WO2014049631A1 - 体内水分計 - Google Patents

体内水分計 Download PDF

Info

Publication number
WO2014049631A1
WO2014049631A1 PCT/JP2012/006081 JP2012006081W WO2014049631A1 WO 2014049631 A1 WO2014049631 A1 WO 2014049631A1 JP 2012006081 W JP2012006081 W JP 2012006081W WO 2014049631 A1 WO2014049631 A1 WO 2014049631A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
moisture meter
axilla
contact
sensor unit
Prior art date
Application number
PCT/JP2012/006081
Other languages
English (en)
French (fr)
Inventor
美雪 小山
佑輔 関根
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to PCT/JP2012/006081 priority Critical patent/WO2014049631A1/ja
Publication of WO2014049631A1 publication Critical patent/WO2014049631A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6844Monitoring or controlling distance between sensor and tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Definitions

  • the present invention relates to an in-vivo moisture meter that measures the amount of moisture in the living body of a subject.
  • Dehydration in the living body is a pathological condition in which water in the living body decreases, and it is often expressed during exercise when high water is discharged from the body due to sweating or body temperature rise or when the temperature is high.
  • the water retention ability of the living body itself is reduced, and thus dehydration is more likely to occur than in a normal healthy person.
  • body temperature regulation is impaired when water in the body loses 3% or more of body weight.
  • body temperature regulation disorder occurs and the body temperature rises, it causes a further decrease in water in the living body and falls into a vicious circle, eventually leading to a disease state called heat stroke.
  • Heat stroke has pathological conditions such as heat convulsions, heat fatigue, and heat stroke, and sometimes systemic organ damage may occur. For this reason, it is important to accurately grasp the amount of water in the living body in order to avoid the risk of causing heat stroke.
  • the applicant of the present application pays attention to the subject's axilla as a part suitable for accurately grasping the amount of water in the living body, and assigns a sensor unit in which electrodes are arranged in the axilla.
  • a sensor unit in which electrodes are arranged in the axilla.
  • FIG. 13 is a diagram showing an example of the in-vivo moisture meter 1300 proposed by the present applicant.
  • the in-vivo moisture meter 1300 includes a main body portion 1310 and an insertion portion 1320, and the main body portion 1310 gripped by the measurer is formed in a linear shape as a whole.
  • the insertion portion 1320 to be inserted into the axilla is extended from one end of the main body portion 1310, is narrowed toward the distal end surface 1322 to facilitate insertion into the axilla, and the main body portion. As a whole, it is gently curved downward with respect to 1310.
  • the sensor unit 1321 is slidably supported on the distal end surface 1322 of the insertion unit 1320.
  • the sensor unit 1321 has a sensor head 1323 having a surface substantially parallel to the distal end surface 1322, and in the direction of the arrow 1341b in order to ensure a pressing force for ensuring the close contact of the sensor head 1323 with the skin. It is energized.
  • the sensor head 1323 When the sensor head 1323 is pressed against the skin of the axilla of the subject, the sensor unit 1321 slides by a predetermined amount in the direction of the arrow 1341a, thereby starting measurement.
  • the in-vivo moisture meter 1300 if the shape of the rod body is made narrower toward the tip by reducing the tip surface 1322, the axilla and tip can be easily inserted into the axilla of the subject. Since the contact area with the surface 1322 becomes small, there is a problem that the measurement is fluctuated and stable measurement cannot be performed.
  • the present invention has been made in view of the above problems, and is an in-vivo moisture meter that measures the amount of water in a living body in a subject's axilla, which can be easily inserted into the subject's axilla, and
  • An object of the present invention is to provide a body moisture meter with high stability during measurement.
  • the moisture meter in the body has the following configuration. That is, A body portion formed in a straight line; An insertion portion that is curved and extended from one end of the main body portion; Provided at the distal end of the insertion portion, and a contact portion that contacts the measurement site of the subject, The contact portion is A sensor unit that slides when the tip is pressed against the measurement site of the subject, and measures data on moisture in the subject's living body; and And at least a displacement member that is displaced outward in a state in which the sensor unit is slid.
  • the moisture meter in the body measures the amount of water in the living body in the subject's axilla, which is easy to insert into the subject's axilla and has high stability during measurement.
  • An in-vivo moisture meter can be provided.
  • FIG. 1 is a diagram showing an external configuration of a moisture meter 100 in the body according to the first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining a contact state of the contact portion of the moisture meter 100 in the body with the axilla.
  • FIG. 3 is a diagram showing a functional configuration of the moisture meter in the body.
  • FIG. 4 is a diagram illustrating a configuration example of a measurement circuit of the moisture meter in the body.
  • FIG. 5 is a diagram for explaining the operation of the moisture meter in the body.
  • FIG. 6 is a diagram showing an external configuration of a moisture meter 600 in the body according to the second embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a contact state of the contact portion of the moisture meter 600 in the body with the axilla.
  • FIG. 8 is a diagram showing an external configuration of a moisture meter 800 in the body according to the third embodiment of the present invention.
  • FIG. 9 is a diagram showing an external configuration of a moisture meter 900 in the body according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a contact state of the contact portion of the electronic thermometer 900 with the axilla.
  • FIG. 11 is a diagram showing an external configuration of a moisture meter 1100 in the body according to the fifth embodiment of the present invention.
  • FIG. 12 is a view for explaining a contact state of the contact portion of the electronic thermometer 1100 with the axilla.
  • FIG. 13 is a diagram showing an example of a conventional in-vivo moisture
  • FIG. 1 is a diagram showing an external configuration of a moisture meter 100 in the body according to the first embodiment of the present invention.
  • the moisture meter 100 in the body brings the sensor part into contact with the skin of the axilla (measurement site), which is the body surface of the subject, and detects a physical quantity corresponding to the electric signal supplied in the sensor part, thereby detecting the inside of the subject's body. Detect moisture content.
  • the body moisture meter 100 according to the present embodiment by measuring the subject's capacitance as the physical quantity (data on moisture in the living body), the wetness of the skin of the axilla is detected, and the moisture content in the body is determined. calculate.
  • the moisture meter 100 in a body forms the main-body part 110, the insertion part 120 curvedly extended from the end of the main-body part 110, and the front-end
  • the main body 110 has an upper surface 114, a lower surface 115, and side surfaces 116 and 117 that are formed substantially parallel to the major axis direction (not shown), respectively, and are formed in a straight line as a whole.
  • Various user interfaces are arranged on the surface of the casing of the main body 110, and an electronic circuit for calculating the amount of moisture in the body is housed inside the casing.
  • a power switch 111 and a display unit 112 are shown as user interfaces.
  • the power switch 111 is disposed in a recess in the rear end surface 113 of the main body 110.
  • the power switch 111 is arranged in the recess in this way, an erroneous operation of the power switch 111 can be prevented.
  • the power switch 111 is turned on, power supply from the power supply unit 311 (FIG. 3), which will be described later, to each part of the moisture meter 100 in the body is started, and the moisture meter 100 in the body enters an operating state.
  • the display unit 112 is arranged on the side surface 117 of the main body unit 110 slightly forward in the long axis direction. This is because when the moisture content in the body of the subject is measured using the moisture meter 100 in the body, even if the measurer grips the grip region 118, the display unit 112 is completely displayed with the hand gripped by the measurer. In order to prevent the measurement result from being visually recognized even in a gripped state.
  • the display unit 112 displays the current moisture content measurement result 131. For reference, the previous measurement result 132 is also displayed. Further, the battery display unit 133 displays the remaining amount of the battery (power supply unit 311 in FIG. 3). Further, when an invalid measurement result is obtained or a measurement error is detected, “E” is displayed on the display unit 112, and the measurement person is notified of this. Note that characters and the like displayed on the display unit 112 are displayed with the upper surface 114 side of the main body unit 110 as the upper side and the lower surface 115 side as the lower side.
  • the upper surface 125 and the lower surface 126 have a curved shape, and as a whole, the insertion part 120 is gently curved downward.
  • a contact portion 130 is provided at the distal end of the insertion portion 120.
  • the contact portion 130 includes a deformable member 121 formed along the upper surface 125, the lower surface 126, and the side surfaces 116 and 117 of the insertion portion 120 (that is, along the outer peripheral surface of the insertion portion 120).
  • the in-vivo moisture meter 100 has a shape that narrows toward the tip as a whole, like the conventional in-vivo moisture meter 1300.
  • the ease of insertion into the axilla of the subject is maintained.
  • a measuring unit for measuring the amount of water in the body of the subject is arranged inside the deformable member 121.
  • 1B is a perspective view of the contact portion 130.
  • FIG. In 1B, 122 is a front end surface and the sensor part 123 is attached so that a slide is possible.
  • the sensor unit 123 includes a sensor head 124 having a surface substantially parallel to the distal end surface 122.
  • the sensor head 124 is disposed at a position deeper than the distal end position of the deformable member 121 (in other words, the deformable member 121 is disposed so as to surround the sensor portion 123). For this reason, when the moisture meter 100 in a body is inserted in a subject's axilla, first, the front-end
  • the deformable member 121 is curved outward at the tip side, the deformable member 121 is deformed outward when it comes into contact with the axilla of the subject.
  • 1C of FIG. 1 has shown the mode that the deformation
  • the sensor unit 123 is slidably attached to the distal end surface 122, and in addition, a spring (not shown) is used to ensure a pressing force for ensuring the close contact of the sensor head 124 with the axilla. Is biased in the direction of the arrow 141b (for example, a biasing force of about 150 gf).
  • the sensor unit 123 moves in a direction of an arrow 141a (a direction substantially orthogonal to the distal end surface 122, that is, a normal direction of the distal end surface 122) (for example, 1 mm to 10 mm (3 mm in the present embodiment) is slid and measurement is started (hereinafter, the direction of the arrow 141a is referred to as a slide direction).
  • the moisture content in the body is measured. Be started.
  • the sensor head 124 applies a predetermined load (for example, 20 fg to 200 gf, more preferably 100 gf to 190 gf, more preferably in the present embodiment).
  • a predetermined load for example, 20 fg to 200 gf, more preferably 100 gf to 190 gf, more preferably in the present embodiment.
  • 150 gf is detected, the measurement of the body water content is started.
  • the reason why the sensor head 124 is pressed against the axilla of the subject after the deformable member 121 is deformed is to eliminate the fluctuation of the moisture meter 100 in the body during measurement and to realize stable measurement. is there.
  • it will be described in more detail with reference to FIG.
  • FIG. 2 is a diagram for explaining a contact state of the contact portion 130 with the subject's axilla when the in-vivo moisture meter 100 is inserted into the subject's axilla.
  • 2A shows the upper left body of the subject
  • 2B to 2E schematically show the aa cross section of 2A and the contact part 130 of the moisture meter 100 in the body.
  • the deformable member 121 is not in contact with the skin of the subject's axilla, so the deformable member 121 is not deformed, and the sensor unit 123 is also The position is deeper than the tip of the deformable member 121.
  • FIG. 2C shows a state in which the tip of the deformable member 121 is in contact with the skin of the subject's axilla. From this state, the body moisture meter 100 is further pushed in the direction of the arrow 201 to start the deformation of the deformable member 121. Is done.
  • 2E shows a state in which the sensor unit 123 is slid in the sliding direction.
  • the deformable member 121 is greatly deformed, and the contact area with the skin of the axilla is expanded. That is, since the deformable member 121 supports the contact of the sensor head 124 with the skin of the axilla, compared to the case where the sensor head 124 is supported only by the distal end surface 1322 as in the conventional moisture meter.
  • the measurer can stably support the moisture meter 100 in the body.
  • the deformable member 121 When the measurement is completed and the moisture meter 100 in the body is taken out from the axilla of the subject, the deformable member 121 returns to its original shape as shown in 2B, so that it can be taken out smoothly.
  • the in-vivo moisture meter 100 is deformed when a force is applied in a direction substantially parallel to the sliding direction of the sensor unit 123, and the tip moves in a direction substantially perpendicular to the sliding direction. It was set as the structure which distributes a member.
  • FIG. 3 is a diagram showing a functional configuration of the moisture meter 100 in the body.
  • the control unit 301 includes a CPU 302 and a memory 303, and the CPU 302 executes various programs in the body moisture meter 100 by executing a program stored in the memory 303.
  • the CPU 302 executes display control of the display unit 112, drive control of the buzzer 322 and the LED lamp 323, measurement of moisture in the body (capacitance measurement in the present embodiment), and the like according to the flowchart of FIG.
  • the memory 303 includes a nonvolatile memory and a volatile memory.
  • the nonvolatile memory is used as a program memory, and the volatile memory is used as a working memory for the CPU 302.
  • the power supply unit 311 is a replaceable battery or a rechargeable battery, and supplies power to each unit of the moisture meter 100 in the body.
  • the voltage regulator 312 supplies a constant voltage (for example, 2.3 V) to the control unit 301 and the like.
  • the battery remaining amount detection unit 313 detects the remaining amount of the battery based on the voltage value supplied from the power supply unit 311 and notifies the control unit 301 of the detection result.
  • the control unit 301 controls display on the battery display unit 133 based on the remaining battery level detection signal from the remaining battery level detection unit 313.
  • the control unit 301 When the power switch 111 is pressed, power supply from the power supply unit 311 to each unit is started.
  • the control unit 301 detects that pressing of the power switch 111 by the measurer has continued for 1 second or longer, the control unit 301 maintains the power supply from the power supply unit 311 to each unit and puts the moisture meter 100 in the body into an operating state.
  • the measurement switch 314 is turned on simultaneously with the start of power supply from the power supply unit 311.
  • the control unit 301 starts measuring the amount of moisture when the sensor unit 123 is pushed a predetermined amount or more in the direction of the arrow 141a, and ends the measurement when the measurement switch 314 is on for a predetermined time (for example, 2 seconds).
  • control unit 301 In order to prevent the power supply unit 311 from being consumed, the control unit 301 automatically powers the in-vivo moisture meter 100 if the measurement does not start even after two minutes have passed since the in-vivo moisture meter 100 is in an operating state. Transition to the off state.
  • FIG. 4 is a diagram illustrating a configuration example of the measurement circuit 321.
  • a CR oscillation circuit is formed by the inverters 401 and 402, the resistors 403 and 404, and the subject capacitor 410. Since the oscillation frequency of the output signal 405 is changed by the subject volume 410, the control unit 301 calculates the subject volume 410 by measuring the frequency of the output signal 405.
  • the sensor head 124 of the present embodiment is configured such that two comb-shaped electrodes are arranged so that the respective comb teeth are arranged alternately.
  • the display unit 112 performs display as described in FIG. 1 under the control of the control unit 301.
  • the buzzer 322 rings when the sensor unit 123 is pressed to start the measurement or when the measurement of the moisture content in the body is completed, and notifies the measurer of the start and completion of the measurement.
  • the LED lamp 323 also performs the same notification as the buzzer 322. That is, the LED lamp 323 is turned on when the measurement is started by pressing the sensor unit 123 or when the measurement of the moisture content in the body is completed, and notifies the measurer of the start and completion of the measurement.
  • the timer unit 324 operates by receiving power from the power source unit 311 even when the power is off, and notifies the control unit 301 of the time in the operating state.
  • step S501 the control unit 301 detects a measurement start instruction.
  • the state of the measurement switch 314 is monitored, and when the on state of the measurement switch 314 is detected, it is determined that the measurement start instruction has been detected.
  • the control unit 301 measures the oscillation frequency of the output signal 405 from the measurement circuit 321 in step S502.
  • step S503 the amount of moisture in the body of the subject is calculated based on the oscillation frequency of the output signal 405 measured in step S502.
  • step S504 it is determined whether or not the subject is dehydrated based on whether or not the amount of water in the body calculated in step S503 exceeds a predetermined threshold value.
  • the threshold value in this case is preferably a value corresponding to 35% when water is 100% and air is 0%.
  • step S505 the current measurement information is stored in the memory 303.
  • step S506 the body water content calculated by the current measurement is displayed on the display unit 112. At this time, display is performed in a display form according to the determination result of the dehydrated state or the non-dehydrated state (for example, in the case of the dehydrated state, the amount of water in the body is displayed in red, and in the case of the non-dehydrated state, The amount of water in the body is displayed in blue).
  • the in-vivo moisture meter 100 when a force is applied in a direction substantially parallel to the sliding direction of the sensor unit 123, the body moisture meter 100 is deformed in a direction substantially orthogonal to the sliding direction.
  • the deformation member is arranged.
  • the present invention is not limited to this.
  • it is good also as a structure which has the shape similar to the deformation member 121, and distribute
  • FIG. Hereinafter, the moisture meter in the body of this embodiment will be described.
  • External structure of moisture meter in the body> 6A in FIG. 6 is a diagram showing an external configuration of a moisture meter 600 in the body according to the second embodiment of the present invention.
  • the same reference number is attached
  • a contact portion 630 is provided at the distal end of the insertion portion 120.
  • the contact portion 630 includes a support member 621 formed along the upper surface 125, the lower surface 126, and the side surfaces 116 and 117 of the insertion portion 120 (that is, along the outer peripheral surface of the insertion portion 120).
  • the in-vivo moisture meter 600 has a shape that becomes narrower toward the tip as a whole, like the conventional in-vivo moisture meter 1300.
  • the ease of insertion into the axilla of the subject is maintained.
  • 6B of FIG. 6 is a perspective view of the contact portion 130.
  • the sensor head 124 is disposed at a position deeper than the tip end position of the support member 621. For this reason, when the moisture meter 600 in the body is inserted into the subject's axilla, first, the tip of the support member 621 contacts the subject's axilla.
  • the support member 621 has a distal end curved outward and a proximal end attached to the insertion portion 120 via a rotation shaft 631 so as to be freely rotatable. For this reason, when the support member 621 contacts the subject's axilla, the support member 621 rotates outward. 6C of FIG. 6 has shown the mode that the support member 621 rotated toward the outer side by contacting a test subject's axilla.
  • the configuration in which the sensor head 124 is pressed against the axilla of the subject after the support member 621 is rotated eliminates the fluctuation of the moisture meter 600 in the measurement, and enables stable measurement. This is to realize.
  • it will be described in more detail with reference to FIG.
  • FIG. 7 is a diagram for explaining a contact state of the contact portion 630 with respect to the subject's axilla when the in-vivo moisture meter 600 is inserted into the subject's axilla.
  • 7, 7A shows the upper left body of the subject
  • 7B to 7E schematically show the aa cross section of 7A and the contact portion 630 of the moisture meter 600 in the body.
  • the support member 621 is not in contact with the skin of the subject's axilla when inserted into the subject's axilla, the support member 621 is not rotated, and the sensor unit 123 is also The support member 621 is located deeper than the tip.
  • FIG. 7C shows a state in which the tip of the support member 621 is in contact with the skin of the subject's axilla. From this state, the body moisture meter 600 is further pushed in the direction of the arrow 201 to support the rotation shaft 631. The rotation of the member 621 is started.
  • FIG. 7D shows a state in which the support member 621 is rotated by pressing the moisture meter 600 in the body, and the sensor head 124 of the sensor unit 123 is in contact with the skin of the subject's axilla. From this state, by further pressing the moisture meter 600 in the direction of the arrow 201, the support member 621 further rotates and the sensor unit 123 slides in the sliding direction.
  • FIG. 7E shows a state in which the sensor unit 123 is slid in the sliding direction.
  • the support member 621 rotates greatly, and the contact area with the skin of the axilla increases. That is, since the support member 621 supports the contact state of the sensor head 124 with the skin of the axilla, compared to the case where the sensor head 124 is supported only by the distal end surface 1322 as in the conventional moisture meter. Thus, it becomes possible to support it stably.
  • the support member 621 When the measurement is completed and the moisture meter 600 in the body is taken out from the axilla of the subject, the support member 621 returns to the original position as shown in 7B, so that it can be taken out smoothly.
  • each of the deformable members 121 is deformed or rotated so that the distal end of the deformable member 121 or the support member 621 moves outward, but the present invention is not limited thereto. Instead, an elastic film may be attached to the side surface of each deformation member 121 or each support member 621, and adjacent deformation members 121 or adjacent support members 621 may be coupled.
  • FIG. 8 is a diagram showing an external configuration of a moisture meter 800 in the body according to the third embodiment of the present invention.
  • the same reference number is attached
  • a contact portion 830 is provided at the distal end of the insertion portion 120.
  • the contact portion 830 includes a deformable member 121 formed along the upper surface 125, the lower surface 126, and the side surfaces 116 and 117 of the insertion portion 120 (that is, along the outer peripheral surface of the insertion portion 120).
  • the elastic film 801 which can be expanded-contracted is attached to the side surface of the deformation member 121, and the adjacent deformation members 121 are connected in the side surface. ing.
  • FIG. 8C in FIG. 8 shows a state in which the deformable member 121 is deformed outward by contacting the subject's axilla.
  • the sensor unit 123 comes into contact with the axilla of the subject while being sealed by the deformation member 121 and the elastic film 801. Become. As a result, it becomes possible to measure the water content in the body of the subject with higher accuracy.
  • the in-vivo moisture meter 800 has a configuration in which the elastic film 801 is attached to the side surface of the deformable member 121 and adjacent deformable members 121 are connected to each other.
  • the elastic film 801 is attached to the side surface of the deformable member 121 and adjacent deformable members 121 are connected to each other.
  • a central deformation member is arranged in which the central part (that is, a part other than the tip) moves outward by being deformed. May be. Details of this embodiment will be described below.
  • External structure of moisture meter in the body> 9A in FIG. 9 is a diagram showing an external configuration of the moisture meter 900 in the body according to the fourth embodiment of the present invention.
  • the same reference number is attached
  • a contact portion 930 is provided at the distal end of the insertion portion 120.
  • the contact portion 930 includes a central deformation member 921 formed along the upper surface 125, the lower surface 126, and the side surfaces 116 and 117 of the insertion portion 120 (that is, along the outer peripheral surface of the insertion portion 120).
  • the in-vivo moisture meter 900 has a shape that narrows toward the tip as a whole, like the conventional in-vivo moisture meter 1300. The ease of insertion of the subject into the axilla is maintained.
  • the central deformation member 921 is provided with a deformation portion 901 at the center position in the sliding direction, and when it contacts the axilla of the subject, the deformation portion 901 moves outward. It is configured to bend towards.
  • 9C of FIG. 9 shows a state in which the deformable portion 901 is bent outward as the central deformable member 921 contacts the axilla of the subject.
  • the sensor head 124 is configured to be pressed against the subject's axilla, thereby eliminating fluctuations in the body moisture meter 900 during measurement, This is to realize stable measurement.
  • the sensor head 124 is configured to be pressed against the subject's axilla, thereby eliminating fluctuations in the body moisture meter 900 during measurement, This is to realize stable measurement.
  • FIG. 10 is a diagram for explaining a contact state of the contact portion 930 with respect to the subject's axilla when the in-vivo moisture meter 900 is inserted into the subject's axilla.
  • 10, 10A shows the upper left body of the subject
  • 10B to 10E schematically show the aa cross section of 10A and the contact portion 930 of the moisture meter 900 in the body.
  • the central deformable member 921 in the state of being inserted into the subject's axilla, the central deformable member 921 is not in contact with the skin of the subject's axilla, so the central deformable member 921 is not deformed and the sensor unit 123 is not deformed. Also, it is in a position deeper than the tip of the central deformation member 921.
  • FIG. 10C shows a state in which the tip of the central deformable member 921 is in contact with the skin of the subject's axilla. From this state, the body moisture meter 900 is further pushed in the direction of the arrow 201 to deform the central deformable member 921. Is started.
  • FIG. 10D shows a state in which the central deformation member 921 is deformed by the deformation portion 901 by pressing the moisture meter 900 in the body, and the sensor head 124 of the sensor portion 123 is in contact with the skin of the subject's axilla. From this state, by further pressing the moisture meter 900 in the direction of the arrow 201, the central deformation member 921 is further deformed and the sensor unit 123 slides in the sliding direction.
  • FIG. 10E shows a state in which the sensor unit 123 is slid in the sliding direction.
  • the central deformation member 921 is greatly deformed, and the contact area with the skin of the axilla is expanded. That is, since the central deformable member 921 supports the contact state of the sensor head 124 with the skin of the axilla, compared with the case where the sensor head 124 is supported only by the distal end surface 1322 as in the conventional moisture meter. Thus, it becomes possible to support it stably.
  • the central deformation member 921 returns to the original position as shown in 10B, so that it can be taken out smoothly.
  • the in-vivo moisture meter 900 when a force is applied in a direction substantially parallel to the sliding direction of the sensor unit 123, the deforming portion provided at the center position in the sliding direction.
  • the central deformation member that moves in a direction substantially orthogonal to the sliding direction is arranged.
  • the deformable portion 901 and the sensor portion 123 are configured to be independently displaced, but the present invention is limited to this. Instead, the deformable portion 901 and the sensor portion 123 may be configured to be displaced integrally.
  • the displacement member of the present embodiment will be described.
  • External structure of moisture meter in the body> 11A of FIG. 11 is a diagram showing an external configuration of a moisture meter 1100 in the body according to the fifth embodiment of the present invention.
  • the same reference number is attached
  • a contact portion 1130 is provided at the distal end of the insertion portion 120.
  • the contact portion 1130 includes an elastic member 1121 that is a displacement member formed along the upper surface, 125, lower surface 126, and side surfaces 116, 117 of the insertion portion 120 (that is, along the outer peripheral surface of the insertion portion 120).
  • the in-vivo moisture meter 1100 has a shape that narrows toward the tip as a whole, like the conventional in-vivo moisture meter 1300.
  • the ease of insertion into the axilla of the subject is maintained.
  • the elastic member 1121 is connected to the sensor unit 123, the sensor head 124 is pressed against the skin of the subject, and the sensor unit 123 slides in the sliding direction (141a). By doing so, it is configured to be deformed outward.
  • the elastic member 1121 is deformed outward when the sensor unit 123 is pressed against the axilla of the subject.
  • the fluctuation of the moisture meter 1100 during measurement is eliminated and stable measurement is performed. This is to realize.
  • it will be described in more detail with reference to FIG.
  • FIG. 12 is a diagram for explaining a contact state of the contact portion 1130 with respect to the subject's axilla when the in-vivo moisture meter 1100 is inserted into the subject's axilla.
  • 12A shows the upper left body of the subject
  • 12B to 12E schematically show the aa cross section of 12A and the contact portion 1130 of the moisture meter 1100 in the body.
  • the elastic member 1121 is not deformed because the sensor head 124 is not in contact with the skin of the subject's axilla.
  • FIG. 12C shows a state in which the sensor head 124 is in contact with the skin of the axilla of the subject. From this state, the sensor unit 123 slides in the sliding direction by further pressing the moisture meter 1100 in the direction of the arrow 201. At the same time, deformation of the elastic member 1121 is started.
  • 12D shows a state in which the elastic member 1121 is deformed outward by sliding the sensor unit 123, and a part of the elastic member 1121 is in contact with the axilla.
  • 12E shows a state in which the moisture meter 1100 in the body is further pushed and the sensor unit 123 has been slid to a limit position where it can slide. As shown in FIG. 12E, in a state where the sliding of the sensor unit 123 in the sliding direction is completed, the elastic member 1121 is greatly deformed outward and comes into contact with the skin of the axilla.
  • the elastic member 1121 supports the contact state of the sensor head 124 with the skin of the axilla, compared to the case where the sensor head 124 is supported only by the distal end surface 1322 as in the conventional moisture meter. Thus, it becomes possible to support it stably.
  • the elastic member 1121 returns to the original position as shown in 12B, so that it can be taken out smoothly.
  • the in-vivo moisture meter 1100 has a configuration in which the elastic member 1121 that is deformed as the sensor unit 123 slides is disposed.
  • the elastic member 1121 that is deformed as the sensor unit 123 slides is disposed.
  • the tip surface 122 has a quadrangular shape, and one deformation member 121, support member 621, or central deformation member 921 is arranged on each side of the tip surface 122.
  • the present invention is not limited to this.
  • a plurality may be arranged on each side of the front end surface 122, and the shape of the front end surface may be another shape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

 被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を提供する。本発明は、本体部110と、挿入部120と、接触部130と、を備える体内水分計であって、接触部130は、先端が被検者の測定部位に押し当てられることでスライドし、該被検者の生体内の水分に関するデータを測定するセンサ部123と、少なくとも、センサ部123がスライドした状態において、外側へと変位する変位部材121とを備えることを特徴とする。

Description

体内水分計
 本発明は、被検者の生体内の水分量を測定する体内水分計に関するものである。
 被検者の生体内の水分量を測定することは重要である。生体における脱水症状は、生体内の水分が減少する病態であり、発汗や体温上昇により多くの水分が体内から体外に排出される運動時や気温の高い時に多く発現する。特に、高齢者の場合、生体の水分保持能力自体が低下しているため、一般健常者と比較して脱水症状を起こし易い。
 通常、生体内の水分が体重の3%以上失われた時点で体温調整の障害が起こると言われている。体温調整の障害が起こり体温が上昇すると、生体内の更なる水分の減少を引き起こすため悪循環に陥り、遂には熱中症と称される病態に至ることとなる。熱中症には、熱痙攣、熱疲労、熱射病等の病態があり、時には全身の臓器障害が起こることもある。このようなことから、熱中症に至る危険を未然に回避すべく、生体内の水分量を的確に把握しておくことは重要である。
 かかる背景のもと、本願出願人は、生体内の水分量を的確に把握するのに適した部位として、被検者の腋窩に着目しており、当該腋窩に電極を配したセンサ部をあてがい、当該電極間の静電容量を測定することで、被検者の生体内の水分量を算出する体内水分計の開発に取り組んでいる。
 図13は、本願出願人が提案している体内水分計1300の一例を示す図である。図13に示すように、体内水分計1300は本体部1310と挿入部1320とを備え、測定者によって把持される本体部1310は、全体として直線状に形成されている。一方、腋窩に挿入される挿入部1320は、本体部1310の一端から延設されており、腋窩への挿入を容易にするために、先端面1322に向かって細くなっており、かつ、本体部1310に対して、全体として、下向きに緩やかに湾曲している。
 挿入部1320の先端面1322には、センサ部1321がスライド可能に支持されている。センサ部1321は、先端面1322に略平行な面を有するセンサヘッド1323を有しており、センサヘッド1323の皮膚への密着を保証するうえでの押圧力を確保するため、矢印1341bの方向へ付勢されている。そして、センサヘッド1323が被検者の腋窩の皮膚に押し当てられると、センサ部1321が矢印1341aの方向に所定量スライドし、これにより測定が開始される構成となっている。
特許第4417841号公報
 しかしながら、上記体内水分計1300に示すように、先端面1322を小さくすることで、先端に向かって筺体を細くする形状とすると、被検者の腋窩への挿入がしやすくなる反面、腋窩と先端面1322との接触面積が小さくなるため、測定時にゆらぎ、安定した測定ができないという問題がある。
 本発明は上記課題に鑑みてなされてものであり、被検者の腋窩にて生体内の水分量を測定する体内水分計であって、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を提供することを目的とする。
 上記の目的を達成するために、本発明に係る体内水分計は以下のような構成を備える。即ち、
 直線状に形成された本体部と、
 前記本体部の一端から湾曲して延設された挿入部と、
 前記挿入部の先端に設けられ、被検者の測定部位に接触する接触部と、を備え、
 前記接触部は、
  先端が被検者の測定部位に押し当てられることでスライドし、該被検者の生体内の水分に関するデータを測定するセンサ部と、
  少なくとも、前記センサ部がスライドした状態において、外側へと変位する変位部材とを備える。
 本発明によれば、被検者の腋窩にて生体内の水分量を測定する体内水分計であって、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を提供することが可能となる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
図1は、本発明の第1の実施形態にかかる体内水分計100の外観構成を示す図である。 図2は、体内水分計100の接触部の腋窩への接触状態を説明するための図である。 図3は、体内水分計の機能構成を示す図である。 図4は、体内水分計の測定回路の構成例を示す図である。 図5は、体内水分計の動作を説明するための図である。 図6は、本発明の第2の実施形態にかかる体内水分計600の外観構成を示す図である。 図7は、体内水分計600の接触部の腋窩への接触状態を説明するための図である。 図8は、本発明の第3の実施形態に係る体内水分計800の外観構成を示す図である。 図9は、本発明の第4の実施形態に係る体内水分計900の外観構成を示す図である。 図10は、電子体温計900の接触部の腋窩への接触状態を説明するための図である。 図11は、本発明の第5の実施形態に係る体内水分計1100の外観構成を示す図である。 図12は、電子体温計1100の接触部の腋窩への接触状態を説明するための図である。 図13は、従来の体内水分計の一例を示す図である。
 以下、本発明の各実施形態について添付図面を参照しながら詳細に説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
 [第1の実施形態]
 <1.体内水分計の外観構成>
 図1の1Aは、本発明の第1の実施形態に係る体内水分計100の外観構成を示す図である。体内水分計100は、被検者の体表面である腋窩(測定部位)の皮膚にセンサ部を接触させ、センサ部において供給した電気信号に応じた物理量を検出することで被検者の体内の水分量を検出する。本実施形態に係る体内水分計100では、当該物理量(生体内の水分に関するデータ)として被検者の静電容量を測定することにより、腋窩の皮膚の湿り具合を検出し、体内の水分量を算出する。
 図1の1Aに示すように、体内水分計100は本体部110と、本体部110の一端から湾曲して延設された挿入部120と、挿入部120の先端を形成し、被検者の腋窩に接触する接触部130とを備える。本体部110は、上面114、下面115、側面116、117がそれぞれ長軸方向(不図示)に略平行に形成されており、全体として、直線状に形成されている。また、本体部110の筐体表面には、各種ユーザインターフェースが配置され、筐体内部には体内の水分量を算出するための電子回路が収納されている。
 図1の1Aの例では、ユーザインターフェースとして、電源スイッチ111及び表示部112が示されている。電源スイッチ111は、本体部110の後端面113の凹部に配されている。このように凹部に電源スイッチ111を配する構成とすることで、電源スイッチ111の誤操作を防ぐことができる。なお、電源スイッチ111がオンされると後述の電源部311(図3)から体内水分計100の各部への電源供給が開始され、体内水分計100は動作状態となる。
 表示部112は、本体部110の側面117上において、長軸方向のやや前方側に配されている。これは、体内水分計100を用いて被検者の体内の水分量を測定するにあたり、測定者が把持領域118を把持した場合であっても、測定者の把持した手で表示部112が完全に覆われることがないようにするためである(把持した状態でも測定結果が視認できるようにするためである)。
 表示部112には、今回の水分量の測定結果131が表示される。また、参考として前回の測定結果132もあわせて表示される。さらに、電池表示部133には、電池(図3の電源部311)の残量が表示される。また、無効な測定結果が得られた場合や測定エラーが検出された場合には、表示部112に“E”が表示され、その旨が測定者に報知される。なお、表示部112に表示される文字等は、本体部110の上面114側を上とし、下面115側を下として、表示されるものとする。
 体内水分計100の挿入部120は、上面125及び下面126が曲面形状を有しており、本体部110に対して、全体として、下向きに緩やかに湾曲している。
 更に、挿入部120の先端には接触部130が設けられている。接触部130は、挿入部120の上面125、下面126、側面116、117それぞれに沿って(つまり、挿入部120の外周面に沿って)形成された変形部材121を備える。このように、変形部材121を、挿入部120の外周面に沿って形成することで、体内水分計100は、従来の体内水分計1300と同様に、全体として、先端に向かって細くなる形状を有することとなり、被検者の腋窩への挿入の容易性が維持される。
 変形部材121の内部には、被検者の体内の水分量を測定するための測定部が配されている。図1の1Bは、接触部130の斜視図である。1Bにおいて、122は先端面であり、センサ部123がスライド可能に取り付けられている。センサ部123は、先端面122に略平行な面を有するセンサヘッド124を有している。
 1Bに示すように、センサヘッド124は、変形部材121の先端位置よりも奥まった位置に配置されている(換言すると、変形部材121は、センサ部123を取り囲むようにして配置されている)。このため、体内水分計100が被検者の腋窩に挿入された場合、被検者の腋窩に対しては、はじめに、変形部材121の先端が接触する。
 ここで、変形部材121は、先端側がそれぞれ外側に湾曲しているため、被検者の腋窩に接触すると、変形部材121は、外側に向かって変形する。図1の1Cは、変形部材121が被検者の腋窩に接触することで、外側に向かって変形した様子を示している。
 図1の1Cに示すように、変形部材121それぞれが変形し、それぞれの先端が外側に向かって移動すると、センサ部123が相対的に変形部材121よりも先端側に位置することとなる。この結果、センサヘッド124が被検者の腋窩に接触することとなる。
 上述したように、センサ部123は、先端面122にスライド可能に取り付けられていることに加え、センサヘッド124の腋窩への密着を保証する上での押圧力を確保するため、不図示のばねにより、矢印141bの方向へ付勢されている(例えば150gf程度の付勢力)。そして、センサヘッド124が被検者の腋窩の皮膚に押し当てられると、センサ部123が矢印141aの方向(先端面122と略直交する方向、すなわち先端面122の法線方向)に所定量(例えば、1mm~10mm、本実施形態では3mm)スライドし、これにより測定が開始されることとなる(以下、矢印、141aの方向をスライド方向と称す)。
 具体的には、電源スイッチ111をオンして体内水分計100を動作状態とした後、センサヘッド124が被検者の腋窩に押し当てられたことが検知されると、体内水分量の測定が開始される。あるいは、電源スイッチ111をオンして体内水分計100を動作状態とした後、センサヘッド124が被検者の腋窩に所定負荷(例えば、20fg~200gf、さらに好ましくは100gf~190gf、本実施形態では、150gf)で押し当てられたことが検知されると、体内水分量の測定が開始される。このような仕組みにより、測定時におけるセンサヘッド124の腋窩への密着の程度を一定にすることができる。
 なお、変形部材121を変形させたうえで、センサヘッド124を被検者の腋窩に押し当てる構成としたのは、測定中の体内水分計100のゆらぎをなくし、安定した測定を実現するためである。以下、図2を用いて、更に詳細に説明する。
 <2.接触部の接触状態の説明>
 図2は、被検者の腋窩に体内水分計100を挿入した場合の、被検者の腋窩に対する接触部130の接触状態を説明するための図である。
 図2において、2Aは、被検者の左上半身を示しており、2B~2Eは、2Aのa-a断面及び体内水分計100の接触部130を模式的に示したものである。
 2Bに示すように、被検者の腋窩に挿入した状態では、変形部材121が被検者の腋窩の皮膚に接触していないため、変形部材121は変形しておらず、センサ部123も、変形部材121の先端よりも奥まった位置にある。
 2Cは、被検者の腋窩の皮膚に変形部材121の先端が接触した状態を示しており、この状態から、更に矢印201方向に体内水分計100を押すことで、変形部材121の変形が開始される。
 2Dは、体内水分計100を押すことで、変形部材121が変形し、変形部材121の先端が外側に向かって移動することで、センサ部123のセンサヘッド124が、被検者の腋窩の皮膚に接触した状態を示している。この状態から、更に矢印201方向に体内水分計100を押すことで、変形部材121は更に変形するとともに、センサ部123がスライド方向にスライドする。
 2Eは、センサ部123がスライド方向にスライドした状態を示している。2Eに示すように、センサ部123のスライド方向へのスライドが完了した状態では、変形部材121が大きく変形し、腋窩の皮膚との接触面積が拡大する。つまり、センサヘッド124の腋窩の皮膚への接触を、変形部材121が支持していることとなるため、従来の体内水分計のように、先端面1322のみで支持していた場合と比較して、測定者は体内水分計100を安定して支持することが可能となる。
 なお、測定が完了し、体内水分計100を被検者の腋窩から取り出す場合には、2Bに示すように、変形部材121はもとの形状に戻るため、スムーズに取り出すことができる。
 このように、本実施形態に係る体内水分計100では、センサ部123のスライド方向に略平行な方向に力が加わった場合に変形し、該スライド方向と略直交する方向に先端が移動する変形部材を配する構成とした。
 これにより、被検者の腋窩への挿入時及び被検者の腋窩からの取り出し時(2B)においては、細い先端形状を維持することが可能になるとともに、被検者の腋窩の皮膚に接触している状態(2E)では、広範囲で被検者の腋窩の皮膚に接触させることが可能となった。
 つまり、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を実現することが可能となった。
 <3.体内水分計の機能構成>
 次に、体内水分計100の機能構成について説明する。図3は、体内水分計100の機能構成を示す図である。図3において、制御部301は、CPU302、メモリ303を有し、CPU302はメモリ303に格納されているプログラムを実行することにより、体内水分計100における種々の制御を実行する。
 例えば、CPU302は、図5のフローチャートにより表示部112の表示制御、ブザー322やLEDランプ323の駆動制御、体内水分量の測定(本実施形態では静電容量測定)などを実行する。メモリ303は、不揮発性メモリと揮発性メモリとを含み、不揮発性メモリはプログラムメモリとして、揮発性メモリはCPU302の作業メモリとして利用される。
 電源部311は、交換が可能なバッテリー、或いは充電が可能なバッテリーであり、体内水分計100の各部へ電源を供給する。電圧レギュレータ312は、制御部301等へ一定電圧(例えば、2.3V)を供給する。電池残量検出部313は、電源部311から供給される電圧値に基づいて、電池の残量を検出し、その検出結果を制御部301に通知する。制御部301は、電池残量検出部313からの電池残量検出信号に基づいて、電池表示部133の表示を制御する。
 電源スイッチ111が押下されると、各部への電源部311からの電力供給が開始される。そして、制御部301は、電源スイッチ111の測定者による押下が1秒以上継続したことを検出すると、電源部311からの各部への電源供給を維持させ、体内水分計100を動作状態とする。上述したように、測定スイッチ314は、電源部311からの電力供給が開始されると同時にオン状態になる。制御部301は、センサ部123が矢印141aの方向へ所定量以上押されると水分量の測定を開始し、測定スイッチ314のオン状態が所定時間(例えば2秒)継続すると、測定を終了する。なお、電源部311の消耗を防止するために、体内水分計100が動作状態になってから2分経過しても測定開始とならない場合は、制御部301は自動的に体内水分計100を電源オフの状態へと移行させる。
 測定回路321は、センサヘッド124と接続され、静電容量を測定する。図4は、測定回路321の構成例を示す図である。図4に示すように、インバータ401、402、抵抗403、404、被検者容量410によりCR発振回路が形成される。被検者容量410によって出力信号405の発振周波数が変化するので、制御部301は、出力信号405の周波数を測定することにより、被検者容量410を算出する。なお、本実施形態のセンサヘッド124は、2つの櫛形の電極が、それぞれの櫛歯が互い違いに並ぶように配置されてなるものとする。
 図3に戻る。表示部112は、図1で説明したような表示を制御部301の制御下で行う。ブザー322は、センサ部123の押下による測定の開始や、体内水分量の測定が完了した際に鳴動し、測定の開始や完了を測定者に通知する。LEDランプ323もブザー322と同様の通知を行う。すなわち、LEDランプ323は、センサ部123の押下による測定の開始や、体内水分量の測定が完了した際に点灯し、測定の開始や完了を測定者に通知する。計時部324は、電源がオフの状態であっても電源部311からの電源供給を受けて動作し、動作状態においては時刻を制御部301に通知する。
 <4.体内水分計の動作>
 以上のような構成を備えた、本実施形態に係る体内水分計100の動作を、図5のフローチャートを参照して説明する。
 ステップS501では、制御部301が、測定開始の指示を検出する。本実施形態では、測定スイッチ314の状態を監視し、測定スイッチ314のオン状態を検出すると測定開始の指示を検出したと判定する。制御部301は、測定開始の指示を検出すると、ステップS502において、測定回路321からの出力信号405の発振周波数を測定する。
 ステップS503では、ステップS502において測定された出力信号405の発振周波数に基づいて、被検者の体内水分量を算出する。
 ステップS504では、ステップS503で算出された体内水分量が所定の閾値を超えるか否かに基づいて被検者が脱水状態か否かを判定する。なお、この場合の閾値とは、例えば、水を100%、空気を0%とした時の35%に相当する値が望ましい。
 ステップS505では、今回の測定情報をメモリ303に格納する。ステップS506では、今回の測定により算出された体内水分量を表示部112に表示する。このとき、脱水状態か非脱水状態かの判定結果に応じた表示形態により表示を行う(例えば、脱水状態の場合には、赤色にて体内水分量を表示し、非脱水状態の場合には、青色にて体内水分量を表示する)。
 以上の説明から明らかなように、本実施形態に係る体内水分計100では、センサ部123のスライド方向に略平行な方向に力が加わった場合に、該スライド方向と略直交する方向に変形する変形部材を配する構成とした。
 これにより、被検者の腋窩への挿入時及び被検者の腋窩からの取り出し時においては、細い先端形状を維持し、被検者の腋窩の皮膚に接触している状態では、広範囲で被検者の腋窩の皮膚に接触させることが可能となった。
 つまり、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を実現することが可能となった。
 [第2の実施形態]
 上記第1の実施形態では、接触部130として変形部材121を配し、被検者の腋窩の皮膚に接触させた際に、該変形部材121の先端が外側に向かって変形するように構成したが本発明はこれに限定されない。例えば、変形部材121と同様の形状を有し、かつ、挿入部120に対して回動自在に取り付けられた支持部材を配する構成としてもよい。以下、本実施形態の体内水分計について説明する。
 <1.体内水分計の外観構成>
 図6の6Aは、本発明の第2の実施形態に係る体内水分計600の外観構成を示す図である。なお、上記第1の実施形態に係る体内水分計100と同様の構成については、同じ参照番号を付し、ここでは説明を省略する。
 図6の6Aに示すように、挿入部120の先端には接触部630が設けられている。接触部630は、挿入部120の上面125、下面126、側面116、117それぞれに沿って(つまり、挿入部120の外周面に沿って)形成された支持部材621を備える。このように、支持部材621を、挿入部120の外周面に沿って形成することで、体内水分計600は、従来の体内水分計1300と同様に、全体として、先端に向かって細くなる形状を有することとなり、被検者の腋窩への挿入の容易性が維持される。
 支持部材621の内部には、被検者の体内の水分量を測定するための測定部が配されている。図6の6Bは、接触部130の斜視図である。図6の6Bに示すように、センサヘッド124は、支持部材621の先端位置よりも奥まった位置に配置されている。このため、体内水分計600が被検者の腋窩に挿入された場合、被検者の腋窩に対しては、はじめに、支持部材621の先端が接触する。
 ここで、支持部材621は、先端側がそれぞれ外側に湾曲しており、かつ、基端側がそれぞれ挿入部120に回動軸631を介して回動自在に取り付けられている。このため、支持部材621は、被検者の腋窩に接触すると、外側に向かって回動する。図6の6Cは、支持部材621が被検者の腋窩に接触することで、外側に向かって回動した様子を示している。
 図6の6Cに示すように、支持部材621が、外側に向かって回動すると、センサ部123が相対的に支持部材621よりも先端側に位置することとなる。この結果、センサヘッド124が被検者の腋窩に接触することとなる。
 このように、支持部材621を回動させたうえで、センサヘッド124を被検者の腋窩に押し当てるように構成したのは、測定中の体内水分計600のゆらぎをなくし、安定した測定を実現するためである。以下、図7を用いて、更に詳細に説明する。
 <2.接触部の接触状態の説明>
 図7は、被検者の腋窩に体内水分計600を挿入した場合の、接触部630の被検者の腋窩に対する接触状態を説明するための図である。
 図7において、7Aは、被検者の左上半身を示しており、7B~7Eは、7Aのa-a断面及び体内水分計600の接触部630を模式的に示したものである。
 7Bに示すように、被検者の腋窩に挿入した状態では、支持部材621が被検者の腋窩の皮膚に接触していないため、支持部材621は回動しておらず、センサ部123も、支持部材621の先端よりも奥まった位置にある。
 7Cは、被検者の腋窩の皮膚に支持部材621の先端が接触した状態を示しており、この状態から、更に矢印201方向に体内水分計600を押すことで、回動軸631周りの支持部材621の回動が開始される。
 7Dは、体内水分計600を押すことで、支持部材621が回動し、センサ部123のセンサヘッド124が、被検者の腋窩の皮膚に接触した状態を示している。この状態から、更に矢印201方向に体内水分計600を押すことで、支持部材621は更に回動するとともに、センサ部123がスライド方向にスライドする。
 7Eは、センサ部123がスライド方向にスライドした状態を示している。7Eに示すように、センサ部123のスライド方向へのスライドが完了した状態では、支持部材621が大きく回動し、腋窩の皮膚との接触面積が拡大する。つまり、センサヘッド124の腋窩の皮膚への接触状態を、支持部材621が支持していることとなるため、従来の体内水分計のように、先端面1322のみで支持していた場合と比較して、安定して支持することが可能となる。
 なお、測定が完了し、体内水分計600を被検者の腋窩から取り出すときには、7Bに示すように、支持部材621はもとの位置に戻るため、スムーズに取り出すことができる。
 以上の説明から明らかなように、本実施形態に係る体内水分計600では、センサ部123のスライド方向に略平行な方向に力が加わった場合に、回動軸周りに回動することにより、先端が該スライド方向と略直交する方向に移動する支持部材を配する構成とした。
 これにより、被検者の腋窩への挿入時及び被検者の腋窩からの取り出し時においては、細い先端形状を維持し、被検者の腋窩の皮膚に接触している状態では、広範囲で被検者の腋窩の皮膚に接触させることが可能となった。
 つまり、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を実現することが可能となった。
 [第3の実施形態]
 上記第1及び第2の実施形態では、変形部材121または支持部材621の先端が外側に向かって移動するように、変形部材121それぞれを変形または回動させる構成としたが本発明はこれに限定されず、各変形部材121または各支持部材621の側面に弾性膜を取り付け、隣接する変形部材121どうし、または隣接する支持部材621どうしを結合してもよい。
 図8は、本発明の第3の実施形態に係る体内水分計800の外観構成を示す図である。なお、上記第1の実施形態に係る体内水分計100と同様の構成については、同じ参照番号を付し、ここでは説明を省略する。
 図8の8Aに示すように、挿入部120の先端には接触部830が設けられている。接触部830は、挿入部120の上面125、下面126、側面116、117それぞれに沿って(つまり、挿入部120の外周面に沿って)形成された変形部材121を備える。
 ここで、図8の8Bに示すように、本実施形態の場合、変形部材121の側面には、伸縮可能な弾性膜801が取り付けられており、隣接する変形部材121どうしが、側面において連結されている。
 図8の8Cは、変形部材121が被検者の腋窩に接触することで、外側に向かって変形した様子を示している。8Cに示すように、変形部材121の変形に伴って、弾性膜801が伸長するため、センサ部123は変形部材121および弾性膜801により密閉された状態で被検者の腋窩に接触することとなる。この結果、被検者の体内の水分量をより精度よく測定することが可能となる。
 以上の説明から明らかなように、本実施形態に係る体内水分計800では、変形部材121の側面に弾性膜801を取り付け、隣接する変形部材121どうしを連結する構成とした。これにより、上記第1の実施形態と同様の効果に加え、更に、測定時の密閉性の向上に伴う測定精度の向上を図ることが可能となった。
 なお、本実施形態では、変形部材121の側面に弾性膜801を取り付ける構成について説明したが、支持部材621の側面に弾性膜801を取り付ける構成であってもよいことはいうまでもない。
 [第4の実施形態]
 上記第1乃至第3の実施形態では、センサ部123のスライド方向に略平行な方向に力が加わった場合に、変形することにより、または、回動軸周りに回動することにより、先端が外側に移動する変形部材または支持部材について説明したが、本発明はこれに限定されない。
 例えば、センサ部123のスライド方向に略平行な方向に力が加わった場合に、変形することにより、中央部(つまり、先端以外の一部)が外側に移動する中央変形部材を配するようにしてもよい。以下、本実施形態の詳細について説明する。
 <1.体内水分計の外観構成>
 図9の9Aは、本発明の第4の実施形態に係る体内水分計900の外観構成を示す図である。なお、上記第1の実施形態に係る体内水分計100と同様の構成については、同じ参照番号を付し、ここでは説明を省略する。
 図9の9Aに示すように、挿入部120の先端には接触部930が設けられている。接触部930は、挿入部120の上面125、下面126、側面116、117それぞれに沿って(つまり、挿入部120の外周面に沿って)形成された中央変形部材921を備える。このように、中央変形部材921を、挿入部920の外周面に沿って形成することで、体内水分計900は、従来の体内水分計1300と同様に、全体として、先端に向かって細くなる形状を有することとなり、被検者の腋窩への挿入の容易性が維持される。
 ここで、図9の9Bに示すように、中央変形部材921には、スライド方向の中央位置に、変形部901が設けられており、被検者の腋窩に接触すると、変形部901が外側に向かって折れ曲がるよう構成されている。図9の9Cは、中央変形部材921が被検者の腋窩に接触することで、変形部901が外側に向かって折れ曲がった様子を示している。
 図9の9Cに示すように、中央変形部材921が、変形部901において外側に向かって折れ曲がると、センサ部123が相対的に中央変形部材921よりも先端側に位置することとなる。この結果、センサヘッド124が被検者の腋窩に接触することとなる。
 このように、中央変形部材921を変形部901において変形させたうえで、センサヘッド124を被検者の腋窩に押し当てるように構成したのは、測定中の体内水分計900のゆらぎをなくし、安定した測定を実現するためである。以下、図10を用いて、更に詳細に説明する。
 <2.接触部の接触状態の説明>
 図10は、被検者の腋窩に体内水分計900を挿入した場合の、接触部930の被検者の腋窩に対する接触状態を説明するための図である。
 図10において、10Aは、被検者の左上半身を示しており、10B~10Eは、10Aのa-a断面及び体内水分計900の接触部930を模式的に示したものである。
 10Bに示すように、被検者の腋窩に挿入した状態では、中央変形部材921が被検者の腋窩の皮膚に接触していないため、中央変形部材921は変形しておらず、センサ部123も、中央変形部材921の先端よりも奥まった位置にある。
 10Cは、被検者の腋窩の皮膚に中央変形部材921の先端が接触した状態を示しており、この状態から、更に矢印201方向に体内水分計900を押すことで、中央変形部材921の変形が開始される。
 10Dは、体内水分計900を押すことで、中央変形部材921が変形部901にて変形し、センサ部123のセンサヘッド124が、被検者の腋窩の皮膚に接触した状態を示している。この状態から、更に矢印201方向に体内水分計900を押すことで、中央変形部材921は更に変形するとともに、センサ部123がスライド方向にスライドする。
 10Eは、センサ部123がスライド方向にスライドした状態を示している。10Eに示すように、センサ部123のスライド方向へのスライドが完了した状態では、中央変形部材921が大きく変形し、腋窩の皮膚との接触面積が拡大する。つまり、センサヘッド124の腋窩の皮膚への接触状態を、中央変形部材921が支持していることとなるため、従来の体内水分計のように、先端面1322のみで支持していた場合と比較して、安定して支持することが可能となる。
 なお、測定が完了し、体内水分計900を被検者の腋窩から取り出すときには、10Bに示すように、中央変形部材921はもとの位置に戻るため、スムーズに取り出すことができる。
 以上の説明から明らかなように、本実施形態に係る体内水分計900では、センサ部123のスライド方向に略平行な方向に力が加わった場合に、スライド方向の中央位置に設けられた変形部が、スライド方向と略直交する方向に移動する中央変形部材を配する構成とした。
 これにより、被検者の腋窩への挿入時および被検者の腋窩からの取り出し時においては、細い先端形状を維持し、被検者の腋窩の皮膚に接触している状態では、広範囲で被検者の腋窩の皮膚に接触させることが可能となった。
 つまり、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を実現することが可能となった。
 [第5の実施形態]
 上記第1乃至第4の実施形態の変形部材121、支持部材621、中央変形部材921では、変形部901とセンサ部123とがそれぞれ独立して変位するよう構成したが、本発明はこれに限定されず、変形部901とセンサ部123とは一体的に変位するように構成してもよい。以下、本実施形態の変位部材の詳細について説明する。
 <1.体内水分計の外観構成>
 図11の11Aは、本発明の第5の実施形態に係る体内水分計1100の外観構成を示す図である。なお、上記第1の実施形態に係る体内水分計100と同様の構成については、同じ参照番号を付し、ここでは説明を省略する。
 図11の11Aに示すように、挿入部120の先端には接触部1130が設けられている。接触部1130は、挿入部120の上面、125、下面126、側面116、117それぞれに沿って(つまり、挿入部120の外周面に沿って)形成された変位部材である弾性部材1121を備える。このように、弾性部材1121を、挿入部120の外周面に沿って形成することで、体内水分計1100は、従来の体内水分計1300と同様に、全体として、先端に向かって細くなる形状を有することとなり、被検者の腋窩への挿入の容易性が維持される。
 ここで、図11の11Bに示すように、弾性部材1121はセンサ部123と接続されており、センサヘッド124が被検者の皮膚に押し当てられ、センサ部123がスライド方向(141a)にスライドすることで、外側に変形するよう構成されている。
 このように、センサ部123が被検者の腋窩に押し当てられることで、弾性部材1121が外側に変形する構成としたのは、測定中の体内水分計1100のゆらぎをなくし、安定した測定を実現するためである。以下、図12を用いて、更に詳細に説明する。
 <2.接触部の接触状態の説明>
 図12は、被検者の腋窩に体内水分計1100を挿入した場合の、接触部1130の被検者の腋窩に対する接触状態を説明するための図である。
 図12において、12Aは、被検者の左上半身を示しており、12B~12Eは、12Aのa-a断面及び体内水分計1100の接触部1130を模式的に示したものである。
 図12Bに示すように、被検者の腋窩に挿入した状態では、センサヘッド124が被検者の腋窩の皮膚に接触していないため、弾性部材1121は変形していない。
 12Cは、被検者の腋窩の皮膚にセンサヘッド124が接触した状態を示しており、この状態から、更に矢印201方向に体内水分計1100を押すことで、センサ部123がスライド方向にスライドするとともに、弾性部材1121の変形が開始される。
 12Dは、センサ部123がスライドすることで、弾性部材1121が外側に変形し、弾性部材1121の一部が、腋窩に接触した状態を示している。12Eは、体内水分計1100が更に押され、センサ部123がスライド可能な限界位置までスライドした様子を示している。12Eに示すように、センサ部123のスライド方向へのスライドが完了した状態では、弾性部材1121が外側に大きく変形し、腋窩の皮膚と接触する。つまり、センサヘッド124の腋窩の皮膚への接触状態を、弾性部材1121が支持していることとなるため、従来の体内水分計のように、先端面1322のみで支持していた場合と比較して、安定して支持することが可能となる。
 なお、測定が完了し、体内水分計1100を被検者の腋窩から取り出すときには、12Bに示すように、弾性部材1121はもとの位置に戻るため、スムーズに取り出すことができる。
 以上の説明から明らかなように、本実施形態に係る体内水分計1100では、センサ部123のスライドに伴って変形する弾性部材1121を配する構成とした。これにより、被検者の腋窩への挿入時および被検者の腋窩からの取り出し時においては、細い先端形状を維持し、センサヘッド124が被検者の腋窩に押し当てられた状態では、弾性部材1121を腋窩の皮膚に接触させることが可能となった。
 つまり、被検者の腋窩への挿入が容易であり、かつ、測定時の安定性が高い体内水分計を実現することが可能となった。
 [その他の実施形態]
 上記第1乃至第4の実施形態では、先端面122の形状を四角形とし、変形部材121、支持部材621、または、中央変形部材921を、先端面122の各辺にそれぞれ1つずつ配する構成としたが、本発明はこれに限定されない。先端面122の各辺に複数配するように構成してもよいし、先端面の形状を他の形状にしてもよい。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

Claims (8)

  1.  体内水分計であって、
     直線状に形成された本体部と、
     前記本体部の一端から湾曲して延設された挿入部と、
     前記挿入部の先端に設けられ、被検者の測定部位に接触する接触部と、を備え、
     前記接触部は、
      先端が被検者の測定部位に押し当てられることでスライドし、該被検者の生体内の水分に関するデータを測定するセンサ部と、
      少なくとも、前記センサ部がスライドした状態において、外側へと変位する変位部材と
     を備えることを特徴とする体内水分計。
  2.  前記変位部材は、
     前記センサ部を取り囲むように配されており、
     前記被検者に接触することで、前記センサ部のスライド方向に力が加わった場合に、一部が、該スライド方向と略直交する方向に移動することで、外側へと変位し、前記被検者との接触面積を拡大させるとともに、前記センサ部と前記被検者の測定部位との接触を可能にすることを特徴とする請求項1に記載の体内水分計。
  3.  前記変位部材は、前記被検者に接触することで、前記センサ部のスライド方向に力が加わった場合に、それぞれが、外側に向かって湾曲することにより、それぞれの先端が、該スライド方向と略直交する方向に移動する複数の変形部材からなることを特徴とする請求項2に記載の体内水分計。
  4.  前記変位部材は、前記被検者に接触することで、前記センサ部のスライド方向に力が加わった場合に、それぞれが、外側に向かって回動することにより、それぞれの先端が、該スライド方向と略直交する方向に移動する複数の支持部材からなることを特徴とする請求項2に記載の体内水分計。
  5.  前記変位部材は、前記被検者に接触することで、前記センサ部のスライド方向に力が加わった場合に、それぞれが、該スライド方向の中央位置において外側に向かって変形することにより、該中央位置が該スライド方向と略直交する方向に移動する複数の変形部材からなることを特徴とする請求項2に記載の体内水分計。
  6.  前記変位部材は、前記センサ部がスライドすることで、外側へ向かって変形する弾性部材からなることを特徴とする請求項1に記載の体内水分計。
  7.  前記変位部材の側面には、伸縮可能な膜が取り付けられており、前記変位部材は該膜を介して互いに連結されていることを特徴とする請求項3または4に記載の体内水分計。
  8.  前記変位部材は、前記挿入部の外周面に沿って取り付けられていることを特徴とする請求項1乃至5のいずれか1項に記載の体内水分計。
PCT/JP2012/006081 2012-09-25 2012-09-25 体内水分計 WO2014049631A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006081 WO2014049631A1 (ja) 2012-09-25 2012-09-25 体内水分計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/006081 WO2014049631A1 (ja) 2012-09-25 2012-09-25 体内水分計

Publications (1)

Publication Number Publication Date
WO2014049631A1 true WO2014049631A1 (ja) 2014-04-03

Family

ID=50387103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006081 WO2014049631A1 (ja) 2012-09-25 2012-09-25 体内水分計

Country Status (1)

Country Link
WO (1) WO2014049631A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186880A (ja) * 2017-04-28 2018-11-29 株式会社村田製作所 測定器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124330A1 (ja) * 2011-03-15 2012-09-20 テルモ株式会社 水分計および体内水分計

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124330A1 (ja) * 2011-03-15 2012-09-20 テルモ株式会社 水分計および体内水分計

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186880A (ja) * 2017-04-28 2018-11-29 株式会社村田製作所 測定器

Similar Documents

Publication Publication Date Title
JP5993014B2 (ja) 体内水分計
JP4706782B2 (ja) 体脂肪測定装置
US9433370B2 (en) Moisture meter
JP5883151B2 (ja) 体内水分計および表示制御方法
JP4229960B2 (ja) 腹部インピーダンス式体組成計
JP2010172543A (ja) 経皮水分蒸散量を推定する方法及び皮膚バリア機能評価装置
WO2014049631A1 (ja) 体内水分計
JP5917911B2 (ja) 体内水分計および表示制御方法
JP5426518B2 (ja) 体脂肪測定装置
JP5993013B2 (ja) 体内水分計、体内水分計の制御方法、および記憶媒体
JP5993015B2 (ja) 体内水分計
JP5859846B2 (ja) 体内水分計
WO2013136659A1 (ja) 体内水分計
WO2014027379A1 (ja) 体内水分計
WO2013132757A1 (ja) 体内水分計及びセンサ
JP5883150B2 (ja) 体内水分計および表示制御方法
WO2014162341A1 (ja) 体内水分計、検出装置、それらの制御方法、および記憶媒体
JP2013066565A (ja) 体内水分計及びその制御方法
JP2013192891A (ja) 体内水分計
JP2013027431A (ja) 体内水分計およびその制御方法
JP2013192893A (ja) 体内水分計
JP2013132517A (ja) 体内水分計
WO2013132798A1 (ja) 体内水分計及びその基準器
JP2013172770A (ja) 体内水分計及びそのセンサ部保護用カバー
WO2014027374A1 (ja) 体内水分計、体内水分計の制御方法、および記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP