WO2014050906A1 - 電子銃異常検出装置および電子銃異常検出方法 - Google Patents

電子銃異常検出装置および電子銃異常検出方法 Download PDF

Info

Publication number
WO2014050906A1
WO2014050906A1 PCT/JP2013/075942 JP2013075942W WO2014050906A1 WO 2014050906 A1 WO2014050906 A1 WO 2014050906A1 JP 2013075942 W JP2013075942 W JP 2013075942W WO 2014050906 A1 WO2014050906 A1 WO 2014050906A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron gun
magneto
magnetic domain
abnormality detection
optical element
Prior art date
Application number
PCT/JP2013/075942
Other languages
English (en)
French (fr)
Inventor
伊藤 友彦
淳一 四辻
重宏 高城
山口 広
花澤 和浩
泰成 古賀
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP13840512.1A priority Critical patent/EP2902777B1/en
Priority to RU2015115880/28A priority patent/RU2598394C1/ru
Priority to US14/431,221 priority patent/US9304078B2/en
Priority to KR1020157005161A priority patent/KR101671742B1/ko
Priority to CN201380046143.XA priority patent/CN104603610B/zh
Priority to IN2383DEN2015 priority patent/IN2015DN02383A/en
Publication of WO2014050906A1 publication Critical patent/WO2014050906A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/032Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's

Definitions

  • the present invention relates to an electron gun abnormality detection device and an electron gun abnormality detection method.
  • An electrical steel sheet is a steel sheet having excellent magnetic properties such as high magnetic permeability and low iron loss.
  • grain oriented electrical steel sheets are often used in transformer cores.
  • the alternating current flowing in the electric wire wound around the transformer core generates an alternating magnetic field inside the core.
  • eddy current loss and hysteresis loss occur.
  • Magnetic steel sheets are required to reduce these eddy current loss and hysteresis loss.
  • Occurrence of eddy current loss is unavoidable when an alternating magnetic field is applied to the steel sheet.
  • the higher the frequency the larger the eddy current loss.
  • one of the factors affecting the eddy current loss is the width of the magnetic domain of the steel sheet. The narrower the width, the more the eddy current loss can be reduced.
  • the magnetic properties of the steel sheet and the shape of the magnetic domain have a very deep connection.
  • a technique for subdividing the magnetic domain (magnetic domain refining process) is applied in order to reduce eddy current loss.
  • the magnetic domains of the grain-oriented electrical steel sheet extend in the rolling direction, and the magnetic domains can be subdivided by adding distortion or forming grooves in the direction crossing the magnetic domains (see, for example, Patent Document 1).
  • a method of applying strain for example, a method of applying thermal strain by irradiating a laser or an electron beam in a direction crossing the magnetic domain is known.
  • a technique for observing a magnetic domain structure is known in order to check whether or not the magnetic domain subdivision process is appropriately performed (see Patent Document 2).
  • the predetermined magnetic domain refinement process may not be performed due to factors such as deterioration of the filament of the electron gun that generates the electron beam.
  • the magnetic domain structure of the steel sheet subjected to the magnetic domain refinement process cannot be detected immediately after the magnetic domain refinement process, and it is necessary to separately sample the steel sheet and inspect it offline.
  • the present invention has been made in view of the above, and an object of the present invention is to detect an abnormality of an electron gun by inspection at inspection points smaller than the number of electron guns installed in a magnetic domain subdivision apparatus.
  • An object of the present invention is to provide an abnormality detection apparatus and an electron gun abnormality detection method.
  • an electron gun abnormality detection device is an electron gun of a magnetic domain subdivision device for a magnetic steel sheet comprising at least a first electron gun and a second electron gun.
  • An electron gun abnormality detection device for detecting an abnormality of a magnetic domain, wherein the first electron gun irradiates the surface of the electromagnetic steel sheet with an electron beam and the magnetic domain discontinuity and the second electron gun irradiate the electron beam.
  • a magneto-optic device capable of detecting the magnetic domain structure of the steel plate in the inspection region as an optical characteristic, and the magneto-optical device.
  • an electron gun abnormality detection method detects an abnormality in an electron gun of a magnetic domain subdivision apparatus including at least a first electron gun and a second electron gun.
  • An electron gun abnormality detection method for detecting a boundary between a magnetic domain discontinuity generated by irradiating an electron beam from the first electron gun and a magnetic domain discontinuity generated by irradiating the second electron gun with an electron beam A contact step in which a magnetic optical element that detects a magnetic domain structure of a steel plate as an optical characteristic is brought into contact with the steel plate in an inspection region that is set to include an irradiation step that irradiates the magneto-optical element with linearly polarized light, and the magneto-optical device
  • the electron gun abnormality detection device and the electron gun abnormality detection method according to the present invention have an effect that an abnormality of the electron gun can be detected by inspection at inspection points smaller than the number of electron guns installed in the magnetic domain subdivision apparatus. .
  • FIG. 1 is a configuration diagram showing a production line incorporating an electron gun abnormality detection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a mechanism of abnormality detection for an electron gun according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an inspection image when an abnormality of the electron gun is detected in the inspection region.
  • FIG. 4 is a schematic diagram of an inspection image when an abnormality of the electron gun is detected in the inspection region.
  • FIG. 5 is a schematic diagram illustrating an internal configuration example of an inspection unit of the electron gun abnormality detection device.
  • FIG. 6 is a cross-sectional view showing a configuration example of the magneto-optical element.
  • FIG. 7 is a side view of the drive mechanism of the electron gun abnormality detection device.
  • FIG. 1 is a configuration diagram showing a production line incorporating an electron gun abnormality detection device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a mechanism of abnormality detection for an
  • FIG. 8 is a top view of the drive mechanism of the electron gun abnormality detection device.
  • FIG. 9 is a flowchart showing an electron gun abnormality detection method according to an embodiment of the present invention.
  • FIG. 10 is a graph of the minimum value of the width of the magnetic domain discontinuity detected by the electron gun abnormality detection method according to the embodiment of the present invention.
  • FIG. 11 is a graph of the minimum value of the width of the magnetic domain discontinuity detected by the electron gun abnormality detection method according to the embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a production line incorporating an electron gun abnormality detection device 1 according to an embodiment of the present invention.
  • an electron gun abnormality detection device 1 according to an embodiment of the present invention is disposed at a subsequent stage of a magnetic domain refinement device 2 that performs a magnetic domain refinement process of a steel sheet S.
  • the magnetic domain segmentation apparatus 2 is an apparatus that includes an electron gun 3 therein and irradiates the steel sheet S with an electron beam from the electron gun 3 so as to impart distortion in a direction across the magnetic domain of the steel sheet S.
  • the magnetic domain refinement device 2 performs a magnetic domain refinement process on the surface of the steel sheet S, and the electron gun abnormality detection device 1 inspects the surface of the steel sheet S subjected to the magnetic domain refinement process by the magnetic domain refinement device 2. Then, based on the inspection result by the electron gun abnormality detection device 1, the control means 1b determines the abnormality of the electron gun 3 of the magnetic domain subdivision device 2, and controls the electron gun 3 as necessary.
  • the control means 1b may be either an automatic control device such as a PLC or manual control by an operator.
  • FIG. 2 is a schematic diagram for explaining a mechanism of abnormality detection for an electron gun according to an embodiment of the present invention.
  • the magnetic domain fragmentation device 2 includes a plurality of electron guns 3 a , 3 b , 3 c , and 3 d .
  • 2 includes four electron guns 3 a , 3 b , 3 c , and 3 d .
  • the magnetic domain subdivision apparatus 2 includes a larger number of electron guns.
  • the present invention is also applicable.
  • the present invention can be applied to the magnetic domain fragmentation apparatus 2 including at least two or more electron guns.
  • the plurality of electron guns 3 a , 3 b , 3 c and 3 d cooperate with each other to irradiate the surface of the steel sheet S with a linear electron beam B in the width direction. That is, when a plurality of electron guns 3 a , 3 b , 3 c , 3 d are distorted across the linear magnetic domains in the width direction of the steel sheet S, the electron guns 3 are divided by dividing the straight lines in the width direction.
  • the electron beam B is irradiated on a straight line in which a 1 , 3 b , 3 c and 3 d are divided.
  • the second includes four electron guns 3 a , 3 b , 3 c , 3 d in a straight line, the four electron guns 3 a , 3 b , 3 c , 3d can be arranged in a so-called staggered arrangement, and the surface of the steel sheet S can be irradiated with a linear electron beam B in the width direction in cooperation with each other by controlling the timing of irradiation with the electron beam B.
  • a reflux domain (closure domain) is formed on the surface of the steel sheet S irradiated with the electron beam or laser in this way so as to divide the main magnetic domain facing the rolling direction.
  • the reflux magnetic domain formed on the surface of the steel sheet S irradiated with the electron beam or the laser is referred to as a magnetic domain discontinuous portion L.
  • the steel plate S processed by the plurality of electron guns 3 a , 3 b , 3 c , 3 d as described above is inspected by the subsequent-stage electron gun abnormality detection device 1. That is, the electron gun abnormality detection apparatus 1 checks whether or not the magnetic domain discontinuity L formed by the plurality of electron guns 3 a , 3 b , 3 c , 3 d has a desired processing result.
  • the magnetic domain discontinuous portion L is divided into a plurality of portions in the width direction of the steel sheet S and is irradiated with an electron beam. Therefore, the electron gun abnormality detection device 1 performs an inspection at the boundary of each section in the magnetic domain discontinuous portion L.
  • FIGS. 3 and 4 are schematic diagrams of inspection images when an abnormality of the electron gun 3 is detected in the inspection region R.
  • FIG. As shown in FIGS. 3 and 4, magnetic domain discontinuities L are formed on the surface of the steel sheet S that has been subjected to the magnetic domain refinement process by the magnetic domain refinement device 2. Further, between the magnetic domain discontinuities L, main magnetic domains M aligned along the rolling direction are formed.
  • the electron gun abnormality detection device 1 obtains inspection results having different widths in the magnetic domain discontinuity L in the upper half of the inspection region R and the magnetic domain discontinuity L in the lower half of the inspection region R. Sometimes.
  • the inspection result as shown in FIG. 3 it is conceivable that the filament of the electron gun 3 that has irradiated the magnetic domain discontinuous portion L whose width has been narrowed with the electron beam has deteriorated.
  • the position of the electron gun abnormality detection device 1 is shifted between the magnetic domain discontinuity L in the upper half of the inspection region R and the magnetic domain discontinuity L in the lower half of the inspection region R. Test results may be obtained.
  • the inspection result as shown in FIG. 4 it is considered that the mechanical position of the electron gun 3 is shifted or the timing of irradiating the electron beam from the electron gun 3 is shifted.
  • the electron gun abnormality detection device 1 since the electron gun abnormality detection device 1 according to the embodiment of the present invention performs inspection at the boundary of each section in the magnetic domain discontinuity L, the electron gun 3 of the magnetic domain subdivision device 2 is used. Of the two electron guns 3 can be inspected simultaneously. Therefore, the abnormality detection apparatus 1 according to the embodiment of the present invention can detect abnormality of the electron gun 3 by inspection at inspection points smaller than the number of the electron guns 3 installed in the magnetic domain subdivision apparatus 2.
  • FIG. 5 is a schematic diagram showing an example of the internal configuration of the inspection unit 4 of the electron gun abnormality detection device 1.
  • the electron gun abnormality detection apparatus 1 is an apparatus that inspects the abnormality of the electron gun 3 by contacting the steel sheet S by driving the inspection unit 4 when the production line is temporarily stopped.
  • the inspection unit 4 includes a magneto-optical element 5 that converts the magnetic domain structure of the steel sheet S into optical characteristics, a holder 6 that fixes the magneto-optical element 5 to the inspection unit 4 via an elastic body, An epi-illumination optical system that irradiates the magneto-optical element 5 with linearly polarized light and detects reflected polarized light reflected from the magneto-optical element 5 is provided. That is, the inspection unit 4 includes a light source 7, a collimator lens 8, a polarizer (polarizing filter) 9, a half mirror 10, an analyzer (polarizing filter) 11, and a detector 12 as an incident light optical system. Prepare.
  • the magneto-optical element 5 is an element that converts the magnetic domain structure of the steel sheet S into optical characteristics by a magneto-optical effect called a Faraday effect.
  • the Faraday effect is the effect of rotating the plane of polarization by the magnetic field felt by a material when linearly polarized light is transmitted through the material.
  • a typical material that exhibits this Faraday effect is magnetic garnet. . More specifically, Bi-substituted iron garnet or the like can be used.
  • the magneto-optical element 5 comes into contact with the inspection region R of the steel sheet S, the magnetic domain structure of the steel sheet S is transferred to the magneto-optical element 5, and the polarized light polarized on the magneto-optical element 5 is irradiated.
  • the surface rotates.
  • the holder 6 fixes the magneto-optical element 5 to the inspection unit 4 via an elastic body in order to reduce the impact when the inspection unit 4 is driven to bring the magneto-optical element 5 into contact with the steel sheet S.
  • the light source 7 is for irradiating the magneto-optical element 5 with linearly polarized light, and a general light source such as a semiconductor laser light source or an LED light source is used.
  • the light source 7 does not need to be a light source that directly emits polarized light, and generates linearly polarized light that is irradiated to the magneto-optical element 5 in combination with a polarizer (polarization filter) 9.
  • the light source 7 is used in combination with an optical element such as a collimator lens 8 so that polarized light can be emitted as parallel light. For example, if a green LED light source (wavelength 505 nm) is used, the contrast is improved.
  • the polarizer 9 is a polarization filter that converts light emitted from the light source 7 into linearly polarized light.
  • the polarizer 9 adjusts the polarization detected by the detector 12 by adjusting the relative angle with the analyzer 11. That is, the polarizer 9 has a rotation mechanism and can adjust the angle of the polarization plane of linearly polarized light. When the analyzer 11 has a rotation mechanism, the rotation mechanism in the polarizer 9 can be omitted.
  • the half mirror 10 is an optical path splitting unit that guides the linearly polarized light transmitted through the polarizer 9 to the magneto-optical element 5 and guides the reflected polarized light reflected from the magneto-optical element 5 to the detector 12.
  • the analyzer 11 adjusts the polarization detected by the detector 12 by adjusting the relative angle with the polarizer 9 described above.
  • the detector 12 is a general two-dimensional image acquisition device such as a so-called CCD camera or CMOS camera.
  • the image detected by the detector 12 is subjected to appropriate image processing by a separate image processing means 13 such as a PC.
  • the diameter of the light beam applied to the magneto-optical element 5 is adjusted by an optical element such as a lens (not shown in FIG. 5) so as to match the size of the magneto-optical element 5.
  • the optical system from the magneto-optical element 5 to the detector 12 is a telecentric optical system.
  • FIG. 6 is a cross-sectional view showing a configuration example of the magneto-optical element 5.
  • the magneto-optical element 5 includes a protective film 5a, a reflective film 5b, a magneto-optic film 5c, and a substrate 5d in order from the direction facing the steel plate S.
  • the magneto-optical film 5c preferably includes magnetic garnet in the composition.
  • the polarized light applied to the magneto-optical element 5 is incident on the substrate 5d, passes through the magneto-optical film 5c, is reflected by the reflective film 5b, and then passes through the magneto-optical film 5c and the substrate 5d again. Ejected from element 5.
  • FIG. 7 and 8 are schematic configuration diagrams for explaining the driving method of the electron gun abnormality detection apparatus 1 according to the embodiment of the present invention.
  • FIG. 7 is a side view of the drive mechanism of the electron gun abnormality detection device 1
  • FIG. 8 is a top view of the drive mechanism of the electron gun abnormality detection device 1.
  • the inspection unit 4 moves up and down along rails 14 suspended on both sides of the production line of the steel sheet S. It is possible.
  • the inspection unit 4 is installed so as to be movable on the rail 14 by wheels 15, and motors 17 are provided on the axles 16 of the wheels 15.
  • the inspection unit 4 moves up and down along the rail 14 by the rotational drive of the motor 17.
  • the inspection unit 4 includes a proximity sensor 18.
  • the proximity sensor 18 is a sensor for measuring the distance between the inspection unit 4 and the surface of the steel sheet S.
  • the inspection unit 4 when the inspection unit 4 is lowered to bring the magneto-optical element 5 into contact with the surface of the steel sheet S, the surface of the steel sheet S and the magneto-optical element 5 are damaged by collision. In the vicinity of the steel sheet S, it descends at a low speed.
  • the proximity sensor 18 detects the height at which the lowering speed of the inspection unit 4 should be changed to a low speed.
  • the drive mechanism shown in FIGS. 7 and 8 is merely an example applicable to the electron gun abnormality detection device 1 according to the embodiment of the present invention. Therefore, not only the drive mechanism shown in FIGS. 7 and 8 but also other mechanisms such as a winch type can be adopted. 7 and 8 drives the inspection unit 4 as a unit, but drives only some of the components included in the inspection unit 4, such as the magneto-optical element 5 and the holder 6. A configuration is also possible.
  • FIG. 9 is a flowchart showing an electron gun abnormality detection method according to an embodiment of the present invention.
  • the electron gun abnormality detection method according to the embodiment of the present invention is performed in a state where the production line of the steel sheet S is stopped (step S ⁇ b> 1).
  • the timing at which the production line is stopped is efficient, for example, when the coil of the steel sheet S is connected, but it may be at the time of stopping separately set for detecting an abnormality of the electron gun.
  • the inspection unit 4 of the electron gun abnormality detection device 1 descends to the surface of the steel sheet S (step S2).
  • the magneto-optical element 5 comes into contact with the inspection region R of the steel plate S, and the magnetic domain structure of the steel plate S is transferred to the magneto-optical film 5 c of the magneto-optical element 5.
  • step S3 the magnetic properties of the steel sheet S are acquired. That is, when the linearly polarized light is irradiated onto the magneto-optical element 5 and the linearly polarized light passes through the magneto-optical film 5c of the magneto-optical element 5, the polarization plane is rotated by the Faraday effect. The magnetic domain structure of the steel sheet S is detected with the rotation of.
  • the detected magnetic domain structure of the steel sheet S is subjected to appropriate image processing by a separate image processing means 13 such as a PC (step S4).
  • the image processing means 13 evaluates the magnetic domain discontinuity for the visualized image of the magnetic domain structure of the steel sheet S, and detects the boundary between the magnetic domain and the magnetic domain discontinuity. Further, the image processing means 13 evaluates the width of the magnetic domain discontinuity based on the size of the magneto-optical element 5, the magnification of the measurement optical system, the distance to the steel plate S, etc. (step S5).
  • the control means 1b determines the width of the magnetic domain discontinuity (step S6).
  • the determination of the width of the magnetic domain discontinuity portion not only determines whether or not the width of the magnetic domain discontinuity portion is within a predetermined width range, but also determines whether or not a deviation of the magnetic domain discontinuity portion has occurred. Do. That is, as shown in FIGS. 3 and 4, there are a plurality of ways in which the abnormality of the electron gun 3 appears in the magnetic domain discontinuity L in the inspection region R. Therefore, when the width of the magnetic domain discontinuous portion L in the upper half of the inspection region R is different from the width of the magnetic domain discontinuous portion L in the lower half of the inspection region R, the control unit 1b indicates that the filament of the electron gun 3 has deteriorated.
  • step S6 When the determination of the width of the magnetic domain discontinuity by the control means 1b indicates an abnormality of the electron gun 3 (step S6; NG), the filament replacement of the electron gun 3 or other cause investigation and repair are performed ( Step S7), the production line for the steel sheet S is resumed (step S8).
  • step S6 the determination of the width of the magnetic domain discontinuity by the control means 1b does not indicate an abnormality of the electron gun 3 (step S6; OK)
  • step S8 the production line of the stopped steel sheet S is resumed (step S8).
  • the control means 1b controls the filament not to be exchanged by issuing a command to increase or decrease the electron beam power of the electron gun 3 of the magnetic domain subdivision device 2 when the width of the magnetic domain discontinuity is not within a predetermined range. It is preferable to have a process to reduce the number of filament replacements of the electron gun 3.
  • 10 and 11 are graphs of the minimum value of the width of the magnetic domain discontinuity detected by the electron gun abnormality detection method according to the embodiment of the present invention.
  • FIG. 10 shows the inspection results for two days for a certain production line
  • FIG. 11 shows the inspection results for two days for the production line three months after the detection of FIG.
  • the inspection is performed when the coil of the steel sheet S is switched on the production line.
  • the legends of the graphs of FIGS. 10 and 11 indicate the minimum value of the width of the magnetic domain discontinuity in the upper half of the inspection region R 1 in accordance with the code allocation in FIG.
  • the inspection region R 1 represents the minimum value of the width of the magnetic domain discontinuous portion in the lower half in ⁇ , it represents the minimum value of the width of the magnetic domain discontinuous portion in the upper half of the inspection region R 2 in ⁇ , the magnetic domain in the lower half of the inspection region R 2 not represents the minimum value of the width of the continuous portion at ⁇ , it represents the minimum value of the width of the magnetic domain discontinuous portion in the upper half of the inspection area R 3 in ⁇ , minimum width of the magnetic domain discontinuous portion in the lower half of the inspection region R 3
  • the value is represented by x.
  • the occurrence of abnormality is determined based on the minimum value of the width of the magnetic domain discontinuity in the inspection region, but it is also possible to determine the occurrence of abnormality using the average value or dispersion of the width of the magnetic domain discontinuity. It is.
  • the electron gun abnormality detection device 1 of the present invention detects an abnormality of the electron gun 3 of the magnetic domain subdivision device 2 of the magnetic steel plate including the plurality of electron guns 3 a , 3 b , 3 c , 3 d.
  • An anomaly detection device 1 in which a plurality of electron guns 3 a , 3 b , 3 c , 3 d are set to include boundaries of magnetic domain discontinuities L generated by irradiating the surface of an electromagnetic steel sheet with an electron beam regions R 1, R 2, contacts disengaged R 3, and detectable magneto-optical element domain structure of the steel sheet S in the examination region R 1, R 2, R 3 as the optical properties, the linearly polarized light to the magneto-optical element 5 Since the irradiation light source 7 and the detector 12 for detecting the polarized light rotated by the magnetic domain structure of the steel sheet S transferred to the magneto-optical element 5 are provided, the electron guns 3 a , 3 b , 3 of the magnetic domain subdivision device 2 are provided. c, 3 d less examination region than the number of installed R 1, R 2, Examination of 3, it is possible to detect the abnormality of the electron gun 3 a, 3 b, 3 c, 3 d.
  • the magneto-optical element 5 includes a protective film 5a, a reflective film 5b, a magneto-optical film 5c, and a substrate 5d in order from the direction facing the steel plate S, and linearly polarized light is converted into the substrate 5d. Since it is incident from the side and reflected by the reflecting film 5b, the Faraday effect can be doubled by reciprocating the incident linearly polarized light through the magneto-optical film 5c.
  • the magneto-optical film 5c preferably contains magnetic garnet in the composition.
  • the electron gun abnormality detection device and the electron gun abnormality detection method according to the present invention can be applied to processing for detecting an abnormality of an electron gun that generates an electron beam of a magnetic domain subdivision apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

 本発明の電子銃異常検出装置1は、複数の電子銃3,3,3,3を備える電磁鋼板の磁区細分化装置2の電子銃3の異常を検出する電子銃異常検出装置1であって、複数の電子銃3,3,3,3が電磁鋼板表面に電子ビームを照射して生じる磁区不連続部Lの境界を含むように設定された検査領域R,R,Rに接触離脱し、検査領域R,R,Rにおける鋼板Sの磁区構造を光学特性として検出可能な磁気光学素子5と、磁気光学素子に直線偏光を照射する光源7と、磁気光学素子5に転写された鋼板Sの磁区構造により回転された偏光を検出する検出器12と、を備える。

Description

電子銃異常検出装置および電子銃異常検出方法
 本発明は、電子銃(electron gun)異常検出装置および電子銃異常検出方法に関する。
 電磁鋼板(electrical steel sheet)は、透磁率(magnetic permeability)が高く鉄損が少ないという磁気特性に優れた鋼板である。例えば、方向性電磁鋼板(grain oriented electrical steel sheet)は、変圧器のコアに多く用いられている。変圧器のコアに巻かれた電線に流れる交流電流は、コアの内部に交流磁場を発生させる。一般に、鋼板内に交流磁場が印加された場合には、渦電流損(eddy current loss)とヒステリシス損(hysteresis loss)とが生じる。電磁鋼板には、これら渦電流損およびヒステリシス損を低減することが要請されている。
 鋼板に交流磁場が印加された際の渦電流損の発生は不可避であり、周波数が高いほど渦電流損は大きくなる。一方、この渦電流損に影響を与える因子の一つとして鋼板の磁区(magnetic domain)の幅があり、この幅が狭いほど、渦電流損を低減することができる。このように鋼板の磁気特性と磁区の形状とは、非常に深い結びつきがあることが知られている。
 そこで、方向性電磁鋼板の製造工程では、渦電流損を低減するために、磁区を細分化する手法(磁区細分化(magnetic domain refining)処理)が施されている。方向性電磁鋼板の磁区は圧延方向に延びており、この磁区を横切る方向に歪みを入れたり、溝を形成したりすることにより、磁区を細分化することができる(例えば特許文献1参照)。歪みを入れる方法としては、例えばレーザや電子ビームなどを磁区を横切る方向に照射して熱歪みを与える方法が知られている。この磁区細分化処理が適切に施されているか否かを検査するために、磁区構造(magnetic domain structure)を観察する技術が知られている(特許文献2参照)。
特開2012-52230号公報 特開2007-101519号公報
 しかしながら、磁区細分化処理では、電子ビームを発生させる電子銃のフィラメントが劣化するなどの要因により、所定の磁区細分化処理が施されない場合がある。また、従来の検査技術では、磁区細分化処理が施された鋼板の磁区構造を磁区細分化処理直後に直ちに検出することができず、別途鋼板をサンプリングしてオフラインで検査する必要があった。例えば、特許文献2に記載の検査技術では、磁性粉が溶液中を移動して磁区構造を反映した像を形成するのに時間が必要である。このため、磁区細分化処理にて不具合が発生した場合でも、その不具合が検出されるまでに長時間を要するため、不適合品を製造し続けることによる歩留まりの低下が発生してしまう。
 本発明は、上記に鑑みてなされたものであって、その目的は、磁区細分化装置の電子銃の設置台数よりも少ない検査点における検査により、電子銃の異常を検出することができる電子銃異常検出装置および電子銃異常検出方法を提供することにある。
 上述した課題を解決し、目的を達成するために、本発明にかかる電子銃異常検出装置は、少なくとも第1の電子銃と第2の電子銃とを備える電磁鋼板の磁区細分化装置の電子銃の異常を検出する電子銃異常検出装置であって、前記第1の電子銃が前記電磁鋼板表面に電子ビームを照射して生じる磁区不連続部と前記第2の電子銃が電子ビームを照射して生じる磁区不連続部の境界を含むように設定された検査領域に接触離脱し、前記検査領域における鋼板の磁区構造を光学特性として検出可能な磁気光学素子(magnetooptic device)と、前記磁気光学素子に直線偏光を照射する光源と、前記磁気光学素子に転写された前記鋼板の磁区構造により回転された偏光を検出する検出器と、を備えることを特徴とする。
 上述した課題を解決し、目的を達成するために、本発明にかかる電子銃異常検出方法は、少なくとも第1の電子銃と第2の電子銃とを備える磁区細分化装置の電子銃の異常を検出する電子銃異常検出方法であって、前記第1の電子銃が電子ビームを照射して生じる磁区不連続部と前記第2の電子銃が電子ビームを照射して生じる磁区不連続部の境界を含むように設定された検査領域に鋼板の磁区構造を光学特性として検出する磁気光学素子を前記鋼板に接触させる接触ステップと、前記磁気光学素子に直線偏光を照射する照射ステップと、前記磁気光学素子にて反射する直線偏光の偏光面の回転を検出する検出ステップと、前記偏光面の回転から前記鋼板の磁区構造を測定する測定ステップと、前記磁気光学素子を前記鋼板から離脱させる離脱ステップと、を含むことを特徴とする。
 本発明にかかる電子銃異常検出装置および電子銃異常検出方法は、磁区細分化装置の電子銃の設置台数よりも少ない検査点における検査により、電子銃の異常を検出することができるという効果を奏する。
図1は、本発明の実施形態にかかる電子銃異常検出装置を組み入れた製造ラインを示す構成図である。 図2は、本発明の実施形態にかかる電子銃異常検出の仕組みを説明する模式図である。 図3は、検査領域にて電子銃の異常が検出された場合の検査画像の模式図である。 図4は、検査領域にて電子銃の異常が検出された場合の検査画像の模式図である。 図5は、電子銃異常検出装置の検査ユニットの内部構成例を示す模式図である。 図6は、磁気光学素子の構成例を示す断面図である。 図7は、電子銃異常検出装置の駆動機構の側面図である。 図8は、電子銃異常検出装置の駆動機構の上面図である。 図9は、本発明の実施形態にかかる電子銃異常検出方法を示すフローチャートである。 図10は、本発明の実施形態にかかる電子銃異常検出方法により検出される磁区不連続部の幅の最小値のグラフである。 図11は、本発明の実施形態にかかる電子銃異常検出方法により検出される磁区不連続部の幅の最小値のグラフである。
 以下に、本発明の実施形態にかかる電子銃異常検出装置および電子銃異常検出方法を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。
〔電子銃異常検出装置〕
 図1は、本発明の実施形態にかかる電子銃異常検出装置1を組み入れた製造ラインを示す構成図である。図1に示されるように、本発明の実施形態にかかる電子銃異常検出装置1は、鋼板Sの磁区細分化処理を行う磁区細分化装置2の後段に配置される。磁区細分化装置2は、内部に電子銃3を備え、電子銃3から鋼板Sに電子ビームを照射することにより、鋼板Sの磁区を横切る方向に歪みを与える装置である。
 磁区細分化装置2が鋼板Sの表面に磁区細分化処理を施し、磁区細分化装置2により磁区細分化処理が施された鋼板Sの表面を電子銃異常検出装置1が検査する。そして、電子銃異常検出装置1による検査結果に基づき、制御手段1bが磁区細分化装置2の電子銃3の異常を判定し、必要に応じて電子銃3の制御をする。なお、制御手段1bは、PLCなどの自動制御装置またはオペレータによる手動制御の何れでも構わない。
 図2は、本発明の実施形態にかかる電子銃異常検出の仕組みを説明する模式図である。図2に示されるように、磁区細分化装置2は、複数の電子銃3,3,3,3を備える。なお、図2に示される磁区細分化装置2は、4つの電子銃3,3,3,3を備えているが、より多くの電子銃を備える磁区細分化装置2に対しても本発明は適用し得る。少なくとも2以上の電子銃を備える磁区細分化装置2に対して本発明は適用し得る。
 複数の電子銃3,3,3,3は、互いに協働して鋼板Sの表面に幅方向に直線状の電子ビームBを照射する。すなわち、複数の電子銃3,3,3,3は、鋼板Sの幅方向に直線状の磁区を横切る歪みを入れるに際し、この幅方向の直線を区分けして、各電子銃3,3,3,3が区分けされた直線に電子ビームBを照射する。なお、図2に示される磁区細分化装置2は、直線状に4つの電子銃3,3,3,3を備えているが、4つの電子銃3,3,3,3をいわゆる千鳥配置にし、電子ビームBを照射するタイミングを制御することにより互いに協働して鋼板Sの表面に幅方向に直線状の電子ビームBを照射する構成も可能である。
 このように電子ビームまたはレーザを照射された鋼板Sの表面には、圧延方向を向いた主磁区を分断するように還流磁区(closure domain)が形成される。以下、電子ビームまたはレーザを照射された鋼板Sの表面に形成された還流磁区を磁区不連続部Lという。
 上記のように複数の電子銃3,3,3,3により処理が施された鋼板Sは、後段の電子銃異常検出装置1により検査される。すなわち、複数の電子銃3,3,3,3により形成された磁区不連続部Lが所望の処理結果となっているか否かを、電子銃異常検出装置1が検査する。
 上記のように磁区不連続部Lは、鋼板Sの幅方向に関して複数に分割されて電子ビームが照射されている。そこで、電子銃異常検出装置1は、磁区不連続部Lにおける各区分けの境界において検査を行う。
 図2に示された模式図では、電子銃3により作成された磁区不連続部Lと電子銃3により作成された磁区不連続部Lとの境界における電子銃異常検出装置1の検査領域をRとし、電子銃3により作成された磁区不連続部Lと電子銃3により作成された磁区不連続部Lとの境界における電子銃異常検出装置1の検査領域をRとし、電子銃3により作成された磁区不連続部Lと電子銃3により作成された磁区不連続部Lとの境界における電子銃異常検出装置1の検査領域をRとしている。
 図3および図4は、検査領域Rにて電子銃3の異常が検出された場合の検査画像の模式図である。図3および図4に示されるように、磁区細分化装置2により磁区細分化処理が施された鋼板Sの表面には、磁区不連続部Lが形成されている。また、磁区不連続部Lの間には、圧延方向に沿って整列した主磁区Mが形成されている。
 図3に示されるように、電子銃異常検出装置1は、検査領域Rの上半分の磁区不連続部Lと検査領域Rの下半分の磁区不連続部Lとで幅が異なる検査結果を得ることがある。図3に示されるような検査結果が得られた場合、幅が狭くなってしまった磁区不連続部Lに電子ビームを照射した電子銃3のフィラメントが劣化していることが考えられる。
 一方、図4に示されるように、電子銃異常検出装置1は、検査領域Rの上半分の磁区不連続部Lと検査領域Rの下半分の磁区不連続部Lとで位置がずれている検査結果を得ることがある。図4に示されるような検査結果が得られた場合、電子銃3の機械的位置のずれ、または電子銃3から電子ビームを照射するタイミングのずれが発生していることが考えられる。
 図3および図4に示されるように、本発明の実施形態にかかる電子銃異常検出装置1は磁区不連続部Lにおける各区分けの境界において検査を行うので、磁区細分化装置2の電子銃3のうち2つの電子銃3の異常を同時に検査することができる。したがって、本発明の実施形態にかかる電子銃異常検出装置1は、磁区細分化装置2の電子銃3の設置台数よりも少ない検査点における検査により、電子銃3の異常を検出することができる。
 以下では、図5から図8を参照しながら、本発明の実施形態にかかる電子銃異常検出装置1の具体的構成について説明する。
 図5は、電子銃異常検出装置1の検査ユニット4の内部構成例を示す模式図である。電子銃異常検出装置1は、製造ラインの一時停止時に、検査ユニット4を駆動することにより、鋼板Sに接触して電子銃3の異常を検査する装置である。
 図5に示されるように、検査ユニット4は、鋼板Sの磁区構造を光学特性へ変換する磁気光学素子5と、磁気光学素子5を弾性体を介して検査ユニット4に固定するホルダ6と、磁気光学素子5に直線偏光を照射して磁気光学素子5から反射される反射偏光を検出する落射光学系を備える。すなわち、検査ユニット4は、落射光学系として、光源7と、コリメータレンズ8と、偏光子(偏光フィルター)9と、ハーフミラー10と、検光子(偏光フィルター)11と、検出器12と、を備える。
 磁気光学素子5は、ファラデー効果と呼ばれる磁気光学効果により鋼板Sの磁区構造を光学特性へ変換する素子である。ファラデー効果とは、直線偏光を物質に透過させたときに、その物質が感じる磁場によって偏光面が回転する効果であり、このファラデー効果を奏する代表的な物質として磁性ガーネット(magnetic garnet)が挙げられる。より具体的には、Bi置換した鉄ガーネットなどが利用可能である。
 検査ユニット4を駆動することにより、磁気光学素子5は、鋼板Sの検査領域Rに接触し、鋼板Sの磁区構造が磁気光学素子5に転写され、磁気光学素子5に照射される偏光の偏光面が回転する。なお、ホルダ6は、検査ユニット4を駆動して磁気光学素子5を鋼板Sに接触させる際の衝撃を和らげるために、弾性体を介して磁気光学素子5を検査ユニット4に固定している。
 光源7は、磁気光学素子5に直線偏光を照射するためのものであり、例えば半導体レーザ光源またはLED光源などの一般的光源が用いられる。光源7は、直接的に偏光を射出する光源である必要はなく、偏光子(偏光フィルター)9と組み合わせて磁気光学素子5に照射する直線偏光を発生させる。また、光源7は、偏光を平行光として射出し得るように、コリメータレンズ8など光学素子と組み合わせて用いられている。例えば、緑色LED光源(波長505nm)を用いれば、コントラストが向上する。
 偏光子9は、光源7から射出された光線を直線偏光に変換する偏光フィルターである。偏光子9は、検光子11との相対的角度を調整することにより、検出器12にて検出される偏光の調整を行う。すなわち、偏光子9は、回転機構を有し、直線偏光の偏光面の角度を調整することができる。なお、検光子11に回転機構を有した場合、偏光子9における回転機構は省略可能である。
 ハーフミラー10は、偏光子9を透過した直線偏光を磁気光学素子5へ導き、磁気光学素子5から反射される反射偏光を検出器12へ導く光路分割手段である。検光子11は、先述の偏光子9との相対的角度を調整することにより、検出器12にて検出される偏光の調整を行う。検出器12は、いわゆるCCDカメラまたはCMOSカメラなど一般的な2次元画像取得装置である。検出器12にて検出された画像は、PC等の別途の画像処理手段13により適切な画像処理を施される。
 なお、図5には図示されないレンズ等の光学素子より、磁気光学素子5に照射される際の光束径が磁気光学素子5の大きさに一致するように調整されている。さらに、磁気光学素子5から検出器12までの光学系は、テレセントリック光学系となっている。
 図6は、磁気光学素子5の構成例を示す断面図である。図6に示されるように、磁気光学素子5は、鋼板Sに面する方向から順に、保護膜5a、反射膜5b、磁気光学膜(magnetooptic film)5c、および基板5dにより構成される。なお、磁気光学膜5cは、磁性ガーネットを組成に含むことが好ましい。この磁気光学素子5に照射される偏光は、基板5dに入射され、磁気光学膜5cを透過し、反射膜5bにて反射した後、再度磁気光学膜5cおよび基板5dを透過して、磁気光学素子5から射出される。
 図7および図8は、本発明の実施形態にかかる電子銃異常検出装置1の駆動方式を説明する概略構成図である。図7は、電子銃異常検出装置1の駆動機構の側面図であり、図8は、電子銃異常検出装置1の駆動機構の上面図である。
 図7および図8に示されるように、本発明の実施形態にかかる電子銃異常検出装置1では、鋼板Sの製造ラインの両脇に垂置されたレール14に沿って検査ユニット4が上下移動可能となっている。検査ユニット4は、車輪15によりレール14上を移動可能に設置されており、車輪15の車軸16には、それぞれモータ17が設けられている。検査ユニット4は、モータ17の回転駆動によりレール14に沿って上下移動する。
 図7および図8に示されるように、検査ユニット4は、近接センサー18を備えている。近接センサー18は、検査ユニット4と鋼板Sの表面との距離を測定するためのセンサーである。本発明の実施形態にかかる電子銃異常検出装置1は、検査ユニット4が下降して磁気光学素子5を鋼板Sの表面に接触させる際に、鋼板Sの表面および磁気光学素子5が衝突により損傷を受けないように、鋼板Sの近傍では低速で降下する。近接センサー18は、検査ユニット4の降下速度を低速に変更すべき高さを検知する。
 なお、図7および図8に示される駆動機構は、本発明の実施形態にかかる電子銃異常検出装置1に適用可能な一例に過ぎない。したがって、図7および図8に示される駆動機構に限らず、ウィンチ式など他の機構を採用することも可能である。また、図7および図8に示される駆動機構は、検査ユニット4を一体として駆動しているが、検査ユニット4に含まれる一部の構成要素、例えば磁気光学素子5およびホルダ6のみを駆動する構成とすることも可能である。
〔電子銃異常検出方法〕
 以下、本発明の実施形態にかかる電子銃異常検出方法について説明する。なお、以下の説明では、本発明の実施形態にかかる電子銃異常検出装置の構成の図面などを参照しながら本発明の実施形態にかかる電子銃異常検出方法について説明するが、本発明の実施形態にかかる電子銃異常検出方法は、これらの図面に表された構成により限定されるものではない。
 図9は、本発明の実施形態にかかる電子銃異常検出方法を示すフローチャートである。図9に示されるように、本発明の実施形態にかかる電子銃異常検出方法は、鋼板Sの製造ラインが停止された状態で行なわれる(ステップS1)。この製造ラインが停止するタイミングは、例えば鋼板Sのコイルを繋ぐ際の停止時であることが効率的であるが、電子銃異常検出用に別途設定した停止時であっても構わない。
 次に、電子銃異常検出装置1の検査ユニット4が鋼板Sの表面へ降下する(ステップS2)。検査ユニット4が鋼板Sの表面へ降下することにより、磁気光学素子5が鋼板Sの検査領域Rへ接触し、鋼板Sの磁区構造が磁気光学素子5の磁気光学膜5cに転写される。
 その後、鋼板Sの磁気特性が取得される(ステップS3)。すなわち、磁気光学素子5に直線偏光が照射され、磁気光学素子5の磁気光学膜5cを直線偏光が通過することにより、ファラデー効果による偏光面の回転が発生し、検査ユニット4は、この偏光面の回転をもって鋼板Sの磁区構造を検出する。
 なお、検出された鋼板Sの磁区構造は、PC等の別途の画像処理手段13により適切な画像処理を施される(ステップS4)。画像処理手段13は、可視化された鋼板Sの磁区構造の画像について、磁区不連続部評価を行い、磁区と磁区不連続部との境界を検出する。さらに、画像処理手段13は、磁気光学素子5の大きさ、測定光学系の倍率、鋼板Sまでの距離などをもとにして、磁区不連続部の幅評価を行う(ステップS5)。
 その後、制御手段1bが磁区不連続部の幅の判定を行う(ステップS6)。この磁区不連続部の幅の判定は、磁区不連続部の幅が所定幅範囲内であるか否かを判定するのみならず、磁区不連続部のずれが発生しているか否かの判定も行う。すなわち、図3および図4に示されるように、電子銃3の異常が検査領域Rにおける磁区不連続部Lに現れる現れ方は、複数存在する。そこで、制御手段1bは、検査領域Rの上半分の磁区不連続部Lと検査領域Rの下半分の磁区不連続部Lとで幅が異なる場合、電子銃3のフィラメントが劣化していることを推定し、検査領域Rの上半分の磁区不連続部Lと検査領域Rの下半分の磁区不連続部Lとで位置がずれている場合、電子銃3の機械的位置のずれ、または電子銃3から電子ビームを照射するタイミングのずれが発生していることを推定する。
 そして、制御手段1bによる磁区不連続部の幅の判定が電子銃3の異常を示している場合(ステップS6;NG)、電子銃3のフィラメントの交換または他の原因調査および修理が行われ(ステップS7)、鋼板Sの製造ラインが再開される(ステップS8)。
 一方、制御手段1bによる磁区不連続部の幅の判定が電子銃3の異常を示していない場合(ステップS6;OK)、停止されていた鋼板Sの製造ラインが再開される(ステップS8)。
 なお、制御手段1bは、磁区不連続部の幅が所定範囲内でない場合において、磁区細分化装置2の電子銃3の電子ビームパワーを増加または低減する指令を発することにより、フィラメント交換をしない制御プロセスを有し、電子銃3のフィラメントの交換回数を低減する工夫が施されていることが好ましい。
〔実施例〕
 次に、本発明の実施形態にかかる電子銃異常検出方法により、磁区細分化装置2の電子銃3の異常検出処理を実施した製造ラインの操業例について説明する。図10および図11は、本発明の実施形態にかかる電子銃異常検出方法により検出される磁区不連続部の幅の最小値のグラフである。
 図10は、ある製造ラインの2日間における検査結果を示しており、図11は、図10の検出から3ヵ月後の製造ラインの2日間における検査結果を示している。検査は、製造ラインにおける鋼板Sのコイルの切り替えの際の停止時に行われている。また、図10および図11のグラフの凡例は、図2における符号の割振りに則して、検査領域Rの上半分における磁区不連続部の幅の最小値を●で表し、検査領域Rの下半分における磁区不連続部の幅の最小値を□で表し、検査領域Rの上半分における磁区不連続部の幅の最小値を◇で表し、検査領域Rの下半分における磁区不連続部の幅の最小値を▲で表し、検査領域Rの上半分における磁区不連続部の幅の最小値を▼で表し、検査領域Rの下半分における磁区不連続部の幅の最小値を×で表している。
 図10に示されるように、磁区細分化装置2の電子銃3が正常である場合、全ての検査領域Rの上半分および下半分において、磁区不連続部の幅の最小値が200μm前後となっている。一方、図11に示される第5回目の検査では、検査領域Rの下半分における磁区不連続部の幅の最小値▲および検査領域Rの上半分における磁区不連続部の幅の最小値▼が100μm程度にまで低下している。したがって、図11に示される第5回目の検査結果により、磁区細分化装置2の電子銃3に異常が発生していることが検出される。特にこの検査結果によれば、磁区細分化装置2の電子銃3のフィラメントが劣化していることが判別される。
 なお、上記実施例では、検査領域における磁区不連続部の幅の最小値により異常発生を判定したが、磁区不連続部の幅の平均値や分散などを用いて異常発生を判定することも可能である。
 以上より、本発明の電子銃異常検出装置1は、複数の電子銃3,3,3,3を備える電磁鋼板の磁区細分化装置2の電子銃3の異常を検出する電子銃異常検出装置1であって、複数の電子銃3,3,3,3が電磁鋼板表面に電子ビームを照射して生じる磁区不連続部Lの境界を含むように設定された検査領域R,R,Rに接触離脱し、検査領域R,R,Rにおける鋼板Sの磁区構造を光学特性として検出可能な磁気光学素子と、磁気光学素子5に直線偏光を照射する光源7と、磁気光学素子5に転写された鋼板Sの磁区構造により回転された偏光を検出する検出器12とを備えるので、磁区細分化装置2の電子銃3,3,3,3の設置台数よりも少ない検査領域R,R,Rにおける検査により、電子銃3,3,3,3の異常を検出することができる。
 また、本発明の実施形態にかかる磁気光学素子5は、鋼板Sに面する方向から順に、保護膜5a、反射膜5b、磁気光学膜5c、および基板5dにより構成され、直線偏光が、基板5d側から入射され、反射膜5bにて反射されるので、入射された直線偏光が磁気光学膜5cを往復することにより、ファラデー効果を2倍得ることができる。また、磁気光学膜5cは、磁性ガーネットを組成に含むことが好ましい。
 以上のように、本発明にかかる電子銃異常検出装置および電子銃異常検出方法は、磁区細分化装置の電子ビームを発生させる電子銃の異常を検出する処理に適用することができる。
 1 電子銃異常検出装置
 1b 制御手段
 2 磁区細分化装置
 3,3,3,3,3 電子銃
 4 検査ユニット
 5 磁気光学素子
 5a 保護膜
 5b 反射膜
 5c 磁気光学膜
 5d 基板
 6 ホルダ
 7 光源
 8 コリメータレンズ
 9 偏光子
 10 ハーフミラー
 11 検光子
 12 検出器
 13 画像処理手段
 14 レール
 15 車輪
 16 車軸
 17 モータ
 18 近接センサー

Claims (9)

  1.  少なくとも第1の電子銃と第2の電子銃とを備える電磁鋼板の磁区細分化装置の電子銃の異常を検出する電子銃異常検出装置であって、
     前記第1の電子銃が前記電磁鋼板表面に電子ビームを照射して生じる磁区不連続部と前記第2の電子銃が電子ビームを照射して生じる磁区不連続部の境界を含むように設定された検査領域に接触離脱し、前記検査領域における鋼板の磁区構造を光学特性として検出可能な磁気光学素子と、
     前記磁気光学素子に直線偏光を照射する光源と、
     前記磁気光学素子に転写された前記鋼板の磁区構造により回転された偏光を検出する検出器と、
     を備えることを特徴とする電子銃異常検出装置。
  2.  前記磁気光学素子は、前記鋼板に面する方向から順に、保護膜、反射膜、磁気光学膜、および基板により構成され、
     前記直線偏光は、前記基板側から入射され、前記反射膜にて反射される、
     ことを特徴とする請求項1に記載の電子銃異常検出装置。
  3.  前記磁気光学膜は、磁性ガーネットを組成に含むことを特徴とする請求項2に記載の電子銃異常検出装置。
  4.  さらに偏光子、ハーフミラー、および検光子を備え、
     前記光源から射出された光線は、前記偏光子、前記ハーフミラー、前記磁気光学素子、前記ハーフミラー、前記検光子、および前記検出器の順に伝播されることを特徴とする請求項1~3の何れか1項に記載の電子銃異常検出装置。
  5.  前記光源、前記偏光子、前記ハーフミラー、前記磁気光学素子、前記検光子、および前記検出器を収容する検査ユニットを駆動する駆動機構をさらに備えることにより、前記鋼板の検査領域と前記磁気光学素子とを接触離脱することを特徴とする請求項1~4の何れか1項に記載の電子銃異常検出装置。
  6.  前記鋼板の幅方向における前記検査領域の配置数が、前記磁区細分化装置が備える電子銃の台数よりも1だけ少ないことを特徴とする請求項1~5の何れか1項に記載の電子銃異常検出装置。
  7.  少なくとも第1の電子銃と第2の電子銃とを備える磁区細分化装置の電子銃の異常を検出する電子銃異常検出方法であって、
     前記第1の電子銃が電子ビームを照射して生じる磁区不連続部と前記第2の電子銃が電子ビームを照射して生じる磁区不連続部の境界を含むように設定された検査領域に鋼板の磁区構造を光学特性として検出する磁気光学素子を前記鋼板に接触させる接触ステップと、
     前記磁気光学素子に直線偏光を照射する照射ステップと、
     前記磁気光学素子にて反射する直線偏光の偏光面の回転を検出する検出ステップと、
     前記偏光面の回転から前記鋼板の磁区構造を測定する測定ステップと、
     前記磁気光学素子を前記鋼板から離脱させる離脱ステップと、
     を含むことを特徴とする電子銃異常検出方法。
  8.  前記磁気光学素子は、前記鋼板に面する方向から順に、保護膜、反射膜、磁気光学膜、および基板により構成され、
     前記直線偏光は、前記基板側から入射され、前記反射膜にて反射される、
     ことを特徴とする請求項7に記載の電子銃異常検出方法。
  9.  前記磁気光学膜は、磁性ガーネットを組成に含むことを特徴とする請求項8に記載の電子銃異常検出方法。
PCT/JP2013/075942 2012-09-28 2013-09-25 電子銃異常検出装置および電子銃異常検出方法 WO2014050906A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP13840512.1A EP2902777B1 (en) 2012-09-28 2013-09-25 Electron gun abnormality detector and electron gun abnormality detection method
RU2015115880/28A RU2598394C1 (ru) 2012-09-28 2013-09-25 Устройство для обнаружения неисправности электронной пушки и способ обнаружения неисправности электронной пушки
US14/431,221 US9304078B2 (en) 2012-09-28 2013-09-25 Electron gun abnormality detecting device and electron gun abnormality detecting method
KR1020157005161A KR101671742B1 (ko) 2012-09-28 2013-09-25 전자총 이상 검출 장치 및 전자총 이상 검출 방법
CN201380046143.XA CN104603610B (zh) 2012-09-28 2013-09-25 电子枪异常检测装置以及电子枪异常检测方法
IN2383DEN2015 IN2015DN02383A (ja) 2012-09-28 2013-09-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216381A JP5561335B2 (ja) 2012-09-28 2012-09-28 電子銃異常検出装置および電子銃異常検出方法
JP2012-216381 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014050906A1 true WO2014050906A1 (ja) 2014-04-03

Family

ID=50388301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075942 WO2014050906A1 (ja) 2012-09-28 2013-09-25 電子銃異常検出装置および電子銃異常検出方法

Country Status (8)

Country Link
US (1) US9304078B2 (ja)
EP (1) EP2902777B1 (ja)
JP (1) JP5561335B2 (ja)
KR (1) KR101671742B1 (ja)
CN (1) CN104603610B (ja)
IN (1) IN2015DN02383A (ja)
RU (1) RU2598394C1 (ja)
WO (1) WO2014050906A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746430C1 (ru) * 2018-03-30 2021-04-14 ДжФЕ СТИЛ КОРПОРЕЙШН Железный сердечник трансформатора
RU2744690C1 (ru) 2018-03-30 2021-03-15 ДжФЕ СТИЛ КОРПОРЕЙШН Железный сердечник трансформатора
EP3761020A1 (en) * 2019-07-03 2021-01-06 ABB Power Grids Switzerland AG Non-destructive analysis of electrical steel using a trained algorithm for material property estimation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180355A (ja) * 1983-03-31 1984-10-13 Nippon Steel Corp 電磁鋼板のオンライン結晶粒度測定装置
JPS62102103A (ja) * 1985-10-30 1987-05-12 Hitachi Ltd 微細磁化パタ−ン計測装置
JPH05119130A (ja) * 1991-02-04 1993-05-18 Japan Aircraft Mfg Co Ltd 磁場顕微鏡装置
JP2002257718A (ja) * 2001-02-28 2002-09-11 Nippon Steel Corp 光ビーム走査磁区検出装置
JP2007101519A (ja) 2005-09-07 2007-04-19 Nippon Steel Corp 磁性体の粒形状観察装置
JP2012031519A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012035288A (ja) * 2010-08-05 2012-02-23 Jfe Steel Corp 電子ビーム照射方法
JP2012052230A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1620247A1 (ru) * 1988-02-15 1991-01-15 Институт Электросварки Им.Е.О.Патона Способ контрол времени работы катода и подогревател сварочной электронной пушки и устройство дл его осуществлени
RU2008737C1 (ru) * 1991-07-09 1994-02-28 Сумский физико-технологический институт Способ определения статических характеристик электронных пучков малого сечения и устройство для его осуществления
JPH0711941B2 (ja) * 1992-02-04 1995-02-08 日電アネルバ株式会社 電子銃制御装置
US5382802A (en) * 1992-08-20 1995-01-17 Kawasaki Steel Corporation Method of irradiating running strip with energy beams
WO2000023811A1 (en) * 1998-10-21 2000-04-27 Duncan Paul G Methods and apparatus for optically measuring polarization rotation of optical wave fronts using rare earth iron garnets
JP2002267623A (ja) * 2001-03-12 2002-09-18 Tokyo Seimitsu Co Ltd 電子ビーム欠陥検査装置
EP1279747B1 (en) * 2001-07-24 2013-11-27 JFE Steel Corporation A method of manufacturing grain-oriented electrical steel sheets
US6934068B2 (en) * 2003-02-10 2005-08-23 Lake Shore Cryotronics, Inc. Magnetic field and electrical current visualization system
JP5987610B2 (ja) * 2012-09-28 2016-09-07 Jfeスチール株式会社 鋼板検査装置、鋼板検査方法、および鋼板製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180355A (ja) * 1983-03-31 1984-10-13 Nippon Steel Corp 電磁鋼板のオンライン結晶粒度測定装置
JPS62102103A (ja) * 1985-10-30 1987-05-12 Hitachi Ltd 微細磁化パタ−ン計測装置
JPH05119130A (ja) * 1991-02-04 1993-05-18 Japan Aircraft Mfg Co Ltd 磁場顕微鏡装置
JP2002257718A (ja) * 2001-02-28 2002-09-11 Nippon Steel Corp 光ビーム走査磁区検出装置
JP2007101519A (ja) 2005-09-07 2007-04-19 Nippon Steel Corp 磁性体の粒形状観察装置
JP2012031519A (ja) * 2010-06-30 2012-02-16 Jfe Steel Corp 方向性電磁鋼板およびその製造方法
JP2012035288A (ja) * 2010-08-05 2012-02-23 Jfe Steel Corp 電子ビーム照射方法
JP2012052230A (ja) 2010-08-06 2012-03-15 Jfe Steel Corp 方向性電磁鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902777A4

Also Published As

Publication number Publication date
EP2902777A4 (en) 2016-06-22
RU2598394C1 (ru) 2016-09-27
CN104603610B (zh) 2017-08-18
CN104603610A (zh) 2015-05-06
IN2015DN02383A (ja) 2015-09-04
EP2902777A1 (en) 2015-08-05
US9304078B2 (en) 2016-04-05
KR101671742B1 (ko) 2016-11-02
KR20150038464A (ko) 2015-04-08
EP2902777B1 (en) 2021-08-25
JP5561335B2 (ja) 2014-07-30
JP2014070974A (ja) 2014-04-21
US20150241335A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP5987610B2 (ja) 鋼板検査装置、鋼板検査方法、および鋼板製造方法
JP6149370B2 (ja) 磁区不連続部検出方法
KR101547049B1 (ko) 와이어 로프 탐상 장치
JP5561335B2 (ja) 電子銃異常検出装置および電子銃異常検出方法
WO2012164702A1 (ja) 方向性電磁鋼板の製造装置及び方向性電磁鋼板の製造方法
US20150239480A1 (en) Method and device for inspecting railway wheels
US7521917B2 (en) Method and apparatus for testing material integrity
JP2014220495A (ja) 異物除去装置
JP2011069654A (ja) バルクハウゼンノイズ検査装置およびバルクハウゼンノイズ検査方法
KR101913367B1 (ko) 방향성 전기강판의 자구미세화 방법과 그 장치
KR102162984B1 (ko) 방향성 전기강판 및 그의 제조 방법
JP6191112B2 (ja) 鋼板検査装置および鋼板検査方法
KR20140056353A (ko) 차륜의 자분탐상용 자화 장치
JP2004077426A (ja) 駆動用ベルトの欠陥検査方法
Zhang et al. Effect of scanning acceleration on the leakage signal in magnetic flux leakage type of non-destructive testing
KR101859019B1 (ko) 금속소재 표면검사장치
JP2006220630A (ja) 渦電流探傷用プローブ
WO2020059662A1 (ja) 磁気特性の測定方法およびその測定装置、ならびに磁気記録媒体の製造方法
RU2648011C1 (ru) Устройство для неразрушающих испытаний металлических деталей
KR20200049327A (ko) 선재의 결함위치 지시장치 및 지시방법
JP2013185229A (ja) 方向性電磁鋼板の加工方法と方向性電磁鋼板
Atici et al. Observation of crystal distortions in SiGeSi superlattice using a new application of large-angle convergent-beam electron diffraction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005161

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013840512

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14431221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015115880

Country of ref document: RU

Kind code of ref document: A