WO2014050037A1 - 集水構造体 - Google Patents

集水構造体 Download PDF

Info

Publication number
WO2014050037A1
WO2014050037A1 PCT/JP2013/005540 JP2013005540W WO2014050037A1 WO 2014050037 A1 WO2014050037 A1 WO 2014050037A1 JP 2013005540 W JP2013005540 W JP 2013005540W WO 2014050037 A1 WO2014050037 A1 WO 2014050037A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gravel
layer
repellent sand
soil layer
Prior art date
Application number
PCT/JP2013/005540
Other languages
English (en)
French (fr)
Inventor
田尾本 昭
脇田 由実
竹内 潤一郎
耕一 宇波
利彦 河地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2014534856A priority Critical patent/JP5651276B2/ja
Publication of WO2014050037A1 publication Critical patent/WO2014050037A1/ja
Priority to US14/445,449 priority patent/US9689131B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B11/00Drainage of soil, e.g. for agricultural purposes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Definitions

  • the present invention relates to a water collection structure that can efficiently recover water that has permeated through a soil layer.
  • a waterproof sheet or the like is used when the rain falling on the ground surface such as farmland or the supplied irrigation water is collected and stored by the inclined water shielding layer.
  • Patent Document 1 installs a water shielding layer as a system for collecting and supplying water by using a water shielding layer having an inclination.
  • patent document 2 provides the bottom wall and side wall which inclined with the water-impervious material, and restricts the flow path of water, thereby flowing water into the inclined soil to perform water purification.
  • the water-impervious layer is composed of a waterproof sheet or the like, and the water-impervious layer is destroyed and cannot self-repair when the ground changes due to vibration or earthquake during civil engineering work.
  • a waterproof sheet or the like is used to collect and store the precipitation that has fallen on the ground surface of farmland or the like, or the supplied irrigation water using an inclined impermeable layer. If the waterproof sheet is destroyed due to deterioration due to secular change, civil engineering work, heavy machinery load or vibration during farming, or ground change such as an earthquake, the water shielding function is impaired.
  • an object of the present invention is to provide a water collection structure that is less likely to be destroyed by civil engineering work and can efficiently recover the water that has permeated through the descent.
  • a water collection structure collects water from an upstream side to a downstream side between a first soil layer and a second soil layer below the first soil layer.
  • a water structure On the second soil layer, a water repellent sand layer that is arranged such that the upper surface is inclined downward from the upstream side toward the downstream side, and is composed of a plurality of particles that are water repellent treated; On the upper surface of the water repellent sand layer, the water repellent sand layer is disposed so as to be inclined downward from an upstream end portion toward a downstream end portion, and is larger than the plurality of particles subjected to the water repellent treatment of the water repellent sand layer.
  • the water collecting structure uses water repellent sand as compared to the case where a waterproof sheet or the like is used as a water-impervious layer, so that the load or vibration of heavy machinery during civil engineering work, farming, or It has the effect of being difficult to be destroyed against ground changes such as earthquakes.
  • the water that has descended and penetrated through the first soil layer accumulates on the upper surface of the water repellent sand layer and flows into the water conveyance zone on the upper surface of the water repellent sand layer. Since the water conduit section is arranged so as to incline downward from the upstream end portion toward the downstream end portion, the water that has flowed into the water conduit section is directed downstream in the drain hole of the underdrain. It can be discharged from a drain hole in a culvert that penetrates the impermeable wall and stored in a water storage container. Therefore, the water that has descended and penetrated through the soil layer can be efficiently recovered.
  • a water-impervious layer made of water-repellent sand is provided by providing an inclination between upper and lower soil layers, and at least one of a gravel layer or a culvert provided between the water-repellent sand layer and the upper soil layer or Install a water conveyance zone consisting of both, install a water shielding wall on the downstream side of the slope, and flow the water that has passed through the upper soil layer through the sloped water conduction zone to connect to the downstream side of the water conduction zone It is a longitudinal cross-sectional side view showing a water collection structure according to an embodiment of the present invention, which collects water from a drain hole provided in the impermeable wall.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A, and is a plan view showing a state where a plurality of water collecting structures are arranged and the first soil layer is removed;
  • FIG. 1C is an enlarged vertical cross-sectional view of a culvert of the water collecting structure of FIG. 1A.
  • FIG. 2 is a view showing a water collecting structure viewed from the downstream side
  • FIG. 3 is a view showing a water collection structure provided with vertical drainage holes made of gravel in order to discharge surface water accumulated on the soil layer surface
  • FIG. 4 is an enlarged view of a vertical drain hole made of gravel
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A, and is a plan view showing a state where a plurality of water collecting structures are arranged and the first soil layer is removed
  • FIG. 1C is an enlarged vertical cross-sectional view of a culvert of the water collecting structure of FIG. 1A.
  • FIG. 2
  • FIG. 5 is a view showing a water collecting structure having a water guiding wall provided by laying gravel on the upstream side of the water shielding wall so that water falls downward
  • FIG. 6 is a view showing a water collecting structure in which the size of gravel on the water conducting wall is small on the upstream side and large on the downstream side
  • FIG. 7 is a view seen from the downstream side.
  • a water storage container is installed in accordance with the drain hole, and is provided between the water repellent sand layer and the upper soil layer so that water is collected in the water storage container.
  • the boundary surface with the water conveyance zone is a diagram showing the water conveyance zone with a slope shape
  • FIG. 8 is an enlarged view of the water conveyance zone provided between the water repellent sand layer and the upper soil layer.
  • a waterproof sheet or the like is used to collect and store the precipitation that has fallen on the ground surface of farmland or the like, or the supplied irrigation water using an inclined impermeable layer.
  • a waterproof sheet if it is destroyed due to deterioration due to secular change, civil engineering work, heavy machinery load or vibration during farming, or ground change such as an earthquake, the water shielding function is not impaired, Since it is difficult to identify the location, a relatively large-scale construction is required to restore it.
  • the water-repellent particles can block the movement of water in the vertical direction. I can't water.
  • the water collection structure collects water from the upstream side to the downstream side between the first soil layer and the second soil layer below the first soil layer. Because On the second soil layer, a water repellent sand layer that is arranged such that the upper surface is inclined downward from the upstream side toward the downstream side, and is composed of a plurality of particles that are water repellent treated; On the upper surface of the water repellent sand layer, the water repellent sand layer is disposed so as to be inclined downward from an upstream end portion toward a downstream end portion, and is larger than the plurality of particles subjected to the water repellent treatment of the water repellent sand layer.
  • a drainage hole having a water drain hole formed therein, and is disposed on the upper surface of the water-repellent sand layer and below the first soil layer, from the first soil layer to the gravel layer or Water flowing into the drain hole of the underdrain, a water guide zone portion that flows in a direction from an upstream end portion toward a downstream end portion, and A water-impervious wall that is disposed so as to cover at least the periphery of the downstream end portion of the water conveyance zone portion and has a through-hole through which the underdrain passes,
  • a water collecting structure including a water storage container for storing water discharged from the drain hole of the underdrain that has penetrated the through hole of the water shielding wall.
  • the water that has descended and penetrated through the first soil layer accumulates on the upper surface of the water repellent sand layer and flows into the water conveyance zone on the upper surface of the water repellent sand layer. Since the water conduit section is arranged so as to incline downward from the upstream end portion toward the downstream end portion, the water that has flowed into the water conduit section is directed downstream in the drain hole of the underdrain. It can be discharged from a drain hole in a culvert that penetrates the impermeable wall and stored in a water storage container. Therefore, the water that has descended and penetrated through the soil layer can be efficiently recovered. Compared to the case where a waterproof sheet is used as the water-impervious layer, the use of water-repellent sand destroys heavy machinery loads or vibrations during civil engineering work, farming, or ground changes such as earthquakes. There is a difficult effect.
  • the water collecting structure according to the first aspect, wherein the water repellent sand layer is composed of sand particles having an average particle diameter of 50 ⁇ m or more and 500 ⁇ m or less.
  • sand particles having an average particle size of less than 50 ⁇ m are difficult to manufacture, and thus are not practical.
  • Sand particles exceeding 500 ⁇ m have a water pressure resistance of 10 cm or less, and therefore cannot exhibit a sufficient water shielding function as a water repellent sand layer.
  • the present invention further includes a vertical drainage hole portion that extends in the vertical direction in the first soil layer from the surface of the first soil layer to the water conveyance zone, and is composed of gravel.
  • a water collecting structure according to the first or second aspect is provided.
  • the vertical drainage hole portion can guide and discharge the surface water accumulated on the surface of the first soil layer to the water conduction zone portion.
  • the first soil layer includes a plurality of the vertical drain holes, Of the plurality of vertical drain holes, the third embodiment has a larger cross-sectional area of the vertical drain holes arranged on the downstream side than the cross-sectional area of the vertical drain holes arranged on the upstream side.
  • the water collecting structure described in 1. is provided.
  • the distance between the water conveyance zone portion and the soil surface is longer on the downstream side than the upstream side, so that the downstream side of the vertical drainage hole portion on the inclined upstream side. Even if the vertical drainage hole is long, the cross-sectional area is increased by the above-described configuration, and the flow path resistance is reduced. Therefore, it is possible to make water flow easily even in the downstream vertical drainage hole.
  • the size of the gravel in the vertical drain hole is smaller on the outer gravel than on the central gravel, and the average particle size of the outer gravel is 1 cm or more and 5 cm or less.
  • the average particle diameter of the central gravel is 2 cm or more and 10 cm or less, and the average particle diameter of the central gravel is larger than the average particle diameter of the outer gravel.
  • the size of the gravel constituting the vertical drain hole portion is such that the outer gravel is small and the central gravel is large, so that the soil etc. from the surrounding soil layer to the vertical drain hole portion. It is possible to prevent the water from entering and close the drain hole, and because the central gravel is large, the gap can be kept large, so that water can easily pass through and drainage can be facilitated.
  • a water collecting structure according to the first or second aspect is provided.
  • the water guide wall by configuring the water guide wall, it is possible to flow water gathered in the vicinity of the water shield wall and on the downstream side of the first soil layer further through the water guide wall.
  • the seventh aspect of the present invention on the upstream side of the water-impervious wall, further comprising a water-conducting wall in which gravel is emptied so that the lower end is in contact with the water-conducting zone part.
  • a water collecting structure according to the third aspect is provided.
  • the water guide wall by configuring the water guide wall, it is possible to flow water gathered in the vicinity of the water shield wall and on the downstream side of the first soil layer further through the water guide wall.
  • the water conveyance wall is constituted by a two-layer structure of a layer constituted by gravel on the upstream side and a layer constituted by gravel on the downstream side,
  • the average particle size of the upstream gravel is 5 cm or more and 15 cm or less
  • the average particle size of the downstream gravel is 10 cm or more and 20 cm or less
  • the downstream side of the average particle size of the upstream gravel is provided.
  • the boundary surface seen from the downstream of the said water conveyance zone part provided between the said water repellent sand layer and the said 1st soil layer is V toward the said water conveyance zone part.
  • the boundary surface between the water repellent sand layer and the water conveyance zone portion as a slope, water flows toward the drain hole of the underdrain of the water conveyance zone portion along the slope on the water repellent sand layer. Since it flows, it becomes possible to collect water more efficiently.
  • the gravel layer of the water conveyance zone is composed of at least two layers having an upper gravel layer and a lower gravel layer, and the lower gravel layer
  • the average diameter of the gravel is 5 cm to 15 cm
  • the average diameter of the upper gravel layer is 10 cm to 20 cm
  • the average diameter of the upper gravel is larger than the average diameter of the lower gravel
  • the gravel layer in the water conveyance zone is composed of at least two layers, and the gravel layer is divided into gravel on the water repellent sand layer side and gravel on the water repellent sand layer side.
  • Layered structure The average diameter of the gravel on the water-repellent sand layer side is small and the average diameter of the gravel on the upper side of the gravel on the water-repellent sand layer side is increased, so that the contact area between the sand and gravel increases, and the water-repellent sand layer The water sand becomes difficult to move, and the gravel space of the gravel layer in the water conveyance zone can be retained, so that the flow of water can be facilitated.
  • FIG. 1A shows a longitudinal sectional side view of the water collecting structure 90.
  • 1B is a cross-sectional view along the line AA in FIG. 1A, in which a plurality of water collecting structures 90 (for example, three in FIG. 1B) are arranged and the first soil layer is removed. It is a top view which shows the state. For example, the water collecting structures 90 are arranged in parallel to each other at equal intervals.
  • FIG. 1C is an enlarged vertical cross-sectional view of the underdrain 12 of the water collecting structure 90 of FIG. 1A.
  • Each of the water collecting structures 90 shown in FIGS. 1A and 1B includes a water repellent sand layer 10, a water conveyance zone portion 20, a water shielding wall 30, a water drain tube portion (a water drain tube or a water drain hole) 40, At least.
  • the water collecting structure 90 collects rain or water artificially supplied to the soil layer.
  • the water collection structure 90 is located inside the soil layer and below the soil layer to which water is supplied.
  • the soil layer located below the water collection structure 90 is referred to as a “second soil layer” 2, and the soil supplied with water and located above the water collection structure 90.
  • This layer is referred to as “first soil layer” 1.
  • the water collecting structure 90 is disposed between the upper first soil layer 1 and the lower second soil layer 2 (boundary portion).
  • Water repellent sand layer 10 In the water collecting structure 90 shown in FIGS. 1A and 1B, water supplied to the first soil layer 1 collects water discharged to the outside of the first soil layer 1. Therefore, the water-impervious sand comprised of the water-repellent sand between the first soil layer 1 and the second soil layer 2 so that the water supplied to the first soil layer 1 is discharged to the outside.
  • the water repellent sand layer 10 which is a layer is installed such that one end portion has a downward slope with respect to the other end portion. Since the water repellent sand layer 10 has a downward slope, water moves downward by the water repellent sand layer 10 according to gravity and is discharged from the water repellent sand layer 10 to the outside.
  • tilt means tilted with respect to the direction of gravity.
  • the upper end portion is referred to as a “first end portion” 10a
  • the lower end portion is referred to as a “second end portion” 10b.
  • the water repellent sand layer 10 is disposed on the upper surface 2a of the second soil layer 2 so as to be inclined downward from the first end portion 10a toward the second end portion 10b.
  • the water-repellent sand layer 10 has a constant vertical layer thickness so that the upper surface 10c and the lower surface 10d of the water-repellent sand layer 10 are the same as the upper surface 2a of the second soil layer 2.
  • the first end portion 10a and the second end portion 10b are disposed so as to incline downward.
  • the upper surface 10c of the water-repellent sand layer 10 is always disposed so as to be inclined downward from the first end portion 10a toward the second end portion 10b.
  • the lower surface 10d of the sand layer 10 and the upper surface 2a of the second soil layer 2 are not necessarily arranged so as to be inclined downward from the first end portion 10a toward the second end portion 10b.
  • the lower surface 10 d of the water-repellent sand layer 10 and the upper surface 2 a of the second soil layer 2 are inclined in the same manner as the upper surface 10 c of the water-repellent sand layer 10. There is no need.
  • the layer thickness of the water-repellent sand layer 10 is 1 cm or more and 10 cm or less, and the inclination is 1/1000 or more and 3/100 or less.
  • Water-repellent sand means a plurality of particles whose surface is water-repellent.
  • the particles include sand, silt, and clay.
  • Sand is a particle having a particle diameter greater than 0.075 mm and 2 mm or less.
  • Silt is a particle having a particle diameter of greater than 0.005 mm and 0.075 mm or less.
  • Clay is a particle having a particle size of 0.005 mm or less.
  • the particles whose surface is subjected to water repellency are particles whose surface is subjected to water repellency, for example, with a chlorosilane-based material or an alkoxysilane-based material.
  • chlorosilane-based material examples include heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane or normal octadecyldimethylchlorosilane.
  • alkoxysilane-based material examples include normal octadecyltrimethoxysilane or nonafluorohexyltriethoxysilane.
  • the material of the particles subjected to the water repellent treatment is, for example, soil or glass beads.
  • the soil includes inorganic substances, colloidal inorganic substances, coarse organic substances, or organic substances generated by alteration due to decomposition action of microorganisms and the like.
  • the water conveyance zone portion 20 is composed of at least one or both of a gravel layer 11 and a culvert 12 provided between the water repellent sand layer 10 and the first soil layer 1 above the water repellent sand layer 10, and is inclined. Installed.
  • the water guide band portion 20 has an inclination downward in the same direction as the water repellent sand layer 10.
  • the water conveyance belt part 20 is comprised by the same thickness dimension, and the longitudinal direction of the water conveyance belt part 20 is arrange
  • a portion of the water guide zone 20 that is located above the first end 10 a of the water repellent sand layer 10 is referred to as a “third end” 20 a, and is above the second end 10 b of the water repellent sand layer 10.
  • the portion located at is denoted as “fourth end” 20b.
  • the gravel layer 11 is a layer formed by collecting a plurality of gravel particles having a particle diameter of 2 mm or more and 75 mm or less.
  • the plurality of gravels are a plurality of gravels having a larger diameter (for example, average diameter) than the plurality of particles subjected to the water repellent treatment of the water repellent sand layer 10.
  • the underdrain 12 is composed of, for example, a cylindrical tube (tube) surrounding the drain hole 40 penetrating in the axial direction, such as a concrete tube. As shown in FIG. 1C, a large number of through holes 12a are formed through the upper half of the pipe peripheral wall of the underdrain 12 and no through holes 12a are formed in the lower half of the pipe peripheral wall. Therefore, the water 43 that has entered the drain hole 40 of the underdrain 12 through the many through holes 12a is collected in the drain hole 40 and flows downward through the drain hole 40, that is, It flows toward the water storage container 50 and is configured to be collected in the water storage container 50.
  • the gravel layer 11 of the water conveyance zone 20 has a thickness of 1 cm to 5 cm, and the underdrain 12 has a thickness of 5 cm to 20 cm. Further, as an example, the inclination is not less than 1/1000 and not more than 3/100.
  • gravel layers 11 having a certain thickness are arranged on the top, bottom, left, and right of the underdrain 12, but the present invention is not limited to this.
  • the underlayer 12 is not disposed under the underdrain 12. May be.
  • the through holes 12 a are also formed in the lower side and the side of the underdrain 12 near the water shielding wall 30. Or may be formed.
  • the water shielding wall 30 is disposed. That is, on the downstream side of the slope of the water conveyance zone portion 20 (the edge of the fourth end portion 20b), the impermeable wall comes into contact with the gravel layer 11 of the fourth end portion 20b and the surrounding first soil layer 1. 30 is provided.
  • the impermeable wall 30 is formed with a through hole 30a through which the underdrain 12 of the fourth end portion 20b of the water conduit 20 passes, and the underdrain 12 of the fourth end portion 20b penetrates the through hole 30a to store the water.
  • the water shielding wall 30 can be made of any material as long as it has a function of blocking water.
  • the periphery of the fourth end portion 20 b of each of the three water collecting structures 90 on the side of the underdrain 12 are covered with a water shielding wall 30 together with the gravel layer 11 and the first soil layer 1 around the same.
  • a water shielding wall 30 together with the gravel layer 11 and the first soil layer 1 around the same.
  • the water collecting structures 90 at both ends of the body 90 are covered with the water-impervious walls 30 so as to surround their side portions with a certain interval. Therefore, in FIG. 1B, the water shielding wall 30 is arranged in a C shape with respect to the first soil layer 1 in a plan view.
  • the length of the side surface of the impermeable wall 30 is configured to be at least larger than the length of the downstream surface.
  • the water flowing down on the first soil layer 1 or the water repellent sand layer 10 outside the water conveyance zone 20 and the water flowing in the gravel layer 11 of the inclined water conveyance zone 20 are once collected by the impermeable wall 30.
  • the water can be collected from the underdrain 12 into the drain hole 40.
  • Water collected in the drain hole 40 and once collected by the impermeable wall 30 and collected in the drain hole 40 from the underdrain 12 are drained from the underdrain 12 provided through the impermeable wall 30.
  • the water is discharged into the water storage container 50 through the hole 40 and water is collected in the water storage container 50.
  • the drain hole 40 is formed of a culvert 12
  • one end of the culvert 12 is connected to the through hole of the impermeable wall 30, and water collected in the drain hole 40 of the culvert 12 is a water storage container.
  • 50 shows a state of being discharged.
  • the impermeable wall 30 includes the gravel layer 11 at the fourth end portion 20b of the water guide zone 20 so that water is not discharged outside from the portion other than the drain hole 40 of the underdrain 12. It is practical to arrange the entire surface of the water collecting structure 90 up to the periphery of the lower end and the first soil layer 1 around the lower end, and the water collecting efficiency is good.
  • positioning to the whole surface means that water is not discharged
  • a water storage container 50 is installed under the lower end of the underdrain 12 in order to collect water from the drain hole 40.
  • the water discharged from the drain hole 40 at the lower end of the underdrain 12 is directly applied to a necessary portion such as the first soil layer 1 or another soil layer using the collected water.
  • the structure supplied may be sufficient.
  • a configuration for collecting water, such as the water storage container 50, is also referred to as a water storage unit.
  • the number of the water conveyance belt portions 20 is not limited to one, and a plurality of water conveyance belt portions 20 may be arranged at intervals.
  • a plurality of drain holes 40 (three in FIG. 2) are provided in the impermeable wall 30 so as to be connected to the downstream side of the plurality of water guide sections 20 (see dotted lines). May be.
  • the water storage container 50 is only required to be able to store the water discharged from the drain hole 40, and the number thereof may be one or plural. That is, FIG. 2 shows a state in which one water storage container 50 is arranged corresponding to one water drain hole 40.
  • one water storage container 50 is provided for a plurality of water drain holes 40. You may arrange
  • the average particle size of the water repellent sand particles is 50 ⁇ m or more and 500 ⁇ m.
  • the water repellent sand exhibiting excellent water repellency is obtained.
  • the sand particles are Toyoura sand
  • the water-repellent sand in which the surface of the sand particles of Toyoura sand is coated with the organic molecular part can be provided. Since the sand layer exhibits an excellent function as a water shielding layer, the water collecting structure 90 can be configured.
  • the drain hole 100 itself is a layer (part) configured in a rod shape such as a columnar shape and having a water repellent function.
  • An example of a layer having a water repellent function is a layer composed of a plurality of hydrophobic particles such as gravel.
  • the transverse area perpendicular to the vertical direction of the vertical drain hole 102 on the downstream side is increased (the diameter of the vertical drain hole 102 is increased). You may comprise so that it may enlarge.
  • the distance between the water conveyance zone 20 and the soil surface 3 is longer on the downstream side than on the upstream side. Even if the vertical drain hole 102 on the downstream side of the hole 101 is long, the cross-sectional area is increased and the flow path resistance is reduced by the above-described configuration, so that water can easily flow even in the vertical drain hole 102 on the downstream side. be able to.
  • the diameter of the vertical drain hole 100 is 5 cm or more and 10 cm or less.
  • the drain hole 100 may be composed of two kinds of gravel. That is, as shown in FIG. 4, an enlarged view of the vertical cross section of each vertical drain hole 100A shows the size of the gravel constituting the vertical drain hole 100A, the outer gravel 110 being small, and the gravel on the center side. 111 is configured to be large. By configuring in this way, it is possible to prevent soil or the like from entering the vertical drain hole 100A from the surrounding soil layer 4 and block the drain hole 100A, and because the gravel 111 on the center side is large, the gap is large. Since it can be maintained, water can easily pass and drainage can be facilitated.
  • the average particle diameter (diameter) of the outer gravel 110 is 1 cm or more and 5 cm or less, and the average particle diameter (diameter) of the central gravel 111 is 2 cm or more and 10 cm or less.
  • the average particle size of the central gravel 111 is larger than the average particle size of the outer gravel 110.
  • the radius of the region where the central gravel 111 is arranged: the radius of the region where the outer gravel 110 is arranged is 4.5: 0.5.
  • a water guide zone is provided along a virtual plane near the upstream side of the impermeable wall 30 and parallel to the upstream surface of the impermeable wall 30.
  • a water guide wall 60 in which gravel is piled is provided from the part 20 to the surface of the first soil layer 1.
  • the lower end of the water guide wall 60 is in contact with the water guide zone 20 (for example, the gravel layer 11).
  • the water that has traveled down the water conveyance wall 60 and has descended to the water conveyance zone 20 provided between the water repellent sand layer 10 and the first soil layer 1 thereon is water from the through hole 12 a of the underdrain 12 of the water conveyance zone 20. Since it enters the drain hole 40, passes through the drain hole 40 and flows to the inclined downstream side and is collected in the water storage container 50, water can be efficiently collected.
  • the water guide wall 60 is configured by emptying gravel having a size of 5 to 20 cm, it is possible to maintain a sufficient space between the gravel, so that the water can be easily lowered. Recovery can be performed efficiently.
  • the water guiding wall 60A may have a two-layer structure including a layer constituted by the upstream gravel 61 and a layer constituted by the downstream gravel 62. That is, as shown in FIG. 6, the gravel constituting the water conveyance wall 60 ⁇ / b> A is such that the upstream gravel 61 is small and the downstream gravel 62 is large, so that the water conveyance wall from the upstream soil layer 1 is large. 60 prevents soil and the like from entering the wall 60 and blocks the gravel 62 on the downstream side so that a large gap can be maintained, so that water can easily pass through and drainage can be facilitated.
  • the average particle diameter (diameter) of the upstream gravel 61 is 5 cm or more and 15 cm or less, and the average particle diameter (diameter) of the downstream gravel 62 is 10 cm or more.
  • the average particle size of the gravel 62 on the downstream side is larger than the average particle size of the gravel 61 on the upstream side, which is 20 cm or less.
  • the upper surface 10c of the water repellent sand layer 10 is not a flat surface but is constituted by two inclined surfaces 10e that are bent in a V-shaped longitudinal section with respect to the water guide band portion 20. May be. That is, as shown in FIG. 7 with the impermeable wall 30 removed and viewed from the downstream side, a water storage container 50 may be installed in accordance with the drain hole 40 of the water guiding zone 20 in order to collect water. Absent.
  • the water-repellent sand of the water-repellent sand layer 10 enters the gravel layer 11 of the water-conducting zone portion from the boundary between the water-repellent sand layer 10 and the water-conducting zone portion 20, thereby This increases the contact area of the water-repellent sand layer 10 and makes it difficult for the water-repellent sand layer 10 to move.
  • the gravel layer 11 of the water guiding zone 20 may be composed of at least two layers. That is, the gravel layer 11 has a two-layer structure of gravel 120 on the water repellent sand layer 10 side and gravel 121 on the upper side of the gravel 120.
  • the average diameter of the gravel 120 on the water-repellent sand layer 10 side is small and the average diameter of the upper gravel 121 is large, so that the contact area between the sand and gravel increases, and the water-repellent sand of the water-repellent sand layer 10 moves.
  • the average particle diameter (diameter) of the gravel 120 on the water repellent sand layer side is 5 cm or more and 15 cm or less
  • the average particle diameter (diameter) of the upper gravel 121 is 10 cm.
  • the average particle diameter of the upper gravel 121 is 20 cm or less and larger than the average particle diameter of the gravel 120 on the water repellent sand layer side.
  • water that has descended and penetrated through the first soil layer 1 from the ground surface accumulates on the upper surface 10 c of the water-repellent sand layer 10 and also in the water conveyance zone portion 20 on the upper surface 10 c of the water-repellent sand layer 10.
  • the water flows toward the downstream side in the hole 40, is discharged from the drain hole 40 of the underdrain 12 that penetrates the water shielding wall 30, and can be stored in the water storage container 50.
  • the water that has fallen and penetrated from the ground surface 3 into the first soil layer 1 is blocked by the water-repellent sand layer 10 made of water-repellent sand that is inclined in the upper surface 10c and installed in the ground, and the water-repellent sand layer Do not flow down below 10.
  • the water blocked by the water repellent sand layer 10 flows through the water guide zone 20 on the upper surface 10 c of the water repellent sand layer 10 and flows down to the downstream side of the water guide zone 20.
  • the impermeable wall 30 installed on the downstream side of the water conduit section 20, the water flowing down through the water conduit section 20 other than the underdrain 12 and the water repellent sand layer 10 is blocked, and only the water collected in the underdrain 12 is collected.
  • the water storage container 50 can be recovered through the through hole 30a of the water shielding wall 30.
  • the water-repellent sand is used as the water-impervious layer and the water-repellent sand layer 10 is configured. It has the effect of self-healing and is not easily destroyed by heavy machinery loads or vibrations during construction or farming, or ground changes such as earthquakes. That is, for example, even if a part of the water repellent sand layer 10 is broken and a hole is formed, the water repellent sand around the broken hole flows into the hole, and the hole is filled with the water repellent sand. Can self-repair.
  • the water-repellent sand layer 10 can block the capillary water rise from below the water-repellent sand layer 10, and thus has a salt damage prevention effect.
  • the gravel layer 11 is used as the water conveyance zone 20
  • the capillary barrier effect is generated due to the difference in particle size between the soil of the first soil layer 1 and the particles of the gravel layer 11 above the water conveyance zone 20.
  • the water-repellent sand layer 10 prevents the descent and penetration of water containing fertilizer components such as nitrate nitrogen into the groundwater, so that not only is it expected to prevent groundwater contamination, but the recovered water also contains fertilizer. Since the ingredients are included, when the water is used as irrigation water, the fertilizer can be used efficiently.
  • Example 1 In-house experiment on water collecting structure using water repellent sand layer
  • water repellent treated with (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trichlorosilane, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 ) Used as water repellent sand.
  • the water-repellent sand layer was laid so as to be inclined, and a drain hole was provided at the downstream end of the acrylic water tank. After that, water was sprayed evenly from the upper part of the acrylic water tank, and the state of water descending and penetrating into the soil was observed. At this time, the water guide zone 20 was not particularly provided.
  • Example 1 An experiment was conducted in the same manner as in Example 1 except that Toyoura sand not subjected to water repellent treatment was used as a normal sand layer instead of water repellent sand.
  • Toyoura sand not subjected to water repellent treatment was used as a normal sand layer instead of water repellent sand.
  • the infiltrated water was not blocked by the normal sand layer but permeated downward, so the colors of the normal sand layer and the true sand soil changed.
  • water was stored in the lower container of the acrylic water tank and that water was not discharged through the drain hole in the container beside the acrylic water tank.
  • Example 2 When the water tank having the water repellent sand layer used in Example 1 was placed on a table and vibrated, no change was seen in the water repellent sand layer in appearance. Thereafter, in the same manner as in Example 1, water was sprayed evenly from the top, and as a result of observing how water descends and penetrates into the soil, the same result as before vibration was obtained. Was not observed and was confirmed not to be destroyed.
  • Example 3 Water collection structure on an actual scale installed outdoors
  • the 5 m x 5 m section is divided into two sections using a water-impermeable plate at the center, each of which is a water-repellent sand layer and a normal sand layer.
  • An experimental field with laying was created in an outdoor natural environment.
  • the slope of the top surface of the water-repellent sand layer and the normal sand layer is 1/100, and on top of that, there are four pipes as an example of a culvert and a gravel layer as an example of a gravel layer as a water conveyance zone. did.
  • a tank for collecting the water guided to the lower end of the drain hole 40 of the underdrain pipe was installed as an example of the water storage container 50.
  • the amount of water collected in the water repellent sand tank was greater than the amount of water collected in the normal sand layer tank.
  • Example 4 (Seawater capillary rise blocking experiment with water repellent sand layer) An acrylic cylinder having an inner diameter of 34.5 cm and a height of 100 cm was filled with air-dried normal sand and water-repellent sand. Column 1 was normally filled with only sand, and columns 2 and 3 were provided with a water-repellent sand layer 25 to 35 cm from the bottom. Further, the column 3 was provided with a drain hole so that the permeated precipitation was drained. Moreover, the sensor (5TE made from Decagon) which measures volume moisture content, temperature, and electrical conductivity was installed in the height of 10 cm, 30 cm, 50 cm, 70 cm, and 90 cm from the bottom, and it measured it at intervals of 10 minutes. The acrylic cylinder was installed outdoors, and after starting the sensor measurement, the seawater was kept up to a height of 10 cm, and the seawater was raised from the lower part of the apparatus by capillary action.
  • the water collecting structure 90 uses water-repellent sand as compared to a waterproof sheet used for a water-impervious layer, etc., to load or vibrate heavy machinery during civil engineering work, farming, or an earthquake. There is an effect that it is hard to be destroyed against ground changes such as.
  • the water collecting structure according to the present invention is a technology that enables efficient recovery of the water that has permeated through the descent, and at the same time, it is a technology that can block the groundwater contaminants that permeate through the descent.
  • the former function it can be used not only for agricultural water but also for domestic use, and it is a technology that expands the possibility of effective use of precipitation by small-scale self-sustained water collection structures.
  • the latter function can be used as a technique for preventing underground water contamination by installing it in the basement of a factory or a waste disposal site.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Sewage (AREA)
  • Cultivation Of Plants (AREA)

Abstract

 上下の土壌層(1,2)の間に傾斜を設けて、撥水砂からなる遮水層である撥水砂層(10)を設置し、撥水砂層と上の土壌層との間に設けた礫(11)又は暗渠(12)の少なくとも一つ又は両方からなる導水帯部(20)を設置し、傾斜の下流側に遮水壁(30)を設ける。地表面から土壌層中に降下浸透した水は撥水砂層で遮断され、撥水砂層の上側の導水帯部を流れて傾斜の下流側に流下し、傾斜の下流側の遮水壁で水を堰き止めて、集水した水を遮水壁を貫通する暗渠の水抜き穴(40)から回収することが可能となる。

Description

集水構造体
 本発明は、土壌層内を降下浸透した水を効率良く回収可能とする集水構造体に関する。
 主に、降水の少ない地域において、貴重な水資源を有効に利用するため、地下に浸透する水を人工的に回収して再利用することが行われている。従来の集水システムでは、農地等の地表面に降った降水又は供給された灌漑水を、傾斜した遮水層により回収して貯水する際に、防水シート等が使用されている。
 たとえは、特許文献1は、傾斜を持たせた遮水層により集水及び給水するシステムとして、遮水層を設置するものである。また、特許文献2は、遮水性材料により傾斜した底壁及び側壁を設けて水の流路を制限することで、傾斜土壌中に水を流して水質浄化を行うものである。特許文献1及び特許文献2では、遮水層が防水シート等から構成されており、土木工事の際の振動又は地震等の地盤変化の際に、遮水層が破壊されて自己修復ができない。
 一方、土壌構造の中に疎水性粒子からなる疎水層を地表から所定の深さの土壌中に設けることで、土壌中における蒸発量を抑制することで土壌水分量を制御するものが、特許文献3に述べられており、土壌構造の中に疎水性粒子からなる疎水層を設けることで、土壌中の蒸発を抑制するものである。特許文献4は、植物を栽培する土壌中又はその下層に撥水性粒子からなる撥水層を設けることで地下水の毛管上昇を抑制し、塩害を防止するものである。
特開平4-88930号公報 特許第3076024号公報 特許第2909860号公報 特許第2909858号公報
 従来の集水システムでは、農地等の地表面に降った降水又は供給された灌漑水を傾斜した遮水層により回収して貯水する際に、防水シート等が使用されている。防水シートでは、経年変化による劣化、土木工事、営農の際の重機の荷重又は振動、又は、地震等の地盤変化の際に破壊されてしまうと、遮水機能が損なわれてしまう。
 従って、本発明の目的は、土木工事等により破壊されにくく、降下浸透した水を効率良く回収可能とする集水構造体を提供することにある。
 本発明の1態様に係る集水構造体は、第1の土壌層と前記第1の土壌層の下側の第2の土壌層との間で上流側から下流側に向かって集水する集水構造体であって、
 前記第2の土壌層の上に、上面が上流側から下流側に向かって下方に傾斜するように配置され、かつ、撥水処理されている複数の粒子で構成されている撥水砂層と、
 前記撥水砂層の前記上面上に上流側の端部から下流側の端部に向かって下方に傾斜するように配置され、前記撥水砂層の前記撥水処理されている複数の前記粒子より大きな直径を有する複数の礫で構成されている礫層と、前記撥水砂層と前記第1の土壌層との間に、上流側の端部から下流側の端部に向かって下方に傾斜するような水抜き穴が内部に構成されている暗渠とを有し、前記撥水砂層の前記上面上でかつ前記第1の土壌層の下に配置され、前記第1の土壌層から前記礫層又は前記暗渠の前記水抜き穴内に流れ込んだ水が、上流側の端部から下流側の端部に向かう方向に流れる導水帯部と、
 少なくとも前記導水帯部の前記下流側の端部の周囲を覆うように配置され、かつ前記暗渠が貫通する貫通穴を有する遮水壁と、
 前記遮水壁の前記貫通孔を貫通した前記暗渠の前記水抜き穴から排出される水を溜める貯水容器とを備える。
 本発明の前記態様に係る集水構造体は、遮水層として防水シート等を用いる場合と比較すると、撥水砂を使用することで、土木工事、営農の際の重機の荷重又は振動、又は、地震等の地盤変化に対して破壊されにくい効果がある。また、第1の土壌層中を降下浸透した水が、撥水砂層の上面上に溜まるとともに、撥水砂層の上面上の導水帯部内に流れ込む。導水帯部は、上流側の端部から下流側の端部に向かって下方に傾斜するように配置されているため、導水帯部内に流れ込んだ水は、暗渠の水抜き穴内を下流側に向けて流れ、遮水壁を貫通する暗渠の水抜き穴から排出されて、貯水容器に溜めることができる。よって、土壌層中を降下浸透した水を、効率良く回収することができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1Aは、上下の土壌層の間に傾斜を設けて撥水砂からなる遮水層を設置し、撥水砂層と上側の土壌層との間に設けた礫層又は暗渠の少なくとも一つ又は両方からなる導水帯部を設置し、傾斜の下流側に遮水壁を設け、上側の土壌層中を透過した水を傾斜した導水帯部を流して、導水帯部の下流側に接続するように遮水壁に設けた水抜き穴から、水を集水する、本発明の実施形態にかかる集水構造体を示す縦断面側面図であり、 図1Bは、図1AのA-A線沿いの横断面図であって、集水構造体が複数個配置されかつ第1の土壌層が取り除かれた状態を示す平面図であり、 図1Cは、図1Aの集水構造体の暗渠の縦断面拡大図であり、 図2は、下流側から見た集水構造体を示す図であり、 図3は、土壌層表面に溜まる表面水を排出するために、礫からなる縦排水孔部を設けた集水構造体を示す図であり、 図4は、礫からなる縦排水孔部の拡大図であり、 図5は、水が下側に落下するように、遮水壁の上流側に、礫を空積みして設けた導水壁を有する集水構造体を示す図であり、 図6は、導水壁の礫の大きさが、上流側が小さく、下流側が大きい集水構造体を示す図であり、 図7は、下流側から見た図で、水抜き穴に合わせて貯水容器を設置し、貯水容器に水が集水するように、撥水砂層と、上の土壌層との間に設けた導水帯部との境界面が、斜面状である導水帯部を示す図であり、 図8は、撥水砂層と上の土壌層との間に設けた導水帯部の拡大図である。
 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
 まず、本発明者らが従来技術を研究することによって得られた、本発明の基礎となった知見を説明する。
 従来の集水システムでは、農地等の地表面に降った降水又は供給された灌漑水を傾斜した遮水層により回収して貯水する際に、防水シート等が使用されている。防水シートでは、経年変化による劣化、土木工事、営農の際の重機の荷重又は振動、又は、地震等の地盤変化の際に破壊されてしまうと遮水機能が損なわれてしまうだけでなく、破壊箇所の特定が困難であることから、修復するためには比較的大規模な工事が必要である。一方、撥水性粒子を用いて、土壌水分量の制御又は塩害を防止する方法では、撥水性粒子からなる層により水の上下方向の移動を遮ることができるが、土壌上部から浸透した水を集水することができない。
 前記従来の課題を解決するために、本発明における集水構造体は、 以下、図面を参照して本発明における実施形態を詳細に説明する前に、本発明の種々の態様について説明する。
 本発明の第1態様によれば、第1の土壌層と前記第1の土壌層の下側の第2の土壌層との間で上流側から下流側に向かって集水する集水構造体であって、
 前記第2の土壌層の上に、上面が上流側から下流側に向かって下方に傾斜するように配置され、かつ、撥水処理されている複数の粒子で構成されている撥水砂層と、
 前記撥水砂層の前記上面上に上流側の端部から下流側の端部に向かって下方に傾斜するように配置され、前記撥水砂層の前記撥水処理されている複数の前記粒子より大きな直径を有する複数の礫で構成されている礫層と、前記撥水砂層と前記第1の土壌層との間に、上流側の端部から下流側の端部に向かって下方に傾斜するような水抜き穴が内部に構成されている暗渠とを有し、前記撥水砂層の前記上面上でかつ前記第1の土壌層の下に配置され、前記第1の土壌層から前記礫層又は前記暗渠の前記水抜き穴内に流れ込んだ水が、上流側の端部から下流側の端部に向かう方向に流れる導水帯部と、
 少なくとも前記導水帯部の前記下流側の端部の周囲を覆うように配置され、かつ前記暗渠が貫通する貫通穴を有する遮水壁と、
 前記遮水壁の前記貫通孔を貫通した前記暗渠の前記水抜き穴から排出される水を溜める貯水容器とを備える、集水構造体を提供する。
 前記態様によれば、第1の土壌層中を降下浸透した水が、撥水砂層の上面上に溜まるとともに、撥水砂層の上面上の導水帯部内に流れ込む。導水帯部は、上流側の端部から下流側の端部に向かって下方に傾斜するように配置されているため、導水帯部内に流れ込んだ水は、暗渠の水抜き穴内を下流側に向けて流れ、遮水壁を貫通する暗渠の水抜き穴から排出されて、貯水容器に溜めることができる。よって、土壌層中を降下浸透した水を、効率良く回収することができる。また、遮水層として防水シート等を用いる場合と比較すると、撥水砂を使用することで、土木工事、営農の際の重機の荷重又は振動、又は、地震等の地盤変化に対して破壊されにくい効果がある。
 本発明の第2態様によれば、前記撥水砂層は、平均粒径が50μm以上500μm以下の砂粒子で構成されている、第1態様に記載の集水構造体を提供する。
 前記態様によれば、平均粒径が50μm未満の砂粒子は製造が困難であるため、実用的ではない。500μmを越える砂粒子は、耐水圧が10cm以下であるため、撥水砂層としての十分な遮水機能を発揮することができない。
 本発明の第3態様によれば、前記第1土壌層の表面から前記導水帯部まで前記第1土壌層内で上下方向に延び、礫で構成される縦排水孔部をさらに備える、
第1又は2態様に記載の集水構造体を提供する。
 前記態様によれば、縦排水孔部により、第1の土壌層の表面に溜まる表面水を導水帯部まで導いて排出し回収することができる。
 本発明の第4態様によれば、前記第1土壌層に前記縦排水孔部を複数個備え、
 前記複数個の縦排水孔部のうち、上流側に配置された前記縦排水孔部の横断面積に比較して、下流側に配置された前記縦排水孔部の横断面積が大きい、第3態様に記載の集水構造体を提供する。
 前記態様によれば、導水帯部が傾斜していることから、導水帯部と土壌表面との距離が下流側の方が上流側より長いために、傾斜上流側の縦排水孔部より下流側の縦排水孔部が長くても、前記した構成により断面積が大きくなり、流路抵抗が小さくなることから、下流側の縦排水孔部でも水を流れやすくすることができる。
 本発明の第5態様によれば、前記縦排水孔部の礫の大きさが、中心側の礫に対して外側の礫が小さく、前記外側の礫の平均の粒子径が1cm以上5cm以下であり、前記中心側の礫の平均の粒子径が2cm以上10cm以下であり、かつ前記外側の礫の平均の粒子径より前記中心側の礫の平均の粒子径が大きい、第3又は4態様に記載の集水構造体を提供する。
 前記態様によれば、縦排水孔部を構成する礫の大きさを、外側の礫が小さく、中心側の礫が大きくなるようにすることで、周囲の土壌層から縦排水孔部に土壌等が入って排水孔部を塞ぐことを防止するとともに、中心側の礫が大きいことで、空隙が大きく保つことができるので、水が通りやすく排水を容易にすることができる。
 本発明の第6態様によれば、前記遮水壁の上流側に、下端が前記導水帯部と接触するように礫を空積みした導水壁をさらに備える、
第1又は2態様に記載の集水構造体を提供する。
 前記態様によれば、導水壁を構成することで、遮水壁の近傍でかつ第1の土壌層の下流側に集まる水を、導水壁を通して、さらに下方に流すことが可能になる。
 本発明の第7態様によれば、前記遮水壁の上流側に、下端が前記導水帯部と接触するように礫を空積みした導水壁をさらに備える、
第3態様に記載の集水構造体を提供する。
 前記態様によれば、導水壁を構成することで、遮水壁の近傍でかつ第1の土壌層の下流側に集まる水を、導水壁を通して、さらに下方に流すことが可能になる。
 本発明の第8態様によれば、前記導水壁は、上流側の礫で構成する層と、下流側の礫で構成する層との2層構造で構成され、
 前記上流側の礫の平均の粒子径が5cm以上15cm以下であり、前記下流側の礫の平均の粒子径が10cm以上20cm以下であり、かつ前記上流側の礫の平均の粒子径より前記下流側の礫の平均の粒子径が大きく構成する
第6態様に記載の集水構造体を提供する。
 前記態様によれば、上流側の礫が小さく、下流側の礫が大きくなるようにすることで、上流側の土壌層から導水壁に土壌等が入って導水壁を塞ぐことを防止するとともに、下流側の礫が大きいことで空隙が大きく保つことができるので、水が通りやすく排水を容易にすることができる。
 本発明の第9態様によれば、前記撥水砂層と前記第1の土壌層との間に設けた前記導水帯部の、下流側から見た境界面が、前記導水帯部に向けてV字状に傾斜した一対の斜面となるように前記撥水砂層の前記上面が構成されている、第6態様に記載の集水構造体を提供する。
 前記態様によれば、撥水砂層と導水帯部との境界面を斜面状とすることで、撥水砂層の上の傾斜に沿って、導水帯部の暗渠の水抜き穴に向かって水が流れるため、水の回収をより一層効率良く行うことが可能となる。
 本発明の第10態様によれば、前記導水帯部の前記礫層は、上側の礫の層と、下側の礫の層とを有する少なくとも2層で構成され、前記下側の礫の層の礫の平均直径が5cm以上15cm以下であり、前記上側の礫の層の礫の平均直径が10cm以上20cm以下であり、前記下側の礫の平均直径より前記上側の礫の平均直径が大きい第1態様に記載の集水構造体を提供する。
 前記態様によれば、導水帯部の礫層が少なくとも2層で構成されるようにして、礫層を、撥水砂層側の礫と、撥水砂層側の礫よりも上側の礫との2層構成とする。そして、撥水砂層側の礫の平均直径が小さく、撥水砂層側の礫よりも上側の礫の平均直径が大きくすることで、砂と礫との接触面積が大きくなり、撥水砂層の撥水砂が動きにくくなるとともに、導水帯部の礫層の礫の空隙を保持することができるため、水の流れを容易にすることが可能となる。
 以下、本発明の実施の形態について、図を用いて説明する。
 (実施の形態) 
 図1Aに、集水構造体90の縦断面側面図を示す。図1Bは、図1AのA-A線沿いの横断面図であって、集水構造体90が複数個(一例として、図1Bでは、3個)配置されかつ第1の土壌層が取り除かれた状態を示す平面図である。集水構造体90は、一例として、等間隔で互いに平行に配置されている。図1Cは、図1Aの集水構造体90の暗渠12の縦断面拡大図である。
 図1A及び図1Bに示す各集水構造体90は、撥水砂層10と、導水帯部20と、遮水壁30と、水抜き筒部(水抜き管、又は、水抜き穴)40とを少なくとも備える。集水構造体90は、雨又は人工的に土壌層に供給された水を集水する。集水構造体90は、土壌層の内部であり、かつ、水が供給される土壌層の下に位置する。
 なお、本明細書では、集水構造体90の下側に位置する土壌の層を「第2の土壌層」2と表記し、水が供給されかつ集水構造体90の上側に位置する土壌の層を「第1の土壌層」1と表記する。従って、集水構造体90は、上側の第1の土壌層1と下側の第2の土壌層2との間(境界部)に配置されることになる。
 <撥水砂層10> 
 図1A及び図1Bに示す集水構造体90は、第1の土壌層1に供給された水が、第1の土壌層1の外部に排出される水を集水している。そのため、第1の土壌層1に供給された水が外部に排出されるように、第1の土壌層1と第2の土壌層2との間に、撥水砂で構成されている遮水層である撥水砂層10が、一端部が他端部に対して下向きの傾斜を有するように設置している。撥水砂層10が、下向きの傾斜を有することにより、重力に応じて、水は撥水砂層10により下方へと移動し、撥水砂層10から外部に排出される。ここで、「傾斜」とは、重力方向に対して傾いていること意味する。
 傾斜をするように配置されている撥水砂層10のうち、上方に位置する端部を「第1の端部」10aと表記し、下方に位置する端部を「第2の端部」10bと表記する。つまり、第2の土壌層2の上面2a上に、第1の端部10aから第2の端部10bに向かって下方向きに傾斜するように撥水砂層10が配置されている。言い換えれば、一例として、撥水砂層10は、上下方向の層厚さは一定に構成することにより、撥水砂層10の上面10c及び下面10dが、第2の土壌層2の上面2aと同様に、第1の端部10aから第2の端部10bに向かって下方向きに傾斜するように配置されている。ここで、撥水砂層10の上面10cは、必ず、第1の端部10aから第2の端部10bに向かって下方向きに傾斜するように配置されていることが重要であるが、撥水砂層10の下面10d及び第2の土壌層2の上面2aは、必ずしも、第1の端部10aから第2の端部10bに向かって下方向きに傾斜するように配置する必要はない。すなわち、撥水砂層10の層厚さを変えて形成できる場合には、撥水砂層10の下面10d及び第2の土壌層2の上面2aは、撥水砂層10の上面10cと同様に傾斜させる必要はない。
 一例として、撥水砂層10の層厚さは、1cm以上でかつ10cm以下とし、傾きは、1000分の1以上でかつ100分の3以下とする。
 「撥水砂」とは、その表面が撥水処理された複数の粒子を意味する。粒子とは、砂、シルト、及び粘土を含む。砂とは、0.075mmより大きく2mm以下の粒子径を有する粒子である。シルトとは、0.005mmより大きく0.075mm以下の粒子径を有する粒子である。粘土とは、0.005mm以下の粒子径を有する粒子である。
 表面が撥水処理されている粒子とは、例えば、クロロシラン系材料、又は、アルコキシシラン系材料などで表面を撥水処理されている粒子である。
 クロロシラン系材料の例は、ヘプタデカフルオロ-1,1,2,2-テトラハイドロデシルトリクロロシラン、又はノルマルオクタデシルジメチルクロロシランである。アルコキシシラン系材料の例は、ノルマルオクタデシルトリメトキシシラン、又はノナフルオロヘキシルトリエトキシシランである。
 撥水処理されている粒子の材料は、例えば、土壌、又は、ガラスビーズである。土壌とは、無機物、コロイド状の無機物、粗大有機物、又は、微生物などの分解作用などによって変質して生じる有機物などを含む。
 <導水帯部20> 
 導水帯部20は、撥水砂層10と撥水砂層10の上側の第1の土壌層1との間に設けた、礫層11又は暗渠12の少なくとも一つ又は両方で構成され、かつ、傾斜して設置されている。導水帯部20は、撥水砂層10と同様の方向に下向きに傾斜を有する。一例として、導水帯部20は、同じ厚さ寸法で構成され、導水帯部20の長手方向が撥水砂層10の上面と平行に配置されて傾斜している。
 導水帯部20のうち、撥水砂層10の第1の端部10aの上方に位置する部分を「第3の端部」20aと表記し、撥水砂層10の第2の端部10bの上方に位置する部分を「第4の端部」20bと表記する。
 礫層11とは、2mmより大きく75mm以下の粒子径を有する粒子の礫を複数個集めて形成された層である。これらの複数の礫は、撥水砂層10の撥水処理されている複数の粒子より大きな直径(例えば平均直径)を有する複数の礫である。
 暗渠12は、例えば、軸方向に貫通した水抜き穴40の周囲を囲む円筒形状の筒体(管)、例えばコンクリート管等で構成する。図1Cに示すように、暗渠12の管周壁の上半分側には多数の貫通孔12aが貫通形成されて、管周壁の下半分には貫通孔12aは全く形成されていない。よって、多数の貫通孔12aを通って暗渠12の水抜き穴40内に入った水43が、水抜き穴40内に集められ、水抜き穴40により、下側に向けて流れて、すなわち、貯水容器50に向けて流れて、貯水容器50に回収されるように構成している。
 一例として、導水帯20の礫層11は、1cm以上5cm以下の厚さを有し、暗渠12は、5cm以上20cm以下の厚さを有する。また、一例として、傾きは、1000分の1以上でかつ100分の3以下とする。
 図1Aでは、一例として、暗渠12の上下左右に、一定厚みの礫層11が配置されているが、これに限られるものではなく、例えば、暗渠12の下側に礫層11を配置しなくてもよい。なお、暗渠12の下側に礫層11中に流れる水を、暗渠12の水抜き穴40内に回収するため遮水壁30付近では、暗渠12の下側及び側部にも貫通孔12aを形成したりしてもよい。
 <遮水壁30、貯水容器50> 
 導水帯部20で集めた水を貯水容器50に排出するとき、導水帯部20以外からも排出されるのを規制するため、遮水壁30を配置している。すなわち、導水帯部20の傾斜の下流側(第4の端部20bの端縁)には、第4の端部20bの礫層11及び周囲の第1土壌層1に接触して遮水壁30を設ける。遮水壁30には、導水帯部20の第4の端部20bの暗渠12が貫通する貫通穴30aが形成され、第4の端部20bの暗渠12が貫通穴30aを貫通して貯水容器50側に突き出ている。このように、暗渠12が、遮水壁30を貫通して貯水容器50側に突出することにより、水抜き穴40内に集めた水を貯水容器50に確実に排出可能としている。遮水壁30は、水を遮断する機能を有する材料ならぱ、任意の材料で構成することができる。従って、遮水壁30の貫通穴30aに連結された導水帯部20の第4の端部20bの暗渠12以外の部分、例えば、導水帯部20の第4の端部20bの礫層11内を流れる水及び遮水壁30に隣接している第1土壌層1内を流れる水は、遮水壁30を通過することができずに、遮水壁30の内側(貯水容器50とは反対側)に一旦溜まり、暗渠12の貫通孔12aを通って水抜き穴40内に回収されたのち、水抜き穴40から遮水壁30の貫通穴30aを通過して貯水容器50内に回収される。
 図1Bでは、一例として、第1土壌層1の貯水容器50側の端部では、3個の集水構造体90のそれぞれの導水帯部20の第4の端部20bの暗渠12側の周囲を、その周りの礫層11及び第1土壌層1と共に遮水壁30で覆っている。また、第1土壌層1の両側部では、導水帯部20の第4の端部20b側から集水構造体90の長手方向の中央部付近若しくはそれ以上の長さまで、3個の集水構造体90のうちの両端の集水構造体90とは一定間隔をあけて、それらの側部を囲むように、遮水壁30で覆っている。従って、この図1Bでは、平面的に見れば、第1土壌層1に対して遮水壁30はC字状に配置されている。
 なお、一例として、遮水壁30の側面の長さは、少なくとも下流側の面の長さよりも大きくなるように構成する。
 よって、導水帯部20外で第1の土壌層1又は撥水砂層10上を流下した水、及び、傾斜した導水帯部20の礫層11中を流れる水を、遮水壁30で一旦集めて、暗渠12内から水抜き穴40内に集めることができるようにしている。水抜き穴40内を流れていた水及び遮水壁30で一旦集めて暗渠12内から水抜き穴40内に集められた水は、遮水壁30を貫通して設けた暗渠12の水抜き穴40を通じて、貯水容器50に排出されて、貯水容器50で水を集める。図1A及び図1Bでは、水抜き穴40は暗渠12で構成されて、遮水壁30の貫通穴に暗渠12の一端が連結され、暗渠12の水抜き穴40に集水した水が貯水容器50内に排出されている状態を示している。このように構成して、暗渠12の水抜き穴40以外の部分から水が外部に排出されないように、遮水壁30を、導水帯部20の第4の端部20bの礫層11を含む集水構造体90の下端部周囲及びその周囲の第1土壌層1まで、面全体に配置することが実用的であり、集水効率が良い。なお、面全体に配置することの意味は、水抜き穴40以外の部分から水が外部に排出されないことを意味し、必ずしも第1の土壌層1の端面全体などを覆う壁を形成する必要は無い。
 一例として、水抜き穴40から出た水を集水するために、暗渠12の下端の下側には、貯水容器50を設置する。又は、貯水容器50ではなく、暗渠12の下端の水抜き穴40から排出された水が、集水した水を利用する、第1の土壌層1又は別の土壌層など、必要な部分に直接供給される構成でも良い。貯水容器50等の、水を集水する構成を貯水部とも表記する。
 図1Bに示すように、導水帯部20は、1個のみ配置するものに限らず、互いに間隔をあけて複数個配置されていても良い。また、図2に示すように、複数個の導水帯部20(点線参照)の下流側に接続するように、遮水壁30には水抜き穴40を複数個(図2では3個)設けても良い。また、貯水容器50も水抜き穴40から出た水を溜めることができれば良く、数は一つでも複数でもかまわない。すなわち、図2では、1つの水抜き穴40に対して1つの貯水容器50を対応させて配置した状態を示しているが、例えば、複数の水抜き穴40に対して1つの貯水容器50を対応させて配置してもよい。
 一方、一例として、撥水砂の砂粒子の平均粒径は、50μm以上500μmであることが実用的である。この砂粒子の表面を撥水性の材料でで被覆することにより、優れた撥水性を示す撥水砂となる。さらに、一例として、砂粒子を豊浦砂とすることで、豊浦砂の砂粒子の表面を有機分子部で被覆された撥水砂を提供することができ、このような撥水砂からなる撥水砂層は、遮水層としての優れた機能を発揮するため、集水構造体90を構成することができる。
 次に、実施形態の1つの変形例として、第1の土壌層1の表面3に溜まる表面水を排出するために、図3に示すように、導水帯部20と第1の土壌層1の表面3との間に、第1の土壌層1を上下方向に貫通しかつ礫で構成される縦排水孔部100を1個又は複数個設置する。排水孔部100自体は、例えば円柱形状などの棒状に構成されて撥水機能を有する層(部分)である。撥水機能を有する層の例は、礫などの複数の疎水性粒子で構成されている層である。縦排水孔部100(101,102)は複数あっても良い。
 また、図3に示すように、傾斜上流側の縦排水孔部101に比較して、下流側の縦排水孔部102の上下方向と直交する横断面積を大きくする(縦排水孔102の直径を大きくする)ように構成してもよい。このように構成することにより、導水帯部20が傾斜していることから、導水帯部20と土壌表面3との距離が下流側の方が上流側より長いために、傾斜上流側の縦排水孔部101より下流側の縦排水孔部102が長くても、前記した構成により断面積が大きくなり、流路抵抗が小さくなることから、下流側の縦排水孔部102でも水を流れやすくすることができる。
 一例として、縦排水孔部100の直径は、5cm以上10cm以下とする。
 また、実施形態の別の変形例として、排水孔部100を2種類の礫で構成するようにしてもよい。すなわち、それぞれの縦排水孔部100Aについての縦断面の拡大図は、図4に示すように、縦排水孔部100Aを構成する礫の大きさを、外側の礫110が小さく、中心側の礫111が大きくなるように構成している。このように構成することで、周囲の土壌層4から縦排水孔部100Aに土壌等が入って排水孔部100Aを塞ぐことを防止するとともに、中心側の礫111が大きいことで、空隙が大きく保つことができるので、水が通りやすく排水を容易にすることができる。この場合の礫の大きさとしては、一例として、外側の礫110の平均の粒子径(直径)が1cm以上5cm以下であり、中心の礫111の平均の粒子径(直径)が2cm以上10cm以下であり、かつ外側の礫110の平均の粒子径より中心の礫111の平均の粒子径が大きくなるように構成する。また、一例として、中心の礫111が配置されている領域の半径:外側の礫110が配置されている領域の半径は4.5:0.5とする。
 また、実施形態のさらに別の変形例として、図5に示すように、遮水壁30の上流側の近傍でかつ遮水壁30の上流側の面と平行な仮想面に沿って、導水帯部20上から第1土壌層1の表面まで、礫を空積みした導水壁60を設けている。導水壁60の下端は、導水帯部20(例えば、礫層11)と接触している。このように導水壁60を構成することで、遮水壁30の近傍でかつ第1の土壌層1の下流側に集まる水を、導水壁60を通して、さらに下方に流すことが可能になる。導水壁60を伝って、撥水砂層10とその上の第1の土壌層1との間に設けた導水帯部20まで降下した水は、導水帯部20の暗渠12の貫通孔12aから水抜き穴40内に入り、水抜き穴40を通って、傾斜した下流側に流れて貯水容器50に回収されるため、効率良く水の回収が可能となる。
 さらに、導水壁60として、大きさが5~20cmの礫を空積みして構成することで、礫の間の空隙を十分に保つことができるため、水を降下させることが容易となり、水の回収を効率良く行うことが可能となる。
 また、実施形態のさらに別の変形例として、導水壁60Aを、上流側の礫61で構成する層と、下流側の礫62で構成する層との2層構造にしてもよい。すなわち、図6に示すように、導水壁60Aを構成する礫としては、上流側の礫61が小さく、下流側の礫62が大きくなるようにすることで、上流側の土壌層1から導水壁60に土壌等が入って導水壁60を塞ぐことを防止するとともに、下流側の礫62が大きいことで空隙が大きく保つことができるので、水が通りやすく排水を容易にすることができる。この場合の礫の大きさとしては、一例として、上流側の礫61の平均の粒子径(直径)が5cm以上15cm以下であり、下流側の礫62の平均の粒子径(直径)が10cm以上20cm以下であり、かつ上流側の礫61の平均の粒子径より下流側の礫62の平均の粒子径が大きくなるように構成する。
 また、実施形態のさらに別の変形例として、撥水砂層10の上面10cを、平面ではなく、導水帯部20に対して縦断面V字状に屈曲した2つの傾斜面10eで構成するようにしてもよい。すなわち、遮水壁30を取り除いて下流側から見た状態を図7として示すように、集水するために導水帯部20の水抜き穴40に合わせて、貯水容器50を設置してもかまわない。このように、撥水砂層10と導水帯部20との境界面10eを斜面状とすることで、撥水砂層10の上の傾斜に沿って、導水帯部20の暗渠12の水抜き穴40に向かって水が流れるため、水の回収をより一層効率良く行うことが可能となる。図1A及び図1Bに示すように、撥水砂層10と導水帯部20との境界から、撥水砂層10の撥水砂が導水帯部の礫層11内に入り込むことにより、砂と礫との接触面積が大きくなり、撥水砂層10の撥水砂が動きにくくなる効果がある。
 さらに、図8の撥水砂層10と礫層11との拡大図に示すように、導水帯部20の礫層11が少なくとも2層で構成されるようにしてもよい。すなわち、礫層11を、撥水砂層10側の礫120と、礫120よりも上側の礫121との2層構成とする。そして、撥水砂層10側の礫120の平均直径が小さく、上側の礫121の平均直径が大きくすることで、砂と礫との接触面積が大きくなり、撥水砂層10の撥水砂が動きにくくなるとともに、導水帯部20の礫層11の礫の空隙を保持することができるため、水の流れを容易にすることが可能となる。この場合の礫の大きさとしては、一例として、撥水砂層側の礫120の平均の粒子径(直径)が5cm以上15cm以下であり、上側の礫121の平均の粒子径(直径)が10cm以上20cm以下であり、かつ撥水砂層側の礫120の平均の粒子径より上側の礫121の平均の粒子径が大きくなるように構成する。
 前記実施形態によれば、地表面から第1の土壌層1中を降下浸透した水が、撥水砂層10の上面10c上に溜まるとともに、撥水砂層10の上面10c上の導水帯部20内に流れ込む。導水帯部20は、上流側の端部20aから下流側の端部20bに向かって下方に傾斜するように配置されているため、導水帯部20内に流れ込んだ水は、暗渠12の水抜き穴40内を下流側に向けて流れ、遮水壁30を貫通する暗渠12の水抜き穴40から排出されて、貯水容器50に溜めることができる。
 すなわち、地表面3から第1土壌層1中に降下浸透した水を、上面10cに傾斜をつけて地中に設置した撥水砂で構成される撥水砂層10で遮断して、撥水砂層10より下方に流れ落ちないようにする。このため、撥水砂層10で遮断された水は、撥水砂層10の上面10c上の導水帯部20を流れて、導水帯部20の下流側に流下する。導水帯部20の下流側に設置された遮水壁30により、暗渠12以外の導水帯部20及び撥水砂層10を通って流下した水を堰き止めて、暗渠12で集水した水のみを、遮水壁30の貫通穴30aを通して貯水容器50に回収することが可能となる。
 よって、土壌層1中を降下浸透した水を、効率良く回収することができる。
 また、従来技術の傾斜構造により水を回収するシステムにおいて、遮水層に用いられる防水シート等と比較すると、遮水層として撥水砂を使用して撥水砂層10として構成することで、土木工事又は営農の際の重機の荷重又は振動、地震等の地盤変化に対して破壊されにくく、自己修復する効果がある。すなわち、例えば、撥水砂層10の一部が破壊されて穴が形成されたとしても、破穴の周囲の撥水砂が、穴内に流れ込んで、穴が撥水砂で埋まり、撥水砂層10が自己修復することができる。また、地下水位が上昇した場合、撥水砂層10によって、撥水砂層10よりも下からの毛管水上昇を遮断することができるため、塩害防止効果がある。導水帯部20として礫層11を使用する場合、導水帯部20の上部の第1土壌層1の土壌と礫層11の粒子との粒径の違いからキャピラリーバリア効果が生じることにより、農地として利用する際には、作土層に適度に水を保持することが可能となる。さらに、撥水砂層10によって、硝酸性窒素等の肥料成分を含んだ水の地下水への降下浸透を防止するため、地下水汚染の防止効果が期待されるだけでなく、回収された水には肥料成分が含まれるため、その水を灌漑用水として利用した場合、肥料の効率的な使用が可能となる。
 以下に、実施例及び比較例を示して、本発明をより詳細に説明する。
 (実施例1)
 (撥水砂層を用いた集水構造体に関する室内実験) 
 砂粒子として豊浦砂を使用し、(ヘプタデカフルオロ-1、1、2、2-テトラヒドロデシル)トリクロロシラン、CF(CF(CHSiCl)により撥水処理したものを撥水砂として使用した。底に穴の空いたアクリル水槽に、下から砂利、真砂土(第2土壌層に相当)、撥水砂(撥水砂層に相当)、培養土(第1土壌層に相当)を順に層状に充填する。その際、撥水砂層は傾斜するように敷詰め、アクリル水槽の下流端には排水孔を設置した。その後、アクリル水槽の上部から均等に水を散布し、土中を水が降下浸透していく様子を観察した。このとき、導水帯部20は特に設けていなかった。
 実験終了時の撥水砂層を設置した水槽では、アクリル水槽の横の水槽に、排水孔を通して水が排出されているのが確認できた。また、アクリル水槽の下部の容器には水が貯まっておらず、撥水砂層又はその下の真砂土の色が変化していないことからも、撥水砂層によって降下浸透が遮断されていることが確認できた。
 (比較例1) 
 撥水砂の代わりに、撥水処理していない豊浦砂を通常砂層として使用した以外には、実施例1と同様にして、実験を行った。実験終了時の通常砂層を設置した水槽では、浸透した水が通常砂層で遮断されず、降下浸透しているため、通常砂層及び真砂土の色が変化していた。また、アクリル水槽の下部の容器に水が貯まっていること、及び、アクリル水槽の横の容器には、排水孔を通して水が排出されていないことが確認できた。
 (実施例2) 
 実施例1で使用した撥水砂層を設置した水槽について、台に乗せた上で振動を与えたところ、外観上、撥水砂層に変化は見られなかった。その後、実施例1と同様にして、上部から均等に水を散布し、土中を水が降下浸透していく様子を観察した結果、振動を与える前と同様の結果が得られ、振動による変化は観察されず、破壊されないことが確認できた。
 (実施例3)
 (屋外に設置した実スケールでの集水構造体)
 撥水砂の施工の容易性及び集水構造体の耐久性を確認するため、5m×5mの区画を、中央で不透水板を用いて2つの区画に分け、それぞれに撥水砂層と通常砂層を敷設した実験圃場を屋外の自然環境下に作成した。撥水砂層と通常砂層との上面の勾配は1/100とし、その上には導水帯部としてそれぞれの区画に4本の暗渠の一例としての管と礫層の一例としての砂利層とを設置した。暗渠管の水抜き穴40の下端に導水された水を回収するためのタンクを貯水容器50の一例として設置した。
 土壌表面に溜まる水を排出するために、土壌表面から暗渠用管及び砂利層に接続するように、土壌層に孔をあけて礫を充填することで、縦排水孔部を設置した。また、撥水砂層と導水帯部とに囲まれた土壌に水が貯まりやすいので、遮水壁の上流側に、礫を空積みした導水壁を設置することで、この場所の土壌中の水を降下させて、水抜き穴から水を集水しやすくできるようにした。
 以上のような構成により、集水状況を比較すると、撥水砂層のタンクに集水した水量は、通常砂層のタンクに集水した水量より多かった。
 (実施例4) 
 (撥水砂層による海水の毛管上昇遮断実験) 
 内径34.5cm、高さ100cmのアクリル円筒に、風乾状態の通常砂及び撥水砂を充填した。カラム1には通常砂のみを充填し、カラム2とカラム3には、下から25~35cmに撥水砂層を設置した。さらに、カラム3には、浸透した降水が排水されるように、排水孔を設置した。また、下から10cm、30cm、50cm、70cm、90cmの高さに、体積含水率、温度、及び、電気伝導度を測定するセンサ(Decagon製5TE)を設置し、10分間隔で測定した。アクリル円筒は屋外に設置し、センサの測定開始後、高さ10cmまで海水を貯めた状態を維持し、装置下部から海水を毛管上昇させた。
 実験開始の2ヶ月間の電気伝導度は、いずれのカラムにおいても、10cmの高さには実験開始直後から電気伝導度が上昇しており、海水が浸入していることが分かった。通常砂のみで充填したカラム1では、30cmの高さまで海水が毛管上昇により浸透しているが、撥水砂層(25~30cm)のあるカラム2とカラム3では、海水の毛管上昇は遮断されていることが分かった。
 前記実施形態に係る集水構造体90は、遮水層に用いられる防水シート等と比較すると、撥水砂を使用することで、土木工事、営農の際の重機の荷重又は振動、又は、地震等の地盤変化に対して破壊されにくい効果がある。
 なお、上記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明にかかる集水構造体は、降下浸透した水を効率良く回収することを可能とする技術であり、それと同時に、降下浸透する地下水汚染物質を遮断することを可能とする技術である。前者の機能により、農業用水だけでなく、生活用水としても活用が可能であり、小規模自立分散型の集水構造体による降水の有効利用の可能性が広がる技術である。また、後者の機能により、工場又は廃棄物処理場等の地下に設置することで、地下水汚染を未然に防ぐ技術として利用可能である。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。

Claims (10)

  1.  第1の土壌層と前記第1の土壌層の下側の第2の土壌層との間で上流側から下流側に向かって集水する集水構造体であって、
     前記第2の土壌層の上に、上面が上流側から下流側に向かって下方に傾斜するように配置され、かつ、撥水処理されている複数の粒子で構成されている撥水砂層と、
     前記撥水砂層の前記上面上に上流側の端部から下流側の端部に向かって下方に傾斜するように配置され、前記撥水砂層の前記撥水処理されている複数の前記粒子より大きな直径を有する複数の礫で構成されている礫層と、前記撥水砂層と前記第1の土壌層との間に、上流側の端部から下流側の端部に向かって下方に傾斜するような水抜き穴が内部に構成されている暗渠とを有し、前記撥水砂層の前記上面上でかつ前記第1の土壌層の下に配置され、前記第1の土壌層から前記礫層又は前記暗渠の前記水抜き穴内に流れ込んだ水が、上流側の端部から下流側の端部に向かう方向に流れる導水帯部と、
     少なくとも前記導水帯部の前記下流側の端部の周囲を覆うように配置され、かつ前記暗渠が貫通する貫通穴を有する遮水壁と、
     前記遮水壁の前記貫通孔を貫通した前記暗渠の前記水抜き穴から排出される水を溜める貯水容器とを備える、集水構造体。
  2.  前記撥水砂層は、平均粒径が50μm以上500μm以下の砂粒子で構成されている、請求項1に記載の集水構造体。
  3.  前記第1土壌層の表面から前記導水帯部まで前記第1土壌層内で上下方向に延び、礫で構成される縦排水孔部をさらに備える、
    請求項1又は2に記載の集水構造体。
  4.  前記第1土壌層に前記縦排水孔部を複数個備え、
     前記複数個の縦排水孔部のうち、上流側に配置された前記縦排水孔部の横断面積に比較して、下流側に配置された前記縦排水孔部の横断面積が大きい、請求項3に記載の集水構造体。
  5.  前記縦排水孔部の礫の大きさが、中心側の礫に対して外側の礫が小さく、前記外側の礫の平均の粒子径が1cm以上5cm以下であり、前記中心側の礫の平均の粒子径が2cm以上10cm以下であり、かつ前記外側の礫の平均の粒子径より前記中心側の礫の平均の粒子径が大きい、請求項3又は4に記載の集水構造体。
  6.  前記遮水壁の上流側に、下端が前記導水帯部と接触するように礫を空積みした導水壁をさらに備える、
    請求項1又は2に記載の集水構造体。
  7.  前記遮水壁の上流側に、下端が前記導水帯部と接触するように礫を空積みした導水壁をさらに備える、
    請求項3に記載の集水構造体。
  8.  前記導水壁は、上流側の礫で構成する層と、下流側の礫で構成する層との2層構造で構成され、
     前記上流側の礫の平均の粒子径が5cm以上15cm以下であり、前記下流側の礫の平均の粒子径が10cm以上20cm以下であり、かつ前記上流側の礫の平均の粒子径より前記下流側の礫の平均の粒子径が大きく構成する
    請求項6に記載の集水構造体。
  9.  前記撥水砂層と前記第1の土壌層との間に設けた前記導水帯部の、下流側から見た境界面が、前記導水帯部に向けてV字状に傾斜した一対の斜面となるように前記撥水砂層の前記上面が構成されている、請求項6に記載の集水構造体。
  10.  前記導水帯部の前記礫層は、上側の礫の層と、下側の礫の層とを有する少なくとも2層で構成され、前記下側の礫の層の礫の平均直径が5cm以上15cm以下であり、前記上側の礫の層の礫の平均直径が10cm以上20cm以下であり、前記下側の礫の平均直径より前記上側の礫の平均直径が大きい請求項1に記載の集水構造体。
PCT/JP2013/005540 2012-09-25 2013-09-19 集水構造体 WO2014050037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014534856A JP5651276B2 (ja) 2012-09-25 2013-09-19 集水構造体
US14/445,449 US9689131B2 (en) 2012-09-25 2014-07-29 Water collecting structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012210805 2012-09-25
JP2012-210805 2012-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/445,449 Continuation US9689131B2 (en) 2012-09-25 2014-07-29 Water collecting structure

Publications (1)

Publication Number Publication Date
WO2014050037A1 true WO2014050037A1 (ja) 2014-04-03

Family

ID=50387479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005540 WO2014050037A1 (ja) 2012-09-25 2013-09-19 集水構造体

Country Status (3)

Country Link
US (1) US9689131B2 (ja)
JP (1) JP5651276B2 (ja)
WO (1) WO2014050037A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107711440A (zh) * 2017-11-17 2018-02-23 湖州天字生态农业开发有限公司 一种农业灌溉预埋水管
CN110777822A (zh) * 2019-11-14 2020-02-11 中钢集团马鞍山矿山研究院有限公司 一种易风化岩质边坡裂隙涌水的集排系统
CN111042157A (zh) * 2019-12-19 2020-04-21 郑楚英 一种用于高陡坡面植物措施的截水蓄水微灌方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443998A (zh) * 2019-01-16 2019-03-08 江西省水土保持科学研究院 一种观测地表径流及分层壤中流的可移动变坡试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158006A (en) * 1978-06-01 1979-12-13 Kubota Ltd Method of executing burying collecting and drainage duct
JPS57205604A (en) * 1981-06-11 1982-12-16 Nippon Steel Metal Prod Co Ltd Water-utilization work in mountain stream
JPH06113673A (ja) * 1992-10-07 1994-04-26 Shin Etsu Chem Co Ltd 土地の砂漠化防止方法
JP2002054152A (ja) * 2000-08-07 2002-02-20 Nippon Chikasui Kaihatsu Corp Ltd 保孔管及び横ボーリング工法
JP2003293352A (ja) * 2002-03-29 2003-10-15 Niigata Prefecture 暗渠充填材
JP2011094448A (ja) * 2009-11-02 2011-05-12 Caterpillar Kyushu Kk 暗渠排水管敷設装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2164003A (en) * 1934-07-18 1939-06-27 Scheelhaase Hermann Method of building subterranean structures
US3580883A (en) * 1968-01-18 1971-05-25 Tekkosha Co Method of chemical grout processing
US3837168A (en) * 1973-06-18 1974-09-24 D Alsberg Drainage system
US4596491A (en) * 1982-03-22 1986-06-24 Dietzler Daniel P Internally reinforced extruded plastic pipe
US4650367A (en) * 1983-11-30 1987-03-17 Dietzler Daniel P Internally reinforced extruded plastic pipe
JPH0765308B2 (ja) * 1988-08-20 1995-07-19 日本植生株式会社 暗キョ排水用疎水材
JPH0488930A (ja) 1990-07-31 1992-03-23 Taiyo Sports Shisetsu Kk 給水装置
EG20132A (en) 1992-07-31 1997-07-31 Shinetsu Chemical Co An artificial soil structure and a method of preventing land desertification
US5393312A (en) 1992-08-07 1995-02-28 Shin-Etsu Chemical Co. Ltd. Agent for prevention of salt damage of plants and a method of preventing salt damage of plants using the same
JP2909858B2 (ja) 1992-08-07 1999-06-23 信越化学工業株式会社 植物の中間土壌用塩害防止剤及び植物の塩害防止方法
US5322629A (en) * 1993-03-02 1994-06-21 W & H Pacific Inc. Method and apparatus for treating storm water
JP3165825B2 (ja) * 1994-02-28 2001-05-14 信越化学工業株式会社 道路の敷設方法
US6461078B1 (en) * 1995-09-11 2002-10-08 David W. Presby Plastic sewage pipe
US5823711A (en) * 1995-11-01 1998-10-20 Environmental Golf System U.S.A., Inc. Water drainage and collection system and method of construction thereof
US5836716A (en) * 1997-02-05 1998-11-17 Johnson; Wm. Ralph Drainage pipe
JP3076024B2 (ja) 1998-03-17 2000-08-14 株式会社四電技術コンサルタント 傾斜土槽を用いた水質浄化装置及びそれを用いた水質浄化法
US7309188B2 (en) * 2000-02-10 2007-12-18 Advanced Geotech Systems Llc Drainable base course for a landfill and method of forming the same
US6505996B1 (en) * 2000-02-10 2003-01-14 Tenax Corporation Drainage system with unitary void-maintaining geosynthetic structure and method for constructing system
US20030092531A1 (en) * 2001-11-09 2003-05-15 Daluise Daniel A. Vertical to horizontal draining synthetic turf
US6811703B2 (en) * 2002-06-18 2004-11-02 Curtis Elliott Methods for adsorption and retention of solvated compounds and ions
CA2546154A1 (en) * 2003-12-16 2005-07-07 Andrew Niemczyk Basement wall water protection system
RU2506229C2 (ru) * 2008-04-16 2014-02-10 Уильям ЛУКАС Система и способ биоудержания

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158006A (en) * 1978-06-01 1979-12-13 Kubota Ltd Method of executing burying collecting and drainage duct
JPS57205604A (en) * 1981-06-11 1982-12-16 Nippon Steel Metal Prod Co Ltd Water-utilization work in mountain stream
JPH06113673A (ja) * 1992-10-07 1994-04-26 Shin Etsu Chem Co Ltd 土地の砂漠化防止方法
JP2002054152A (ja) * 2000-08-07 2002-02-20 Nippon Chikasui Kaihatsu Corp Ltd 保孔管及び横ボーリング工法
JP2003293352A (ja) * 2002-03-29 2003-10-15 Niigata Prefecture 暗渠充填材
JP2011094448A (ja) * 2009-11-02 2011-05-12 Caterpillar Kyushu Kk 暗渠排水管敷設装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107711440A (zh) * 2017-11-17 2018-02-23 湖州天字生态农业开发有限公司 一种农业灌溉预埋水管
CN110777822A (zh) * 2019-11-14 2020-02-11 中钢集团马鞍山矿山研究院有限公司 一种易风化岩质边坡裂隙涌水的集排系统
CN110777822B (zh) * 2019-11-14 2021-05-25 中钢集团马鞍山矿山研究总院股份有限公司 一种易风化岩质边坡裂隙涌水的集排系统
CN111042157A (zh) * 2019-12-19 2020-04-21 郑楚英 一种用于高陡坡面植物措施的截水蓄水微灌方法

Also Published As

Publication number Publication date
US20140334877A1 (en) 2014-11-13
US9689131B2 (en) 2017-06-27
JPWO2014050037A1 (ja) 2016-08-22
JP5651276B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
Stuyt et al. Materials for subsurface land drainage systems
US7909535B2 (en) Soil drainage system
KR101923926B1 (ko) 도시형 레인가든 시스템
JP6335569B2 (ja) 地盤造成工法および地盤構造
JP5651276B2 (ja) 集水構造体
CN206844172U (zh) 一种地下室底板集水排水构造
PT1446536E (pt) Sistema de contenção de poluentes.
JP2006336434A (ja) 構造物の浮上沈下防止工法
JP5070694B2 (ja) 汚染土壌・地下水の封じ込め工法
JP2014012981A (ja) 液状化対策構造
JPS58101932A (ja) 盤状体
CN112093908A (zh) 钻井固废生物降解装置及其集液收集再利用方法
KR101095322B1 (ko) 자연적 물순환 및 비점오염 저감 기능을 겸비한 침투도랑
JP6037770B2 (ja) 排水システムおよび排水方法
KR102219062B1 (ko) 사면녹화 계단식 폴딩타입 지오매트
JP6681115B2 (ja) 地盤の液状化対策構造の設計方法
Markiewicz et al. Polymeric Products in Erosion Control Applications: A Review
KR100641069B1 (ko) 지하수 배수장치 및 그 방법
CN210917229U (zh) 一种台地式雨洪防控系统
JP7559307B2 (ja) 地盤の液状化抑制方法
JP4105680B2 (ja) 水質浄化装置
KR101194052B1 (ko) 우기시의 도로 오염수 정화용 보강토옹벽구조물
JP4780550B2 (ja) 埋立て廃棄物の覆土施工方法及び埋立て廃棄物の浸透水キャピラリーバリア層
JP2003001212A (ja) 汚染土壌の地中封じ込め方法
JP5110730B1 (ja) 液状化対策ドレーンを利用した取水ないし排水方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842822

Country of ref document: EP

Kind code of ref document: A1