増加し、靱性が劣化するので、上限を1.60%とする。強度を確保する観点からは、Mn量を1.10%以上にすることが好ましく、1.20%以上がより好ましい。靱性を確保する観点からは、Mn量を1.50%以下にすることが好ましく、1.40%以下がより好ましい。
 <Ti:0.005~0.030%>
 Tiは、炭窒化物を形成する元素であり、組織を微細化し、靭性の向上に寄与する。本願発明は厚肉の鋼板を用いることをしており、特に、厚肉の鋼板で低温における靭性を確保するためには、0.005%以上のTiを添加することが必要である。Tiを過剰に添加するとTiNの粗大化や、TiCによる析出硬化が生じ、靭性が劣化し、降伏比が上昇するので、0.030%を上限とする。組織を微細化して靱性を確保する観点からは、Ti量を0.008%以上にすることが好ましく、0.010%以上がより好ましい。析出物に起因する降伏比の低下を抑制する観点からは、Ti量は0.025%以下が好ましく、0.020%以下がより好ましい。
 <Nb:0.005%以上、0.035%未満>
 Nbは、再結晶温度を低下させる元素であり、熱間圧延を行う際に、オーステナイトの再結晶を抑制して組織の微細化に寄与するので、0.005%以上を添加する。Nbを過剰に添加すると過剰な析出強化によって降伏応力が上昇し、降伏比が高くなるので、含有量は0.035%未満とする。降伏比を低下させる観点からは、Nb量を0.025%以下にすることがより好ましく、0.020%以下がさらに好ましい。
 <N:0.001~0.008%>
 Nは、窒化物、特に、TiNを形成し、組織の微細化に寄与する元素であり、0.001%以上を含有させる。組織を微細にするためには、0.002%以上のNを含有させることが好ましく、より好ましくは含有量を0.003%以上とする。N量が過剰になると、粗大な窒化物を生じ、靭性を損なうため、上限を0.008%とする。N量の上限は0.007%が好ましく、より好ましくは0.006%とする。
 本発明では、Si、Alの1種又は2種を脱酸元素として使用する。
 <Si:0.60%以下>
 Siは、脱酸剤として有効である。Alが添加されている場合には、添加は必須ではない。脱酸剤としての効果を得るためには、0.01%以上の添加が好ましい。また、Siは固溶強化によって強度を高める元素であるので、0.05%以上の添加がより好ましく、0.10%以上の添加がより好ましい。Siは、0.60%を超えて添加すると、延性や靭性、さらには、電縫溶接性を損なうので、上限を0.60%とする。靱性を確保する観点からは、Si量を0.40%以下にすることが好ましく、0.30%以下がより好ましい。
 <Al:0.10%以下>
 Alは、脱酸剤として有効である。Siが添加されている場合には、添加は必須ではない。脱酸剤としての効果を得るためには、0.001%以上の添加が好ましい。脱酸の効果を高めるためには、0.005%以上のAlの添加が好ましく、0.01%以上の添加がより好ましい。Alは、0.10%を超えて添加すると、介在物が増加して、延性や靭性を損なうので、0.10%以下に制限する。靱性を確保する観点からは、Al量を0.05%以下にすることが好ましく、0.03%以下がより好ましい。
 本発明では、不純物であるP、Sの含有量を制限する。P、Sは意図的に添加する元素ではなく、原材料に含まれるP、Sが混入するものであるが、ともに含有量が多量になると好ましくないので、以下のとおり制限する。
 <P:0.02%以下>
 Pは、不純物であり、含有量の上限を0.02%とする。P量の低減により、粒界破壊が防止され、靭性が向上することから、P量は0.015%以下が好ましく、0.010%以下がより好ましい。P量は少ない方が好ましいので、下限は設けない。特性とコストのバランスから、通常は、0.001%以上が含有される。
 <S:0.005%以下>
 Sは、不純物であり、含有量の上限を0.005%とする。S量の低減により、熱間圧延によって延伸化するMnSを低減し、靭性を向上させることができることから、S量は0.003%以下が好ましく、0.002%以下がより好ましい。S量は少ない方が好ましいので、下限は設けない。特性とコストのバランスから、通常は、0.0001%以上が含有される。
 <Ceq:0.23~0.38>
 炭素当量Ceqは、焼入れ性の指標であり、強度の指標としても使用されることがある。C、Mn、Cr、Mo、V、Ni、Cuの含有量[質量%]から、下記(式1)によって求める。強度を確保するためには、Ceqを0.23以上にすることが必要である。靱性を確保するためには、Ceqを0.38以下にすることが必要である。Ceqの下限は、0.25以上が好ましい。Ceqの上限は、0.35以下が好ましく、0.30以下がより好ましい。
 Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15 … (式1)
 ここで、C、Mn、Cr、Mo、V、Ni、Cuは各元素の含有量[質量%]である。なお、Cr、Mo、V、Ni、Cuは後述するように、本発明においては選択的に添加される元素であり、意図的に添加しない場合は、上記(式1)では0として計算する。
 本発明においては、さらに、鋼の焼入れ性を向上させ、強度を高めるために、Ni、Cu、Cr、Mo、Vの1種又は2種以上を添加することができる。また、鋼管、及び電縫溶接部の靭性を高めるために、Ca、REMの1種又は2種以上を添加することができる。これらの元素は、任意に添加される元素であり、必須の添加元素ではないので、含有量の下限は規定しない。以下の説明において好ましい下限値を記載するが、これは各元素を添加することによる焼入れ性の向上や、強度を高める効果を得るための好ましい下限値である。各元素の含有量が好ましい下限値未満であっても、鋼に悪影響は及ぼさない。
 <Ni:1.0%以下>
 Niは、鋼の焼入れ性を向上させる元素であり、靭性の向上にも寄与する。強度を向上させるためには、Ni量を0.05%以上にすることが好ましい。また、Niは高価な元素であるため、上限は1.0%とし、0.5%以下とすることがより好ましく、0.3%以下がさらに好ましい。
 <Cu:1.0%以下>
 Cuは、鋼の焼入れ性を向上させる元素であり、固溶強化にも寄与するので、0.05%以上を添加することが好ましい。Cuを過度に添加すると鋼板の表面性状を損なうことがあるため、上限は1.0%以下とする。経済性の観点から、Cu量のより好ましい上限は0.5%であり、0.3%以下がさらに好ましい。Cuを添加する場合は、表面性状劣化防止の観点から、同時にNiを添加することが好ましい。
 <Cr:1.0%以下>
 Crは、強度の向上に有効な元素であり、0.05%以上を添加することが好ましい。Crを過度に添加すると、鋼管の端部同士を突合せて溶接(現地溶接)する際に、溶接性が劣化することがあるので、1.0%を上限とする。より好ましくは0.5%以下であり、さらに好ましくは0.2%以下である。
 <Mo:0.50%以下>
 Moは、鋼の高強度化に寄与する元素であり、0.05%以上を添加することが好ましい。ただし、Moは高価な元素であり、0.5%を上限とする。より好ましいMo量の上限は0.3%以下であり、さらに好ましくは0.1%以下とする。
 <V:0.2%以下>
 Vは、炭化物、窒化物を生成し、析出強化によって鋼の強度を向上させる元素であり、強度を効果的に上昇させるために、0.01%以上を添加することが好ましい。Vを過剰に添加すると、炭化物及び窒化物が粗大化し、降伏比が上昇することがあるので、V量の上限は0.2%とする。降伏比を低下させる観点からは、V量の上限を0.1%以下にすることがより好ましく、さらに好ましくは0.05%以下とする。
 <Ca:0.006%以下> <REM:0.006%以下>
 Ca、REMは、硫化物系介在物の形態を制御し、低温靭性を向上させ、さらに、電縫溶接部の酸化物を微細化して電縫溶接部の靭性を向上させるので、一方、又は双方を0.001%以上添加することが好ましい。Ca、REMを過剰に添加すると、酸化物・硫化物が大きくなり靭性に悪影響を及ぼすので、添加量の上限は0.006%とする。ここでREMとは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの総称である。
 本発明に係る電縫溶接鋼管の母材の成分組成の、以上説明した以外の残部は、鉄、及び不可避的不純物である。不可避的不純物とは、原材料に含まれる、あるいは製造の過程で混入する成分であり、意図的に鋼に含有させたものではない成分のことをいう。
 具体的には、P、S、O、Sb、Sn、W、Co、As、Mg、Pb、Bi、B、及びHがあげられる。このうち、P、及びSは、上述のとおり、それぞれ、0.02%以下、0.005%以下となるように制御する必要がある。Oは0.006%以下となるように制御することが好ましい。
 その他の元素については、通常、Sb、Sn、W、Co、及びAsは0.1%以下、Mg、Pb及びBiは0.005%以下、B、及びHは0.0005%以下の不可避的不純物としての混入があり得るが、通常の範囲であれば、特に制御する必要はない。
 また、本発明の鋼管における選択必須、あるいは任意の添加元素である、Si、Al、Ni、Cu、Cr、Mo、V、Ca、REMも、含有を意図しなくても不可避的不純物として混入することがあり得るが、上述した意図的に含有させる場合の含有量の上限以下であれば本発明の鋼管に悪影響を与えるものではないので、問題はない。また、Nは、一般に、鋼において不可避的不純物として扱われることがあるが、本発明の電縫鋼管では、上述したとおり、一定の範囲に制御する必要がある。
 次に、本発明の電縫溶接鋼管の母材の金属組織について説明する。
 本発明の電縫溶接鋼管の母材の金属組織はマルテンサイトと、残部はフェライトからなる複相組織とする。マルテンサイトの面積率は、降伏比を低下させるために、3%以上とする。マルテンサイトの面積率は5%以上が好ましく、8%以上がより好ましい。マルテンサイトが増加すると靱性が低下するので、マルテンサイトの面積率の上限は13%とする。マルテンサイトの面積率は12%以下が好ましく、10%以下がより好ましい。
 マルテンサイトの面積率は、レペラーエッチングを行って光学顕微鏡によって求める。残留オーステナイトが増加すると、マルテンサイトの硬度が低下し、降伏比が上昇する。そのため、本発明では、X線回折法で残留オーステナイトの体積率を測定し、残留オーステナイトの体積率が1%以下であれば、金属組織がマルテンサイトとフェライトとからなる複相組織であると判断するものとする。
 マルテンサイトはフェライト中に、円相当径の平均値が0.5~1.5μmで分散していることが好ましい。マルテンサイトの円相当径の平均値が0.5μm未満になると、降伏比の低下に寄与しなくなる。マルテンサイトの円相当径の平均値が1.5μmを超えると、低温靭性を損ねる。マルテンサイトの円相当径の平均値は0.7~1.1μmであればより好ましい。さらに好ましいマルテンサイトの分散状態は、円相当径の最大値が7μm以下、より好ましくは5μm以下、標準偏差が1μm以下、より好ましくは0.8μm以下である。
 次に、本発明の電縫溶接鋼管の製造方法について説明する。
 まず、本発明の電縫溶接鋼管の素材である熱延鋼板の製造条件について説明する。
 本発明では、上述した成分を有する鋼を溶製後、鋳造して鋼片とし、鋼片を加熱して熱間圧延後、制御冷却を行い、巻取って空冷し、熱延鋼板を製造する。
 鋼片の加熱温度は、Nbなど、炭化物を形成する元素を鋼中に固溶させるために、1150℃以上が好ましい。加熱温度が高すぎると組織が粗大になるので、フェライトの粒径の粗大化を防止するため、1250℃以下が好ましい。
 熱間圧延は、鋼の組織がオーステナイト相である温度域で行うことが必要である。これは、フェライト変態が開始した後に圧延すると、加工されたフェライトが生成し、特性の異方性が大きくなるためである。したがって、熱間圧延の仕上温度は、冷却時のフェライト変態が開始するAr以上が好ましい。仕上温度が高すぎると組織が粗大になるので、Ar+50℃以下が好ましい。
 Arは、母材鋼板と同成分の試験材を用いて、加熱及び冷却した際の熱膨張挙動から求めることができる。また、母材鋼板の成分から、下記(式2)によって求めることも可能である。
 Ar(℃)=910-310C-80Mn-55Ni-20Cu
       -15Cr-80Mo … (式2)
 ここで、C、Mn、Ni、Cu、Cr、Moは各元素の含有量[質量%]である。Ni、Cu、Cr、Moは、本発明においては任意の添加元素である。これらの元素を意図的に添加しない場合は、上記(式2)では0として計算する。
 熱間圧延では、鋼のフェライト組織を微細にするため、950℃以下の圧下量を70%以上にすることが好ましい。鋼片の厚みによっては、950℃超で熱間圧延を行ってもよいが、フェライト変態を促進させるために、950℃以下での圧下量を増やし、歪みを蓄積させることが好ましい。950℃以下の圧下量は、950℃での板厚と仕上圧延後の板厚との差を、仕上圧延後の板厚で除し、百分率として求める。
 熱間圧延後、マルテンサイトを生成させるために、750℃以上、好ましくはAr点以上の温度から加速冷却を行う。熱間圧延後、温度が低下しすぎると、粗大なポリゴナルフェライトが生成し、強度が低下したり、靭性が劣化することがある。
 加速冷却は、650℃までの前段の平均冷却を速度を10~25℃/s、650℃以下の加速冷却停止までの後段の平均冷却速度を20~50℃/sとする2段冷却とする。後段の冷却速度は前段の冷却速度の1.5倍以上、好ましくは2倍以上とする。
 上記のような2段冷却とするのは、前段の冷却でフェライトを生成させ、後段で冷却速度を上げることにより、パーライトを生成させずに、さらに、オーステナイトを残留させずに、マルテンサイトを生成させる、フェライトとマルテンサイトの複相組織を得るためである。
 加速冷却の停止温度はMs点より十分低い300℃以下とし、巻取って熱延鋼帯を製造することにより、硬質のマルテンサイトを生成させ、降伏比を低下させることができる。加速冷却の停止温度が100℃を超えると、マルテンサイトの面積率が不足したり、オーステナイトが過剰に残留したりして、降伏比が十分に低下しない。
 次に、本発明では、得られた熱延鋼帯を空冷し、冷間で管状に成形し、端部同士を突合せて電縫溶接し、電縫溶接鋼管を製造する。本発明は、厚肉で外径の小さな電縫鋼管を想定した発明である。特に規定するものではないが、母材の肉厚tと電縫鋼管の外径Dの比t/Dは、2.0~6.0%程度であり、深海で敷設するパイプラインに求められる、tが12.5mm以上、t/Dが5.0%以上となるような電縫鋼管にも対応可能である。
 さらに、電縫溶接部のみを加熱し、加速冷却するシーム熱処理を施してもよい。電縫溶接では、突き合わせ部を加熱して溶融させ、圧力を負荷して、固相接合することから、電縫溶接部近傍は高温で塑性変形した後、急冷された状態になっている。そのため、電縫溶接部は母材に比べて硬化しており、シーム熱処理を施すことにより、電縫鋼管の低温靭性、変形性能をさらに高めることができる。
 以下、本発明の効果を実施例により具体的に説明する。なお、本発明は、以下の実施例で用いた条件に限定されるものではない。なお、表1~3中の下線は、本発明の範囲外であることを示す。また、表中の空欄は、その元素を意図的に添加していないことを示す。鋼AA~AGは、本発明の成分組成の規定を満たさない鋼である。
 表1に示す化学成分を有する鋼を鋳造し、鋼片とした。これらの鋼片を、表2に示した加熱温度に加熱し、圧延仕上温度(表2中のFT)をAr点以上として熱間圧延を施し、加速冷却し、母材鋼板を得た。加速冷却は、650℃を境に冷却速度を変える2段冷却とし、後段(650℃以下)の平均冷却速度が、前段(650℃まで)の平均冷却速度の2倍程度になるようにした。加速冷却後の鋼板は、表2に記載の巻取温度(CT)で巻き取り、熱延鋼帯とした。
 次いで、得られた熱延鋼帯を空冷したのち、連続ロール成型工程で管状に成形し、熱延鋼帯の端部を突合わせて電縫溶接を行った。その後、必要に応じて、電溶接部を加熱後、加速冷却し、シーム熱処理を施した。
 表2中の「圧下量」とは、熱間圧延工程での950℃以下における圧下量であり、950℃での板厚と仕上圧延後の板厚との差を、仕上圧延後の板厚で除し、百分率として求めたものである。また、「t」は鋼板の厚さ、「D」は造管後の鋼管の外径を示す。
 表1のArは、表1に示したC、Mn、Ni、Cu、Cr、Moの含有量[質量%]から求めた。なお、Ni、Cu、Cr、Moは、本発明においては任意の添加元素であり、表1に空欄で示されるように、意図的に添加しない場合は、下記(式2)では0として計算した。
 Ar(℃)=910-310C-80Mn-55Ni-20Cu
       -15Cr-80Mo ・・・ (式2)
 次に、得られた電縫溶接鋼管の母材部から、組織観察用の試料を採取し、鋼管長手方向と平行な断面にナイタールエッチングを施し、光学顕微鏡で組織観察及び写真撮影を行った。観察位置は、外表面からt/4位置とした。これらの組織写真を用いて、パーライト、ベイナイトなど、フェライト及びマルテンサイト以外の組織が生成していないことを確認した。その後、レペラーエッチングを施し、光学顕微鏡写真を0.4t位置で撮影して、画像解析によりマルテンサイトの面積率を求めた。さらに、画像解析によりマルテンサイトの円相当径を測定した。マルテンサイトの面積率と円相当半径については、100μm×200μmの視野10箇所測定して、平均値を求めた。さらに、X線回折法でオーステナイトの体積率を測定し、1%以下であることを確認した。
 次に、電縫溶接鋼管の母材から、JIS Z 2241に準拠して、鋼管長手方向に弧状引張試験片を採取し、室温で引張試験を行い、降伏応力と引張強度を求めた。また、電縫溶接鋼管の母材から、JIS Z 2242に準拠してVノッチ試験片を採取し、-30℃でシャルピー試験を行い、シャルピー吸収エネルギーvE-30を求め、靭性を評価した。なお、Vノッチ試験片は、周方向を長手方向として採取した。厚さ10mmのフルサイズ試験片が採取出来ない場合は、サブサイズ試験片とし、厚さ10mmに換算した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示したように、本発明例はいずれも、適正な面積率のマルテンサイトとフェライトとからなる金属組織であり、電縫溶接鋼管の引張強度はいずれもX56以上(引張強度490MPa以上)であり、降伏比がいずれも90%以下と良好である。また、本発明例はいずれも、-30℃でも190J以上の高いシャルピー吸収エネルギーを示し、靭性も良好であった。
 No.21はC量が少ないため強度が低下し、マルテンサイトの生成が不十分になり、降伏比が上昇した例である。No.22はC量が多く、No.23はMn量が多く、マルテンサイトが過剰に生成し、靱性が低下した例である。No.24はMn量が少ないため、強度が低下した例である。
 No.25はCeqが高すぎて、マルテンサイトが過剰に生成し、靱性が低下した例である。No.26はCeqが低すぎて、強度が低下した例である。No.27は、Ti量が少ないため靭性が低下し、また、Nb量が多いため、フェライトに加えベイナイトが生成し、降伏比が上昇した例である。
 No.28は650℃以下の;冷速が遅いためマルテンサイトが生成せず降伏比が上昇した例である。一方、No.29は加速冷却速度が450℃と高くマルテンサイトが生成せず降伏比が上昇した例である。
 本発明によれば、深海などに敷設されるパイプラインに使用することが可能なX60~70級の強度を有し、十分な低温靭性を有し、降伏比の低い電縫溶接鋼管を提供できるので、産業上の利用可能性は大きい。

Claims (5)

  1.  母材の成分組成が、質量%で、
      C :0.05~0.10%、
      Mn:1.00~1.60%、
      Ti:0.005~0.030%、
      Nb:0.005%以上、0.035%未満、及び
      N :0.001~0.008%
    を含有し、さらに、
      Si:0.01~0.60%、及び
      Al:0.001~0.10%
    の一方又は双方を含有し、
      P :0.02%以下、
      S :0.005%以下、及び
    に制限され、
     残部が鉄及び不可避的不純物であり、
     下記(式1)で表わされるCeqが、0.23≦Ceq≦0.38を満たし、かつ、
     母材の金属組織が、面積率で3~13%のマルテンサイトを含有し、残部がフェライトである
    ことを特徴とする電縫溶接鋼管。
     Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15…(式1)
     ここで、(式1)におけるC、M、Cr、Mo、V、Ni、Cuは、各元素の含有量を質量%で表した値である。
  2.  前記母材の成分組成が、さらに、質量%で、
      Ni:1.0%以下、
      Cu:1.0%以下、
      Cr:1.0%以下、
      Mo:0.5%以下、
      V :0.2%以下、
      Ca:0.006%以下、及び
      REM:0.006%以下
    のうち1種又は2種以上を含有することを特徴とする請求項1に記載の電縫溶接鋼管。
  3.  前記母材の成分組成が、
      Mn:1.00~1.50%、
      Si:0.40%以下、
    を満たし、さらに、
      0.23≦Ceq≦0.30
    を満たし、
     前記母材の金属組織のマルテンサイトの円相当径の平均値が0.5~1.5μmであり、かつ、
     鋼管の引張強度が490~760MPaである
    ことを特徴とする請求項1に記載の電縫溶接鋼管。
  4.  前記母材の成分組成が、
      Nb:0.005~0.020%
    を満たすことを特徴とする請求項3に記載の電縫溶接鋼管。
  5.  前記母材の成分組成が、さらに、質量%で、
      Ni:0.5%以下、
      Cu:0.5%以下、
      Cr:0.5%以下、
      Mo:0.2%以下、
      V :0.1%以下、
      Ca:0.006%以下、及び
      REM:0.006%以下
    のうち1種又は2種以上を含有することを特徴とする請求項3又は4に記載の電縫溶接鋼管。
PCT/JP2013/076422 2012-09-27 2013-09-27 電縫溶接鋼管 WO2014051119A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147032630A KR101605152B1 (ko) 2012-09-27 2013-09-27 전봉 용접 강관
CN201380030721.0A CN104350168B (zh) 2012-09-27 2013-09-27 电阻焊钢管
JP2014500584A JP5516834B1 (ja) 2012-09-27 2013-09-27 電縫溶接鋼管
EP13840703.6A EP2902519A4 (en) 2012-09-27 2013-09-27 RESISTANT WELDED STEEL TUBE
US14/420,971 US9726305B2 (en) 2012-09-27 2013-09-27 Electric resistance welded steel pipe
CA2881372A CA2881372C (en) 2012-09-27 2013-09-27 Electric resistance welded pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-213725 2012-09-27
JP2012213725 2012-09-27

Publications (1)

Publication Number Publication Date
WO2014051119A1 true WO2014051119A1 (ja) 2014-04-03

Family

ID=50388508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076422 WO2014051119A1 (ja) 2012-09-27 2013-09-27 電縫溶接鋼管

Country Status (7)

Country Link
US (1) US9726305B2 (ja)
EP (1) EP2902519A4 (ja)
JP (1) JP5516834B1 (ja)
KR (1) KR101605152B1 (ja)
CN (1) CN104350168B (ja)
CA (1) CA2881372C (ja)
WO (1) WO2014051119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260757B1 (ja) * 2017-06-22 2018-01-17 新日鐵住金株式会社 ラインパイプ用アズロール電縫鋼管及び熱延鋼板
CN113549846A (zh) * 2021-07-13 2021-10-26 鞍钢股份有限公司 一种低温性能优异的550MPa级海工钢及其制造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708723B2 (ja) 2013-07-09 2015-04-30 Jfeスチール株式会社 低温破壊靭性に優れたラインパイプ用厚肉電縫鋼管およびその製造方法
WO2015022899A1 (ja) * 2013-08-16 2015-02-19 新日鐵住金株式会社 溶接部品質の優れた電縫鋼管及びその製造方法
KR20150135452A (ko) * 2013-09-27 2015-12-02 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 스테인리스강 부재의 접합 방법 및 스테인리스강
CN105612267B (zh) 2013-12-20 2018-10-19 新日铁住金株式会社 电阻焊钢管
CN106715742B (zh) * 2014-09-17 2019-07-23 日本制铁株式会社 热轧钢板
CN105643050A (zh) * 2016-02-29 2016-06-08 广船国际有限公司 一种低温高韧性钢的单面多丝埋弧焊焊接方法
KR20190003649A (ko) * 2016-08-30 2019-01-09 신닛테츠스미킨 카부시키카이샤 익스팬더블 튜블러용 유정관
CN108647438B (zh) * 2018-05-10 2021-07-30 四川大学 一种土壤等效电阻模型建模方法
JP6544497B1 (ja) * 2018-10-12 2019-07-17 日本製鉄株式会社 トーションビーム用電縫鋼管
CN111218620B (zh) * 2018-11-23 2021-10-22 宝山钢铁股份有限公司 一种高屈强比冷轧双相钢及其制造方法
US20220373108A1 (en) * 2019-10-31 2022-11-24 Jfe Steel Corporation Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure
KR102503447B1 (ko) * 2020-12-21 2023-02-28 현대제철 주식회사 용접성이 우수한 라인파이프용 강재 및 그 제조방법
KR102503448B1 (ko) * 2020-12-21 2023-02-27 현대제철 주식회사 용접성이 우수한 후판 및 그 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105952A (ja) 1991-10-11 1993-04-27 Nippon Steel Corp 低降伏比電縫鋼管の製造方法
JPH10176239A (ja) 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
WO2005080621A1 (ja) * 2004-02-19 2005-09-01 Nippon Steel Corporation バウシンガー効果の発現が小さい鋼板または鋼管およびその製造方法
JP2008111162A (ja) * 2006-10-31 2008-05-15 Jfe Steel Kk 塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板およびその製造方法
WO2012008486A1 (ja) * 2010-07-13 2012-01-19 新日本製鐵株式会社 二相組織油井鋼管及びその製造方法
WO2012133558A1 (ja) * 2011-03-30 2012-10-04 新日本製鐵株式会社 電縫鋼管及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143054B2 (ja) 1995-05-30 2001-03-07 株式会社神戸製鋼所 成形後の降伏強度低下の少ない高強度熱延鋼板、それを用いて成形されたパイプ及びその高強度熱延鋼板の製造方法
JP5381901B2 (ja) * 2010-05-27 2014-01-08 新日鐵住金株式会社 耐座屈特性に優れたブレース用電縫鋼管及びその製造方法
JP5126375B2 (ja) * 2011-02-09 2013-01-23 Jfeスチール株式会社 大入熱溶接用鋼材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05105952A (ja) 1991-10-11 1993-04-27 Nippon Steel Corp 低降伏比電縫鋼管の製造方法
JPH10176239A (ja) 1996-10-17 1998-06-30 Kobe Steel Ltd 高強度低降伏比パイプ用熱延鋼板及びその製造方法
WO2005080621A1 (ja) * 2004-02-19 2005-09-01 Nippon Steel Corporation バウシンガー効果の発現が小さい鋼板または鋼管およびその製造方法
JP2008111162A (ja) * 2006-10-31 2008-05-15 Jfe Steel Kk 塗装後降伏比の低い高靱性電縫鋼管用熱延鋼板およびその製造方法
WO2012008486A1 (ja) * 2010-07-13 2012-01-19 新日本製鐵株式会社 二相組織油井鋼管及びその製造方法
WO2012133558A1 (ja) * 2011-03-30 2012-10-04 新日本製鐵株式会社 電縫鋼管及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902519A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6260757B1 (ja) * 2017-06-22 2018-01-17 新日鐵住金株式会社 ラインパイプ用アズロール電縫鋼管及び熱延鋼板
WO2018235244A1 (ja) * 2017-06-22 2018-12-27 新日鐵住金株式会社 ラインパイプ用アズロール電縫鋼管及び熱延鋼板
EP3608434A4 (en) * 2017-06-22 2020-09-02 Nippon Steel Corporation RESISTANCE WELDED ROLLED STEEL PIPE FOR CABLE PIPE AND HOT-ROLLED STEEL SHEET
CN113549846A (zh) * 2021-07-13 2021-10-26 鞍钢股份有限公司 一种低温性能优异的550MPa级海工钢及其制造方法

Also Published As

Publication number Publication date
US9726305B2 (en) 2017-08-08
KR20150002871A (ko) 2015-01-07
JPWO2014051119A1 (ja) 2016-08-25
CA2881372A1 (en) 2014-04-03
CN104350168A (zh) 2015-02-11
EP2902519A4 (en) 2016-06-01
CA2881372C (en) 2017-11-21
US20150219249A1 (en) 2015-08-06
CN104350168B (zh) 2016-08-24
EP2902519A1 (en) 2015-08-05
JP5516834B1 (ja) 2014-06-11
KR101605152B1 (ko) 2016-03-21

Similar Documents

Publication Publication Date Title
JP5516834B1 (ja) 電縫溶接鋼管
JP5293903B1 (ja) 厚肉電縫鋼管及びその製造方法
EP2395122B1 (en) High-strength steel tube for low-temperature use with superior buckling resistance and toughness in weld heat-affected areas, and manufacturing method for same
JP5857400B2 (ja) 高圧縮強度ラインパイプ用溶接鋼管及びその製造方法
JP5561120B2 (ja) 高圧縮強度高靭性ラインパイプ用溶接鋼管及びその製造方法
JP5644982B1 (ja) 電縫溶接鋼管
US20190062862A1 (en) High-strength hot-rolled steel sheet for electric resistance welded steel pipe and manufacturing method therefor
WO2015012317A1 (ja) ラインパイプ用鋼板及びラインパイプ
WO2009014238A1 (ja) 変形特性に優れた鋼管及びその製造方法
JP5884201B2 (ja) 引張強さ540MPa以上の高強度ラインパイプ用熱延鋼板
JP5768603B2 (ja) 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
CN108138283B (zh) 轧制态k55电焊油井管及热轧钢板
CN104937125B (zh) 高强度管线钢管用热轧钢板
JP6128042B2 (ja) 低降伏比高強度スパイラル鋼管杭およびその製造方法
WO2020178943A1 (ja) ラインパイプ用電縫鋼管
JP2004143500A (ja) 耐座屈特性に優れた高強度鋼管およびその製造方法
JP6693610B1 (ja) ラインパイプ用電縫鋼管
JP7200588B2 (ja) 油井用電縫鋼管およびその製造方法
CN111655872B (zh) 管线管用钢材及其制造方法以及管线管的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014500584

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147032630

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2881372

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14420971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013840703

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE