WO2014049793A1 - 加圧式単室型回転濾過機の運転方法 - Google Patents

加圧式単室型回転濾過機の運転方法 Download PDF

Info

Publication number
WO2014049793A1
WO2014049793A1 PCT/JP2012/074979 JP2012074979W WO2014049793A1 WO 2014049793 A1 WO2014049793 A1 WO 2014049793A1 JP 2012074979 W JP2012074979 W JP 2012074979W WO 2014049793 A1 WO2014049793 A1 WO 2014049793A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
slurry
pressure
filter
chamber rotary
Prior art date
Application number
PCT/JP2012/074979
Other languages
English (en)
French (fr)
Inventor
昭男 山下
Original Assignee
三菱化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化工機株式会社 filed Critical 三菱化工機株式会社
Priority to JP2013513462A priority Critical patent/JPWO2014049793A1/ja
Priority to PCT/JP2012/074979 priority patent/WO2014049793A1/ja
Publication of WO2014049793A1 publication Critical patent/WO2014049793A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/06Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums
    • B01D33/073Filters with filtering elements which move during the filtering operation with rotary cylindrical filtering surfaces, e.g. hollow drums arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D33/00Filters with filtering elements which move during the filtering operation
    • B01D33/58Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element
    • B01D33/62Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying
    • B01D33/66Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by gases or by heating
    • B01D33/663Handling the filter cake in the filter for purposes other than for regenerating the filter cake remaining on the filtering element for drying by gases or by heating by direct contact with a fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation

Definitions

  • the present invention relates to an operation method of a single-chamber rotary filter, and more specifically, for example, a reaction solvent (eg, acetic acid solvent) containing a reaction product such as terephthalic acid as a crystal component is filtered to efficiently
  • a reaction solvent eg, acetic acid solvent
  • the present invention relates to a method of operating a pressurized single-chamber rotary filter that can be recovered with high purity.
  • terephthalic acid can be produced by oxidizing p-xylene under high temperature and pressure in an acetic acid solvent.
  • the terephthalic acid obtained by the oxidation reaction is further crystallized in an acetic acid solvent, filtered at a predetermined temperature and pressure to be recovered as a crystalline component, and the acetic acid solvent is recovered as a filtrate.
  • an acetic acid solvent containing terephthalic acid as a crystal component will be described as a slurry.
  • FIG. 3 When filtering the slurry, for example, a vacuum single-chamber rotary filter shown in FIG. 3 is used.
  • This vacuum type single-chamber rotary filter as shown in FIG. 3, is a rotary drum which is rotationally driven by a variable reduction gear (not shown) in which both end faces are sealed and a large number of filtrate holes are formed on the peripheral surface. 1, a center pipe 2 rotatably supporting the rotary drum 1, and a stock solution vat 3 disposed below the rotary drum 1.
  • a filter cloth is stretched on the outer peripheral surface of the rotary drum 1 through a filter bridge (not shown) as a filter portion, and the lower portion of the rotary drum 1 is immersed in the undiluted solution slurry S filled in the undiluted solution bat 3 While the rotary drum 1 rotates, a cake layer consisting of crystal components of the undiluted solution slurry S is formed on the filter cloth surface in the filtration area while the rotary drum 1 rotates, and the reaction solvent permeates the filter cloth and enters the rotary drum 1 as a filtrate.
  • the filtrate in the rotary drum 1 is sucked by a vacuum device (not shown) by the filtrate pipe 4 connected to the center pipe 2 and is led out of the machine.
  • a plurality of valve shoes 5 made of synthetic resin such as tetrafluoroethylene resin are disposed along the axial direction of the center pipe 2, and a gap is formed on the inner circumferential surface of the rotary drum 1. It is in sliding contact. Narrow first and second slits are formed in the upper and lower portions of the valve shoe 5 along the axial direction of the rotary drum 1, and blow gas such as nitrogen gas is blown from these slits to make a cake layer from the rotary drum 1 After the peeling, the rotary drum 1 is washed to eliminate the clogging.
  • the vacuum single-chamber rotary filter is widely used because of its excellent processing capacity.
  • C ' is a cake-like crystal component separated from the rotary drum 1.
  • the slurry S at this temperature is filtered under reduced pressure.
  • the temperature of the slurry S decreases, and impurities such as byproducts of terephthalic acid and metal catalysts which are dissolved in an acetic acid solvent precipitate as fine crystals and the purity of the crystal component decreases, and filter cloth May clog or form a scale in the system. Therefore, it is often necessary to stop the vacuum single-chamber rotary filter and perform maintenance such as internal cleaning, and the operation efficiency of the filtration system has not always been good.
  • Patent Document 1 proposes a filtration system for recovering terephthalic acid.
  • a pressurized filter device is used to pressurize under high pressure (2 to 5 bar) under high temperature (for example, 110 to 160 ° C.) higher than the normal pressure boiling point of acetic acid, and the slurry is After filtration to recover the crystalline component of terephthalic acid, the crystalline component is dried using a dryer, also under a pressure of 0 to 5 bar.
  • the slurry is filtered under high temperature and pressure as described above, precipitation of microcrystals such as reaction byproducts and metal catalyst can be suppressed, and clogging of the pressure filter device is suppressed. Can reduce the number of maintenances.
  • an acetic acid solvent containing a reaction product such as terephthalic acid as a crystal component is filtered to recover the crystal component efficiently and with high purity.
  • An object of the present invention is to provide a method of operating a pressure type single-chamber rotary filter.
  • the operating method of the pressurized single-chamber rotary filter comprises the steps of: supplying a predetermined gas into the housing of the single-chamber rotary filter to pressurize the inside of the housing; A part of the filter formed on the entire periphery of the outer peripheral surface is immersed in the slurry containing the crystal component and the solvent supplied to the storage tank provided in the housing and rotated, and the filter passes the slurry In the meantime, the slurry is pressure-filtered to form a cake layer of the crystalline component in the filter section and the filtrate passing through the filter section is discharged to the outside, while the slit is formed between the inner circumferential surface of the rotary drum Single-chamber rotary filtration in which the predetermined gas is sprayed toward the cake layer formed in the filtration section from a valve shoe having a valve interposed therebetween to peel off the cake layer from the filtration section and recover it as the crystalline component Luck of the plane
  • the predetermined gas is heated to a predetermined temperature which is lower than
  • the predetermined gas supplied into the housing be recovered from the housing and circulated for use.
  • the predetermined gas supplied into the housing is preferably discharged from the housing to the outside.
  • the pressure of the gas in the housing is preferably adjusted to 0.05 to 0.19 MpaG.
  • the temperature of the slurry is preferably adjusted to 95 to 109 ° C.
  • an operating method of a pressure type single-chamber rotary filter capable of efficiently recovering the crystalline component with high purity by filtering an acetic acid solvent containing a reaction product such as terephthalic acid as the crystalline component.
  • a pressure type single-chamber rotary filter capable of efficiently recovering the crystalline component with high purity by filtering an acetic acid solvent containing a reaction product such as terephthalic acid as the crystalline component.
  • FIGS. 1 and 2 a filtration system to which an embodiment of a method of operating a pressurized single-chamber rotary filter of the present invention is applied will be described with reference to FIGS. 1 and 2.
  • the filtration system used in the present embodiment is configured, for example, as part of a terephthalic acid production plant.
  • This filtration system includes a pressure type single-chamber rotary filter 10 and an incidental facility 100, for example, low addition of acetic acid solvent containing terephthalic acid obtained as a crystal component by oxidation reaction of p-xylene. It is configured to filter under pressure to recover the crystalline component of terephthalic acid and its reaction solvent, an acetic acid solvent.
  • An acetic acid solvent containing terephthalic acid obtained by the oxidation reaction as a crystal component is handled as a slurry S.
  • the temperature of the slurry S obtained by the oxidation reaction under high temperature and high pressure is lower than the normal pressure boiling point (approximately 118 ° C.) of acetic acid. It is preferable to adjust the temperature at which the impurities are difficult to precipitate (a predetermined temperature) (for example, 95 to 109 ° C.) and the pressure at the time of filtration to, for example, 0.05 to 0.19 Mpa.
  • a predetermined temperature for example, 95 to 109 ° C.
  • the pressure at the time of filtration for example, 0.05 to 0.19 Mpa.
  • the pressure type single-chamber rotary filter 10 can be excluded from the target of the second-class pressure vessel to contribute to the cost reduction of the apparatus.
  • the pressure type single-chamber rotary filter 10 used in the present embodiment is structurally similar to the vacuum-type single-chamber rotary filter shown in FIG. 3 except that the slurry S is filtered under low pressure. It is configured according to the filter. That is, as shown in FIG. 1, the pressure type single-chamber rotary filter 10 has a rotary drum 11, a center pipe 12, a bat 13, a filtrate pipe 14, a valve shoe 15, a valve bar 16, a cake washing spray 17, and a cake discharging chute. 18 and a casing 19. In the housing 19, an inert gas such as nitrogen gas is heated to a predetermined temperature (for example, 95.degree. To 109.degree. C.) equal to the temperature of the slurry S and supplied.
  • a predetermined temperature for example, 95.degree. To 109.degree. C.
  • the slurry S is filtered with nitrogen gas under high temperature and pressure, the crystal component of the slurry S is recovered as cake C, and the acetic acid solvent is It is configured to be recovered as a filtrate.
  • a filter section is formed, in which a filter cloth is stretched across a filter bridge.
  • a washing water supply source (not shown) is connected to the cake washing spray 17 via a pipe 17A, washing water is supplied from the washing water supply source, and the washing water sprayed from the washing spray 17 is applied to the rotating drum 11.
  • the deposited cake layer C is washed.
  • the rotary drum 11 and the butt 13 are sealed in a casing 19.
  • the incidental equipment 100 of the pressure type single-chamber rotary filter 10 will be described with reference to FIG.
  • the incidental facility 100 includes a slurry pump 101, a gas supply source 102, a filtrate separator 103, a filtrate pump 104, an acetic acid recovery unit 105, a vapor acetic acid recovery unit 106, a circulation blower 107, a mist separator 108, and a sealing liquid.
  • a circulation pump 109, a liquid circulation cooler 110, a gas heater 111, a cake let down system 112, a screw conveyor 113, and a dryer 114 are provided.
  • a slurry pump 101 is connected to the inflow pipe 13 A of the vat 13, and the slurry S adjusted to a predetermined temperature and pressure by the slurry pump 101 is supplied into the vat 13.
  • the excess slurry S is discharged from the overflow pipe 13B, recovered to the source of the slurry S, and recycled.
  • a gas supply source 102 is connected to the housing 19, and a predetermined gas (for example, nitrogen gas) is supplied from the gas supply source 102 into the housing 19, and the inside of the housing 19 has a predetermined temperature and a predetermined pressure as described above. Low pressure filtration of the slurry S is started under the condition adjusted to.
  • the rotating drum 11 rotates counterclockwise as shown by the arrow in FIG. 1 and the filtering portion of the rotating drum 11 passes the slurry S, the slurry S under pressure is filtered in the filtering portion, and the slurry in the filtering portion
  • the crystalline component of S is deposited as a cake bed C and the acetic acid solvent is discharged to the filtrate separator 103 connected to the center pipe 12 via the filtrate pipe 14.
  • the circulation pump 104 and the acetic acid recovery unit 105 are sequentially connected to the downstream side of the filtration separator 103, and the filtrate from the pressure type single-chamber rotary filter 10 is separated by the filtrate separator 103, and the filtrate pump 104 is used.
  • the acetic acid recovery unit 105 recovers as an acetic acid solvent.
  • a vapor acetic acid recovery unit 106, a circulation blower 107 and a mist separator 108 are connected to the downstream side of the filtrate separator 103 in this order, and the gas containing the vapor of the filtrate is separated in this system.
  • the gas containing the vapor of the filtrate separated by the filtrate separator 103 is cooled in the paper acetic acid recovery unit 106, and the vapor of the filtrate forms a mist and is supplied to the mist separator 108 via the circulation blower 107 together with the nitrogen gas.
  • Ru The mist separator 108 captures the mist-like filtrate and removes the filtrate from the nitrogen gas.
  • the nitrogen gas from which the filtrate has been removed is returned to the pressurized single-chamber rotary filter 10 through the circulation blower 107, and is combined with the nitrogen gas of the gas supply source 102 for circulation.
  • sealing liquid circulation pump 109 and the sealing liquid circulation cooler 110 are connected in this order on the downstream side of the mist separator 108, and the filtrate trapped by the mist separator 108 is sealed through the sealing liquid circulation pump 109. It is cooled by circulating.
  • the sealed liquid circulation cooler 110 is connected to the circulation blower 107, and the filtrate trapped by the mist separator 108 is circulated between the circulation blower 107, the mist separator 108 and the sealed liquid circulation cooler 110 via the sealed liquid circulation pump 109, The filtrate is more reliably removed from the nitrogen gas directed to the gas heater 111.
  • a gas heater 111 is connected to the downstream side of the mist separator 108, and the gas heater 111 heats nitrogen gas from the mist separator 108 to a predetermined temperature required by pressure filtration through a circulation blower 107.
  • the gas heated by the gas heater 111 joins the nitrogen gas from the gas supply source 102 and is supplied into the housing 19.
  • the filtration system is activated to supply a predetermined gas (nitrogen gas) into the housing 19 of the pressurized single-chamber rotary filter.
  • a predetermined gas nitrogen gas
  • the nitrogen gas from the gas supply source 102 is heated to a temperature lower than the boiling point of the acetic acid solvent, for example, to a temperature at which the impurities of terephthalic acid which is the crystal component are hard to precipitate.
  • the temperature of the slurry S after the oxidation reaction is similar to that of the nitrogen gas in the housing 19 (for example, 95 to 109 ° C.
  • the rotating drum 11 rotates at a predetermined rotation speed in a state where a part of the rotating drum 11 is immersed in the slurry S.
  • the slurry S in the vat 13 is filtered on the basis of the pressure of nitrogen gas in the housing 19 and the pressure difference in the rotating drum 11 covered with the filter material on which the filtrate is deposited.
  • the slurry S is filtered under heat and pressure, reaction by-products and metal catalysts can be obtained without the temperature of the acetic acid solvent decreasing in the filtration part of the rotary drum 11 as in the vacuum single-chamber rotary filter. And the like, and the generation of microcrystals of the impurities in the cake layer C is reduced, and the clogging of the filter cloth is improved as compared with the prior art, so that the filtration can be promoted smoothly. Rather, since the temperature of the slurry S is high and the viscosity of the acetic acid solvent is low, the acetic acid solvent can permeate smoothly through the filtration portion of the rotating drum 11 as a filtrate. The filtrate in the rotating drum 11 is discharged to the filtrate separator 103 through the filtrate pipe 12 and the center pipe 12.
  • the filtrate in the filtration separator 103 is fed to the acetic acid recovery unit 105 via the filtrate pump 104 and recovered here as an acetic acid solvent. Further, the vapor from the inside of the filtrate separator 103 passes through the vapor acetic acid recovery unit 106 through the circulation blower 107, where the vapor of the filtrate is cooled to form a mist. This mist is captured as a filtrate in the mist separator 108.
  • the filtrate captured by the mist separator 108 is further cooled and recovered by the sealed liquid circulation cooler 110 via the sealed liquid circulation pump 109, and the nitrogen gas is returned to the circulation blower 107 and is transmitted to the gas heater 111 via the mist separator 108. After being fed and heated here to a predetermined temperature (95 to 109 ° C.), it joins with nitrogen gas supplied from the gas supply source 102 and is supplied into the housing 19.
  • the rotary drum 11 rotates in the counterclockwise direction, and the cake layer C formed in the filtration section comes out of the slurry S and is exposed to the nitrogen gas under the low pressure of the housing 19.
  • nitrogen gas passes through the cake layer C in the filtration section, but at this time, the nitrogen gas reaches the inside of the rotary drum 11 with the filtrate remaining in the cake layer C, and the filtrate is drained from the cake layer C
  • the cake layer C is dried and mixed with the filtrate in the rotating drum 11.
  • the filtrate is discharged to the filtrate separator 103 as described above and recovered by the acetic acid recovery unit 105.
  • the nitrogen gas separated by the filtrate separator 103 is fed to the gas heater 111 via the paper acetic acid recovery unit 106 and the mist separator 108 via the circulation blower 107 and merges with the nitrogen gas from the gas supply source 102. Is supplied into the housing 19.
  • the filtrate having passed through the mist separator 108 is recovered in the sealed liquid circulation cooler 110 through the sealed liquid circulation pump 109.
  • the rotary drum 11 rotates, and the filtrate remaining in the cake layer C is drained into the rotary drum 11 by the pressurized gas until the cake layer C reaches the washing spray 17, and the cake layer C is gradually dried.
  • the cake layer C in the filter section reaches the washing spray 17 and is washed with washing water.
  • the washing water penetrates the cake layer C as a washing filtrate in cooperation with the action of nitrogen gas under a low pressure, mixes with the filtrate in the rotary drum 11, and is discharged to the filtrate separator 103 via the filtrate pipe 14 and the center pipe 12. Be done.
  • the washing water remaining in the cake layer C is drained as a washing filtrate by the action of nitrogen gas under pressure again, and the cake layer C is dried.
  • the cake C ′ discharged into the cake discharge chute 18 gradually returns to the atmospheric pressure from the low pressure state in the housing 19 through the cake let down system 112 including the rotary valve 20, and the screw under atmospheric pressure It is supplied to the conveyor 113.
  • the cake C ′ is cracked as a powdery crystal component by the screw conveyor 113 and then supplied to the dryer 114.
  • the powdered crystalline component is dried while passing through the drier 114, discharged from the drier 114, transported to a predetermined storage via a transport means (not shown), and stored.
  • the slurry S is filtered at a high temperature of 95 to 109 ° C. and under a pressure of 0.05 to 0.19 MpaG using the pressure type single-chamber rotary filter 10.
  • impurities such as byproducts of the crystal component and metal catalysts are precipitated in the cake layer C of the filtration section, and the filter cloth of the filtration section is not clogged, and the viscosity of the acetic acid solvent is low and the filtration is smooth.
  • the viscosity of the slurry S is lower than that of the vacuum single-chamber rotary filter, so that the filtering capacity is improved by, for example, about 20%, and the vacuum single-chamber rotary filter Since the clogging is less likely to occur as compared with the above, the number of maintenances can be reduced, and hence the operation efficiency of the pressure type single-chamber rotary filter 10 can be improved.
  • the temperature of the slurry S is lower than that of the pressure filter device described in Patent Document 1, a steel material such as stainless steel that is usually used for this type of filter is used.
  • the filter 10 can be made to build a filtration system at relatively low cost.
  • the amount of gas used in comparison with the pressure filter device described in Patent Document 1 is because the crystalline component is recovered under low pressure and the crystalline component recovered under atmospheric pressure is dried. The operating cost can be reduced.
  • FIG. 2 is a block diagram showing another filtration system to which the operation method of the pressurized single-chamber rotary filter of the present invention is applied.
  • the filtration system shown in FIG. 1 is a system that uses pressurized gas in circulation, but the filtration system of the present embodiment is a system that does not use pressurized gas in circulation.
  • the pressure type single-chamber rotary filter 10 is configured in the same manner as the above embodiment, but the incidental equipment 200 does not recycle and use pressurized gas. It is configured. Therefore, in the present embodiment, the accessory facility 200 will be described, and the description of the pressure type single-chamber rotary filter 10 having substantially the same configuration as that of the above embodiment will be omitted.
  • the incidental facility 200 includes a slurry pump 201, a gas supply source 202, a filtrate separator 203, a filtrate pump 104, an acetic acid recovery unit 205, a cake let down system 207, a screw conveyor 208 and a dryer 209. It is configured.
  • the pressure type single-chamber rotary filter 10 is the same as the system for circulating the pressurized gas, the filtration process is the same as that of the above embodiment.
  • an off gas is used as the gas supplied from the gas supply source 202.
  • the off-gas is used in the pressurized single-chamber rotary filter 10, the filtrate and its vapor are recovered while passing through the filtrate separator 203 and the vapor acetic acid recovery unit 206, and only the off-gas is discharged.
  • the incidental facility 200 of the filtration system does not require the mist separator and the gas heater on the downstream side of the vapor acetic acid recovery unit 206, so that the facility cost can be reduced by that amount compared to the incidental facility 100 of the above embodiment. it can.
  • the crystalline component recovered by the pressure type single-chamber rotary filter 10 is supplied with the cake C ′ to the screw conveyor 208 in the state returned to the atmospheric pressure by the cake let down system 207 and dried by the dryer 209
  • the crystal component can be fed to the storage to achieve substantially the same effect as the above embodiment.
  • the present invention is widely applicable to the recovery of crystalline components from slurries in the field of general chemical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 スラリーを濾過して結晶成分を効率よく且つ純度よく回収する加圧式単室型回転濾過機の運転方法を提供する。 本発明の加圧式単室型回転濾過機の運転方法は、窒素ガスを単室型回転濾過機10のハウジング19内に供給して加圧し、回転ドラム11の一部をハウジング19内のバット13に供給されるスラリーSに浸漬させ、回転ドラムを用いてスラリーSを低加圧濾過する際に、窒素ガスをスラリーSの溶媒の常圧沸点より低く結晶成分の不純物が析出し難い所定の温度まで加熱してハウジン19グ内へ供給し、ハウジング19内を所定の温度で大気圧より高い圧力に調節する工程と、バット13内に所定の温度に調節されたスラリーSを供給し、濾過部の一部を上記所定の温度に調節されたスラリーSを通過させる工程と、回転ドラム11からのケーキをハウジング19内から大気圧下のドライヤー114へ排出し、大気圧下で結晶成分として乾燥させる工程と、を備えている。

Description

加圧式単室型回転濾過機の運転方法
 本発明は、単室型回転濾過機の運転方法に関し、更に詳しくは、例えばテレフタル酸等の反応生成物を結晶成分として含む反応溶媒(例えば、酢酸溶媒)を濾過して結晶成分を効率よく且つ高純度で回収することができる加圧式単室型回転濾過機の運転方法に関する。
 例えばテレフタル酸は、酢酸溶媒中でp-キシレンを高温、高圧下で酸化することによって製造することができる。酸化反応によって得られるテレフタル酸は、更に酢酸溶媒中で晶析され、所定の温度、圧力下で濾過されて結晶成分として回収され、酢酸溶媒は濾液として回収される。以下では、テレフタル酸を結晶成分として含む酢酸溶媒をスラリーとして説明する。
 スラリーを濾過する際には、例えば図3に示す真空式単室型回転濾過機が用いられている。この真空式単室型回転濾過機は、図3に示すように、両端面が封止され周面に多数の濾液孔が形成された、可変減速機(図示せず)によって回転駆動する回転ドラム1と、この回転ドラム1を回転可能に軸支するセンターパイプ2と、回転ドラム1の下方に配設された原液バット3と、を備えている。回転ドラム1の外周面には濾過部として、図示しないフィルターブリッジを介して濾布が張設され、回転ドラム1の下部が原液バット3に満たされた原液スラリーS内に浸漬されて濾過領域を形成し、回転ドラム1が回転する間に濾過領域で濾布表面に原液スラリーSの結晶成分からなるケーキ層が形成されると共に反応溶媒が濾布を透過して濾液として回転ドラム1内に入り、センターパイプ2に接続された濾液管4により回転ドラム1内の濾液を図示しない真空装置によって吸引して機外へ導出する。
 また、回転ドラム1内には、例えば四フッ化エチレン樹脂等の合成樹脂からなるバルブシュー5がセンターパイプ2の軸方向に沿って複数配設され、回転ドラム1の内周面に細隙を介して摺接している。このバルブシュー5の上部と下部には細幅の第1、第2スリットが回転ドラム1の軸方向に沿って形成され、これらのスリットから窒素ガス等のブローガスを吹き出して回転ドラム1からケーキ層を剥離した後に、回転ドラム1を洗浄してその目詰まりを解消している。真空式単室型回転濾過機は処理能力に優れているため、汎用されている。尚、C'は回転ドラム1から剥離されたケーキ状の結晶成分である。
 しかしながら、従来の真空式単室型回転濾過機では、酸化反応後にスラリーSの圧力を常圧に戻し、温度を85~95℃に下げた後、この温度のスラリーSを減圧濾過しているため、濾過時にスラリーSの温度が低下し、酢酸溶媒中に溶解しているテレフタル酸の副生成物や金属触媒等の不純物が微結晶として析出して結晶成分の純度が低下し、また、濾布が目詰まりしたり系内にスケールを形成したりする。そのため、たびたび真空式単室型回転濾過機を止めて内部清掃等のメンテナンスを行う必要があり、濾過システムの稼働効率が必ずしも良くはなかった。
 一方、特許文献1においてテレフタル酸を回収する濾過システムが提案されている。この濾過システムでは、加圧フィルタ装置を用いて、酢酸の常圧沸点より高い高温下(例えば、110~160℃)で、高圧(2~5バール)に加圧し、高温、高圧下でスラリーを濾過してテレフタル酸の結晶成分を回収した後、やはり0~5バールの圧力下で乾燥機を用いて結晶成分を乾燥している。この濾過システムでは、上述のように高温、加圧下でスラリーの濾過を行うため、反応副生成物や金属触媒等の微結晶の析出を抑制することができ、加圧フィルタ装置の目詰まりを抑制し、メンテナンス回数を減らすことができる。
 しかしながら、特許文献1に記載の濾過システムでは、濾過時の温度が酢酸溶媒の常圧沸点より高く設定されるため、圧力フィルタ装置に通常使用されるステンレス等の鋼材は、常圧沸点まで加熱された酢酸溶媒に対する耐食性に問題があり、ステンレス等の鋼材を使用することができず、チタン等の高価な耐食性材料を使わざるを得ず、その場合には圧力フィルタ装置の製造コストが格段に高くなる。しかも、結晶成分の乾燥工程でも圧力フィルタ装置内に準じた高い圧力を維持しているため、濾過工程及び乾燥工程を高い圧力環境に維持しなくてはならず、大量のガスが必要になり運転コストも高くなる問題があった。
WO2011/144935
 本発明は、上記課題を解決するためになされたもので、例えばテレフタル酸等の反応生成物を結晶成分として含む酢酸溶媒を濾過して結晶成分を効率よく且つ高純度で回収することができる加圧式単室型回転濾過機の運転方法を提供することを目的としている。
 本発明の加圧式単室型回転濾過機の運転方法は、所定のガスを単室型回転濾過機のハウジング内に供給して上記ハウジング内を加圧し、上記ハウジング内に設けられた回転ドラムの外周面全周に形成された濾過部の一部を上記ハウジング内に設けられた貯留槽に供給される結晶成分及び溶媒を含むスラリーに浸漬させて回転させ、上記濾過部が上記スラリーを通過する間に上記スラリーを加圧濾過し、上記濾過部に上記結晶成分のケーキ層を形成する共に上記濾過部を透過する濾液を外部へ排出する一方、上記回転ドラム内周面との間に細隙を介在させたバルブシューから上記濾過部に形成された上記ケーキ層に向けて上記所定のガスを噴射して上記濾過部から上記ケーキ層を剥離させて上記結晶成分として回収する単室型回転濾過機の運転方法であって、上記所定のガスを上記溶媒の常圧沸点より低く上記結晶成分の不純物が析出し難い所定の温度まで加熱して上記ハウジング内へ供給し、上記ハウジング内の上記所定のガスを上記所定の温度に調節すると共に上記ハウジング内の圧力を大気圧より高い所定の圧力に調節する工程と、上記貯留槽内に上記所定の温度に調節された上記スラリーを供給する工程と、上記回転ドラムから剥離されるケーキを上記ハウジング内の加圧下から大気圧下へ排出し、大気圧下で上記結晶成分を乾燥させる工程と、を備えたことを特徴とするものである。
 また、本発明の加圧式単室型回転濾過機の運転方法では、上記ハウジング内に供給される上記所定のガスを、上記ハウジング内から回収して循環使用することが好ましい。
 また、本発明の請求項3に記載の加圧式単室型回転濾過機の運転方法では、上記ハウジング内に供給される上記所定のガスを、上記ハウジングから外部へ放出することが好ましい。
 また、本発明の加圧式単室型回転濾過機の運転方法では、上記ハウジング内の上記ガスの圧力を、0.05~0.19MpaGに調節することが好ましい。
 また、本発明の加圧式単室型回転濾過機の運転方法では、上記スラリーの温度を、95~109℃に調節することが好ましい。
 本発明によれば、例えばテレフタル酸等の反応生成物を結晶成分として含む酢酸溶媒を濾過して結晶成分を効率よく且つ高純度で回収することができる加圧式単室型回転濾過機の運転方法を提供することができる。
本発明の加圧式単室型回転濾過機の運転方法の一実施形態が適用される濾過システムの一例を示すブロック図である。 本発明の加圧式単室型回転濾過機の運転方法の一実施形態が適用される濾過システムの他の例を示すブロック図である。 従来の濾過システムに用いられる単室型真空式回転濾過機の一例を示す断面図である。
 以下、本発明の加圧式単室型回転濾過機の運転方法の一実施形態を適用する濾過システムについて図1、図2を参照しながら説明する。
 本実施形態に用いられる濾過システムは、例えばテレフタル酸の製造プラントの一部として構成されている。この濾過システムは、図1に示すように、加圧式単室型回転濾過機10と付帯設備100を備え、例えばp-キシレンの酸化反応で得られるテレフタル酸を結晶成分として含む酢酸溶媒を低い加圧下で濾過し、テレフタル酸の結晶成分とその反応溶媒である酢酸溶媒を回収するように構成されている。酸化反応で得られたテレフタル酸を結晶成分として含む酢酸溶媒は、スラリーSとして取り扱われる。本実施形態で加圧式単室型回転濾過機10を用いる場合には、高温、高圧下の酸化反応で得られたスラリーSの温度を酢酸の常圧沸点(略118℃)より低く結晶成分の不純物が析出し難い温度(所定の温度)(例えば、95~109℃)に調節すると共に、濾過時の圧力を例えば0.05~0.19Mpaの圧力に調節することが好ましい。濾過時のスラリーSの温度を所定の温度に調節することで濾過時の不純物の析出を抑制すると共に酢酸溶媒による腐食性を低下させ、また、濾過時の圧力を上記圧力に調節することで加圧式単室型回転濾過機10が第二種圧力容器の対象外になって装置のコスト低減に寄与することができる。
 本実施形態に用いられる加圧式単室型回転濾過機10は、図1に示すように、低加圧下でスラリーSを濾過すること以外、構造的には図3に示す真空式単室型回転濾過機に準じて構成されている。即ち、加圧式単室型回転濾過機10は、図1に示すように回転ドラム11、センターパイプ12、バット13、濾液管14、バルブシュー15、バルブバー16、ケーキ洗浄用スプレイ17、ケーキ排出用シュート18及びケーシング19を備え、ハウジング19内に窒素ガス等の不活性ガスをスラリーSの温度と同一の所定の温度(例えば、95~109℃)に加熱して供給し、ハウジング19内を窒素ガスで満たし、所定の圧力(例えば、0.05~0.19Mpa)まで加圧し、高温、加圧下の窒素ガスでスラリーSを濾過し、スラリーSの結晶成分をケーキCとして回収し、酢酸溶媒を濾液として回収するように構成されている。回転ドラム11の外周面には全面に渡ってフィルターブリッジを介して濾布が張設されて構成された濾過部が形成されている。ケーキ洗浄用スプレイ17には配管17Aを介して洗浄水供給源(図示せず)が接続され、洗浄水供給源から洗浄水を供給し、洗浄用スプレイ17から噴射した洗浄水で回転ドラム11に堆積するケーキ層Cを洗浄する。また、回転ドラム11及びバット13は、ケーシング19内に封止されている。
 次いで、加圧式単室型回転濾過機10の付帯設備100について図1を参照しながら説明する。付帯設備100は、図1に示すように、スラリーポンプ101、ガス供給源102、濾液セパレータ103、濾液ポンプ104、酢酸回収部105、ベーパー酢酸回収部106、循環ブロワー107、ミストセパレータ108、封液循環ポンプ109、封液循環クーラ110、ガスヒータ111、ケーキレットダウンシステム112、スクリューコンベア113及びドライヤー114を備えて構成されている。
 バット13の流入管13Aにはスラリーポンプ101が接続され、スラリーポンプ101によって所定の温度及び圧力に調節されたスラリーSがバット13内に供給される。余分なスラリーSはオーバーフロー管13Bから排出され、スラリーSの供給源に回収され、循環使用される。また、ハウジング19にはガス供給源102が接続され、ガス供給源102からハウジング19内に所定のガス(例えば窒素ガス)が供給され、ハウジング19内が上述のように所定の温度、所定の圧力に調節された状態でスラリーSの低加圧濾過を開始する。
 回転ドラム11が図1に矢印で示すように反時計方向へ回転し、回転ドラム11の濾過部がスラリーSを通過する間に、加圧下のスラリーSが濾過部で濾過され、濾過部にスラリーSの結晶成分がケーキ層Cとして堆積され、酢酸溶媒が濾液管14を経由してセンターパイプ12に接続された濾液セパレータ103へ排出される。濾過セパレータ103の下流側には循環ポンプ104及び酢酸回収部105が順次接続されており、加圧式単室型回転濾過機10からの濾液は、濾液セパレータ103で分離され、濾液ポンプ104を介して酢酸回収部105で酢酸溶媒として回収される。
 また、濾液セパレータ103の下流側にはベーパー酢酸回収部106、循環ブロワー107及びミストセパレータ108がこの順序でそれぞれ接続され、この系統で濾液の蒸気を含むガスが気液分離される。濾液セパレータ103で分離された濾液の蒸気を含むガスは、ペーパー酢酸回収部106において冷却され、濾液の蒸気がミスト状になって窒素ガスと一緒に循環ブロワー107を介してミストセパレータ108へ供給される。ミストセパレータ108は、ミスト状の濾液を捕捉して窒素ガスから濾液を除去する。濾液が除去された窒素ガスは、循環ブロワー107を介して加圧式単室型回転濾過機10側へ戻され、ガス供給源102の窒素ガスと合流して循環使用される。
 また、ミストセパレータ108の下流側には封液循環ポンプ109及び封液循環クーラー110がこの順序で接続され、ミストセパレータ108で捕捉された濾液が封液循環ポンプ109を介して封液循環クーラー110を循環して冷却される。この封液循環クーラー110は循環ブロワー107と接続され、ミストセパレータ108で捕捉される濾液は封液循環ポンプ109を介して循環ブロワー107、ミストセパレータ108及び封液循環クーラー110の間で循環し、ガスヒータ111に向かう窒素ガスから濾液をより確実に除去する。
 また、ミストセパレータ108の下流側にはガスヒータ111が接続され、ガスヒータ111が循環ブロワー107を介してミストセパレータ108からの窒素ガスを加圧濾過で要求される所定の温度まで加熱する。ガスヒータ111で加熱されたガスは、ガス供給源102からの窒素ガスと合流してハウジング19内に供給される。
 次いで、図1を参照しながら本発明の加圧式単室型回転濾過機の運転方法の一実施形態について説明する。
 まず、濾過システムが稼働し加圧式単室型回転濾過機10のハウジング19内に所定のガス(窒素ガス)を供給する。この際、ガス供給源102からの窒素ガスを例えば酢酸溶媒の沸点より低く結晶成分であるテレフタル酸の不純物が析出し難い温度、例えば95~109℃まで加熱してハウジング19内へ供給し、ハウジング19内の窒素ガスが外気圧より高い圧力、例えば第二種圧力容器の適用を受けない圧力0.05~0.19MPaGまで加圧し、加圧式単室型回転濾過機10をスラリーSの濾過に適した運転条件に設定する。
 上述のようにしてハウジング19内の窒素ガスが運転条件に適した温度、圧力に設定された後、酸化反応後のスラリーSがハウジング19内の窒素ガスと同程度の温度(例えば95~109℃)まで下げられた後、スラリーポンプ101を介してバット13内へ供給される。この時、回転ドラム11は、その一部がスラリーS内に浸漬された状態で、所定の回転速度で回転する。バット13内のスラリーSは、ハウジング19内の窒素ガスの圧力と濾過物が堆積する濾材で被覆された回転ドラム11内の圧力差に基づいて濾過される。
 本実施形態ではスラリーSが加熱、加圧下で濾過されるため、真空式単室回転濾過機のように回転ドラム11の濾過部において酢酸溶媒が温度低下することなく、反応副生成物や金属触媒等の不純物の析出を抑えることができ、ケーキ層Cでの不純物の微結晶の生成が少なくなり、濾布の目詰まりが従来より改善されるため、濾過を円滑に進めることができる。むしろ、スラリーSの温度が高く、酢酸溶媒の粘度が低いため、酢酸溶媒が濾液として回転ドラム11の濾過部を円滑に透過することができる。回転ドラム11内の濾液は、濾液管12及びセンターパイプ12を通って濾液セパレータ103へ排出される。
 濾過セパレータ103内の濾液は、濾液ポンプ104を介して酢酸回収部105へ給送され、ここで酢酸溶媒として回収される。また、濾液セパレータ103内からの蒸気は、循環ブロワー107を介してベーパー酢酸回収部106を通り、ここで濾液の蒸気が冷却されてミスト状になる。このミストは、ミストセパレータ108内で濾液として捕捉される。ミストセパレータ108で捕捉された濾液は、封液循環ポンプ109を介して封液循環クーラー110で更に冷却されて回収され、窒素ガスは循環ブロワー107へ戻り、ミストセパレータ108を経由してガスヒータ111へ給送され、ここで所定の温度(95~109℃)まで加熱された後、ガス供給源102から供給される窒素ガスと合流し、ハウジング19内へ供給される。
 引き続き、回転ドラム11が反時計方向へ回転して濾過部に形成されたケーキ層CがスラリーSから出てハウジング19の低加圧下の窒素ガスに曝される。この時、窒素ガスが濾過部のケーキ層Cを透過するが、この際、窒素ガスがケーキ層Cに残存する濾液を伴って回転ドラム11内に達し、ケーキ層Cから濾液が脱液してケーキ層Cを乾燥させ、回転ドラム11内の濾液と混じる。この濾液は、上述のように濾液セパレータ103へ排出されて酢酸回収部105で回収される。また、濾液セパレータ103で分離される窒素ガスは、循環ブロワー107を介してペーパ酢酸回収部106、ミストセパレータ108を経由してガスヒータ111へ給送され、ガス供給源102からの窒素ガスと合流してハウジング19内へ供給される。ミストセパレータ108を経由した濾液は封液循環ポンプ109を介して封液循環クーラー110において回収される。更に、回転ドラム11が回転し、ケーキ層Cが洗浄用スプレイ17に達するまでケーキ層Cに残存する濾液が加圧ガスによって回転ドラム11内へ脱液されてケーキ層Cが徐々に乾燥する。
 その後、濾過部のケーキ層Cが洗浄用スプレイ17に達し、洗浄水によって洗浄される。洗浄水は低加圧下の窒素ガスの作用と相俟ってケーキ層Cを洗浄濾液として浸透し、回転ドラム11内の濾液に混じり、濾液管14及びセンターパイプ12を経由して濾液セパレータ103へ排出される。ケーキ層Cの洗浄が終了すると、再び加圧下の窒素ガスの作用によってケーキ層Cに残存する洗浄水が洗浄濾液として脱液され、ケーキ層Cが乾燥する。回転ドラム11が反時計方向へ回転してケーキ層Cがケーキ排出用シュート18に達すると、バルブバー16からバルブシュー15のスリットを経由して回転ドラム11に向けてブローガスを噴射し、ケーキ層Cを回転ドラム11から剥離してケーキ排出用シュート18へケーキC'を排出する。ケーキ層Cが剥離された濾過部は、その後図示しない洗浄スプレイによって洗浄された後、バット13内のスラリーS内へ入る。
 一方、ケーキ排出用シュート18内に排出されたケーキC'は、ロータリバルブ20を含むケーキレットダウンシステム112を介してハウジング19内の低加状態から徐々に大気圧に戻り、大気圧下のスクリューコンベア113へ供給される。このケーキC'は、スクリューコンベア113で粉末状の結晶成分として開砕された後、ドライヤー114へ供給される。粉末状の結晶成分は、ドライヤー114を通る間に乾燥し、ドライヤー114から排出され、図示しない搬送手段を介して所定の格納庫へ搬送されて格納される。
 以上説明したように本実施形態によれば、加圧式単室型回転濾過機10を用いてスラリーSを95~109℃の高温度下で且つ0.05~0.19MpaGの加圧下で濾過するため、濾過部のケーキ層Cにおいて結晶成分の副生成物や金属触媒等の不純物が析出して濾過部の濾布が目詰まりすることがなく、しかも酢酸溶媒の粘度が低く円滑に濾過することができると共に結晶成分への不純物の混入を格段に抑制し純度の高い結晶成分を回収することができる。
 また、本実施形態によれば、真空式単室型回転濾過機と比較してスラリーSの粘度が低くなるため、濾過能力が例えば20%程度向上し、また、真空式単室型回転濾過機と比較して目詰まりが起こり難いため、メンテナンス回数も減らすことができ、延いては加圧式単室型回転濾過機10の稼働効率を高めることができる。
 また、本実施形態によれば、特許文献1に記載の加圧フィルタ装置と比較してスラリーSの温度が低いため、通常この種の濾過機に通常用いられるステンレス等の鋼材で単室型回転濾過機10を作製し、比較的低価格で濾過システムを構築することができる。また、本実施形態によれば、低加圧下で結晶成分の回収し、大気圧下で回収された結晶成分を乾燥させるため、特許文献1に記載の加圧フィルタ装置と比較して使用ガス量を低減し、運転コストを低減することができる。
 図2は、本発明の加圧式単室型回転濾過機の運転方法が適用された他の濾過システムを示すブロック図である。
 図1に示す濾過システムは加圧ガスを循環使用するシステムであるが、本実施形態の濾過システムは加圧ガスを循環使用しないシステムである。
 本実施形態の濾過システムは、図1に示すように、加圧式単室型回転濾過機10は上記実施形態と同様に構成されているが、付帯設備200が加圧ガスを循環使用しないように構成されている。そこで、本実施形態では付帯設備200について説明し、上記実施形態と実質的に同一の構成を備えた加圧式単室型回転濾過機10の説明を省略する。この付帯設備200は、同図に示すように、スラリーポンプ201、ガス供給源202、濾液セパレータ203、濾液ポンプ104、酢酸回収部205、ケーキレットダウンシステム207、スクリューコンベア208及びドライヤー209を備えて構成されている。この濾過システムでは加圧用ガスを循環使用しないため、図1に示す濾過システムとは異なり、循環ガス中から濾液のミストを除去する機器やガスヒータが不要となる。その他は、図1に示す濾過システムに準じて構成されている。
 本実施形態でも加圧式単室型回転濾過機10は、加圧ガスと循環するシステムと同一であるため濾過工程は上記実施形態と同一である。しかし、本実施形態ではガス供給源202から供給されるガスとしてオフガスが使用される。加圧式単室型回転濾過機10においてオフガスが使用されると、濾液セパレータ203及びベーパー酢酸回収部206を経由する間に濾液とその蒸気は回収され、オフガスのみが排出される。そのため、濾過システムの付帯設備200は、ベーパー酢酸回収部206の下流側のミストセパレータやガスヒータが不要となるため、その分だけ上記実施形態の付帯設備100と比較して設備コストを削減することができる。
 また、加圧式単室型回転濾過機10で回収された結晶成分は、ケーキレットダウンシステム207において大気圧に戻された状態でケーキC'がスクリューコンベア208に供給され、ドライヤー209において乾燥され、結晶成分の格納庫へ給送され、実質的に上記の実施形態と同様の作用効果を期することができる。
 本発明は、一般化学工業の分野でスラリーから結晶成分を回収するために広く適用することができる。
 10  加圧式単室型回転濾過機
 11  回転ドラム
 12  センターパイプ
 13  バット
 15  バルブシュー
 19  ハウジング
  S  スラリー
  C  ケーキ層
  C'   ケーキ

Claims (5)

  1.  所定のガスを単室型回転濾過機のハウジング内に供給して上記ハウジング内を加圧し、上記ハウジング内に設けられた回転ドラムの外周面全周に形成された濾過部の一部を上記ハウジング内に設けられた貯留槽に供給される結晶成分及び溶媒を含むスラリーに浸漬させて回転させ、上記濾過部が上記スラリーを通過する間に上記スラリーを加圧濾過し、上記濾過部に上記結晶成分のケーキ層を形成する共に上記濾過部を透過する濾液を外部へ排出する一方、上記回転ドラム内周面との間に細隙を介在させたバルブシューから上記濾過部に形成された上記ケーキ層に向けて上記所定のガスを噴射して上記濾過部から上記ケーキ層を剥離させて上記結晶成分として回収する単室型回転濾過機の運転方法であって、
     上記所定のガスを上記溶媒の常圧沸点より低く上記結晶成分の不純物が析出し難い所定の温度まで加熱して上記ハウジング内へ供給し、上記ハウジング内の上記所定のガスを上記所定の温度に調節すると共に上記ハウジング内の圧力を大気圧より高い所定の圧力に調節する工程と、
     上記貯留槽内に上記所定の温度に調節された上記スラリーを供給する工程と、
     上記回転ドラムから剥離されるケーキを上記ハウジング内の加圧下から大気圧下へ排出し、大気圧下で上記結晶成分を乾燥させる工程と、を備えた
     ことを特徴とする加圧式単室型回転濾過機の運転方法。
  2.  上記ハウジング内に供給される上記所定のガスを、上記ハウジング内から回収して循環使用することを特徴とする請求項1に記載の加圧式単室型回転濾過機の運転方法。
  3.  上記ハウジング内に供給される上記所定のガスを、上記ハウジングから外部へ放出することを特徴とする請求項1に記載の加圧式単室型回転濾過機の運転方法。
  4.  上記ハウジング内の上記ガスの圧力を、0.05~0.19MpaGに調節することを特徴とする請求項1~請求項3のいずれか1項に記載の加圧式単室型回転濾過機の運転方法。
  5.  上記スラリーの温度を、95~109℃に調節することを特徴とする請求項1~請求項4のいずれか1項に記載の加圧式単室型回転濾過機の運転方法。
PCT/JP2012/074979 2012-09-27 2012-09-27 加圧式単室型回転濾過機の運転方法 WO2014049793A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013513462A JPWO2014049793A1 (ja) 2012-09-27 2012-09-27 加圧式単室型回転濾過機の運転方法
PCT/JP2012/074979 WO2014049793A1 (ja) 2012-09-27 2012-09-27 加圧式単室型回転濾過機の運転方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/074979 WO2014049793A1 (ja) 2012-09-27 2012-09-27 加圧式単室型回転濾過機の運転方法

Publications (1)

Publication Number Publication Date
WO2014049793A1 true WO2014049793A1 (ja) 2014-04-03

Family

ID=50387256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074979 WO2014049793A1 (ja) 2012-09-27 2012-09-27 加圧式単室型回転濾過機の運転方法

Country Status (2)

Country Link
JP (1) JPWO2014049793A1 (ja)
WO (1) WO2014049793A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106693545A (zh) * 2017-01-17 2017-05-24 张家港市超声电气有限公司 气体净化装置
JP2017529226A (ja) * 2014-07-25 2017-10-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 減少した圧力変動を有するロータリープレッシャーフィルター装置
CN109044836A (zh) * 2018-08-29 2018-12-21 王淼 一种具有挤压装置的中药煎药锅
JPWO2019131590A1 (ja) * 2017-12-27 2020-12-10 住友化学株式会社 精製メチオニンの製造方法
CN112588003A (zh) * 2020-12-01 2021-04-02 南京塔川化工设备有限公司 一种煤气炉产生的渣水混合物过滤装置及过滤方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299618A (ja) * 1988-05-27 1989-12-04 Mitsui Petrochem Ind Ltd スラリーから結晶を回収する方法
JPH02126902A (ja) * 1988-11-07 1990-05-15 Tsukishima Kikai Co Ltd 濾過による結晶の精製方法
WO2009081458A1 (ja) * 2007-12-20 2009-07-02 Hitachi Plant Technologies, Ltd. 晶析スラリーの濾過方法
WO2010119484A1 (ja) * 2009-04-16 2010-10-21 株式会社日立プラントテクノロジー 晶析スラリーからの結晶の回収方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299618A (ja) * 1988-05-27 1989-12-04 Mitsui Petrochem Ind Ltd スラリーから結晶を回収する方法
JPH02126902A (ja) * 1988-11-07 1990-05-15 Tsukishima Kikai Co Ltd 濾過による結晶の精製方法
WO2009081458A1 (ja) * 2007-12-20 2009-07-02 Hitachi Plant Technologies, Ltd. 晶析スラリーの濾過方法
WO2010119484A1 (ja) * 2009-04-16 2010-10-21 株式会社日立プラントテクノロジー 晶析スラリーからの結晶の回収方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529226A (ja) * 2014-07-25 2017-10-05 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド 減少した圧力変動を有するロータリープレッシャーフィルター装置
CN106693545A (zh) * 2017-01-17 2017-05-24 张家港市超声电气有限公司 气体净化装置
JPWO2019131590A1 (ja) * 2017-12-27 2020-12-10 住友化学株式会社 精製メチオニンの製造方法
CN109044836A (zh) * 2018-08-29 2018-12-21 王淼 一种具有挤压装置的中药煎药锅
CN109044836B (zh) * 2018-08-29 2021-02-26 于雪芝 一种具有挤压装置的中药煎药锅
CN112588003A (zh) * 2020-12-01 2021-04-02 南京塔川化工设备有限公司 一种煤气炉产生的渣水混合物过滤装置及过滤方法

Also Published As

Publication number Publication date
JPWO2014049793A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP4243912B2 (ja) スラリーからの結晶回収方法
WO2014049793A1 (ja) 加圧式単室型回転濾過機の運転方法
EP3089804B1 (en) Solid-liquid separations with a no-dry rotary pressure filter
CN106573189B (zh) 具有改善的容量的分离方法
WO2009081458A1 (ja) 晶析スラリーの濾過方法
SE525450C2 (sv) Förfarande och anordning för rengöring av filter
WO2010119484A1 (ja) 晶析スラリーからの結晶の回収方法
JP2014221791A (ja) テレフタル酸の回収のための改善された方法
JP5282182B1 (ja) 加圧式多室型回転濾過機及びその運転方法
JP4850904B2 (ja) 結晶成分の回収方法及び結晶成分の回収システム
JP5802115B2 (ja) 粗製テレフタル酸の精製方法
EP2519492B1 (en) Process and rotary pressure filtration apparatus for slurry separation of aromatic carboxylic acids
TW201602077A (zh) 整合純化對苯二甲酸製造及聚酯聚合反應之工廠中之汙染防治
JPH11179115A (ja) スラリーからの結晶回収方法および装置
JP2004231636A (ja) 芳香族カルボン酸の製造方法およびテレフタル酸の製造方法
KR100976034B1 (ko) 고순도의 테레프탈산 회수방법
JP6802380B2 (ja) Cta溶媒交換方法
EP2619166B1 (en) Process for the purification of aromatic dicarboxylic acid
TW201522244A (zh) 方法
DE102004002962A1 (de) Anlage und Verfahren zur Herstellung von Terephthalsäure
CN1708472A (zh) 对苯二甲酸的制备方法
US9328051B2 (en) Methods and apparatus for isolating dicarboxylic acid
JP2009504646A (ja) 酸化剤パージ流からの安息香酸の除去方法
JP2004175797A (ja) テレフタル酸の製造方法
CN110563006A (zh) 一种对位酯生产中亚硫酸氢钠处理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013513462

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885515

Country of ref document: EP

Kind code of ref document: A1