WO2014049870A1 - 高周波電力用コイルおよびその製造方法 - Google Patents

高周波電力用コイルおよびその製造方法 Download PDF

Info

Publication number
WO2014049870A1
WO2014049870A1 PCT/JP2012/075237 JP2012075237W WO2014049870A1 WO 2014049870 A1 WO2014049870 A1 WO 2014049870A1 JP 2012075237 W JP2012075237 W JP 2012075237W WO 2014049870 A1 WO2014049870 A1 WO 2014049870A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
coil
layer
forming step
insulating layer
Prior art date
Application number
PCT/JP2012/075237
Other languages
English (en)
French (fr)
Inventor
直道 石浦
神藤 高広
Original Assignee
富士機械製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士機械製造株式会社 filed Critical 富士機械製造株式会社
Priority to PCT/JP2012/075237 priority Critical patent/WO2014049870A1/ja
Priority to JP2014538063A priority patent/JP6164749B2/ja
Publication of WO2014049870A1 publication Critical patent/WO2014049870A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/308Wires with resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/30Insulated conductors or cables characterised by their form with arrangements for reducing conductor losses when carrying alternating current, e.g. due to skin effect

Definitions

  • the present invention relates to a coil used in a circuit for supplying and transferring power at a high frequency, and a manufacturing method thereof.
  • solder printing machines, component mounting machines, reflow machines, board inspection machines, etc. as board work equipment that produces boards with a large number of components mounted, and these are connected by a board transport device to build a board production line.
  • board work devices have a movable part that moves above the board to perform a predetermined work, and use a non-contact power feeding device to feed power to the electric load on the movable part in a non-contact manner.
  • an electromagnetic induction method using a coil has been widely used as a method of a non-contact power supply device, but recently, an electrostatic coupling method in which a capacitor is configured by opposing electrodes has been used.
  • a non-contact power supply device in order to ensure a large power supply capacity and high power supply efficiency, it is common to configure a resonance circuit from a fixed part to a movable part and supply power using a high frequency of the resonance frequency. For this reason, a coil is used in addition to the capacitor in the electrostatic coupling method.
  • the skin effect is remarkably generated due to the high frequency. In other words, even if a large amount of current flows near the surface of the conductor, the current decreases as it enters the conductor, and the current per unit cross-sectional area of the conductor, that is, the current density, is lower than in the case of commercial frequency AC or DC. .
  • solid conductors have been used for manufacturing high-frequency power coils.
  • Patent Document 1 An example of a conductor suitable for this type of high-frequency power application is disclosed in Patent Document 1.
  • the lightning rod lightning conductor of Patent Document 1 has a substantially cylindrical central insulator as a core, and a main conductor, a stress control layer, an intermediate insulating layer, a stress control layer, a shield conductor, and a jacket are provided outside the core insulator. They are arranged concentrically sequentially. That is, in order to reduce the influence of the skin effect when a high-frequency lightning current flows, a tubular main conductor is used instead of the solid conductor. Thus, it is described that the lightning current easily flows, the amount of conductors is small, the manufacturing cost can be reduced, and the workability during laying and transportation can be improved by weight reduction.
  • the lightning conductor technique of Patent Document 1 is preferable in that the effect of the skin effect is reduced and the lightning current is easy to flow, it is not suitable for manufacturing a coil for high-frequency power.
  • this lightning conductor is specially designed for grounding the lightning rod, a stress control layer is provided as a measure against the stress generated when a lightning strike current flows, and a shield conductor is provided as a measure to block the influence of noise. ing. Therefore, the structure is excessive for use in the coil. Further, since the rigidity is too large, it is actually difficult to wind in a spiral shape.
  • the present invention has been made in view of the above problems of the background art, and can partially increase the current density at a high frequency as compared with the prior art, and can reduce the weight as compared with the prior art and can be easily manufactured. It is an object to be solved to provide a power coil and a manufacturing method thereof.
  • An invention of a high frequency power coil according to claim 1 that solves the above-mentioned problem is provided with two or more tubular conductor layers formed of a conductor material and arranged coaxially inside and outside the axis, and a specific gravity greater than that of the conductor material.
  • a center insulating layer formed of an insulating material having a small thickness and disposed at the axis, an interlayer insulating layer formed of an insulating material having a specific gravity smaller than that of the conductor material and interposed between the conductor layers,
  • a multilayer wire consisting of a jacket layer covering the outside of the outer conductor layer was wound in a spiral shape.
  • the conductive material is a metal material
  • the insulating material is a resin material or a ceramic material.
  • the invention according to claim 3 is the coil for high-frequency power according to claim 1 or 2, and is used for a non-contact power feeding device.
  • the invention according to claim 4 is the method for manufacturing a high-frequency power coil according to any one of claims 1 to 3, wherein an outer periphery of the central insulating layer is covered with the conductor material, and an inner conductor layer is formed.
  • the invention according to claim 5 is the invention according to claim 4, wherein the multilayer wire includes three or more conductor layers, and the insulating layer forming step and the conductor layer forming step are performed in accordance with the number of the conductor layers. repeat.
  • the invention according to claim 6 is the method for manufacturing a high frequency power coil according to any one of claims 1 to 3, wherein the central insulating layer is formed by forming the insulating material in a spiral shape.
  • a coating layer forming step is the method for manufacturing a high frequency power coil according to any one of claims 1 to 3, wherein the central insulating layer is formed by forming the insulating material in a spiral shape.
  • the invention according to claim 7 is the invention according to claim 6, wherein the multilayer wire includes three or more conductor layers, and the insulating layer forming step and the conductor layer forming step are performed in accordance with the number of the conductor layers. repeat.
  • the invention according to claim 8 is the method according to any one of claims 4 to 7, wherein the conductor material is a metal material, and at least part of the inner conductor layer forming step and the conductor layer forming step, The inner conductor layer or the outer conductor layer is formed by vapor deposition.
  • the invention according to claim 9 is the method according to any one of claims 4 to 8, wherein the insulating material forming the interlayer insulating layer is a resin material or a ceramic material, and at least a part of the insulating layer forming step, The interlayer insulating layer is formed by dipping or vapor deposition.
  • the conductor layers constituting the multilayer wire are separated into two or more tubular shapes and arranged inside and outside the coaxial, and the influence of the skin effect when the high frequency current flows is reduced. Therefore, the current density can be partially increased as compared with the conventional solid electric wire.
  • the central insulating layer and the interlayer insulating layer of the multilayer wire can be formed of an insulating material having a specific gravity smaller than that of the conductor material. For this reason, the weight of a multilayer wire becomes lighter than the solid conductor of the same cross-sectional area of the same conductor material, and the weight of the coil for high frequency electric power can be reduced conventionally.
  • the conductor material is a metal material
  • the insulating material is a resin material or a ceramic material.
  • the specific gravity of a resin material or a ceramic material is significantly smaller than the specific gravity of a metal material such as copper generally used as a conductor material. Therefore, the multilayer wire in which a part of the metal material constituting the solid conductor is replaced with a resin material or a ceramic material is significantly lighter than the solid conductor, and the high frequency power coil can be significantly reduced in weight.
  • the high frequency power coil is used in a non-contact power feeding device.
  • the whole non-contact electric power feeder can be reduced in weight.
  • a multilayer wire is manufactured by sequentially forming an inner conductor layer, an interlayer insulating layer, an outer conductor layer, and a jacket layer with the stretched central insulating layer as a core.
  • the high frequency power coil can be manufactured by winding the multilayer wire in a spiral shape.
  • the insulating layer forming step and the conductor layer forming step are repeated in accordance with the number of conductor layers of three or more in the stretched state. That is, even if the number of conductor layers of the multilayer wire is increased, the number of repetitions of the two steps is increased, so that the high frequency power coil can be easily manufactured.
  • an insulating material is molded into a spiral shape to form a central insulating layer corresponding to the coil core, and then an inner conductor layer, an interlayer insulating layer, an outer periphery around the central insulating layer
  • the coil for high frequency power can be manufactured by sequentially forming the conductor layer and the covering layer.
  • the insulating layer forming step and the conductor layer forming step are repeated in accordance with the number of conductor layers of three or more in a spiral shape. That is, even if the number of conductor layers of the multilayer wire is increased, the number of repetitions of the two steps is increased, so that the high frequency power coil can be easily manufactured.
  • the conductor material is a metal material
  • the inner conductor layer or the outer conductor layer is formed by plating or vapor deposition.
  • the plating method and the vapor deposition method are industrially stable manufacturing techniques, and a conductor layer having a desired thickness can be formed with high quality.
  • the insulating material for forming the interlayer insulating layer is a resin material or a ceramic material, and the interlayer insulating layer is formed by dipping or vapor deposition.
  • the dipping method and the vapor deposition method are industrially stable manufacturing techniques, and an interlayer insulating layer having a desired thickness can be formed with high quality.
  • FIG. 1 is a configuration diagram schematically illustrating a non-contact power feeding device 9 to which the high frequency power coil of the present invention can be applied.
  • the non-contact power feeding device 9 is a device that performs non-contact power feeding from the fixed portion 91 to the electric load 99 on the movable portion 92 by an electrostatic coupling method.
  • the non-contact power feeding device 9 includes two power feeding electrodes 931 and 931 on the fixed portion 91 side, a high frequency power source portion 94, two resonance inductors 951 and 952, and two power receiving electrodes on the movable portion 92 side. 961 and 962 and a power receiving conversion unit 97.
  • the two first and second feeding electrodes 931 and 932 on the fixed portion 91 side are formed using a metal plate or the like.
  • the two first and second power receiving electrodes 961 and 962 on the movable portion 92 side are also formed using a metal plate or the like.
  • the first and second power feeding electrodes 931 and 932 and the first and second power receiving electrodes 961 and 962 are arranged in parallel with a one-to-one spacing. Thereby, two parallel plate-like first and second capacitors 963 and 964 having the same capacitance C are formed.
  • the high frequency power supply unit 94 on the fixed unit 91 side supplies high frequency power having a power supply frequency of 100 kHz to MHz, for example.
  • the power supply frequency and output voltage of the high-frequency power supply unit 94 are adjustable, and examples of the output voltage waveform include a sine wave and a rectangular wave.
  • One output terminal 941 of the high frequency power supply unit 94 is connected to the first resonance inductor 951, and the other output terminal 942 is connected to the second resonance inductor 952.
  • the first resonance inductor 951 on the fixed portion 91 side is connected in series between one output terminal 941 of the high frequency power supply portion 94 and the first power feeding electrode 931.
  • the second resonance inductor 952 is connected in series between the other output terminal 942 of the high frequency power supply unit 94 and the second power feeding electrode 932.
  • coils having the same inductance value L are used as the first and second resonance inductors 951.
  • the power receiving conversion unit 97 on the movable unit 92 side has two input terminals 971 and 972 connected to the first and second power receiving electrodes 961 and 962, and two output terminals 973 and 974 connected to the electric load 99. .
  • the power receiving conversion unit 97 converts the high frequency power received by the first and second power receiving electrodes 961 and 962 and supplies the electric load 99 with power.
  • the power receiving conversion unit 97 is configured according to the power supply specifications of the electric load 99, and for example, a full-wave rectifier circuit or an inverter circuit is used.
  • a series resonant circuit is formed in order to improve the feeding capacity and feeding efficiency. That is, the capacitance C of the first and second capacitors 963 and 964 and the inductance value L of the first and second resonance inductors 951 and 952 are set so that series resonance occurs at the power supply frequency of the high-frequency power supply unit 94. Designed.
  • the high frequency power coil of the present invention can be applied to the first and second resonance inductors 951 and 952.
  • the high frequency power coil of the present invention is manufactured by winding the multilayer wire 1 in a spiral shape.
  • FIG. 2 is a view for explaining the multilayer wire 1 which is the main material of the high frequency power coil of the present invention. As shown in FIG. 2, the multilayer wire 1 has a five-layer structure arranged inside and outside the same axis.
  • a central insulating layer 2 is disposed on the axis of the multilayer wire 1.
  • the central insulating layer 2 is formed of a linear insulating material having a circular cross section.
  • a tubular inner conductor layer 3 made of a conductor material is disposed on the outer periphery of the central insulating layer 2.
  • An interlayer insulating layer 4 made of an insulating material is disposed on the outer periphery of the inner conductor layer 3.
  • a tubular outer conductor layer 5 formed of a conductor material is disposed on the outer periphery of the interlayer insulating layer 4.
  • An outer cover layer 6 made of an insulating material is disposed on the outer periphery of the outer conductor layer 5.
  • Each layer 2 to 6 is formed in close contact with each other in the radial direction.
  • a metal material such as copper can be used, and the same material is preferable. This is because the inner conductor layer 3 and the outer conductor layer 5 are used in parallel, so that if the conductivity ⁇ of both the layers 3 and 5 is different from each other, a large amount of current flows through one of the layers, This is because the layer cannot be used effectively.
  • the insulating material for forming the central insulating layer 2 and the interlayer insulating layer 4 for example, a resin material or a ceramic material can be used, which may be the same material or different materials.
  • the specific gravity of these insulating materials is significantly smaller than the specific gravity of conductor materials including copper.
  • the insulating material forming the outer cover layer 6 may be the same material as the central insulating layer 2 or the interlayer insulating layer 4 or may be a different material.
  • the jacket layer 6 is disposed on the outermost periphery of the multilayer wire 1 and is in contact with other structural members and the outside air, the insulating material has good mechanical strength and good environmental resistance in addition to good insulating performance. It is preferable to form using.
  • the radial layer thicknesses of the inner conductor layer 3, the interlayer insulating layer 4, and the outer conductor layer 5 can be appropriately designed so as to reduce the influence of the skin effect on the high frequency. Also, a plurality of layers of the interlayer insulating layers 4 and the outer conductor layers 5 can be provided alternately to form a multilayer wire having three or more conductor layers.
  • the coil for high frequency power is obtained by winding the above-described multilayer wire 1 in a spiral shape around the coil axis.
  • the high frequency power coil may be a coil with an iron core having an iron core on the coil axis, or an air core coil having a hollow coil axis.
  • the high frequency power coil may be a single-layer coil wound only from one end to the other end in the axial direction, or a two-layer coil folded at the other end to have a two-layer structure, or more than that.
  • a multilayer coil may be used.
  • FIG. 3 is a diagram for explaining the situation of the skin effect in the conventional solid conductor 7.
  • the upper side of FIG. 3 shows the cross-sectional shape of the solid conducting wire 7, and the lower side shows the current density J7 at the radial position.
  • FIG. 4 is a figure explaining the condition of the skin effect in the multilayer wire 1 used for the coil for high frequency electric power of embodiment.
  • the upper side of FIG. 4 shows the cross-sectional shape of the multilayer wire 1, and the lower side shows the current density J1 at the radial position.
  • the solid conducting wire 7 includes a columnar conductor 71 and a jacket layer 72 formed on the outer peripheral side of the conductor 71.
  • the conductor 71 is made of the same material as the inner and outer conductor layers 3 and 5 of the multilayer wire 1, and the outer diameter D1 is equal to the outer diameter D1 of the outer conductor layer 5 of the multilayer wire 1 shown in FIG. Match.
  • the current density J7 is the maximum value Jmax on the surface of the conductor 71, and decreases as it enters the inside.
  • the state of the skin effect is represented by the skin depth ⁇ as a representative value.
  • the current density J1 of the multilayer wire 1 is distributed in the inner and outer conductor layers 3 and 5.
  • the current density J1 is the maximum value Jmax on the outer surface, decreases halfway into the inside, and starts increasing as the inner surface is approached.
  • the current density J1 is large on the outer surface, decreases until entering the inside, and starts increasing as it approaches the inner surface.
  • the multilayer wire 1 As described above, in the multilayer wire 1, by providing the interlayer insulating layer 4 and the central insulating layer 2, the influence of the skin effect of the conductor layers 3 and 5 when a high-frequency current flows is reduced. Therefore, the current density J1 of the multilayer wire 1 is partially higher than the current density J7 of the solid conductor 7. This means that the use amount of the conductor material can be reduced by reducing the cross-sectional area of the conductor layers 3 and 5.
  • the multilayer wire 1 corresponds to a part in which the conductor 71 of the solid conductor 7 is replaced with the central insulating layer 2 and the interlayer insulating layer 4. Accordingly, this corresponds to the replacement of the conductor material having a large specific gravity with an insulating material having a small specific gravity, and the multilayer wire 1 is significantly lighter than the solid conductor 7 by the difference in specific gravity.
  • the weight of the high frequency power coil using the multilayer wire 1 can be remarkably reduced as compared with the prior art. Furthermore, the entire contactless power supply device 9 shown in FIG. 1 can be reduced in weight.
  • FIG. 5 is a flowchart for explaining the manufacturing method of the first embodiment of the coil for high-frequency power.
  • the manufacturing method of the first embodiment includes an inner conductor layer forming step K1, an insulating layer forming step K2, a conductor layer forming step K3, an outer layer forming step K5, a coil forming step K6, and a terminal forming step. It consists of K7.
  • a stretched multilayer wire 1 is manufactured, and then the multilayer wire 1 is wound in a spiral shape to manufacture a coil for high-frequency power.
  • the inner conductor layer 3 is formed by covering the outer periphery of the central insulating layer 2 with a conductor material.
  • a conductor material for example, a wire made of a resin material and having a circular cross section and a predetermined outer diameter is used. Further, for example, copper is used as the conductor material, and the inner conductor layer 3 having a predetermined thickness is formed by plating or vapor deposition.
  • an insulating layer forming step K2 the outer periphery of the inner conductor layer 3 is covered with an insulating material to form an interlayer insulating layer 4.
  • an insulating material for example, a melted resin material is used as the insulating material, and the interlayer insulating layer 4 having a predetermined thickness is formed by dipping.
  • the outer conductor layer 5 is formed by covering the outer periphery of the interlayer insulating layer 4 with a conductor material.
  • the method for performing this step K3 can be applied to the inner conductor layer forming step K1. Through the steps so far, the inner conductor layer 3 and the outer conductor layer 5, that is, two conductor layers are formed.
  • next step K4 it is determined whether or not the number of conductor layers is a predetermined number. If the two conductor layers 3 and 5 are sufficient, the condition is satisfied, and the process proceeds to the coating layer forming step K5. If three or more conductor layers are required, the process returns to the insulating layer forming step K2. Then, the insulating layer forming step K2 and the conductor layer forming step K3 are repeated until the number of conductor layers reaches a predetermined number.
  • a multilayer wire 1 is manufactured by forming a jacket layer 6 on the outer periphery of the outer conductor layer 5 in a jacket layer forming step K5.
  • the insulating material for forming the outer cover layer 6 may be the same material as the interlayer insulating layer 4, and the same implementation method as in the insulating layer forming step K2 may be applied.
  • the insulating material for forming the covering layer 6 may be made of a material different from that of the interlayer insulating layer 4, and an implementation method corresponding to the material may be adopted.
  • the multilayer wire 1 is wound into a spiral shape and formed into a coil.
  • the multilayer wire 1 may be wound directly around the iron core and formed into a coil.
  • the multilayer wire 1 may be wound around a cylindrical winding mold and formed into a coil, and then the winding mold may be replaced with an iron core.
  • the winding die is removed.
  • each of the steps K1 to K7 is not unreasonable or wasteful. If three or more conductor layers are required, the insulating layer forming step K2 and the conductor layer forming step K3 may be repeated according to the number of conductor layers in the stretched state. Therefore, it is easy to manufacture a high frequency power coil.
  • the inner conductor layer 3 and the outer conductor layer 5 are formed by plating or vapor deposition, and the interlayer insulating layer 4 is formed by dipping or vapor deposition.
  • These manufacturing methods are industrially stable manufacturing techniques, and can form the high-quality multilayer wire 1 and the high-frequency power coil by forming the conductor layers 3 and 5 and the interlayer insulating layer 4 having a desired thickness. .
  • FIG. 6 is a flow chart for explaining the manufacturing method of the second embodiment of the high frequency power coil.
  • the manufacturing method of the second embodiment includes a coil core forming step K11, an inner conductor layer forming step K12, an insulating layer forming step K13, a conductor layer forming step K14, an outer layer forming step K16, and a terminal forming.
  • Step K17 is included.
  • the central insulating layer 2 corresponding to a spiral coil core is formed, and then the layers 3 to 6 are sequentially formed around the central insulating layer 2 to manufacture a high frequency power coil. To do.
  • the central insulating layer 2 is formed by forming an insulating material in a spiral shape.
  • the formed central insulating layer 2 becomes a coil core similar to the final coil shape.
  • the insulating material for example, a wire made of a thermoplastic resin material and having a circular cross section and a predetermined outer diameter can be used. By heating the wire to soften it, winding it in a cylindrical winding mold with a gap, and then solidifying it and removing the winding mold, the central insulating layer 2 corresponding to the coil core can be formed.
  • the center insulating layer 2 may be formed by casting a molten resin using a mold corresponding to the coil core.
  • the center insulating layer 2 may be formed by sintering a powder ceramic material using a mold corresponding to a coil core.
  • K5 can be applied mutatis mutandis.
  • a ceramic material such as a metal oxide may be used as the insulating material, and the interlayer insulating layer 4 having a predetermined thickness may be formed by an evaporation method.
  • the helical coil has been formed.
  • the next terminal formation step K17 all the conductor layers 3 and 5 are electrically connected to each other at both ends of the multilayer wire 1 and terminals for external connection are attached to the conductive portions. Thereby, the coil for high frequency electric power is completed.
  • the steps K11 to K17 are not excessive or wasteful, and in particular, it is not necessary to bend and wind the multilayer wire 1; It is very easy to manufacture the coil.
  • the effect of producing the high-quality multilayer wire 1 and the high frequency power coil by forming the conductor layers 3 and 5 by plating or vapor deposition and forming the interlayer insulating layer 4 by dipping or vapor deposition is as follows. This is the same as in the first embodiment.
  • the conductor material and insulating material which comprise the multilayer wire 1 are not limited to description of embodiment, Various materials can be used.
  • the dimensions such as the thicknesses of the layers 2 to 6 constituting the multilayer wire 1 can be appropriately changed. Various other applications and modifications are possible for the present invention.
  • the coil for high-frequency power of the present invention can be used for a power supply coil and a power receiving coil of an electromagnetic induction type non-contact power supply device in addition to a resonance inductor of an electrostatic coupling type non-contact power supply device. Furthermore, the present invention can be used for applications other than the non-contact power feeding device, for example, a winding of a high frequency transformer for transforming high frequency power, a high frequency welding machine, a high frequency induction furnace, an IH cooker, and the like.
  • Multilayer wire 2 Central insulating layer 3: Inner conductor layer 4: Interlayer insulating layer 5: Outer conductor layer 6: Outer coating layer 7: Solid conductor 71: Conductor 72: Outer coating layer 9: Non-contact power feeding device 931, 932: First and second power feeding electrodes 94: High frequency power supply units 951, 952: First and second resonance inductors 961, 962: First and second power receiving electrodes 97: Power receiving conversion unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

 本発明の高周波電力用コイルは、導体材料で形成されて軸心周りに同軸内外に配置された2層以上の管状の導体層と、導体材料よりも比重の小さい絶縁材料で形成されて軸心に配置された中心絶縁層と、導体材料よりも比重の小さい絶縁材料で形成されて導体層の間に介挿された層間絶縁層と、最外周の導体層の外側を覆う外被層と、からなる多層線材を螺旋形状に巻回して構成する。これにより、従来よりも高周波における電流密度を部分的に増加させることができ、従来よりも重量を軽減できて、かつ製造が容易な高周波電力用コイルを提供できる。

Description

高周波電力用コイルおよびその製造方法
 本発明は、高周波で電力の供給や移送を行う回路に用いるコイル、およびその製造方法に関する。
 多数の部品が実装された基板を生産する基板用作業機器として、はんだ印刷機、部品実装機、リフロー機、基板検査機などがあり、これらを基板搬送装置で連結して基板生産ラインを構築する場合が多い。これらの基板用作業機器の多くは、基板の上方を移動して所定の作業を行う可動部を備えており、可動部上の電気負荷に非接触で給電するために非接触給電装置を用いる場合がある。非接触給電装置の方式として、従来からコイルを用いた電磁誘導方式が多用されてきたが、最近では対向する電極によりコンデンサを構成した静電結合方式も用いられるようになってきている。
 非接触給電装置では大きな給電容量と高い給電効率を確保するために、固定部から可動部にまたがって共振回路を構成し、共振周波数の高周波を用いて給電することが一般的である。このため、静電結合方式においても、コンデンサに加えてコイルが用いられる。非接触給電装置に用いる高周波電力用コイルでは、高周波であることに起因して表皮効果が顕著に発生する。つまり、導線の表面付近では多くの電流が流れても、導線の内部に入り込むにつれて電流が減少し、導線の単位断面積当たりの電流、すなわち電流密度が商用周波数交流や直流の場合よりも低下する。それもかかわらず、製造方法の制約などがあるため、高周波電力用コイルの製造には従来から中実導線が用いられてきた。
 この種の高周波電力用の用途に好適な導線の技術例が特許文献1に開示されている。特許文献1の避雷針雷導線は、ほぼ円柱状の中心絶縁体を中核とし、その外側に主導体と、応力制御層と、中間絶縁層と、応力制御層と、シールド導体と、外被とを順次同心状に配置している。つまり、高周波の雷撃電流が流れるときの表皮効果の影響を低減するために、中実導線に代えて管状の主導体を使用している。これにより、雷撃電流が流れ易い特性を備え、導体量が少なくて製造コストを低減できるとともに、軽量化によって敷設時や運搬時の作業性を向上できる、と記載されている。
登録実用新案第3058547号公報
 ところで、従来技術の中実導線を用いた高周波電力用コイルでは、十分な電力を供給するために、表皮効果で電流密度が減少する分だけ導線の断面積を大きくする必要があった。これにより、高周波電力用コイルが重量化するため、非接触給電装置を軽量化するネックになっていた。
 また、特許文献1の雷導線の技術は、表皮効果の影響を低減して雷撃電流が流れ易くなっている点は好ましいが、高周波電力用コイルの製造には適さない。すなわち、この雷導線は避雷針の接地用に特化されており、雷撃電流が流れるときに発生する応力への対策として応力制御層が設けられ、ノイズの影響を遮断する対策としてシールド導体が設けられている。したがって、コイルに用いるには過剰な構成になっている。また、剛性が大きすぎるので、実際には螺旋形状に巻回することが困難である。
 本発明は、上記背景技術の問題点に鑑みてなされたもので、従来よりも高周波における電流密度を部分的に増加させることができ、従来よりも重量を軽減できて、かつ製造が容易な高周波電力用コイルおよびその製造方法を提供することを解決すべき課題とする。
 上記課題を解決する請求項1に係る高周波電力用コイルの発明は、導体材料で形成されて軸心周りに同軸内外に配置された2層以上の管状の導体層と、前記導体材料よりも比重の小さい絶縁材料で形成されて前記軸心に配置された中心絶縁層と、前記導体材料よりも比重の小さい絶縁材料で形成されて前記導体層の間に介挿された層間絶縁層と、最外周の導体層の外側を覆う外被層と、からなる多層線材を螺旋形状に巻回した。
 請求項2に係る発明は、請求項1において、前記導体材料は金属材料であり、前記絶縁材料は樹脂材料またはセラミック材料である。
 請求項3に係る発明は、請求項1または2に記載の高周波電力用コイルであって、非接触給電装置に使用される。
 請求項4に係る発明は、請求項1~3のいずれか一項に記載した高周波電力用コイルの製造方法であって、前記中心絶縁層の外周を前記導体材料で覆って内側の導体層を形成する内側導体層形成工程と、前記内側の導体層の外周を前記絶縁材料で覆って前記層間絶縁層を形成する絶縁層形成工程と、前記層間絶縁層の外周を前記導体材料で覆って外側の導体層を形成する導体層形成工程と、前記外側の導体層の外周に前記外被層を形成して前記多層線材を製造する外被層形成工程と、前記多層線材を螺旋形状に巻回するコイル形成工程と、を有する。
 請求項5に係る発明は、請求項4において、前記多層線材は3層以上の導体層を含んでおり、前記導体層の層数に合わせて、前記絶縁層形成工程および前記導体層形成工程を繰り返す。
 請求項6に係る発明は、請求項1~3のいずれか一項に記載した高周波電力用コイルの製造方法であって、前記絶縁材料を螺旋形状に成型して前記中心絶縁層を形成するコイル芯形成工程と、前記中心絶縁層の外周を前記導体材料で覆って内側の導体層を形成する内側導体層形成工程と、前記内側の導体層の外周を前記絶縁材料で覆って前記層間絶縁層を形成する絶縁層形成工程と、前記層間絶縁層の外周を前記導体材料で覆って外側の導体層を形成する導体層形成工程と、前記外側の導体層の外周に前記外被層を形成する外被層形成工程と、を有する。
 請求項7に係る発明は、請求項6において、前記多層線材は3層以上の導体層を含んでおり、前記導体層の層数に合わせて、前記絶縁層形成工程および前記導体層形成工程を繰り返す。
 請求項8に係る発明は、請求項4~7のいずれか一項において、前記導体材料は金属材料であり、前記内側導体層形成工程および前記導体層形成工程の少なくとも一部で、めっき法または蒸着法により前記内側の導体層または前記外側の導体層を形成する。
 請求項9に係る発明は、請求項4~8のいずれか一項において、前記層間絶縁層を形成する前記絶縁材料は樹脂材料またはセラミック材料であり、前記絶縁層形成工程の少なくとも一部で、ディッピング法または蒸着法により前記層間絶縁層を形成する。
 請求項1に係る高周波電力用コイルの発明では、多層線材を構成する導体層が2層以上の管状に分離されて同軸内外に配置され、高周波電流が流れるときの表皮効果の影響が低減されるので、部分的に電流密度を従来の中実電線よりも増加させることができる。これは、導体の断面積を小さくして導体材料の使用量を削減できることを意味する。そして、多層線材の中心絶縁層および層間絶縁層は、導体材料よりも比重の小さい絶縁材料で形成することができる。このため、多層線材の重量は、同じ導体材料の同じ断面積の中実導線よりも軽くなり、高周波電力用コイルの重量を従来よりも軽減できる。
 請求項2に係る発明では、導体材料は金属材料であり、絶縁材料は樹脂材料またはセラミック材料である。導体材料として一般的に用いられる銅などの金属材料の比重に対して、樹脂材料やセラミック材料の比重は大幅に小さい。したがって、中実導線を構成する金属材料の一部を樹脂材料またはセラミック材料に置き換えた多層線材は、中実導線よりも大幅に軽くなり、高周波電力用コイルを格段に軽量化することができる。
 請求項3に係る発明では、高周波電力用コイルは、非接触給電装置に使用される。これにより、非接触給電装置の全体を軽量化できる。
 請求項4に係る発明では、まず、延伸された中心絶縁層を芯にして内側の導体層、層間絶縁層、外側の導体層、および外被層を順番に形成することで多層線材を製造し、次に、多層線材を螺旋形状に巻回して高周波電力用コイルを製造できる。これらの製造工程には無理や無駄がなく、製造が容易である。
 請求項5に係る発明では、延伸された状態で導体層の3層以上の層数に合わせて、絶縁層形成工程および導体層形成工程を繰り返す。つまり、多層線材の導体層の層数が増加しても、2つの工程の繰り返し回数が増加するだけなので、高周波電力用コイルの製造が容易である。
 請求項6に係る発明では、まず、絶縁材料を螺旋形状に成型してコイル芯に相当する中心絶縁層を形成し、次に、中心絶縁層の周りに内側の導体層、層間絶縁層、外側の導体層、および外被層を順番に形成することで高周波電力用コイルを製造できる。これらの製造工程には無理や無駄がなく、特に、多層線材を屈曲させて巻回する必要が無いので、製造が極めて容易である。
 請求項7に係る発明では、螺旋形状の状態で導体層の3層以上の層数に合わせて、絶縁層形成工程および導体層形成工程を繰り返す。つまり、多層線材の導体層の層数が増加しても、2つの工程の繰り返し回数が増加するだけなので、高周波電力用コイルの製造が容易である。
 請求項8に係る発明では、導体材料は金属材料であり、めっき法または蒸着法により内側の導体層または外側の導体層を形成する。めっき法や蒸着法は、工業的に安定した製造技術であり、所望する厚さの導体層を高品質で形成することができる。
 請求項9に係る発明では、層間絶縁層を形成する絶縁材料は樹脂材料またはセラミック材料であり、ディッピング法または蒸着法により層間絶縁層を形成する。ディッピング法や蒸着法は、工業的に安定した製造技術であり、所望する厚さの層間絶縁層を高品質で形成することができる。
本発明の高周波電力用コイルを適用できる非接触給電装置を模式的に説明する構成図である。 本発明の高周波電力用コイルの主材料となる多層線材を説明する図である。 従来の中実導線での表皮効果の状況を説明する図である。 実施形態の高周波電力用コイルに用いる多層線材での表皮効果の状況を説明する図である。 高周波電力用コイルの第1実施形態の製造方法を説明するフローチャートの図である。 高周波電力用コイルの第2実施形態の製造方法を説明するフローチャートの図である。
 まず、本発明を適用できる非接触給電装置9について、図1を参考にして説明する。図1は、本発明の高周波電力用コイルを適用できる非接触給電装置9を模式的に説明する構成図である。図1において、下側に示される固定部91および上側に示される可動部92の詳細構造は省略されているが、可動部92は、固定部91に移動可能に装架されている。非接触給電装置9は、固定部91から可動部92上の電気負荷99に静電結合方式で非接触給電する装置である。非接触給電装置9は、固定部91側の2枚の給電用電極931、931、高周波電源部94、および2個の共振用インダクタ951、952と、可動部92側の2枚の受電用電極961、962および受電変換部97とで構成されている。
 固定部91側の2枚の第1および第2給電用電極931、932は、金属板などを用いて形成されている。一方、可動部92側の2枚の第1および第2受電用電極961、962も、金属板などを用いて形成されている。第1および第2給電用電極931、932と第1および第2受電用電極961、962とは、一対一で離隔対向して平行配置される。これにより、静電容量Cが互いに等しい平行板状の2つの第1および第2コンデンサ963、964が構成される。
 固定部91側の高周波電源部94は、例えば、100kHz~MHz帯の給電周波数の高周波電力を給電する。高周波電源部94の給電周波数および出力電圧は調整可能とされており、出力電圧波形として正弦波や矩形波などを例示できる。高周波電源部94の一方の出力端子941は第1共振用インダクタ951に接続され、他方の出力端子942は第2共振用インダクタ952に接続されている。
 固定部91側の第1共振用インダクタ951は、高周波電源部94の一方の出力端子941と第1給電用電極931との間に直列接続されている。また、第2共振用インダクタ952は、高周波電源部94の他方の出力端子942と第2給電用電極932との間に直列接続されている。第1および第2共振用インダクタ951として、インダクタンス値Lが互いに等しいコイルを用いる。
 可動部92側の受電変換部97は、2つの入力端子971、972が第1および第2受電用電極961、962に接続され、2つの出力端子973、974が電気負荷99に接続されている。受電変換部97は第1および第2受電用電極961、962が受け取った高周波電力を変換して、電気負荷99に給電する。受電変換部97は、電気負荷99の電源仕様に合わせて回路構成されており、例えば、全波整流回路やインバータ回路などが用いられる。
 ここで、給電容量および給電効率の向上を図るために、直列共振回路が形成されている。つまり、高周波電源部94の給電周波数で直列共振が発生するように、第1および第2コンデンサ963、964の静電容量Cと第1および第2共振用インダクタ951、952のインダクタンス値Lとが設計されている。そして、第1および第2共振用インダクタ951、952に、本発明の高周波電力用コイルを適用することができる。
 本発明の高周波電力用コイルは、多層線材1を螺旋形状に巻回して製造する。図2は、本発明の高周波電力用コイルの主材料となる多層線材1を説明する図である。図2に示されるように、多層線材1は、同軸内外に配置された5層構造で構成されている。
 多層線材1の軸心には、中心絶縁層2が配置されている。中心絶縁層2は、断面円形の線状の絶縁材料で形成されている。中心絶縁層2の外周には、導体材料で形成された管状の内側の導体層3が配置されている。内側の導体層3の外周には、絶縁材料で形成された層間絶縁層4が配置されている。層間絶縁層4の外周には、導体材料で形成された管状の外側の導体層5が配置されている。外側の導体層5の外周には、絶縁材料で形成された外被層6が配置されている。
 5層各層2~6は、径方向に互いに密着して形成されている。内側の導体層3および外側の導体層5を形成する導体材料には、例えば、銅などの金属材料を用いることができ、同じ材質であることが好ましい。なぜなら、内側の導体層3と外側の導体層5とは並列接続して用いるので、両者3、5の導電率σが互いに異なると、いずれか一方の層に多くの電流が流れて、他方の層を有効に利用できなくなるからである。
 一方、中心絶縁層2および層間絶縁層4を形成する絶縁材料には、例えば、樹脂材料やセラミック材料を用いることができ、互いに同じ材質でも異なる材質でもよい。これらの絶縁材料の比重は、銅を始めとする導体材料の比重よりも大幅に小さい。また、外被層6を形成する絶縁材料は、中心絶縁層2や層間絶縁層4と同じ材質でもよいし、異なる材質でもよい。ただし、外被層6は、多層線材1の最外周に配置されて他の構造部材や外気に接するので、良好な絶縁性能に加えて良好な機械的強度および良好な耐環境性を有する絶縁材料を用いて形成することが好ましい。
 内側の導体層3、層間絶縁層4、および外側の導体層5のそれぞれの径方向の層厚さは、高周波に対する表皮効果の影響を低減できるように適宜設計することができる。また、層間絶縁層4および外側の導体層5を交互に複数層設けて、3層以上の導体層を有する多層線材とすることができる。
 上述した多層線材1をコイル軸線の周りに螺旋形状に巻回したものが、実施形態の高周波電力用コイルである。高周波電力用コイルは、コイル軸線に鉄心を有する鉄心付きコイルでもよいし、コイル軸線が空洞の空心コイルでもよい。また、高周波電力用コイルは、軸長方向の一端から他端まで巻回しただけの単層コイルでもよいし、他端で折り返してニ層構造とした二層コイルや、それ以上に多層化した多層コイルでもよい。
 次に、実施形態の高周波電力用コイルの作用および効果について、多層線材1および従来の中実導線7の表皮効果に着目して説明する。図3は、従来の中実導線7での表皮効果の状況を説明する図である。図3の上側は中実導線7の断面形状を示し、下側は径方向位置における電流密度J7を示している。また、図4は、実施形態の高周波電力用コイルに用いる多層線材1での表皮効果の状況を説明する図である。図4の上側は多層線材1の断面形状を示し、下側は径方向位置における電流密度J1を示している。
 図3に示されるように、中実導線7は、円柱状の導体71、および導体71の外周側に形成された外被層72で構成されている。導体71は、その材質が多層線材1の内側および外側の導体層3、5と同じであり、その外径D1は、図4に示される多層線材1の外側の導体層5の外径D1に一致している。中実導線7において、電流密度J7は、導体71の表面で最大値Jmaxであり、内部に入り込むにつれて減少している。一般的に、表皮効果の状況は、表皮深さδを代表値として示される。表皮深さδは、電流密度J7が導体71の表面の最大値Jmaxから約37%(=1/e)まで減少する深さであり、次式(1)で表される。ただし、加えられる高周波の周波数f、導体材料の透磁率μ、導電率σである。
   表皮深さδ=(π・f・μ・σ)-0.5 …………………(1)
 一方、図4に示されるように、多層線材1の電流密度J1は、内側および外側の導体層3、5に分布する。そして、外側の導体層5において、電流密度J1は外側表面で最大値Jmaxであり、内部に入り込む途中までは減少し、内側表面に近付くにつれて増加に転じる。また、内側の導体層3でも同様であり、電流密度J1は外側表面で大きく、内部に入り込む途中までは減少し、内側表面に近付くにつれて増加に転じる。
 上述したように、多層線材1では、層間絶縁層4および中心絶縁層2を設けたことで、高周波電流が流れるときの導体層3、5の表皮効果の影響が低減される。したがって、多層線材1の電流密度J1は、部分的には、中実導線7の電流密度J7よりも高くなる。これは、導体層3、5の断面積を小さくして導体材料の使用量を削減できることを意味する。そして、多層線材1は、中実導線7の導体71の一部を中心絶縁層2および層間絶縁層4に置き換えたものに相当する。したがって、比重の大きな導体材料を比重の小さな絶縁材料に置き換えたことに相当し、比重の差分だけ多層線材1は中実導線7よりも大幅に軽くなる。
 これにより、多層線材1を用いた高周波電力用コイルでは、その重量を従来よりも格段に軽減できる。さらに、図1に示される非接触給電装置9の全体を軽量化できる。
 次に、実施形態の高周波電力用コイルの2種類の製造方法について説明する。図5は、高周波電力用コイルの第1実施形態の製造方法を説明するフローチャートの図である。図示されるように、第1実施形態の製造方法は、内側導体層形成工程K1、絶縁層形成工程K2、導体層形成工程K3、外被層形成工程K5、コイル形成工程K6、および端子形成工程K7からなる。第1実施形態では、まず、延伸された多層線材1を製造し、次に、多層線材1を螺旋形状に巻回して高周波電力用コイルを製造する。
 図5の内側導体層形成工程K1で、中心絶縁層2の外周を導体材料で覆って内側の導体層3を形成する。中心絶縁層2には、例えば、樹脂材料からなり断面が円形で所定外径の線材を延伸した状態で用いる。また、導体材料として例えば銅を用い、めっき法または蒸着法により所定の厚さの内側の導体層3を形成する。
 次に、絶縁層形成工程K2で、内側の導体層3の外周を絶縁材料で覆って層間絶縁層4を形成する。絶縁材料として例えば溶解させた樹脂材料を用い、ディッピング法により所定の厚さの層間絶縁層4を形成する。
 次に、導体層形成工程K3で、層間絶縁層4の外周を導体材料で覆って外側の導体層5を形成する。この工程K3の実施方法は、内側導体層形成工程K1を準用できる。ここまでの工程で、内側の導体層3および外側の導体層5、すなわち導体層2層が形成される。
 次の工程K4では、導体層が所定層数であるか否かを判定する。2層の導体層3、5でよい場合は、条件を満足しているので外被層形成工程K5に進む。3層以上の導体層が必要な場合は、絶縁層形成工程K2に戻る。そして、導体層の層数が所定層数になるまで絶縁層形成工程K2および導体層形成工程K3を繰り返す。
 導体層が所定層数になると外被層形成工程K5で、外側の導体層5の外周に外被層6を形成して多層線材1を製造する。この工程K5で、外被層6を形成する絶縁材料は層間絶縁層4と同じ材質にして、絶縁層形成工程K2と同じ実施方法を準用してもよい。また、この工程K5で、外被層6を形成する絶縁材料は層間絶縁層4とは異なる材質にして、材質に見合った実施方法を採用してもよい。
 次に、コイル形成工程K6で、多層線材1を螺旋形状に巻回してコイルに成形する。このとき、鉄心付きコイルでは、鉄心の周りに直接的に多層線材1を巻回してコイルに成形してもよい。あるいは、円柱状の巻き型に多層線材1を巻回してコイルに成形した後、巻き型を鉄心に交換するようにしてもよい。また、空心コイルでは、巻き型に多層線材1を巻回してコイルに成形した後、巻き型を取り外す。
 次に、端子形成工程K7で、コイルに成形された多層線材1の両端で全ての導体層3、5を互いに導通させ、導通箇所に外部接続のための端子を取り付ける。これにより、高周波電力用コイルが完成する。
 上述した高周波電力用コイルの第1実施形態の製造方法によれば、各工程K1~K7には無理や無駄がない。また、3層以上の導体層が必要な場合は、延伸された状態で導体層の層数に合わせて、絶縁層形成工程K2および導体層形成工程K3を繰り返せばよい。したがって、高周波電力用コイルの製造が容易である。
 また、めっき法または蒸着法により内側の導体層3および外側の導体層5を形成し、ディッピング法または蒸着法により層間絶縁層4を形成する。これらの製造方法は、工業的に安定した製造技術であり、所望する厚さの導体層3、5および層間絶縁層4を形成して、高品質の多層線材1および高周波電力用コイルを製造できる。
 次に、図6は、高周波電力用コイルの第2実施形態の製造方法を説明するフローチャートの図である。図示されるように、第2実施形態の製造方法は、コイル芯形成工程K11、内側導体層形成工程K12、絶縁層形成工程K13、導体層形成工程K14、外被層形成工程K16、および端子形成工程K17を有している。第2実施形態では、まず、螺旋形状のコイル芯に相当する中心絶縁層2を形成し、次に、中心絶縁層2の周りに順番に各層3~6を形成して高周波電力用コイルを製造する。
 図6のコイル芯形成工程K11で、絶縁材料を螺旋形状に成型して中心絶縁層2を形成する。形成された中心絶縁層2は、最終的なコイル形状に類似したコイル芯になる。絶縁材料として、例えば、熱可塑性を有する樹脂材料からなり断面が円形で所定外径の線材を用いることができる。この線材を加熱して軟化させ、円柱状の巻き型に隙間を開けて巻回し、その後に固化させて巻き型を取り外すことにより、コイル芯に相当する中心絶縁層2を形成できる。あるいは、コイル芯に相当する成形型を用い、溶解した樹脂を注型成形して中心絶縁層2を形成してもよい。さらには、コイル芯に相当する成形型を用い、粉体のセラミック材料を焼結して中心絶縁層2を形成してもよい。
 図6の内側導体層形成工程K12から外被層形成工程K16までは、対象が螺旋形状のコイル芯である点を除いて、第1実施形態の内側導体層形成工程K1から外被層形成工程K5を準用できる。なお、絶縁層形成工程K13では、絶縁材料として例えば金属酸化物などのセラミック材料を用い、蒸着法により所定の厚さの層間絶縁層4を形成してもよい。外被層形成工程K16の終了時点で、螺旋形状のコイルへの成形は済んでいる。次の端子形成工程K17で、多層線材1の両端で全ての導体層3、5を互いに導通させ、導通箇所に外部接続のための端子を取り付ける。これにより、高周波電力用コイルが完成する。
 上述した高周波電力用コイルの第2実施形態の製造方法によれば、各工程K11~K17には無理や無駄がなく、特に、多層線材1を屈曲させて巻回する必要が無いので、高周波電力用コイルの製造が極めて容易である。また、めっき法または蒸着法による導体層3、5の形成と、ディッピング法または蒸着法による層間絶縁層4の形成とにより、高品質の多層線材1および高周波電力用コイルを製造できる効果は、第1実施形態と同様である。
 なお、多層線材1を構成する導体材料および絶縁材料は、実施形態の記載に限定されず、様々な材料を用いることができる。また、多層線材1を構成する各層2~6の厚さなどの寸法諸元も適宜変更できる。本発明は、その他にも様々な応用や変形が可能である。
 本発明の高周波電力用コイルは、静電結合方式非接触給電装置の共振用インダクタの他にも、電磁誘導方式非接触給電装置の給電用コイルおよび受電用コイルに利用できる。さらには、非接触給電装置以外の用途、例えば、高周波電力を変成する高周波トランスの巻線、高周波溶接機、高周波誘導炉、IH調理器などにも利用可能である。
  1:多層線材  2:中心絶縁層  3:内側の導体層
  4:層間絶縁層  5:外側の導体層  6:外被層
  7:中実導線  71:導体  72:外被層
  9:非接触給電装置
  931、932:第1および第2給電用電極
  94:高周波電源部
  951,952:第1および第2共振用インダクタ
  961、962:第1および第2受電用電極
  97:受電変換部

Claims (9)

  1.  導体材料で形成されて軸心周りに同軸内外に配置された2層以上の管状の導体層と、前記導体材料よりも比重の小さい絶縁材料で形成されて前記軸心に配置された中心絶縁層と、前記導体材料よりも比重の小さい絶縁材料で形成されて前記導体層の間に介挿された層間絶縁層と、最外周の導体層の外側を覆う外被層と、からなる多層線材を螺旋形状に巻回した高周波電力用コイル。
  2.  請求項1において、前記導体材料は金属材料であり、前記絶縁材料は樹脂材料またはセラミック材料である高周波電力用コイル。
  3.  請求項1または2において、非接触給電装置に使用される高周波電力用コイル。
  4.  請求項1~3のいずれか一項に記載した高周波電力用コイルの製造方法であって、
     前記中心絶縁層の外周を前記導体材料で覆って内側の導体層を形成する内側導体層形成工程と、
     前記内側の導体層の外周を前記絶縁材料で覆って前記層間絶縁層を形成する絶縁層形成工程と、
     前記層間絶縁層の外周を前記導体材料で覆って外側の導体層を形成する導体層形成工程と、
     前記外側の導体層の外周に前記外被層を形成して前記多層線材を製造する外被層形成工程と、
     前記多層線材を螺旋形状に巻回するコイル形成工程と、を有する高周波電力用コイルの製造方法。
  5.  請求項4において、前記多層線材は3層以上の導体層を含んでおり、
     前記導体層の層数に合わせて、前記絶縁層形成工程および前記導体層形成工程を繰り返す高周波電力用コイルの製造方法。
  6.  請求項1~3のいずれか一項に記載した高周波電力用コイルの製造方法であって、
     前記絶縁材料を螺旋形状に成型して前記中心絶縁層を形成するコイル芯形成工程と、
     前記中心絶縁層の外周を前記導体材料で覆って内側の導体層を形成する内側導体層形成工程と、
     前記内側の導体層の外周を前記絶縁材料で覆って前記層間絶縁層を形成する絶縁層形成工程と、
     前記層間絶縁層の外周を前記導体材料で覆って外側の導体層を形成する導体層形成工程と、
     前記外側の導体層の外周に前記外被層を形成する外被層形成工程と、を有する高周波電力用コイルの製造方法。
  7.  請求項6において、前記多層線材は3層以上の導体層を含んでおり、
     前記導体層の層数に合わせて、前記絶縁層形成工程および前記導体層形成工程を繰り返す高周波電力用コイルの製造方法。
  8.  請求項4~7のいずれか一項において、前記導体材料は金属材料であり、
     前記内側導体層形成工程および前記導体層形成工程の少なくとも一部で、めっき法または蒸着法により前記内側の導体層または前記外側の導体層を形成する高周波電力用コイルの製造方法。
  9.  請求項4~8のいずれか一項において、前記層間絶縁層を形成する前記絶縁材料は樹脂材料またはセラミック材料であり、
     前記絶縁層形成工程の少なくとも一部で、ディッピング法または蒸着法により前記層間絶縁層を形成する高周波電力用コイルの製造方法。
PCT/JP2012/075237 2012-09-28 2012-09-28 高周波電力用コイルおよびその製造方法 WO2014049870A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/075237 WO2014049870A1 (ja) 2012-09-28 2012-09-28 高周波電力用コイルおよびその製造方法
JP2014538063A JP6164749B2 (ja) 2012-09-28 2012-09-28 高周波電力用コイルおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/075237 WO2014049870A1 (ja) 2012-09-28 2012-09-28 高周波電力用コイルおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2014049870A1 true WO2014049870A1 (ja) 2014-04-03

Family

ID=50387328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075237 WO2014049870A1 (ja) 2012-09-28 2012-09-28 高周波電力用コイルおよびその製造方法

Country Status (2)

Country Link
JP (1) JP6164749B2 (ja)
WO (1) WO2014049870A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011427A (zh) * 2019-04-11 2019-07-12 兰州大学 一种复合型磁耦合谐振式无线电能传输线圈

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138416A (ja) * 1984-12-10 1986-06-25 株式会社 潤工社 低インダクタンスケ−ブル
JPH0310423U (ja) * 1989-06-19 1991-01-31
JPH05190026A (ja) * 1992-01-16 1993-07-30 Murata Mfg Co Ltd 高周波用導線
JPH07262831A (ja) * 1994-03-18 1995-10-13 Showa Electric Wire & Cable Co Ltd 偏向コイル用複合線
JP2000048652A (ja) * 1998-07-31 2000-02-18 Junkosha Co Ltd 電力供給用ケーブル
JP2003158027A (ja) * 2001-11-22 2003-05-30 Aichi Electric Co Ltd 非接触給電装置とその支持構造
JP2005079786A (ja) * 2003-08-29 2005-03-24 Sony Corp 電力伝送システム,電力供給装置,電力受電装置,信号伝送システム,信号送信装置,および,信号受信装置。
JP2006040806A (ja) * 2004-07-29 2006-02-09 Tatsuta System Electronics Kk 極細同軸ケーブル及びその製造方法
WO2007097356A1 (ja) * 2006-02-21 2007-08-30 Luzcom Inc. 極細同軸線及び極細同軸バレル並びにこれらの製造方法
JP2010055965A (ja) * 2008-08-28 2010-03-11 Furukawa Electric Co Ltd:The 巻線用絶縁電線およびコイルの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150242A (ja) * 1998-11-09 2000-05-30 Murata Mfg Co Ltd コイル
JP2007225287A (ja) * 2006-02-21 2007-09-06 Luzcom:Kk 同軸プローブ並びに同軸プローブ用のバレル及びその製造方法
JP2010047210A (ja) * 2008-08-25 2010-03-04 Toshiba Corp 非接触給電装置および搬送装置
JP2011142177A (ja) * 2010-01-06 2011-07-21 Kobe Steel Ltd 非接触電力伝送装置、及び非接触電力伝送装置用コイルユニット

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138416A (ja) * 1984-12-10 1986-06-25 株式会社 潤工社 低インダクタンスケ−ブル
JPH0310423U (ja) * 1989-06-19 1991-01-31
JPH05190026A (ja) * 1992-01-16 1993-07-30 Murata Mfg Co Ltd 高周波用導線
JPH07262831A (ja) * 1994-03-18 1995-10-13 Showa Electric Wire & Cable Co Ltd 偏向コイル用複合線
JP2000048652A (ja) * 1998-07-31 2000-02-18 Junkosha Co Ltd 電力供給用ケーブル
JP2003158027A (ja) * 2001-11-22 2003-05-30 Aichi Electric Co Ltd 非接触給電装置とその支持構造
JP2005079786A (ja) * 2003-08-29 2005-03-24 Sony Corp 電力伝送システム,電力供給装置,電力受電装置,信号伝送システム,信号送信装置,および,信号受信装置。
JP2006040806A (ja) * 2004-07-29 2006-02-09 Tatsuta System Electronics Kk 極細同軸ケーブル及びその製造方法
WO2007097356A1 (ja) * 2006-02-21 2007-08-30 Luzcom Inc. 極細同軸線及び極細同軸バレル並びにこれらの製造方法
JP2010055965A (ja) * 2008-08-28 2010-03-11 Furukawa Electric Co Ltd:The 巻線用絶縁電線およびコイルの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011427A (zh) * 2019-04-11 2019-07-12 兰州大学 一种复合型磁耦合谐振式无线电能传输线圈

Also Published As

Publication number Publication date
JPWO2014049870A1 (ja) 2016-08-22
JP6164749B2 (ja) 2017-07-19

Similar Documents

Publication Publication Date Title
RU2481662C2 (ru) Плоская катушка
JP5629304B2 (ja) リッツ線コイル
CN108028127A (zh) 非接触供电用线圈及非接触供电系统
CN110681760B (zh) 一种用于厚板件或厚弧形件的电磁脉冲翻孔成形装置
CN105336468A (zh) 电感器以及电感器的制造方法
JP7350239B2 (ja) 高周波電力供給システム
CN103493156A (zh) 扁平线平面变压器
CN102122563A (zh) 一种绕线电感及其制造方法
CN104347259B (zh) 改进的薄型功率电感制程
TW201933389A (zh) 電子裝置及其製作方法
US20160293317A1 (en) Coil device and method for manufacturing the same
JP2012033386A (ja) 電線、巻き線、および電気部品
JP6164749B2 (ja) 高周波電力用コイルおよびその製造方法
CN205542318U (zh) 基于柔性电路板的变压器绕组及变压器
CN202258641U (zh) 一种干式空心电抗器
JP6334280B2 (ja) コイルおよびその製造方法
CN101587769A (zh) 磁性元件
CN101783227B (zh) 插件式共模电感器及其制造方法
CN101673609A (zh) 电感器及其上的电感线圈
JP2014071969A (ja) 磁性材被覆導体及びその製造方法、並びに磁性材被覆電線
CN216389010U (zh) 高频立绕电感器
CN105170767B (zh) 一种电磁吸引力成形金属板料的装置与方法
JP5424382B2 (ja) 誘導加熱用lcモジュール
CN105515000B (zh) 在交流高压输电线路中获取交流工频电源的装置
JP7146449B2 (ja) 高周波コイル用電線及びコイル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885924

Country of ref document: EP

Kind code of ref document: A1