WO2014049892A1 - 蓄電システムおよび制御装置 - Google Patents

蓄電システムおよび制御装置 Download PDF

Info

Publication number
WO2014049892A1
WO2014049892A1 PCT/JP2013/000452 JP2013000452W WO2014049892A1 WO 2014049892 A1 WO2014049892 A1 WO 2014049892A1 JP 2013000452 W JP2013000452 W JP 2013000452W WO 2014049892 A1 WO2014049892 A1 WO 2014049892A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
switch
opening
control device
closing part
Prior art date
Application number
PCT/JP2013/000452
Other languages
English (en)
French (fr)
Inventor
健仁 井家
中島 武
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2014049892A1 publication Critical patent/WO2014049892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage system including a storage battery and a control device for protecting the storage battery.
  • Lithium ion batteries have a high energy density and are advantageous for miniaturization and weight reduction. Storage systems using lithium ion batteries are expected to accelerate in the future.
  • Storage batteries have the property of shortening their life when over-discharged.
  • a current cut-off switch such as a breaker for overcurrent protection inserted in a path between the storage battery and the charging / discharging device can also be used for overdischarge prevention.
  • the power supply of the control IC that controls the current cutoff switch is obtained from a storage battery. Therefore, in order to prevent overdischarge, it is necessary not only to interrupt the current flowing through the load via the charging / discharging device, but also to interrupt the current to the control IC.
  • the power supply line to the control IC can be taken out from the charge / discharge device side through the current cut-off switch. According to this, if the current cut-off switch is turned off, both the load and the power supply to the control IC are blocked.
  • the breaking capacity or breaking current is basically designed according to the short-circuit current or rated current of the storage battery.
  • the current cutoff switch is turned off when an overcurrent is detected by the current cutoff switch or the storage battery. Therefore, the overcurrent protection for the control IC side is triggered not by the current flowing into the control IC side but by the current charged / discharged through the above-described current cutoff switch. Thus, the overcurrent protection for the control IC side is designed without reflecting the circumstances of the control IC itself.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a technique for more appropriately designing overdischarge and overcurrent protection specifications by a current cutoff switch in a power storage system.
  • an electricity storage system controls a first switch inserted in a path connecting a storage battery, a storage battery and a charge / discharge device that charges and discharges the storage battery, and the first switch. And a control device for protecting the storage battery, and a second switch that is branched from a node between the storage battery and the first switch and is inserted into a power supply path to the control device.
  • This device is a control device for protecting a storage battery, and includes a first switch inserted in a path connecting the storage battery and a charge / discharge device that charges and discharges the storage battery, and a node between the storage battery and the first switch.
  • the second switch inserted in the power supply path to the control device, which is branched from, is controlled.
  • the overdischarge and overcurrent protection specifications by the current cutoff switch in the power storage system can be designed more appropriately.
  • FIG. 3 is a diagram showing a configuration of a power storage system according to Comparative Example 1 of Embodiment 1.
  • FIG. 3 is a diagram showing a configuration of a power storage system according to Comparative Example 2 of Embodiment 1.
  • FIG. It is a figure which shows one structural example of the electrical storage system which concerns on Embodiment 1 of this invention. It is a figure which shows another structural example of the electrical storage system which concerns on Embodiment 1 of this invention.
  • FIG. 3 is a diagram showing a configuration of a power storage system according to Comparative Example 1 of Embodiment 1.
  • FIG. 3 is a diagram showing a configuration of a power storage system according to Comparative Example 2 of Em
  • Embodiment 1 The knowledge which became the basis of Embodiment 1 of the present invention is as follows. Since a lithium ion battery has a low internal resistance, a large current is more likely to flow in a power storage system using a lithium ion battery than in a power storage system using a lead battery. As the capacity of the power storage system is increased, the number of parallel storage battery modules is increasing, and the value of the short-circuit current flowing at the time of a short circuit is also increasing. In this way, high-spec overcurrent protection is required in power storage systems.
  • Embodiment 1 has been made in view of such a situation, and an object thereof is to provide a technique for constructing overcurrent protection in a power storage system at low cost while ensuring performance.
  • FIG. 1 is a diagram illustrating a configuration of a power storage system 100 according to Comparative Example 1 of the first embodiment.
  • the power storage system 100 according to the comparative example 1 includes a storage battery unit 10, a circuit breaker 20, a control device 30, and a charge / discharge device 40.
  • the charging / discharging device 40 includes a bidirectional converter 41 and a control unit 42.
  • the storage battery unit 10 according to Comparative Example 1 is formed by connecting three storage battery modules, a first storage battery module 11, a second storage battery module 12, and a third storage battery module 13, in parallel.
  • Each storage battery module includes a plurality of storage batteries connected in series and a monitoring unit that monitors the state of the storage batteries.
  • the monitoring unit includes a current sensor, a voltage sensor, and a temperature sensor (not shown), and constantly monitors the current, voltage, and temperature of each storage battery.
  • the monitoring unit transmits monitoring data to the control device 30 according to an instruction from the control device 30.
  • a plurality of storage batteries may be connected in parallel or connected in multiple lines.
  • the circuit breaker 20 is inserted into a current path connecting the storage battery unit 10 and the charge / discharge device 40.
  • a positive terminal of the first storage battery module 11 that is a positive external terminal of the storage battery unit 10 and a positive terminal of the second storage battery module 12 are connected.
  • the plus terminal of the second storage battery module 12 and the plus terminal of the third storage battery module 13 are connected. Accordingly, the positive wiring resistance increases in the order of the first storage battery module 11, the second storage battery module 12, and the third storage battery module 13.
  • the minus terminal of the third storage battery module 13 that is the minus external terminal of the storage battery unit 10 and the minus terminal of the second storage battery module 12 are connected.
  • the minus terminal of the second storage battery module 12 and the minus terminal of the first storage battery module 11 are connected. Accordingly, the negative wiring resistance increases in the order of the third storage battery module 13, the second storage battery module 12, and the first storage battery module 11.
  • the storage battery unit 10 which concerns on the comparative example 1 may be another connection method, as long as it is connected in parallel.
  • the positive terminal of the bidirectional converter 41 and the positive terminal of each storage battery unit 10 (more specifically, the positive terminal of the first storage battery module 11, the positive terminal of the second storage battery module 12, the third terminal) via the circuit breaker 20.
  • the negative terminal of the bidirectional converter 41 and the negative terminal of each storage battery unit 10 (more specifically, the negative terminal of the first storage battery module 11 and the negative terminal of the second storage battery module 12).
  • a negative terminal of the third storage battery module 13) may be connected.
  • the circuit breaker 20 is inserted between the plus terminal of the bidirectional converter 41 and the plus terminal of the first storage battery module 11.
  • the circuit breaker 20 autonomously interrupts when the current flowing in the circuit breaker exceeds a preset current value. Or you may operate a circuit breaker so that the interruption
  • the circuit breaker 20 uses a general circuit breaker. Any of a thermal type, a thermal-electromagnetic type, a complete electromagnetic type, and an electronic type may be used.
  • An electronic circuit breaker has a trip coil, contacts, and ammeter.
  • the ammeter measures the value of the current flowing through the wiring and outputs it to the control device 30.
  • the control device 30 controls energization of the trip coil based on the current value acquired from the ammeter.
  • the control device 30 energizes the trip coil to excite the trip coil.
  • the contact forms an opening / closing part, and the opening / closing part opens when the trip coil is excited to interrupt the circuit.
  • the circuit breaker 20 may acquire the value of the current flowing through the wiring from the ammeter, and when the acquired value of the current exceeds a preset current value, the circuit breaker 20 may be independently disconnected.
  • the control device 30 is a device for managing the storage battery unit 10.
  • the control device 30 is connected to the monitoring unit in each storage battery module and the control unit 42 in the charging / discharging device 40 by a communication line.
  • An RS-485 cable, an RS-422 cable, or the like can be used for the communication line.
  • the control device 30 acquires monitoring data transmitted from the first monitoring unit 11 a of the first storage battery module 11, the second monitoring unit 12 a of the second storage battery module 12, and the third monitoring unit 13 a of the third storage battery module 13.
  • the control device 30 energizes the trip coil to open the first opening / closing part 21.
  • control device 30 transfers the monitoring data acquired from the monitoring unit to the control unit 42 of the charge / discharge device 40.
  • the control device 30 may generate an instruction signal based on the monitoring data acquired from the monitoring unit, and transmit the generated instruction signal to the control unit 42. For example, when it is determined that the acquired monitoring data is abnormal, a charge stop / discharge stop instruction may be generated and transmitted to the control unit 42.
  • the control device 30 may be composed of a control IC and its peripheral circuits, and current consumption flowing in the control IC and the peripheral circuits is very small.
  • the charging / discharging device 40 is a device that causes the storage battery unit 10 to be charged from the outside or discharged from the storage battery unit 10 to the outside.
  • the bidirectional converter 41 of the charging / discharging device 40 performs DC-DC conversion on the direct-current power supplied from the outside in accordance with control by the control unit 42 and supplies it to the storage battery unit 10.
  • DC power supplied from the outside DC power generated by an AC-DC converter connected to a commercial system, DC power generated by a solar cell or other generator, or DC power converted by an AC-DC converter Is mentioned.
  • the bidirectional converter 41 converts the DC power supplied from the storage battery unit 10 into DC-DC under the control of the control unit 42 and supplies it to the outside.
  • the DC power supplied to the outside is converted into AC power by an AC-DC converter and supplied to a load or is reversely flowed to the system.
  • the DC power may be supplied to the DC load as it is.
  • the control unit 42 When charging the storage battery unit 10 in which a lithium ion battery is used, the control unit 42 performs a constant current charge (CC charge) up to a predetermined set voltage, and bidirectionally performs a constant voltage charge (CV charge) when the set voltage is reached.
  • the converter 41 is controlled. Specifically, the duty ratio of the switching element included in the bidirectional converter 41 is adjusted so that the output current value or the output voltage value of the bidirectional converter 41 is kept constant.
  • the value of the short-circuit current that flows when the current path is short-circuited becomes large.
  • the current is interrupted by one switching unit, it is necessary to increase the rated current, which is an assumed current that can flow to the load or the control device 30 side.
  • the short-circuit current of one storage battery module is about 1.9 kA
  • a short-circuit current of about 5.7 kA which is the sum of the short-circuit currents of three storage battery modules, flows in the current path.
  • a circuit breaker having an opening / closing part with a rated current of, for example, 6.0 kA is required.
  • a circuit breaker having a large breaking current which is a breaking capacity which is a current value at which the breaker can be safely broken, or a current value which the breaker determines to be an overcurrent, is expensive. Therefore, it is conceivable to use a circuit breaker 20 having a multipolar structure having a plurality of switching parts.
  • FIG. 2 is a diagram illustrating a configuration of a power storage system 100 according to the second comparative example of the first embodiment.
  • the storage battery unit 10 according to the comparative example 2 is formed by connecting five storage battery modules of the first storage battery module 11, the second storage battery module 12, the third storage battery module 13, the fourth storage battery module 14, and the fifth storage battery module 15 in parallel. Is done.
  • the circuit breaker 20 according to Comparative Example 2 is a five-pole circuit breaker including a first opening / closing part 21, a second opening / closing part 22, a third opening / closing part 23, a fourth opening / closing part 24, and a fifth opening / closing part 25.
  • the storage battery module and the opening / closing part are associated with each other at 1: 1. That is, the wiring extending from the plus terminal of the bidirectional converter 41 is branched into five and is connected to one end of the first opening / closing part 21, the second opening / closing part 22, the third opening / closing part 23, the fourth opening / closing part 24, and the fifth opening / closing part 25, respectively. Connecting.
  • the wirings extending from the other ends of the first opening / closing part 21, the second opening / closing part 22, the third opening / closing part 23, the fourth opening / closing part 24 and the fifth opening / closing part 25 are the first storage battery module 11 and the second storage battery module 12.
  • the third storage battery module 13, the fourth storage battery module 14, and the fifth storage battery module 15 are connected to the plus terminals.
  • the breaking capacity of each open / close unit can be suppressed.
  • the breaking capacity of one storage battery module is about 1.9 kA
  • a circuit breaker having an opening / closing part with a rated current of 2.5 kA is sufficient.
  • the number of opening / closing parts increases, the size of the circuit breaker increases and the cost also increases.
  • FIG. 3 is a diagram illustrating a configuration example of the power storage system 100 according to Embodiment 1 of the present invention.
  • the plurality of storage battery modules forming the storage battery unit 10 are divided into a plurality of groups.
  • the second storage battery module 12 and the third storage battery module 13 are set as the first group
  • the fourth storage battery module 14 and the fifth storage battery module 15 are set as the second group.
  • the current paths of storage battery modules belonging to each group are connected in parallel.
  • the bidirectional converter 41, the first storage battery module 11, the second storage battery module 12, and the third storage battery module 13 are referred to as a current path (hereinafter referred to as a first group current path), a bidirectional converter 41, Current paths (hereinafter referred to as second group current paths) are formed by the fourth storage battery module 14 and the fifth storage battery module 15, respectively.
  • the first group current path and the second group current path are coupled together in parallel and connected to the bidirectional converter 41.
  • the circuit breaker 20 having the number of switching units corresponding to the number of groups is used.
  • the circuit breaker 20 has a two-pole structure including a first opening / closing part 21 and a second opening / closing part 22.
  • the first opening / closing part 21 is inserted into the first group current path. More specifically, it is inserted between the plus terminal of bidirectional converter 41 and the plus terminal of first storage battery module 11 that is the plus external terminal of the first group.
  • the second opening / closing part 22 is inserted into the second group current path. More specifically, it is inserted between the plus terminal of bidirectional converter 41 and the plus terminal of fourth storage battery module 14 which is the plus external terminal of the second group.
  • the remaining switching parts are also opened in conjunction. For example, an overcurrent flows through the first group current path and the first opening / closing part 21 opens, and at the same time, the second opening / closing part 22 opens. Even when no overcurrent flows in the second group current path, the second group current path is interrupted. If the second opening / closing part 22 is kept closed when the first opening / closing part 21 is opened, the current flowing in the first group current path and the current flowing in the current path in the second group will flow into the second group of storage battery modules. This increases the possibility that the second group of storage battery modules will exceed the rated current.
  • the plurality of switching units included in the circuit breaker 20 are designed so that the switching is interlocked.
  • the handle switches of the respective opening / closing sections may be connected by a physical bar so that the opening / closing of the plurality of opening / closing sections is interlocked.
  • the design in which the plurality of opening / closing parts are physically connected can be more reliably linked to the opening / closing of the plurality of opening / closing parts without time lag than the design in which the opening / closing of the plurality of opening / closing parts is interlocked only by electromagnetic induction.
  • the control device 30 collects a plurality of switching units at once. And open. In this case as well, if only some of the open / close parts are opened, the current concentrates on the group of storage battery modules connected to the open / closed parts that are closed, and there is a high possibility that the storage battery modules of that group will exceed the rated current. Become.
  • Each breaking capacity or breaking current of the plurality of switching units included in the circuit breaker 20 is individually designed according to the total breaking capacity or the total breaking current of at least one storage battery module connected in parallel to each group current path. .
  • FIG. 4 is a diagram showing another configuration example of the power storage system 100 according to Embodiment 1 of the present invention.
  • the five storage battery modules of the first storage battery module 11, the second storage battery module 12, the third storage battery module 13, the fourth storage battery module 14, and the fifth storage battery module 15 are divided into three groups.
  • the first group includes the first storage battery module 11, the second group includes the second storage battery module 12, and the third group includes the third storage battery module 13, the fourth storage battery module 14, and the fifth storage battery module 15.
  • the circuit breaker 20 having the number of switching units corresponding to the number of groups is used.
  • the circuit breaker 20 has a three-pole structure including a first opening / closing part 21, a second opening / closing part 22, and a third opening / closing part 23.
  • the first opening / closing part 21 is inserted into the first group current path.
  • the second opening / closing part 22 is inserted into the second group current path.
  • the third opening / closing part 23 is inserted in the third group current path.
  • the rated current of one storage battery module is 25A
  • the rated current of the first switching part 21 can be designed to be 25A
  • the rated current of the second switching part 22 can be designed to be 25A
  • the rated current of the third switching part 23 can be designed to be 75A.
  • the first metal bus bar 51 is a metal bus bar for branching the wiring extending from the plus terminal of the bidirectional converter 41 into three branches.
  • the second metal bus bar 52 is a metal bus bar for branching the wiring extending from the third opening / closing part 23 to the third group of storage battery modules into three branches.
  • the third metal bus bar 53 is a metal bus bar for branching the wiring extending from the negative terminal of the bidirectional converter 41 into five branches.
  • the value of the current flowing between the current paths between the charge / discharge device 40 and the first metal bus bar 51 or the value of the current flowing through the charge / discharge device 40 and the third metal bus bar 53 is five times. Therefore, it is possible to select a wiring that takes into account that five times the current flows between the current paths of the charge / discharge device 40 and the first metal bus bar 51 and between the current paths of the charge / discharge device 40 and the third metal bus bar 53. desirable.
  • the wiring between the current paths of the charging / discharging device 40 and the third metal bus bar 53 has a current capacity of five times or more between the current paths of the wiring connecting the first closing part 21 and the positive terminal of the first storage battery module 11.
  • the amount of voltage drop due to the wiring resistance between the bidirectional converter 41 and each storage battery module be uniform.
  • the first metal bus bar 51 and the first storage battery module 11 are provided.
  • the first metal bus bar 51 to the second storage battery.
  • the first metal bus bar 51 to the second storage battery.
  • the third metal bus bar 53 Between current paths connecting the third metal bus bar 53 through the module 12, between current paths connecting the third metal bus bar from the second metal bus bar 52 through the fourth storage battery module 14, and from the second metal bus bar 52 to the fifth storage battery module. Three times the current between the current paths connecting the third metal bus bars through 15 flows. Therefore, it is desirable to make the voltage drop amount uniform as described above.
  • the wiring resistances connecting the storage battery modules and the bidirectional converter 41 are designed to be equal.
  • the resistance value of the wiring connecting each storage battery module and the bidirectional converter 41 it is possible to suppress variations in the voltage difference between the parallel storage batteries.
  • the wiring length of the entire power storage system 100 can be shortened, and the wiring route can be simplified.
  • the voltage drop amount be designed to be uniform as described above.
  • the circuit breaker 20 shown in FIG. 4 is a highly versatile circuit breaker that can correspond to any configuration of 1 to 5 parallel storage battery modules.
  • FIG. 5 is a table that describes the number of parallel storage battery units 10 and the relationship between the open / close units to be used.
  • the first opening / closing part 21 is used.
  • the second opening / closing part 22 may be used.
  • the first opening / closing part 21 and the second opening / closing part 22 are used.
  • the third opening / closing part 23 is used.
  • the first opening / closing part 21 and the third opening / closing part 23 are used.
  • the second opening / closing part 22 and the third opening / closing part 23 may be used.
  • all of the first opening / closing part 21, the second opening / closing part 22, and the third opening / closing part 23 are used.
  • the circuit breaker 20 shown in FIG. 4 has high versatility and can easily cope with the increase / decrease of the storage battery module within the range of the breaking capacity or breaking current. Moreover, since the circuit breaker 20 can respond
  • FIG. 6 is a diagram showing a modification of the power storage system 100 of FIG.
  • the power storage system 100 according to the modification has a configuration in which a fuse 54 is added to the power storage system 100 of FIG.
  • the fuse 54 is inserted between the third opening / closing part 23 and the second metal bus bar 52 in order to supplement the breaking capacity of the third opening / closing part 23.
  • the fuse is connected between the positive terminal of the bidirectional converter 41 and the switching unit, between the negative terminal of the bidirectional converter 41 and the negative terminal of the storage battery module. It may be inserted in between.
  • the opening / closing part provided in the group current path in which the fuse is inserted can reduce the breaking capacity if the inserted fuse has the breaking capacity. In addition, by using a high resistance wiring, the breaking capacity can be lowered.
  • the plurality of storage battery modules forming the storage battery unit 10 are divided into a plurality of groups, and the circuit is cut off in units of groups.
  • the overcurrent protection in the power storage system can be constructed at low cost while maintaining the performance. That is, it is possible to lower the breaking capacity or breaking current of each opening / closing portion than the configuration in which the circuit is cut off by one opening / closing portion.
  • the number of opening / closing parts can be reduced from the structure which provides an opening / closing part for every storage battery module.
  • the breaking capacity or breaking current of each switching unit can be optimized according to the breaking capacity or breaking current of each group of storage battery modules.
  • a necessary and sufficient overcurrent protection circuit can be constructed while suppressing an increase in the cost and size of the circuit breaker. Moreover, it can avoid that an electric current concentrates on the storage battery module of a specific group by interlocking opening and closing of a some opening-and-closing part. Since the necessary overcurrent protection can be realized at a low cost in this way, it is optimal for a power storage system using an expensive lithium ion battery through which a relatively large current flows.
  • the storage battery unit 10 does not assume a configuration in which a plurality of storage battery modules are connected in parallel. Since the configuration of the storage battery unit 10 is arbitrary, a configuration in which the first embodiment and the second embodiment are combined may be used. Hereinafter, for the sake of simplification, an example in which the storage battery unit 10 is configured by a single storage battery module 11 will be described.
  • FIG. 7 is a diagram illustrating a configuration of a power storage system 100 according to a comparative example of the second embodiment.
  • a current path that branches from a node between the circuit breaker 20 and the charge / discharge device 40 on a current path connecting the storage battery unit 10 and the charge / discharge device 40 to the power supply terminal of the control device 30 is provided. That is, a power supply path is provided from the node between the circuit breaker 20 and the charge / discharge device 40 to the control device 30.
  • the monitoring unit 11a of the storage battery module 11 detects the voltage value, current value, and temperature value of each storage battery.
  • the monitoring unit 11a detects the charge / discharge current amount, calculates the remaining amount of electricity stored in each storage battery, and calculates the SOC.
  • the SOC may be calculated / corrected from OCV (Open Circuit Voltage), and the OCV may be a value estimated in consideration of the voltage value, current value, internal resistance value, etc. of the storage battery.
  • OCV Open Circuit Voltage
  • the monitoring unit 11a transmits a discharge stop signal to the control device 30.
  • the monitoring unit 11a transmits a charge / discharge stop signal to the control device 30 when the detected current value exceeds the set value for overcurrent protection or the set value for overvoltage protection.
  • the monitoring unit 11a transmits a charge / discharge stop signal to the control device 30 when the detected temperature value exceeds the set value for temperature abnormality protection.
  • control device 30 When the control device 30 receives the charge / discharge stop signal from the monitoring unit 11a, the control device 30 instructs the control unit 42 of the charge / discharge device 40 to stop the charge control or the discharge control, and the switching unit 21 of the circuit breaker 20 as necessary. Control to open.
  • the monitoring unit 11a performs the overdischarge determination process, but the control device 30 may execute the determination process.
  • the control device 30 may also execute processing for determining overvoltage, overcurrent, and temperature abnormality.
  • the current to the charging / discharging device 40 and the current to the control device 30 can be interrupted by the single opening / closing unit 21 from the viewpoint of overdischarge protection.
  • the protection of the load connected to the charging / discharging device 40 and the protection of the control device 30 are not distinguished, and the position of the overcurrent protection of the control device 30 is ambiguous.
  • FIG. 8 is a diagram illustrating a configuration example of the power storage system 100 according to Embodiment 2 of the present invention.
  • a two-pole circuit breaker 20 is used.
  • the circuit breaker 20 includes a first opening / closing part 21 and a second opening / closing part 22.
  • the first opening / closing part 21 is inserted into a current path connecting the storage battery unit 10 and the charging / discharging device 40.
  • the second opening / closing part 22 is inserted into a power supply path to the control device 30 branched from a node between the storage battery unit 10 and the first opening / closing part 21 on the current path.
  • the first opening / closing part 21 and the second opening / closing part 22 are physically connected, and the opening and closing of both are interlocked.
  • the rated currents of the first opening / closing part 21 and the second opening / closing part 22 are individually designed.
  • the rated current of the first opening / closing part 21 is designed according to the rated current of the storage battery unit 10.
  • the rated current of the second opening / closing part 22 is designed according to the rated current of the control device 30.
  • the control device 30 is composed of an IC
  • the rated current of the IC is usually less than 1A. Therefore, the rated current of the second opening / closing part 22 can be designed smaller than the rated current of the first opening / closing part 21.
  • the overcurrent protection function by the second opening / closing part 22 is omitted. Is also possible.
  • the control device 30 When the control device 30 receives the stop signal from the monitoring unit 11a, the control device 30 opens the first opening / closing unit 21 and the second opening / closing unit 22 substantially simultaneously. As described above, since the first opening / closing part 21 and the second opening / closing part 22 are physically connected, even if the effect of electromagnetic induction does not act on the first opening / closing part 21 and the second opening / closing part 22 at the same time, both are substantially Open simultaneously. By opening the first opening / closing part 21 and the second opening / closing part 22 at the same time, it is possible to cut off the power supply on the control side as well as on the load side, so that overdischarge can be suppressed.
  • FIG. 9 is a diagram illustrating a configuration example of the circuit breaker 20 of FIG.
  • the communication line between the storage battery unit 10 and the control device 30 and the communication line between the control device 30 and the charge / discharge device 40 are omitted.
  • the circuit breaker 20 includes a first opening / closing part 21, a second opening / closing part 22, a sixth opening / closing part 26, a first coil L1, and a second coil L2.
  • the first opening / closing part 21, the second opening / closing part 22, and the sixth opening / closing part 26 are physically connected, and their opening and closing are interlocked.
  • One end of the first opening / closing part 21 is connected to the storage battery unit 10, and the other end of the first opening / closing part 21 is connected to the charging / discharging device 40 via the first coil L1.
  • the first coil L1 is excited and the first opening / closing part 21 that makes a contact opens.
  • the power supply terminal T3 is connected to a constant voltage generation circuit (for example, a three-terminal regulator) (not shown) in the control device 30.
  • the constant voltage generation circuit generates a power supply voltage to be supplied to a CPU (not shown) in the control device 30.
  • One end of the sixth opening / closing part 26 is connected to the second state detection terminal T2 of the control device 30, and the other end of the sixth opening / closing part 26 is connected to the open state terminal To or the closed state terminal Tc of the circuit breaker 20.
  • the open state terminal To of the circuit breaker 20 is connected to the first state detection terminal T1 of the control device 30.
  • the closed state terminal Tc of the circuit breaker 20 is connected to a predetermined fixed potential (for example, ground).
  • the controller 30 can determine that the first opening / closing part 21 and the second opening / closing part 22 are open if a voltage appears at the first state detection terminal T1 while the second state detection terminal T2 is energized, and the voltage must not appear. It can be determined that the first opening / closing part 21 and the second opening / closing part 22 are closed.
  • Both ends of the second coil L2 are connected to the first energization terminal T4 and the second energization terminal T5 of the control device 30, respectively.
  • the first energization terminal T4 and the second energization terminal T5 of the control device 30 are connected to a current generation circuit (not shown) in the control device 30.
  • a current is passed through the second coil L2 to excite the second coil L2.
  • the second opening / closing unit 22 is not connected to a coil that is excited by a current flowing in the power supply path itself to the control device 30 like the first opening / closing unit 21.
  • the overcurrent point of the power supply path to the control device 30 is very small, and overcurrent protection measures can be taken with a protective element in the control device 30. Therefore, in the example of FIG. 9, no coil is connected to the second opening / closing part 22. Therefore, in order to completely protect the overcurrent of the control device 30, a protection circuit for limiting the current between the overcurrent point of the power supply path and the overcurrent point of the main current path is provided as an input of the control device 30. It is necessary to provide it on the stage.
  • the coil is designed so that the second opening / closing part 22 is opened with an appropriate current value as overcurrent protection of the control device 30.
  • the overcurrent protection of the control device 30 is possible without providing another protection element or the like in the control device 30.
  • the protection function is activated and the control device 30 stops.
  • the first opening / closing part 21 and the second opening / closing part 22 work together to activate the protection function. Therefore, protection as a system is also possible. That is, the overcurrent point of each path can be designed independently, and the first opening / closing part 21 and the second opening / closing part 22 can be protected simultaneously.
  • FIG. 10 is a diagram for explaining the power source of the monitoring unit 11a in the power storage system 100 of FIG. More specifically, the storage battery module 11 includes a monitoring unit 11a, a storage battery 11b, and a switch 11c.
  • the monitoring unit 11a includes a CPU (not shown), a state detection circuit for the storage battery 11b, a communication I / F, and the like. The power supply of the monitoring part 11a is acquired from the storage battery 11b.
  • a current path that branches from a node between the storage battery 11b and the circuit breaker 20 on the current path connecting the storage battery unit 10 and the charge / discharge device 40 to the power supply terminal of the monitoring unit 11a is provided. That is, a power supply path is provided from the node between the storage battery 11b and the circuit breaker 20 to the monitoring unit 11a.
  • the switch 11c is inserted into the power supply path.
  • the monitoring unit 11a is configured by an IC
  • the rated current of the IC is usually less than 1A. Therefore, a semiconductor switch such as a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor) is sufficient for the switch 11c.
  • a relay may be used for the switch 11c, but the semiconductor switch is less expensive.
  • the monitoring unit 11a and the control device 30 are configured to be capable of bidirectional communication.
  • the control device 30 and the control unit 42 of the charge / discharge device 40 are configured to be capable of bidirectional communication.
  • the power can be supplied by using a vacant LAN cable.
  • the power supply voltage for example, 12V
  • the control device 30 opens the first opening / closing unit 21 and the second opening / closing unit 22 when the overdischarge protection activation condition is satisfied, and instructs the monitoring unit 11a to turn off the switch 11c.
  • the monitoring unit 11a receives the instruction, the monitoring unit 11a turns off the switch 11c.
  • power supply to the monitoring unit 11a is cut off.
  • the power supply to the control device 30 is cut off when the second opening / closing part 22 is opened.
  • the second opening / closing unit 22 When restarting from a state where the power supply to the monitoring unit 11a and the control device 30 is cut off, the second opening / closing unit 22 is turned on. Thereby, the power supply to the control device 30 is resumed. After the control device 30 is restarted, the switch 11c is turned on by supplying power from the control device 30 to the switch 11a.
  • the second opening / closing unit 22 employs a switch that can be closed by an external signal such as an FET or a conductor. When the switch can be closed by other than manual operation, a power source for closing the second opening / closing unit 22 is controlled by the control unit. You may close the 2nd opening-and-closing part 22 by supplying from 42 grade
  • FIG. 11 is a diagram illustrating another configuration example of the power storage system 100 according to Embodiment 2 of the present invention.
  • the first circuit breaker 20 a includes a first opening / closing part 21.
  • the first opening / closing part 21 is inserted into a current path connecting the storage battery unit 10 and the charging / discharging device 40.
  • the second circuit breaker 20 b includes a second opening / closing part 22.
  • the second opening / closing part 22 is inserted into a power supply path to the control device 30 branched from a node between the storage battery unit 10 and the first opening / closing part 21 on the current path.
  • the first circuit breaker 20a and the second circuit breaker 20b may be the same circuit breaker or different circuit breakers with different specifications.
  • the second circuit breaker 20b may be a circuit breaker having a breaking capacity or a breaking current lower than that of the first circuit breaker 20a.
  • the control device 30 When the control device 30 receives the stop signal from the monitoring unit 11a, the control device 30 opens the first opening / closing unit 21 and the second opening / closing unit 22 substantially simultaneously.
  • the overcurrent point of the main current path between the storage battery unit 10 and the charge / discharge device 40 and the overcurrent point of the power supply path to the control device 30 are set individually.
  • the first closing part 21 and the second closing part 22 are not physically connected so that the first closing part 21 and the second closing part 22 can be closed with a time difference.
  • the overcurrent protection function by the second opening / closing part 22 is omitted. Is also possible. Therefore, a semiconductor switch may be used instead of the second circuit breaker 20b. In general, semiconductor switches are less expensive than circuit breakers.
  • FIG. 12 is a diagram for explaining processing at the time of return from the shut-off state in the power storage system 100 of FIG.
  • the 1st opening / closing part 21 and the 2nd opening / closing part 22 are opened by the above-mentioned process, it assumes that a storage battery is replaced
  • the control device 30 uses the power supplied from the control unit 42 of the charge / discharge device 40 to perform the first opening / closing.
  • the part 21 and the second opening / closing part 22 are closed.
  • the procedure for returning the power storage system 100 is to close the first opening / closing part 21 and the second opening / closing part 22 with a time difference instead of simultaneously closing them.
  • the second opening / closing part 22 is closed first.
  • communication with the control apparatus 30 and the monitoring part 11a is attained, and the control apparatus 30 can acquire the information of a storage battery from the monitoring part 11a.
  • the control device 30 closes the first opening / closing part 21 after confirming that the state of the storage battery is normal.
  • the state of a storage battery can be confirmed by closing the 2nd opening-and-closing part 22 first, and it can be judged whether the 1st opening-closing part 21 is closed according to the state.
  • This start-up procedure is applicable to all cases where the first opening / closing part 21 and the second opening / closing part 22 are transitioned from the closed state to the open state of the first opening / closing part 21 and the second opening / closing part 22. . Until the second closing / opening portion 22 is closed and the battery state can be confirmed to be normal, the first closing / opening portion 21 is temporarily set so as to continue to output a cutoff signal to the first closing / opening portion 21. If you try to close it accidentally, you can't close it.
  • the second closing / opening portion is a switch that can be closed by an external signal
  • power may be supplied from the bidirectional converter 41 to the second closing / opening portion 22 to close the second closing / opening portion 22.
  • the control device 30 may supply power to the first closing / opening portion 21 to close the first closing / opening portion 21.
  • the first opening / closing part 21 inserted into the main current path in the power storage system 100 and the second opening / closing part 22 inserted into the power supply path to the control device 30 are provided separately, and these are used.
  • the overdischarge and overcurrent protection specifications can be appropriately designed with the main current path and the power supply path to the control device 30.
  • the protection specification of the power supply path to the control device 30 can be made simpler than the protection specification of the main current path.
  • the protection specification can be designed more flexibly by the main current path and the power supply path to the control device 30.
  • the first opening / closing part 21 and the second opening / closing part 22 are configured to open substantially simultaneously, thereby cutting off the power supply on the control side as well as on the load side. Therefore, overdischarge can be suppressed.
  • the invention according to the present embodiment may be specified by the items described below.
  • the plurality of storage battery modules are divided into a plurality of groups, A plurality of group current paths are formed by connecting the current paths of the storage battery modules belonging to each group in parallel to one another, and a plurality of group current paths are connected in parallel to one another and connected to the charge / discharge device,
  • the circuit breaker includes a plurality of switching units inserted into each of the plurality of group current paths,
  • Item 1 or at least one of the breaking capacities or the breaking currents of the plurality of switching units is individually designed according to the number of storage battery modules connected in parallel to each group current path 2.
  • the electricity storage system according to 2.
  • the storage battery module is A plurality of storage batteries; A monitoring unit that monitors the state of the plurality of storage batteries,
  • the power storage system includes: 5.
  • a storage battery A first switch inserted in a path connecting the storage battery and a charge / discharge device that charges and discharges the storage battery; A control device for controlling the first switch to protect the storage battery; A second switch that is branched from a node between the storage battery and the first switch and is inserted into a power supply path to the control device;
  • a power storage system comprising:
  • the first switch and the second switch are included in one circuit breaker; 8.
  • the first switch is included in a first circuit breaker
  • the second switch is included in a second circuit breaker
  • the controller turns on the second switch first when transitioning from the state in which the first switch and the second switch are turned off to the state in which the first switch and the second switch are turned on.
  • the electrical storage system in any one of the items 6 to 10 characterized.
  • a control device for protecting a storage battery Power supply to the controller branched from a path between the storage battery and the first switch, a first switch inserted in a path connecting the storage battery and a charging / discharging device that charges and discharges the storage battery
  • a control device for controlling a second switch inserted in a road A control device for controlling a second switch inserted in a road.
  • 100 storage system 10 storage battery unit, 11 first storage battery module, 11a first monitoring unit, 11b storage battery, 11c switch, 12 second storage battery module, 12a second monitoring unit, 13 third storage battery module, 13a third monitoring unit, 14 4th storage battery module, 14a 4th monitoring unit, 15 5th storage battery module, 15a 5th monitoring unit, 20 circuit breaker, 21 1st switching unit, 22nd 2nd switching unit, 23 3rd switching unit, 24th 4th switching Part, 25, 5th opening / closing part, 26, 6th opening / closing part, L1, 1st coil, L2, 2nd coil, 30 control device, 40 charge / discharge device, 41 bidirectional converter, 42 control unit, 51 1st metal bus bar, 52nd 2 metal bus bar, 53 3rd Genus bus bar, 54 fuse.
  • the present invention can be used for a power storage system having a current interruption function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Protection Of Static Devices (AREA)
  • Secondary Cells (AREA)

Abstract

 蓄電システムにおいて、第1スイッチは蓄電池と充放電装置とを結ぶ経路に挿入される。制御装置は第1スイッチを制御して蓄電池を保護する。第2スイッチは、蓄電池と第1スイッチとの間のノードから分岐される、制御装置への電源供給路に挿入される。制御装置は、蓄電池の残容量が過放電保護用の設定値を下回るとき、第1スイッチと第2スイッチをオフする。

Description

蓄電システムおよび制御装置
 本発明は、蓄電池を備える蓄電システムおよび蓄電池を保護するための制御装置に関する。
 近年、リチウムイオン電池を用いた蓄電システムが普及してきている。リチウムイオン電池はエネルギー密度が高く、小型・軽量化に有利であり、リチウムイオン電池を用いた蓄電システムは今後、普及が加速すると予想される。
 蓄電池は過放電すると寿命が短くなるという性質がある。蓄電池と充放電装置との間の経路に挿入される過電流保護用のブレーカなどの電流遮断スイッチは、過放電防止にも使用できる。電流遮断スイッチを制御する制御ICの電源は蓄電池から取得することが一般的である。従って過放電を防止するには、充放電装置を介して負荷に流れる電流を遮断するだけでなく、制御ICへの電流も遮断する必要がある。
 両方の電流を遮断するために制御ICへの電源供給線を、電流遮断スイッチより充放電装置側から取り出すことが考えられる。これによれば電流遮断スイッチがオフすれば、負荷および制御ICへの給電が両方とも阻止される。
特開2010-81721号公報 特開2000-47759号公報
 遮断容量あるいは遮断電流は基本的に、蓄電池の短絡電流や定格電流に応じて設計される。当該電流遮断スイッチがオフされるのは、当該電流遮断スイッチまたは蓄電池で過電流が検出された際である。従って制御IC側に対する過電流保護は、制御IC側に流れ込む電流ではなく、上述の電流遮断スイッチを介して充放電される電流に起因して発動されることになる。このように制御IC側に対する過電流保護が制御IC自体の事情が反映されずに設計されることになる。
 本発明はこうした状況に鑑みなされたものであり、その目的は、蓄電システムにおける電流遮断スイッチによる過放電および過電流の保護仕様を、より適切に設計する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電システムは、蓄電池と、蓄電池と蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、第1スイッチを制御して蓄電池を保護するための制御装置と、蓄電池と第1スイッチとの間のノードから分岐される、制御装置への電源供給路に挿入される第2スイッチと、を備える。
 本発明の別の態様は、制御装置である。この装置は、蓄電池を保護するための制御装置であって、蓄電池と、蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、蓄電池と第1スイッチとの間のノードから分岐される、制御装置への電源供給路に挿入される第2スイッチを制御する。
 本発明によれば、蓄電システムにおける電流遮断スイッチによる過放電および過電流の保護仕様を、より適切に設計できる。
実施の形態1の比較例1に係る蓄電システムの構成を示す図である。 実施の形態1の比較例2に係る蓄電システムの構成を示す図である。 本発明の実施の形態1に係る蓄電システムの一構成例を示す図である。 本発明の実施の形態1に係る蓄電システムの別の構成例を示す図である。 図4の蓄電池ユニットの並列数と、使用する開閉部の関係を記述したテーブルである。 図4の蓄電システムの変形例を示す図である。 実施の形態2の比較例に係る蓄電システムの構成を示す図である。 本発明の実施の形態2に係る蓄電システムの一構成例を示す図である。 図8の遮断器の一構成例を示す図である。 図8の蓄電システムにおける監視部の電源について説明するための図である。 本発明の実施の形態2に係る蓄電システムの別の構成例を示す図である。 図11の蓄電システムにおける遮断状態からの復帰時の処理を説明するための図である。
(実施の形態1)
 本発明の実施の形態1の基礎となった知見は、次の通りである。リチウムイオン電池は内部抵抗が低いため、リチウムイオン電池を用いた蓄電システムでは鉛電池を用いた蓄電システムより短絡時に大きな電流が流れやすい。また蓄電システムの大容量化に伴い、蓄電池モジュールの並列数が増加してきており、短絡時に流れる短絡電流の値も大きくなってきている。このように蓄電システムでは、高仕様な過電流保護が必要となってきている。
 蓄電システムのコストを削減するため、蓄電池自体に加えて、その周辺要素のコスト削減も求められている。特にリチウムイオン電池は他の電池と比較して高価であるため、その周辺要素のコスト削減も重要となっている。
 実施の形態1はこうした状況に鑑みなされたものであり、その目的は、蓄電システムにおける過電流保護を、性能を確保しつつ低コストで構築する技術を提供することにある。
 図1は、実施の形態1の比較例1に係る蓄電システム100の構成を示す図である。比較例1に係る蓄電システム100は、蓄電池ユニット10、遮断器20、制御装置30及び充放電装置40を備える。充放電装置40は双方向コンバータ41及び制御部42を含む。比較例1に係る蓄電池ユニット10は、第1蓄電池モジュール11、第2蓄電池モジュール12及び第3蓄電池モジュール13の三つの蓄電池モジュールが並列接続されて形成される。
 各蓄電池モジュールは、直列接続された複数の蓄電池と、当該複数の蓄電池の状態を監視する監視部を備える。以下本明細書では蓄電池としてリチウムイオン電池を使用することを想定する。監視部は図示しない電流センサ、電圧センサ及び温度センサを含み、各蓄電池の電流、電圧、温度を常時監視する。監視部は、制御装置30からの指示により監視データを制御装置30に送信する。なお、蓄電池モジュールは、複数の蓄電池を並列接続、もしくは多直多並に接続していても良い。
 遮断器20は、蓄電池ユニット10と充放電装置40とを結ぶ電流路に挿入される。図1に示す蓄電システム100では、双方向コンバータ41のプラス端子と蓄電池ユニット10のプラス端子(より具体的には第1蓄電池モジュール11のプラス端子)、蓄電池ユニット10のマイナス端子(より具体的には第3蓄電池モジュール13のマイナス端子)と双方向コンバータ41のマイナス端子がそれぞれ接続され、電流路が形成される。
 蓄電池ユニット10内では、蓄電池ユニット10のプラス外部端子となる第1蓄電池モジュール11のプラス端子と、第2蓄電池モジュール12のプラス端子が接続される。その第2蓄電池モジュール12のプラス端子と第3蓄電池モジュール13のプラス端子が接続される。したがって、プラス配線抵抗は第1蓄電池モジュール11、第2蓄電池モジュール12、第3蓄電池モジュール13の順に大きくなる。
 一方、蓄電池ユニット10のマイナス外部端子となる第3蓄電池モジュール13のマイナス端子と、第2蓄電池モジュール12のマイナス端子が接続される。その第2蓄電池モジュール12のマイナス端子と第1蓄電池モジュール11のマイナス端子が接続される。したがって、マイナス配線抵抗は第3蓄電池モジュール13、第2蓄電池モジュール12、第1蓄電池モジュール11の順に大きくなる。
 このように蓄電池ユニット10を形成する複数の蓄電池モジュールの内部接続順番を、プラスとマイナスで逆順にすることにより、複数の蓄電池モジュールの配線抵抗の均一化が容易になる。したがって複数の蓄電池モジュールに流れる電流の均一化、電池寿命の均一化が容易になる。なお、比較例1に係る蓄電池ユニット10は、並列接続されていれば他の接続方法でも良い。例えば、遮断器20を介して、双方向コンバータ41のプラス端子と各蓄電池ユニット10のプラス端子(より具体的には第1蓄電池モジュール11のプラス端子、第2蓄電池モジュール12のプラス端子、第3蓄電池モジュール13のプラス端子)を接続して、双方向コンバータ41のマイナス端子と各蓄電池ユニット10のマイナス端子(より具体的には第1蓄電池モジュール11のマイナス端子、第2蓄電池モジュール12のマイナス端子、第3蓄電池モジュール13のマイナス端子)を接続しても良い。
 遮断器20は、双方向コンバータ41のプラス端子と第1蓄電池モジュール11のプラス端子との間に挿入される。遮断器20は、遮断器内に流れる電流が予め設定された電流値を超えた場合に自立的に遮断する。もしくは、制御装置30からの遮断信号を受けて電流を遮断するように遮断器を動作させてもよい。また、遮断器20は一般的なサーキットブレーカを使用する。熱動式、熱動-電磁式、完全電磁式、電子式のいずれを用いてもよい。
 本実施の形態では電子式の遮断器を用いる例を想定する。電子式の遮断器ではトリップコイル、接点、電流計を備える。電流計は配線を流れる電流の値を計測し、制御装置30に出力する。制御装置30は電流計から取得される電流値にもとづきトリップコイルを通電制御する。制御装置30は配線に過電流が流れるとトリップコイルに通電し、トリップコイルを励磁させる。接点は開閉部をなし、開閉部はトリップコイルが励磁されると開き、回路を遮断する。なお遮断器20は、電流計から配線を流れる電流の値を取得し、取得した電流の値が予め設定された電流値を超えた場合、自立的に回路を遮断してもよい。
 電子式の遮断器はプラス配線用とマイナス配線用の二つの開閉部を備えるものが多いが、本明細書における蓄電システム100ではマイナス配線は遮断器20を通さない構成としている。即ち、マイナス配線用の開閉部は使用しない。図1ではプラス配線用の第1開閉部21のみを描き、マイナス配線用の開閉部は省略して描いている。図2以降でも同様である。
 制御装置30は蓄電池ユニット10を管理するための装置である。制御装置30は、各蓄電池モジュール内の監視部、充放電装置40内の制御部42と通信線により接続される。当該通信線にはRS-485ケーブル、RS-422ケーブル等を使用できる。制御装置30は、第1蓄電池モジュール11の第1監視部11a、第2蓄電池モジュール12の第2監視部12a及び第3蓄電池モジュール13の第3監視部13aから送信される監視データを取得する。制御装置30は、取得される監視データが異常(例えば、温度異常)であるときトリップコイルに通電して第1開閉部21を開放させる。
 また制御装置30は、監視部から取得される監視データを充放電装置40の制御部42に転送する。なお制御装置30が監視部から取得される監視データをもとに指示信号を生成し、生成した指示信号を制御部42に送信してもよい。例えば、取得される監視データが異常であると判定した場合、充電停止/放電停止指示を生成して制御部42に送信してもよい。なお、制御装置30は制御ICとその周辺回路で構成されていてもよく、制御ICと周辺回路に流れる消費電流はわずかである。
 充放電装置40は蓄電池ユニット10に外部から充電または蓄電池ユニット10から外部へ放電させる装置である。充電時、充放電装置40の双方向コンバータ41は、外部から供給される直流電力を制御部42による制御にしたがいDC-DC変換して蓄電池ユニット10に供給する。外部から供給される直流電力として、商用系統に接続されたAC-DCコンバータにより生成された直流電力、太陽電池またはその他の発電機により発電された直流電力やAC-DCコンバータにより変換された直流電力が挙げられる。
 放電時、双方向コンバータ41は、蓄電池ユニット10から供給される直流電力を制御部42による制御にしたがいDC-DC変換して外部に供給する。外部に供給される直流電力はAC-DCコンバータにより交流電力に変換されて負荷に供給されるか、系統に逆潮流される。なお当該直流電力は直流負荷にそのまま供給されてもよい。
 リチウムイオン電池が使用される蓄電池ユニット10に充電する場合、制御部42は所定の設定電圧まで定電流充電(CC充電)し、当該設定電圧に到達すると定電圧充電(CV充電)するよう双方向コンバータ41を制御する。具体的には、双方向コンバータ41の出力電流値または出力電圧値が一定値を保つよう、双方向コンバータ41に含まれるスイッチング素子のデューティ比を調整する。
 図1に示すように複数の蓄電池モジュールが並列接続される蓄電池ユニット10では、電流路が短絡した場合に流れる短絡電流の値が大きくなる。図1に示すように一つの開閉部で電流を遮断する場合、負荷や制御装置30側に流れうる想定の電流である定格電流を大きくする必要がある。例えば、一つの蓄電池モジュールの短絡電流が1.9kA程度の場合、電流路には3つの蓄電池モジュールの短絡電流を合計した短絡電流5.7kA程度流れる可能性がある。そのため、定格電流が例えば6.0kAの開閉部を備える遮断器が必要になる。しかしながら、ブレーカが安全に遮断できるとされる電流値である遮断容量あるいはブレーカが過電流と判断する電流値である遮断電流の大きな遮断器はコストが高くなる。そこで複数の開閉部を備える多極構造の遮断器20を用いることが考えられる。
 図2は、実施の形態1の比較例2に係る蓄電システム100の構成を示す図である。比較例2に係る蓄電池ユニット10は、第1蓄電池モジュール11、第2蓄電池モジュール12、第3蓄電池モジュール13、第4蓄電池モジュール14及び第5蓄電池モジュール15の五つの蓄電池モジュールが並列接続されて形成される。比較例2に係る遮断器20は、第1開閉部21、第2開閉部22、第3開閉部23、第4開閉部24及び第5開閉部25を備える5極構造の遮断器である。
 比較例2では遮断器20の遮断容量を確保するため、蓄電池モジュールと開閉部を1:1で対応させている。即ち、双方向コンバータ41のプラス端子から延びる配線を5分岐してそれぞれ第1開閉部21、第2開閉部22、第3開閉部23、第4開閉部24及び第5開閉部25の一端に接続する。第1開閉部21、第2開閉部22、第3開閉部23、第4開閉部24及び第5開閉部25のそれぞれの他端から延びる配線は、第1蓄電池モジュール11、第2蓄電池モジュール12、第3蓄電池モジュール13、第4蓄電池モジュール14及び第5蓄電池モジュール15のそれぞれのプラス端子に接続する。
 図2に示すような蓄電池モジュールと開閉部を1:1で対応させた回路構成では、各開閉部の遮断容量を抑えることができる。例えば、一つの蓄電池モジュールの遮断容量が1.9kA程度の場合、定格電流が2.5kAの開閉部を備える遮断器で足りる。しかしながら、開閉部の数が多くなると遮断器のサイズが大きくなり、コストも高くなる。
 図3は、本発明の実施の形態1に係る蓄電システム100の一構成例を示す図である。実施の形態1では、蓄電池ユニット10を形成する複数の蓄電池モジュールを複数のグループに分割する。図3に示す例では、第1蓄電池モジュール11、第2蓄電池モジュール12、第3蓄電池モジュール13、第4蓄電池モジュール14及び第5蓄電池モジュール15の五つの蓄電池モジュールの内、第1蓄電池モジュール11、第2蓄電池モジュール12及び第3蓄電池モジュール13を第1グループとし、第4蓄電池モジュール14及び第5蓄電池モジュール15を第2グループとする。
 各グループに属する蓄電池モジュールの電流路は一つに並列結合される。図3に示す回路構成では、双方向コンバータ41、第1蓄電池モジュール11、第2蓄電池モジュール12及び第3蓄電池モジュール13による電流路(以下、第1グループ電流路という)と、双方向コンバータ41、第4蓄電池モジュール14及び第5蓄電池モジュール15による電流路(以下、第2グループ電流路という)がそれぞれ形成される。第1グループ電流路及び第2グループ電流路は一つに並列結合されて双方向コンバータ41に接続される。
 実施の形態1ではグループ数に対応する数の開閉部を備える遮断器20を使用する。図3に示す例では、遮断器20は第1開閉部21及び第2開閉部22の2極構造である。第1開閉部21は第1グループ電流路に挿入される。より具体的には双方向コンバータ41のプラス端子と、第1グループのプラス外部端子である第1蓄電池モジュール11のプラス端子との間に挿入される。第2開閉部22は第2グループ電流路に挿入される。より具体的には双方向コンバータ41のプラス端子と、第2グループのプラス外部端子である第4蓄電池モジュール14のプラス端子との間に挿入される。
 遮断器20は複数の開閉部の内、一つの開閉部が定格電流を超える過電流により開くと、残りの開閉部も連動して開く。例えば、第1グループ電流路に過電流が流れて第1開閉部21が開くと同時に、第2開閉部22も開く。第2グループ電流路に過電流が流れていない場合でも第2グループ電流路が遮断される。仮に第1開閉部21が開いたとき第2開閉部22を閉じたままにしておくと、第2グループの蓄電池モジュールに、第1グループ電流路に流れる電流と第2グループに電流路に流れる電流の合成電流が流れてしまい、第2グループの蓄電池モジュールが定格電流オーバーを起こす可能性が高くなる。
 したがって遮断器20に含まれる複数の開閉部は、開閉が連動するように設計されることが望ましい。例えば、各開閉部のハンドルスイッチを物理的なバーで連結して、当該複数の開閉部の開閉が連動するようにしてもよい。電磁誘導のみで複数の開閉部の開閉を連動させる設計より、複数の開閉部を物理的に連結させておく設計のほうが、より確実にタイムラグなく複数の開閉部の開閉を連動させることができる。
 また遮断器20内の電流計により過電流が検出される場合でなく、蓄電池モジュール内の監視部から取得されるデータ異常にもとづき回路を遮断する場合も、制御装置30は複数の開閉部を一括して開く。この場合も一部の開閉部のみを開くと、閉じたままの開閉部に接続されるグループの蓄電池モジュールに電流が集中してしまい、そのグループの蓄電池モジュールが定格電流オーバーを起こす可能性が高くなる。
 遮断器20に含まれる複数の開閉部の各遮断容量あるいは遮断電流は、各グループ電流路に並列接続される少なくとも一つの蓄電池モジュールの合計遮断容量もしくは合計遮断電流に応じて、個別に設計される。
 図4は、本発明の実施の形態1に係る蓄電システム100の別の構成例を示す図である。図4に示す例では、第1蓄電池モジュール11、第2蓄電池モジュール12、第3蓄電池モジュール13、第4蓄電池モジュール14及び第5蓄電池モジュール15の五つの蓄電池モジュールを三つのグループに分割する。第1グループは第1蓄電池モジュール11を含み、第2グループは第2蓄電池モジュール12を含み、第3グループは第3蓄電池モジュール13、第4蓄電池モジュール14及び第5蓄電池モジュール15を含む。
 実施の形態1ではグループ数に対応する数の開閉部を備える遮断器20を使用する。図4に示す例では、遮断器20は第1開閉部21、第2開閉部22及び第3開閉部23の3極構造である。第1開閉部21は第1グループ電流路に挿入される。第2開閉部22は第2グループ電流路に挿入される。第3開閉部23は第3グループ電流路に挿入される。一つの蓄電池モジュールの定格電流が25Aであるとすると、第1開閉部21の定格電流は25A、第2開閉部22の定格電流は25A、第3開閉部23の定格電流は75Aに設計できる。
 図4に示す回路構成では金属バスバーを使用する例を描いている。並列に接続された複数の蓄電池の電圧差にばらつきがある場合、電圧が高い蓄電池から電圧が低い蓄電池に電流が流れて蓄電池の劣化を引き起こす恐れがある。そこで、各並列蓄電池間の電圧のばらつきを抑制するために双方向コンバータ41のプラス端子からマイナス端子の間の電圧降下量をそろえるような配線にする必要がある。第1金属バスバー51は双方向コンバータ41のプラス端子から延びる配線を3分岐するための金属バスバーである。第2金属バスバー52は第3開閉部23から第3グループの蓄電池モジュールに延びる配線を3分岐するための金属バスバーである。第3金属バスバー53は双方向コンバータ41のマイナス端子から延びる配線を5分岐するための金属バスバーである。
 第1開閉部21と第1蓄電池モジュール11のプラス端子を繋ぐ配線との電流経路間あるいは第2閉開部22と第2蓄電池モジュール12のプラス端子を繋ぐ配線との電流経路間に流れる電流に対して、充放電装置40と第1金属バスバー51との電流経路間に流れる電流あるいは充放電装置40と第3金属バスバー53に流れる電流値は5倍になる。そのため、充放電装置40と第1金属バスバー51の電流経路間および充放電装置40と第3金属バスバー53の電流経路間の配線は5倍の電流が流れることを考慮した配線を選択することが望ましい。例えば、充放電装置40と第3金属バスバー53の電流経路間は第1閉開部21と第1蓄電池モジュール11のプラス端子を繋ぐ配線との電流経路間の5倍以上の電流容量を有する配線とする。
 並列に接続された電池間の電圧差の発生を抑制するためには双方向コンバータ41と各蓄電池モジュール間の配線抵抗による電圧降下量が均一になることが望ましい。具体例として、第1金属バスバー51と第3開閉部23との電流経路間あるいは第3開閉部23と第2金属バスバー52との電流経路間は、第1金属バスバー51と第1蓄電池モジュール11のプラス端子を繋ぐ配線、第2金属バスバー52と第3蓄電池モジュール13のプラス端子を繋ぐ配線、第1蓄電池モジュール11のマイナス端子と第3金属バスバー53を繋ぐ配線、第3蓄電池モジュール13のマイナス端子と第3金属バスバー53を繋ぐ配線との電流経路間の3倍の電流値が流れるために、同じ配線抵抗の配線では3倍の電圧降下量になる。そこで、相当する箇所の配線抵抗は第2金属バスバー52と第3蓄電池モジュール13のプラス端子を繋ぐ配線を含めた全体の電圧降下量が均一になるようにすることが望ましい。なお、上記以外にも第1金属バスバー51と第3開閉部23との電流経路間あるいは第3開閉部23と第2金属バスバー52との電流経路間は、第1金属バスバー51から第2蓄電池モジュール12を介して第3金属バスバー53を繋ぐ電流経路間、第2金属バスバー52から第4蓄電池モジュール14を介して第3金属バスバーを繋ぐ電流経路間、第2金属バスバー52から第5蓄電池モジュール15を介して第3金属バスバーを繋ぐ電流経路間の3倍の電流が流れる。そのため、上記と同様に電圧降下量が均一になるようにすることが望まれる。
 各蓄電池モジュールと双方向コンバータ41を繋ぐ配線抵抗は等しくなるように設計されることが望ましい。このように各蓄電池モジュールと双方向コンバータ41を繋ぐ配線の抵抗値を合わせることにより、各並列蓄電池の電圧差のばらつきを抑制できる。また金属バスバーを使用することにより、蓄電システム100全体の配線長を短くでき、配線回しをシンプルにできる。なお図1で説明したように、並列接続する蓄電池モジュールの接続順をプラス側とマイナス側で反対にすることによって各蓄電池モジュールの配線長を合わせてもよい。図3に示すような配線の場合においても、上記と同様に電圧降下量が均一になるように設計されることが望ましい。
 図4に示す遮断器20は、蓄電池モジュールの1並列から5並列までのいずれの構成にも対応できる汎用性が高い遮断器になる。図5は、蓄電池ユニット10の並列数と、使用する開閉部の関係を記述したテーブルである。蓄電池ユニット10が一つの蓄電池モジュールで形成される場合、第1開閉部21を使用する。第2開閉部22を使用してもよい。蓄電池ユニット10が二つの蓄電池モジュールの並列接続で形成される場合、第1開閉部21及び第2開閉部22を使用する。蓄電池ユニット10が三つの蓄電池モジュールの並列接続で形成される場合、第3開閉部23を使用する。蓄電池ユニット10が四つの蓄電池モジュールの並列接続で形成される場合、第1開閉部21及び第3開閉部23を使用する。第2開閉部22及び第3開閉部23を使用してもよい。蓄電池ユニット10が五つの蓄電池モジュールの並列接続で形成される場合、第1開閉部21、第2開閉部22及び第3開閉部23の全てを使用する。このように図4に示す遮断器20は汎用性が高く、遮断容量あるいは遮断電流の範囲内で蓄電池モジュールの増減設にも容易に対応できる。また、遮断器20は、使用者の望む蓄電池モジュールの多様なグループ構成に対応できるため、利便性が向上する。
 図6は、図4の蓄電システム100の変形例を示す図である。当該変形例に係る蓄電システム100は、図4の蓄電システム100にヒューズ54を追加した構成である。ヒューズ54は、第3開閉部23の遮断容量を補うために、第3開閉部23と第2金属バスバー52の間に挿入される。なおヒューズは、蓄電池モジュールと開閉部との間の、グループ電流路の他に、双方向コンバータ41のプラス端子と開閉部との間、双方向コンバータ41のマイナス端子と蓄電池モジュールのマイナス端子との間に挿入されてもよい。ヒューズが挿入されたグループ電流路に設けられる開閉部は、挿入したヒューズがその遮断容量を有していれば、遮断容量を下げることができる。また高抵抗の配線を用いることにより、遮断容量を下げることもできる。
 以上説明したように本発明の実施の形態1によれば、蓄電池ユニット10を形成する複数の蓄電池モジュールを複数のグループに分割して、グループ単位で回路を遮断する構成とする。これにより蓄電システムにおける過電流保護を、性能を維持しつつ低コストで構築できる。即ち、一つの開閉部で回路を遮断する構成より個々の開閉部の遮断容量あるいは遮断電流を低くできる。また蓄電池モジュールごとに開閉部を設ける構成より、開閉部の数を少なくできる。また各開閉部の遮断容量あるいは遮断電流を、各グループの蓄電池モジュールの遮断容量もしくは遮断電流に応じて最適化できる。したがって遮断器のコスト及びサイズの増大を抑えつつ、必要十分な過電流保護回路を構築できる。また複数の開閉部の開閉を連動させることにより、特定のグループの蓄電池モジュールに電流が集中することを回避できる。このように必要な過電流保護を低コストで実現できるため、高価で比較的大きな電流が流れるリチウムイオン電池を用いた蓄電システムに最適である。
(実施の形態2)
 実施の形態1では遮断器20および制御装置30を用いた過電流保護について説明した。実施の形態2では遮断器20および制御装置30を用いた過放電保護について説明する。一般に、蓄電池は過放電状態で使用されると寿命が短くなる。実施の形態2では蓄電池を保護するため過放電を防止する仕組みを設ける。
 実施の形態2では蓄電池ユニット10は、複数の蓄電池モジュールが並列接続される構成を前提としない。蓄電池ユニット10の構成は任意であるため、実施の形態1と実施の形態2を組み合わせた構成でもよい。以下、単純化するため蓄電池ユニット10が単一の蓄電池モジュール11で構成される例で説明する。
 また実施の形態2では制御装置30の電源にも注目する。実施の形態2では制御装置30の電源を蓄電池ユニット10から取得する回路構成を前提とする。従って蓄電池の過放電を阻止し蓄電池のSOC(State Of Charge)を維持するには、充放電装置40を介して負荷に流れる電流を制限するだけでなく、制御装置30に流れる電流も制限することが望ましい。
 図7は、実施の形態2の比較例に係る蓄電システム100の構成を示す図である。当該比較例では、蓄電池ユニット10と充放電装置40とを結ぶ電流路上の、遮断器20と充放電装置40との間のノードから、制御装置30の電源端子へ分岐する電流路が設けられる。即ち、遮断器20と充放電装置40との間のノードから制御装置30へ電源供給路が設けられる。
 上述のように蓄電池モジュール11の監視部11aは、各蓄電池の電圧値、電流値、温度値を検出する。監視部11aは、充・放電電流量を検出して各蓄電池の蓄電残量を計算し、SOCを算出する。なお、OCV(Open Circuit Voltage)からSOCを算出・補正しても良く、OCVは、蓄電池の電圧値および電流値、内部抵抗値などを考慮して推定した値を使用してもよい。監視部11aは、推定したSOCが過放電保護用の設定値を下回るとき制御装置30に放電停止信号を送信する。
 また監視部11aは、検出された電流値が過電流保護用の設定値もしくは過電圧保護用の設定値を上回るとき制御装置30に充・放電停止信号を送信する。また監視部11aは、検出された温度値が温度異常保護用の設定値を上回るとき制御装置30に充・放電停止信号を送信する。
 制御装置30は監視部11aから充・放電停止信号を受信すると、充放電装置40の制御部42に充電制御または放電制御を停止させるよう指示するとともに、必要に応じて遮断器20の開閉部21を開くよう制御する。
 なお上述の例では監視部11aが過放電の判定処理を実行したが、制御装置30が当該判定処理を実行してもよい。過電圧、過電流、温度異常の判定処理も制御装置30が実行してもよい。
 図7に示す回路構成は過放電保護という観点では、充放電装置40への電流と制御装置30への電流を一つの開閉部21で遮断でき効率的である。しかしながら過電流保護という観点では充放電装置40に接続される負荷の保護、制御装置30の保護が区別されておらず、制御装置30の過電流保護の位置づけが曖昧になっている。
 図8は、本発明の実施の形態2に係る蓄電システム100の一構成例を示す図である。当該構成例では2極構造の遮断器20を用いる。遮断器20は第1開閉部21および第2開閉部22を備える。第1開閉部21は、蓄電池ユニット10と充放電装置40とを結ぶ電流路に挿入される。第2開閉部22は、当該電流路上の蓄電池ユニット10と第1開閉部21との間のノードから分岐される、制御装置30への電源供給路に挿入される。実施の形態1の遮断器20と同様に、第1開閉部21と第2開閉部22は物理的に連結されており、両者の開閉は連動する。
 第1開閉部21および第2開閉部22の定格電流は、それぞれ個別に設計される。第1開閉部21の定格電流は蓄電池ユニット10の定格電流に応じて設計される。第2開閉部22の定格電流は、制御装置30の定格電流に応じて設計される。制御装置30をICで構成する場合、当該ICの定格電流は通常、1A未満である。従って第2開閉部22の定格電流は、第1開閉部21の定格電流より、小さく設計できる。また、当該ICの定格電流は非常に小さいことや集積回路であるために回路上の保護素子等で対策可能であることを考慮して、第2開閉部22による過電流保護機能を省略することも可能である。
 制御装置30は、監視部11aから停止信号を受信すると第1開閉部21および第2開閉部22を実質的に同時に開放させる。上述のように第1開閉部21と第2開閉部22は物理的に連結されているため、電磁誘導の効果が第1開閉部21および第2開閉部22に同時に働かなくても両者は実質的に同時に開く。第1開閉部21および第2開閉部22を同時に開放させることにより、負荷側と同時に制御側の電力供給も遮断することができるので、過放電を抑制できる。
 図9は、図8の遮断器20の一構成例を示す図である。図9では図面を簡略化するため蓄電池ユニット10と制御装置30間の通信線および制御装置30と充放電装置40間の通信線を省略して描いている。
 遮断器20は、第1開閉部21、第2開閉部22、第6開閉部26、第1コイルL1、第2コイルL2を含む。第1開閉部21、第2開閉部22、第6開閉部26は物理的に連結されており、それらの開閉は連動する。
 第1開閉部21の一端は蓄電池ユニット10に接続され、第1開閉部21の他端は第1コイルL1を介して充放電装置40に接続される。この蓄電池ユニット10と充放電装置40間の電流路に過電流が流れると、第1コイルL1が励磁し、接点をなす第1開閉部21が開く。
 第2開閉部22の一端は、蓄電池ユニット10と第1開閉部21の間のノードに接続され、第2開閉部22の他端は制御装置30の電源端子T3に接続される。電源端子T3は、制御装置30内の図示しない定電圧生成回路(例えば、三端子レギュレータ)に接続される。当該定電圧生成回路は、制御装置30内の図示しないCPUなどに供給する電源電圧を生成する。
 第6開閉部26の一端は制御装置30の第2状態検知端子T2に接続され、第6開閉部26の他端は遮断器20の開状態端子Toまたは閉状態端子Tcに接続される。遮断器20の開状態端子Toは制御装置30の第1状態検知端子T1に接続される。遮断器20の閉状態端子Tcは所定の固定電位(例えば、グラウンド)に接続される。
 制御装置30は第2状態検知端子T2に通電した状態で、第1状態検知端子T1に電圧が現れれば第1開閉部21および第2開閉部22が開いていると判定でき、電圧が現れなければ第1開閉部21および第2開閉部22が閉じていると判定できる。
 第2コイルL2の両端は、制御装置30の第1通電端子T4および第2通電端子T5にそれぞれ接続される。制御装置30の第1通電端子T4および第2通電端子T5は、制御装置30内の図示しない電流発生回路に接続される。制御装置30は第1開閉部21および第2開閉部22を開放させる際、第2コイルL2に電流を流して第2コイルL2を励磁させる。
 第2開閉部22には、第1開閉部21のように制御装置30への電源供給路自体に流れる電流により励磁するコイルが接続されていない。制御装置30への電源供給路の過電流点は非常に小さいことや制御装置30内の保護素子等で過電流保護対策が可能である。そのため、図9の例では第2開閉部22にコイルを接続していない。従って制御装置30の過電流保護を完全にするには、当該電源供給路の過電流点と主電流路の過電流点との間の電流を制限するための保護回路を、制御装置30の入力段に設ける必要がある。
 なお本実施例では第2閉開部にコイルを接続しない構成を示したが、第2開閉部22にコイルを設けてもよい。この場合、制御装置30の過電流保護として適切な電流値で第2開閉部22が開放するようにコイルを設計する。これにより、制御装置30内に別の保護素子などを設けなくても制御装置30の過電流保護が可能になる。また、制御装置30の異常等により第2開閉部に過電流が流れることで保護機能が作動し制御装置30が停止する。この場合、制御装置30が動作しない状態で第1開閉部21を通じて、充放電電流が流れても、第1開閉部21と第2開閉部22とが連動して保護機能が作動する。そのため、システムとしての保護も可能になる。すなわち、それぞれの経路の過電流点を独立に設計できるとともに、第1開閉部21と第2開閉部22を同時に保護することが可能になる。
 図10は、図8の蓄電システム100における監視部11aの電源について説明するための図である。蓄電池モジュール11は、より具体的には監視部11a、蓄電池11b、スイッチ11cを備える。監視部11aは図示しないCPU、蓄電池11bの状態検出回路、通信I/Fなどを含む。監視部11aの電源は蓄電池11bから取得する。
 蓄電池ユニット10と充放電装置40とを結ぶ電流路上の、蓄電池11bと遮断器20との間のノードから、監視部11aの電源端子へ分岐する電流路が設けられる。即ち、蓄電池11bと遮断器20との間のノードから監視部11aへ電源供給路が設けられる。スイッチ11cは当該電源供給路に挿入される。監視部11aをICで構成する場合、当該ICの定格電流は通常、1A未満である。従ってスイッチ11cには、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)などの半導体スイッチで足りる。なおスイッチ11cにリレーを用いてもよいが、半導体スイッチのほうが低コストである。
 図10では監視部11aと制御装置30間を双方向通信が可能な構成とする。また制御装置30と充放電装置40の制御部42間も双方向通信が可能な構成とする。またLANケーブルの空き線を利用して電源供給が可能な構成とする。例えば、制御装置30から監視部11aに電源電圧(例えば、12V)を供給可能な構成とする。なお充放電装置40の制御部42の電源は、蓄電池11b以外から取得してもよい。
 蓄電池11bの過放電を阻止して蓄電池11bのSOCを維持するには、充放電装置40を介して負荷に流れる電流および制御装置30に流れる電流を制限するだけでなく、監視部11aに流れる電流も制限することが望ましい。なお、監視部11aの一部の機能については、スイッチ11cを介さない形で蓄電池11bから電力の供給を継続するようにしても良い。
 制御装置30は、過放電保護発動の条件が満たされたことにより第1開閉部21および第2開閉部22を開放させるとともに、監視部11aにスイッチ11cをオフするよう指示する。監視部11aは当該指示を受信するとスイッチ11cをオフする。これにより、監視部11aは電源供給が断たれる。また制御装置30も第2開閉部22が開いたことにより電源供給が断たれる。
 監視部11aおよび制御装置30の電源供給が断たれた状態から再起動させる場合、第2開閉部22をオンさせる。これにより、制御装置30への電源供給が再開する。制御装置30の再起動後、制御装置30からスイッチ11aに電力が供給されることでスイッチ11cがオンされる。なお、第2開閉部22はFETやコンダクター等の外部信号で閉じることが可能なスイッチを採用し、手動以外で閉じることが可能な場合は、第2開閉部22を閉じるための電源を制御部42等から供給することで第2開閉部22を閉じてもよい。
 図11は、本発明の実施の形態2に係る蓄電システム100の別の構成例を示す図である。当該構成例では二つの遮断器を用いる。第1遮断器20aは第1開閉部21を備える。第1開閉部21は、蓄電池ユニット10と充放電装置40とを結ぶ電流路に挿入される。第2遮断器20bは第2開閉部22を備える。第2開閉部22は、当該電流路上の蓄電池ユニット10と第1開閉部21との間のノードから分岐される、制御装置30への電源供給路に挿入される。第1遮断器20aと第2遮断器20bは同じ遮断器であってもよいし、仕様が異なる別の遮断器であってもよい。例えば、第2遮断器20bは第1遮断器20aより遮断容量あるいは遮断電流が低い遮断器であってもよい。
 制御装置30は、監視部11aから停止信号を受信すると第1開閉部21および第2開閉部22を実質的に同時に開放させる。図11では蓄電池ユニット10と充放電装置40間の主電流路の過電流点と、制御装置30への電源供給路の過電流点を個別に設定される。第1閉開部21と第2閉開部22とを時間差を設けて閉じることが出来るように、第1閉開部21と第2閉開部22を物理的に連結させていない。また、当該ICの定格電流は非常に小さいことや集積回路であるために回路上の保護素子等で対策可能であることを考慮して、第2開閉部22による過電流保護機能を省略することも可能である。そのため、第2遮断器20bの代わりに半導体スイッチを用いてもよい。一般に、半導体スイッチのほうが遮断器より低コストである。
 図12は、図11の蓄電システム100における遮断状態からの復帰時の処理を説明するための図である。本実施例では、上述の処理により第1開閉部21および第2開閉部22が開かれた場合、蓄電池が交換されることを想定する。蓄電池の交換後、蓄電システム100を復帰させる。第1開閉部21および第2開閉部22を手動により閉じることが一般的であるが、図12では制御装置30が、充放電装置40の制御部42から供給される電源を用いて第1開閉部21および第2開閉部22を閉じる例を考える。
 蓄電システム100を復帰させる手順は、第1開閉部21および第2開閉部22を閉じる際、同時に閉じるのではなく時間差を設けて閉じる。具体的には第2開閉部22を先に閉じる。第2開閉部22を閉じることにより、制御装置30と監視部11aとの通信が可能になり、制御装置30は監視部11aから蓄電池の情報を取得できるようになる。制御装置30は蓄電池の状態が正常であることを確認してから第1開閉部21を閉じる。このように第2開閉部22を先に閉じることにより蓄電池の状態を確認でき、その状態に応じて第1開閉部21を閉じるか否か判断できる。これにより、より安全に蓄電システム100を立ち上げることができる。なお、この立ち上げ手順は、第1開閉部21および第2開閉部22が閉じた状態から、第1開閉部21および第2開閉部22が開いた状態に遷移させる場合全般に適用可能である。なお、第2閉開部22を閉じて電池状態が正常であることが確認できるまでは、第1閉開部21に対して遮断信号を出し続けるようにして、仮に第1閉開部21を誤って閉じようとしても閉じることが出来ないようにする。例えば、第2閉開部が外部信号で閉じることが出来るスイッチである場合に双方向コンバータ41から第2閉開部22に電力を供給し、第2閉開部22を閉じるようにしてもよい。同様に、第1閉開部21が外部信号で閉じることが出来るスイッチである場合に制御装置30から第1閉開部21に電力を供給し、第1閉開部21を閉じてもよい。
 以上説明したように蓄電システム100において主電流路に挿入される第1開閉部21と、制御装置30への電源供給路に挿入される第2開閉部22を別に設けることにより、それらを用いた過放電および過電流の保護仕様を、主電流路と制御装置30への電源供給路とで適切に設計できる。例えば、制御装置30への電源供給路の保護仕様は、主電流路の保護仕様より簡素にできる。また図11に示すように二つの遮断器を用いれば、主電流路と制御装置30への電源供給路とで保護仕様をより柔軟に設計できる。
 また図8に示すように多極構造の遮断器20を用い第1開閉部21および第2開閉部22が実質的に同時に開くよう構成することにより、負荷側と同時に制御側の電力供給も遮断することができるので、過放電を抑制できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 なお、本実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
 並列接続された複数の蓄電池モジュールと、
 前記複数の蓄電池モジュールと、前記複数の蓄電池モジュールを充放電する充放電装置とを結ぶ電流路に挿入される遮断器と、を備え、
 前記複数の蓄電池モジュールは複数のグループに分割され、
 各グループに属する蓄電池モジュールの電流路が一つに並列結合されて複数のグループ電流路が形成され、複数のグループ電流路が一つに並列結合されて前記充放電装置に接続され、
 前記遮断器は、前記複数のグループ電流路のそれぞれに挿入される複数の開閉部を含み、
 前記複数の開閉部の内、一つの開閉部が開くと、残りの開閉部も連動して開くことを特徴とする蓄電システム。
[項目2]
 前記複数の開閉部は、開閉が連動するように物理的に連結されていることを特徴とする項目1に記載の蓄電システム。
[項目3]
 前記複数の開閉部の各遮断容量あるいは各遮断電流の少なくともどちらか一方は、各グループ電流路に並列接続される蓄電池モジュールの数に応じて、個別に設計されることを特徴とする項目1または2に記載の蓄電システム。
[項目4]
前記蓄電モジュールと電流路を形成している側の前記双方向コンバータのプラス端子とマイナス端子とを結ぶ電流路のいずれかに挿入される前記開閉部の遮断容量を補うためのヒューズを、さらに備えることを特徴とする項目1から3のいずれかに記載の蓄電システム。
[項目5]
 前記蓄電池モジュールは、
 複数の蓄電池と、
 前記複数の蓄電池の状態を監視する監視部と、を含み、
 前記蓄電システムは、
 前記監視部から取得されるデータが異常であるとき前記複数の開閉部を一括して開く制御装置を、さらに備えることを特徴とする項目1から4のいずれに記載の蓄電システム。
[項目6]
 蓄電池と、
 前記蓄電池と、前記蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、
 前記第1スイッチを制御して前記蓄電池を保護するための制御装置と、
 前記蓄電池と前記第1スイッチとの間のノードから分岐される、前記制御装置への電源供給路に挿入される第2スイッチと、
 を備えることを特徴とする蓄電システム。
[項目7]
 前記制御装置は、前記蓄電池の残容量が過放電保護用の設定値を下回るとき、前記第1スイッチと前記第2スイッチを実質的に同時にオフすることを特徴とする項目6に記載の蓄電システム。
[項目8]
 前記第1スイッチおよび前記第2スイッチは一つの遮断器に含まれ、
 前記第1スイッチおよび前記第2スイッチの各遮断容量あるいは各遮断電流の少なくともどちらか一方は、それぞれ個別に設計されることを特徴とする項目6または7に記載の蓄電システム。
[項目9]
 前記第1スイッチは第1遮断器に含まれ、前記第2スイッチは第2遮断器に含まれ、
 前記第1スイッチおよび前記第2スイッチの各遮断容量あるいは各遮断電流の少なくともどちらか一方は、それぞれ個別に設計されることを特徴とする項目6または7に記載の蓄電システム。
[項目10]
 前記第1スイッチは遮断器に含まれ、前記第2スイッチは半導体スイッチで構成されることを特徴とする項目6または7に記載の蓄電システム。
[項目11]
 前記制御装置は、前記第1スイッチおよび前記第2スイッチがオフされた状態から前記第1スイッチおよび前記第2スイッチがオンされた状態に遷移するとき、前記第2スイッチを先にオンすることを特徴とする項目6から10のいずれかに記載の蓄電システム。
[項目12]
 蓄電池を保護するための制御装置であって、
 前記蓄電池と、前記蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、前記蓄電池と前記第1スイッチとの間の経路から分岐される、前記制御装置への電源供給路に挿入される第2スイッチを制御することを特徴とする制御装置。
 100 蓄電システム、 10 蓄電池ユニット、 11 第1蓄電池モジュール、 11a 第1監視部、 11b 蓄電池、 11c スイッチ、 12 第2蓄電池モジュール、 12a 第2監視部、 13 第3蓄電池モジュール、 13a 第3監視部、 14 第4蓄電池モジュール、 14a 第4監視部、 15 第5蓄電池モジュール、 15a 第5監視部、 20 遮断器、 21 第1開閉部、 22 第2開閉部、 23 第3開閉部、 24 第4開閉部、 25 第5開閉部、 26 第6開閉部、 L1 第1コイル、 L2 第2コイル、 30 制御装置、 40 充放電装置、 41 双方向コンバータ、 42 制御部、 51 第1金属バスバー、 52 第2金属バスバー、 53 第3金属バスバー、 54 ヒューズ。
 本発明は、電流遮断機能を備える蓄電システムに利用できる。

Claims (7)

  1.  蓄電池と、
     前記蓄電池と、前記蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、
     前記第1スイッチを制御して前記蓄電池を保護するための制御装置と、
     前記蓄電池と前記第1スイッチとの間のノードから分岐される、前記制御装置への電源供給路に挿入される第2スイッチと、
     を備えることを特徴とする蓄電システム。
  2.  前記制御装置は、前記蓄電池の残容量が過放電保護用の設定値を下回るとき、前記第1スイッチと前記第2スイッチを実質的に同時にオフすることを特徴とする請求項1に記載の蓄電システム。
  3.  前記第1スイッチおよび前記第2スイッチは一つの遮断器に含まれ、
     前記第1スイッチおよび前記第2スイッチの各遮断容量あるいは各遮断電流の少なくともどちらか一方は、それぞれ個別に設計されることを特徴とする請求項1または2に記載の蓄電システム。
  4.  前記第1スイッチは第1遮断器に含まれ、前記第2スイッチは第2遮断器に含まれ、
     前記第1スイッチおよび前記第2スイッチの各遮断容量あるいは各遮断電流の少なくともどちらか一方は、それぞれ個別に設計されることを特徴とする請求項1または2に記載の蓄電システム。
  5.  前記第1スイッチは遮断器に含まれ、前記第2スイッチは半導体スイッチで構成されることを特徴とする請求項1または2に記載の蓄電システム。
  6.  前記制御装置は、前記第1スイッチおよび前記第2スイッチがオフされた状態から前記第1スイッチおよび前記第2スイッチがオンされた状態に遷移するとき、前記第2スイッチを先にオンすることを特徴とする請求項1から5のいずれかに記載の蓄電システム。
  7.  蓄電池を保護するための制御装置であって、
     前記蓄電池と、前記蓄電池を充放電する充放電装置とを結ぶ経路に挿入される第1スイッチと、前記蓄電池と前記第1スイッチとの間のノードから分岐される、前記制御装置への電源供給路に挿入される第2スイッチを制御することを特徴とする制御装置。
PCT/JP2013/000452 2012-09-27 2013-01-29 蓄電システムおよび制御装置 WO2014049892A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2012/006198 2012-09-27
PCT/JP2012/006198 WO2014049655A1 (ja) 2012-09-27 2012-09-27 蓄電システム

Publications (1)

Publication Number Publication Date
WO2014049892A1 true WO2014049892A1 (ja) 2014-04-03

Family

ID=50387124

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/006198 WO2014049655A1 (ja) 2012-09-27 2012-09-27 蓄電システム
PCT/JP2013/000452 WO2014049892A1 (ja) 2012-09-27 2013-01-29 蓄電システムおよび制御装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006198 WO2014049655A1 (ja) 2012-09-27 2012-09-27 蓄電システム

Country Status (1)

Country Link
WO (2) WO2014049655A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195488B1 (ja) 2022-05-10 2022-12-23 三菱電機株式会社 電力制御システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124236U (ja) * 1984-01-25 1985-08-21 三菱電機株式会社 電源装置の遮断回路装置
JPH07147733A (ja) * 1993-11-25 1995-06-06 Fuji Elelctrochem Co Ltd 電池の過放電防止回路およびパック電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275942U (ja) * 1988-11-28 1990-06-11
JP3674144B2 (ja) * 1996-04-30 2005-07-20 ヤマハ発動機株式会社 電動車両用電力供給方法及びその装置
JP5269451B2 (ja) * 2008-03-24 2013-08-21 株式会社東芝 電池保護装置および電池保護方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124236U (ja) * 1984-01-25 1985-08-21 三菱電機株式会社 電源装置の遮断回路装置
JPH07147733A (ja) * 1993-11-25 1995-06-06 Fuji Elelctrochem Co Ltd 電池の過放電防止回路およびパック電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7195488B1 (ja) 2022-05-10 2022-12-23 三菱電機株式会社 電力制御システム
WO2023218530A1 (ja) * 2022-05-10 2023-11-16 三菱電機株式会社 電力制御システム

Also Published As

Publication number Publication date
WO2014049655A1 (ja) 2014-04-03

Similar Documents

Publication Publication Date Title
US9130383B2 (en) Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
EP2911256B1 (en) Battery energy storage system with arc flash protection, energy conversion system and protection method
CN110277770B (zh) 模块存储器联接的双重保险装置
US10476281B2 (en) Redox flow battery system
CN102576630A (zh) 蓄电系统以及控制装置
US11677232B2 (en) Quick battery disconnect system for high current circuits
JP2008228449A (ja) 電池の充放電回路スイッチ制御方式
US9356469B2 (en) Storage battery device and storage battery system
JP6087675B2 (ja) 電池モジュール
EP3633818B1 (en) Power conversion device
EP3349327B1 (en) Battery management device
AU2018235015B2 (en) System for supplying electrical energy to an on-board network of a submarine
CN111095719B (zh) 蓄电池装置
JP2011083074A (ja) 直流機器保護装置、これを備えた電源装置、直流機器およびハイブリッド給電住宅用配電システム
WO2014049892A1 (ja) 蓄電システムおよび制御装置
US10981453B2 (en) Power supply circuit protection device
JP2014055902A (ja) 原子力発電プラント用直流電源設備
CN1983709A (zh) 一种并联供电的二次电池过放电保护装置
US11038336B1 (en) Redundant power module and discharge circuit for improved substation device availability
AU2018351679B2 (en) Battery system, local electrical grid and disconnector
JP6103455B2 (ja) 蓄電システム
JP2021090235A (ja) 蓄電システム
JP5936189B2 (ja) 電源装置
JP2020523972A (ja) 航空機用電気エネルギー貯蔵システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP