WO2014048392A1 - 利用微生物生产甜菊糖苷类化合物的方法 - Google Patents

利用微生物生产甜菊糖苷类化合物的方法 Download PDF

Info

Publication number
WO2014048392A1
WO2014048392A1 PCT/CN2013/084618 CN2013084618W WO2014048392A1 WO 2014048392 A1 WO2014048392 A1 WO 2014048392A1 CN 2013084618 W CN2013084618 W CN 2013084618W WO 2014048392 A1 WO2014048392 A1 WO 2014048392A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
stevia
glycosyltransferase
synthase
derived
Prior art date
Application number
PCT/CN2013/084618
Other languages
English (en)
French (fr)
Inventor
王勇
熊智强
李诗渊
汪建峰
Original Assignee
中国科学院上海生命科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海生命科学研究院 filed Critical 中国科学院上海生命科学研究院
Priority to US14/432,147 priority Critical patent/US9611498B2/en
Priority to CA2886893A priority patent/CA2886893C/en
Priority to EP13841968.4A priority patent/EP2902410B1/en
Publication of WO2014048392A1 publication Critical patent/WO2014048392A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention is in the field of synthetic biology; more specifically, the present invention relates to a method of producing a stevioside compound using a microorganism. Background technique
  • Rebaudioside A (RebA) is The new natural sweetener extracted from rebfl ⁇ 'imfl) has the characteristics of high sweetness, low caloric value and good stability.
  • Rebaudioside A has the highest sweetness compared to other steviosides, about 450 times more than sucrose, and has a calorific value of only 1/300 of sucrose.
  • Rebaudioside A has high sweetness, white color, pure sweetness and no odor. Therefore, it is a natural best substitute for sucrose and chemically synthesized sweeteners. It is internationally known as "the world's third sugar source”. .
  • Fig. 1 The structural formula of the stevioside compound isolated from stevia is shown in Fig. 1. As Rl and R2 are different, stevioside compounds with different side chain modifications are produced, as shown in Table 1. The higher the content of rebaudioside A in stevioside, the more pure the sweetness is, and the more consumers are favored, so the content of rebaudioside A in the product must be increased during the production of stevia.
  • Rebaudioside A is mainly extracted from stevia leaves.
  • the preparation process is mainly as follows: drying and crushing stevia leaves, liquid phase leaching, impurity removal, resin treatment, spray drying and refining.
  • stevia leaves can be To accumulate up to 4%-20% of the dry weight of stevia.
  • the cultivation of stevia requires a large amount of land, and the production of stevia has many problems such as uneven quality of stevia, low conversion efficiency of raw materials, and low purity of extracted products. Therefore, it is necessary to study a new large-scale production method of rebaudioside A which is easy to obtain raw materials, safe in production and simple in extraction method.
  • the present invention provides, in a first aspect, an isolated polypeptide, characterized in that the polypeptide is a non-stevia-derived glycosyltransferase for catalyzing C-glucose residues in the stevioside compound. 2' Transfer another sugar.
  • the amino acid sequence of the amino acid sequence having the same function as the stevia source has an amino acid sequence identity of not more than 95%, preferably not more than 80%; preferably, not more than 70%; preferably, not more than 60%; preferably, not more than 50%; more preferably, not more than 40%; more preferably, not more than 30%.
  • non-stevia source glycosyltransferase is derived from Starmerella bombicola or Ipomoea batatas.
  • the glycosyltransferase derived from S. cerevisiae is characterized by having the amino acid sequence of SEQ ID NO: 41 (referred to as UGTB1) or based on SEQ ID NO: 41 A homologous derivative protein formed by substitution, deletion or addition of one or more amino acid residues.
  • the sweet potato-derived glycosyltransferase is characterized by having the amino acid sequence set forth in SEQ ID NO: 51 (referred to as IBGT) or based on SEQ ID NO: 51.
  • IBGT amino acid sequence set forth in SEQ ID NO: 51
  • a homologous derivative protein formed by substitution, deletion or addition of one or more amino acid residues.
  • the present invention provides an isolated nucleotide sequence, characterized in that the nucleotide sequence encodes a non-stevia-derived glycosyltransferase for catalyzing zero in stevioside compounds - C-2' of the glucose residue is transferred to the previous sugar.
  • the nucleotide sequence has: (1) the sequence set forth in SEQ ID NO: 42, or
  • SEQ ID NO: 42 is a sequence having a homology of 70% or more (preferably, 80% or more; more preferably 90% or more, more preferably 95% or more X2) as shown in SEQ ID NO: 52.
  • the nucleotide sequence is (1) the sequence set forth in SEQ ID NO: 42 or (2) the sequence set forth in SEQ ID NO:52.
  • the present invention provides a use of a non-stevia-derived glycosyltransferase for recombinant expression in a host cell to produce a stevioside compound, characterized by catalyzing a stevioside compound - C-2 of the glucose residue, then transfer a sugar.
  • the catalytic substrate of the glycosyltransferase includes, but is not limited to, steviol-13-0-glucoside (also known as steviol monoglycoside), and catechin (also known as sweet leaf raspberry) , stevioside, rebaudioside A; preferably, catalyzing the production of steviol glycosides by steviol monoglycosides.
  • the invention provides a method of synthesizing a stevioside compound, characterized in that recombinant expression in a host cell catalyzes the C-2' retransfer of the 0-glucose residue of the stevioside compound A sugar non-stevia-derived glycosyltransferase. .
  • the host cell further comprises one or more of the following:
  • the host cell further comprises a gene expression cassette comprising the following enzyme: 1-deoxyxylose
  • the host cell is selected from the group consisting of: a prokaryotic microbial cell or a eukaryotic microbial cell.
  • the prokaryotic microorganism is: Escherichia coli, Bacillus subtilis, Acetobacter, Corynebacterium, Brevibacterium; more preferably, the Escherichia coli is selected from the group consisting of: BL21, BLR, DH10B, HMS, CD43 , JM109, DH5 ⁇ or Noveblue; or the eukaryotic microbial cells are: yeast, mold, basidiomycetes; the yeast is: Pichia pastoris, Saccharomyces cerevisiae, Kluyveromyces lactis.
  • the Pichia pastoris is selected from the group consisting of GS115, MC100-3, SMD1163, SMD1165, SMD1 168 or KM71; preferably, the Saccharomyces cerevisiae is selected from the group consisting of W303, CEN.PK2, S288c, FY834 or S1949; Preferably, the K. lactis is selected from the group consisting of GG799.
  • a method of synthesizing a stevioside compound comprising: recombinant expression in a cell (preferably, heterologous expression)
  • GGPPS geranylgeranyl pyrophosphate synthase
  • the cells are cultured to produce a stevioside compound.
  • the recombinant expression is also included:
  • the recombinant geranylgeranyl pyrophosphate synthase Cuban pyrophosphate synthase, amylin synthase, elastene oxidase, ethioate- 13 ⁇ -hydroxylation
  • the recombinant geranylgeranyl pyrophosphate synthase Cuban pyrophosphate synthase, amylin synthase, elastene oxidase, ethioate- 13 ⁇ -hydroxylation
  • the enzyme UGT85C2 glycosyltransferase, UGTB 1/IBGT glycosyltransferase and UGT74G1 glycosyltransferase, thereby synthesizing stevioside.
  • the recombinant geranylgeranyl pyrophosphate synthase Cuban pyrophosphate synthase, amylin synthase, elastene oxidase, ethioate- 13 ⁇ -hydroxylation
  • the enzyme UGT85C2 glycosyltransferase, UGTB 1/IBGT glycosyltransferase, UGT74G 1 glycosyltransferase and UGT76G1 glycosyltransferase, thereby synthesizing rebaudioside glycosides.
  • the geranylgeranyl pyrophosphate synthase is derived from Canadian yew ( ⁇ 3 ⁇ 4; ⁇ « cimi1 ⁇ 2?ew; ⁇ ) or stevia rebaudiana ) (i ⁇ i& , from Canadian yew);
  • the Cuban pyrophosphate synthase is derived from stevia or Bradyrhizobium fl/w 'c m (; preferably, from stevia);
  • the olefin synthase is derived from stevia or slow-growing soybean rhizobium (preferably, derived from stevia); the bifunctional shellene synthase is derived from Physcomitrella patens or Fujikura Mold ⁇ Gibberella fujikuroi) (preferably, from the small bowl);
  • the shellene oxidase is derived from stevia, Gibberella serrata, Arabidopsis thaliana (ArabWo/ ⁇ thaliana) or slow-growing soybean rhizobium (preferably, from stevia);
  • the mandelic acid-13ct-hydroxylase is derived from stevia, Arabidopsis (preferably, derived from stevia); the UGT85C2 glycosyltransferase, UGT74G1 glycosyltransferase, UGT76G1 glycosyltransferase source In stevia;
  • the IBGT glycosyltransferase is derived from sweet potato (Ipomoea batatas);
  • the cytochrome P450 redox protein is derived from yellow Artemisia annua (Ar em a imm i , Phaeosphaeria sp. L487, Gibberella serrata, stevia or Arabidopsis (preferably, from Helminthosporium).
  • the ( ⁇ ) bifunctional shellene synthase is used; and the geranylgeranyl pyrophosphate synthase is derived from Canadian yew, said The bifunctional shellene synthase is derived from Physcomitrella edulis, which is derived from the shellene oxidase, the uric acid-13ct-hydroxylase, the UGT85C2 glycosyltransferase, the UGT74G1 glycosyltransferase, and the UGT76G1 glycosyltransferase. Stevia; the UGTB1 glycosyltransferase is derived from S. cerevisiae; the cytochrome P450 redox protein is derived from Helicobacter pylori; and the IGBT glycosyltransferase is derived from sweet potato (Ipomoea batatas).
  • the yew-derived geranylpyrophosphate synthase derived from Taxus chinensis has a N-terminal plastid transit peptide sequence removed on a wild-type basis; preferably, removed N-terminal 98 amino acids; the cytochrome P450 redox protein derived from Artemisia annua L., which removes the N-terminal transmembrane region sequence on a wild-type basis; preferably, the N-terminal 66 amino acids are removed.
  • the geranylgeranyl pyrophosphate synthase has the amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 45, or in SEQ ID NO: 1 or SEQ ID NO: 45 is substituted, deleted or added by one or more (eg 1-30, preferably 1-20, more preferably 1-10, more preferably 1-5) amino acid residues. And the same function-derived protein;
  • the Cuban pyrophosphate synthase has the amino acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 25, or one or more based on SEQ ID NO: 3 or SEQ ID NO: 25 (such as 1- 30, preferably 1-20, more preferably 1-10, more preferably 1-5) isoform-derived proteins formed by substitution, deletion or addition of amino acid residues;
  • the enzyme has the amino acid sequence shown in SEQ ID NO: 5 or SEQ ID NO: 27, or one or more (such as 1-30, preferably 1) based on SEQ ID NO: 5 or SEQ ID NO: 27.
  • the shellene oxidase has the amino acid sequence of SEQ ID NO: 7, SEQ ID NO: 3 K SEQ ID NO: 37 or SEQ ID NO: 29, or SEQ ID NO: 7, SEQ ID NO: 31 SEQ ID NO: 37 or SEQ ID NO: 29 is based on one or more (eg, 1-30, preferably 1-20, more preferably 1-10, more preferably 1-5) a functionally-derived protein formed by substitution, deletion or addition of an amino acid residue;
  • the isenoate-13 ⁇ -hydroxylase has the amino acid sequence of SEQ ID NO: 9, SEQ ID NO: 43, SEQ ID NO: 47 or SEQ ID NO: 49, or SEQ ID NO: 9, SEQ ID NO: 43, SEQ ID NO: 47 or SEQ ID NO: 49 is a homologous derivative protein formed by substitution, deletion or addition of one or more amino acid residues;
  • the UGT85C2 glycosyltransferase has the amino acid sequence shown in SEQ ID NO: 1 1 or in SEQ ID NO: 1 1 Formed by substitution, deletion or addition of one or more (eg 1-30, preferably 1-20, more preferably 1-10, more preferably 1-5) amino acid residues Functionally derived protein;
  • the UGT74G1 glycosyltransferase has the amino acid sequence shown in SEQ ID NO: 13, or one or more (e.g., 1-30, preferably 1-20, more preferably 1) based on SEQ ID NO: 13. -10, more preferably 1-5) isofunctionally-derived proteins formed by substitution, deletion or addition of amino acid residues;
  • the UGT76G1 glycosyltransferase has the amino acid sequence shown in SEQ ID NO: 15, or one or more (e.g., 1-30, preferably 1-20, more preferably 1) based on SEQ ID NO: 15. -10, more preferably 1-5) isofunctionally-derived proteins formed by substitution, deletion or addition of amino acid residues;
  • the UGTB1 glycosyltransferase has the amino acid sequence shown in SEQ ID NO: 41, or one or more based on SEQ ID NO: 41 (eg, 1-30, preferably 1-20, more Preferably, from 1 to 10, more preferably from 1 to 5, a functionally-derived protein formed by substitution, deletion or addition of an amino acid residue;
  • the IBGT glycosyltransferase has the amino acid sequence set forth in SEQ ID NO: 51, or one or more based on SEQ ID NO: 51 (eg, 1-30, preferably 1-20, more Preferably, from 1 to 10, more preferably from 1 to 5, a functionally-derived protein formed by substitution, deletion or addition of an amino acid residue;
  • the cytochrome P450 redox protein has SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO:
  • amino acid sequence of SEQ ID NO: 35 or SEQ ID NO: 39, or SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 33, SEQ ID NO: 35 or SEQ ID NO : 39 is based on the substitution, deletion or addition of one or more (eg 1-30, preferably 1-20, more preferably 1-10, more preferably 1-5) amino acid residues.
  • the same function-derived protein is formed.
  • the gene encoding the geranylgeranyl pyrophosphate synthase has the SEQ ID NO: 1
  • nucleotide sequence shown by SEQ ID NO: 46 or 70% or more with the sequence of SEQ ID NO: 2 or SEQ ID NO: 46 (preferably 80% or more; more preferably 90% or more; More preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the Cuban pyrophosphate synthase has the nucleotide sequence shown in SEQ ID NO: 4 or SEQ ID NO: 26, or 70% or more with the sequence of SEQ ID NO: 4 or SEQ ID NO: 26 ( More preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the amylin synthase has the nucleotide sequence shown in SEQ ID NO: 6 or SEQ ID NO: 28, or 70% or more with the sequence of SEQ ID NO: 6 or SEQ ID NO: 28. More preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the bifunctional shellene synthase has the nucleotide sequence shown in SEQ ID NO: 22 or SEQ ID NO: 24, or 50% or more with the sequence of SEQ ID NO: 22 or SEQ ID NO: 24 ( More preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the alkenes oxidase has the nucleotide sequence of SEQ ID NO: 8, SEQ ID NO: 32, SEQ ID NO: 38 or SEQ ID NO: 30, or with SEQ ID NO:
  • the sequence of SEQ ID NO: 32, SEQ ID NO: 38 or SEQ ID NO: 30 is 70% or more (preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more) More preferably, 97% or more of the same nucleotide sequence encoding the
  • nucleotide sequence shown as SEQ ID NO: 50 or 70% or more with the sequence of SEQ ID NO: 10, SEQ ID NO: 44, SEQ ID NO: 48 or SEQ ID NO: 50 More preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the UGT85C2 glycosyltransferase has the nucleotide sequence shown in SEQ ID NO: 12, or with SEQ
  • ID NO: 12 sequences have more than 70% (preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) a nucleotide sequence of a functional protein;
  • the gene encoding the UGT74G1 glycosyltransferase has the nucleotide sequence shown in SEQ ID NO: 14, or 70% or more with the sequence of SEQ ID NO: 14 (preferably 80% or more; more preferably 90% or more; a nucleotide sequence encoding a homologous protein of preferably more than 93%; more preferably 95% or more; more preferably 97% or more;
  • the gene encoding the UGT76G1 glycosyltransferase has the nucleotide sequence shown in SEQ ID NO: 16, or 70% or more with the sequence of SEQ ID NO: 16 (preferably 80% or more; more preferably 90% or more; a nucleotide sequence encoding a homologous protein of preferably more than 93%; more preferably 95% or more; more preferably 97% or more;
  • the gene encoding the UGTB1 glycosyltransferase has the nucleotide sequence shown in SEQ ID NO: 42 or 50% or more with the sequence of SEQ ID NO: 42 (preferably 60% or more; preferably 70%) Above; preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein;
  • the gene encoding the IBGT glycosyltransferase has the nucleotide sequence shown in SEQ ID NO: 52, or 50% or more with the sequence of SEQ ID NO: 42 (preferably 60% or more; preferably 70%) Above; preferably 80% or more; more preferably 90% or more; more preferably 93% or more; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequence encoding the same functional protein or
  • the gene encoding the cytochrome P450 redox protein has the nucleotide sequence of SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 34, SEQ ID NO: 36 or SEQ ID NO: 40; Or more than 70% (; preferably 80% or more; more preferably 90%) with the sequence of SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 34, SEQ ID NO: 36 or SEQ ID NO: 40 More preferably, more than 93%; more preferably 95% or more; more preferably 97% or more) identical nucleotide sequences encoding the same functional protein.
  • the cells are selected from, but not limited to, prokaryotic microbial cells, eukaryotic microbial cells.
  • the prokaryotic microorganism is, but not limited to, Escherichia coli, Bacillus subtilis, Acetobacter, Corynebacterium, Brevibacterium; more preferably, the Escherichia coli is selected from the group consisting of: BL21, BLR, DH10B, HMS, CD43, JM109, DH5a or Noveblue.
  • the eukaryotic microbial cell is (but not limited to): yeast, mold, basidiomycete; the yeast is (but not limited to): Pichia pastoris, Saccharomyces cerevisiae, lactic acid gram Ruwei yeast.
  • the Pichia pastoris is selected from the group consisting of GS 115, MC100-3, SMD1163, SMD1165, SMD1 168 or KM71; preferably, the Saccharomyces cerevisiae is selected from the group consisting of W303, CEN.PK2, S288c, FY834 or S1949
  • the K. lactis is selected from the group consisting of GG799.
  • the pET, pBAD and pQE series expression vectors are used to recombinantly express each enzyme; or when the cell is a yeast cell, Each enzyme is recombinantly expressed using pPIC (e.g., pPIC3.5) or a pSY series expression vector (e.g., pSYOl).
  • the method comprises: inserting a gene encoding each of (a)-(g) and optionally (h)-(i) into the recombinant expression vector to construct a gene An expression cassette for recombinant expression of the enzyme.
  • an expression construct for synthesizing a stevioside compound, comprising a gene expression cassette comprising the following enzymes:
  • GGPPS geranylgeranyl pyrophosphate synthase
  • the expression construct for synthesizing a stevioside compound further comprises a gene expression cassette of the following enzymes:
  • an expression construct for use in the stevioside glycoside precursor pathway which comprises a gene expression cassette for:
  • DXS 1-deoxyxylose-5-phosphate synthase
  • CMS 2-methylerythrose-4-phosphatidyltransferase
  • MCS 2-methylerythrose-2,4-cyclodiphosphate synthesis Enzyme
  • IDI isopentenyl pyrophosphate isomerase
  • a host cell for the synthesis of a stevioside compound comprising the expression construct for the synthesis of a stevioside compound is provided.
  • the host cell for synthesizing the stevioside compound is a non-reproductive material and a non-propagating material.
  • the cell for synthesizing the stevioside compound is selected from, but not limited to, prokaryotic microbial cells, eukaryotic microbial cells.
  • the host cell for synthesizing the stevioside compound further comprises the use An expression construct that is potentiated by the stevioside glycoside precursor pathway.
  • a method of preparing an amylin comprising: recombinantly expressing (preferably, heterologously expressing) in a prokaryotic microbial cell, a eukaryotic microbial cell:
  • GGPPS geranylgeranyl pyrophosphate synthase
  • the geranylgeranyl pyrophosphate synthase is derived from Canadian yew or stevia; or the bifunctional shellene synthase is derived from Physcomitrella or Fujikura Gibberella.
  • an expression construct for the preparation of an amylin comprising a gene expression cassette of the following enzymes:
  • a host cell for preparing an amylin comprising the expression construct for preparing an amylin; and/or the precursor pathway for a stevioside compound Enhanced expression constructs.
  • the host cell for preparing the amylin is a Gram-negative DE3 lysogenic strain, a yeast cell.
  • a UGTB1/IBGT glycosyltransferase for converting a steviol monoglycoside to a steviol glycoside (preferably, C-glucose of C-glucose in steviol monoglycoside) Add a glycosyl group to the 2' site.
  • a combination of enzymes for the preparation of a stevioside compound comprising:
  • GGPPS geranylgeranyl pyrophosphate synthase
  • the combination of enzymes further comprises:
  • kits for preparing a stevioside compound includes: the expression construct for synthesizing a stevioside compound; more preferably, the expression construct for enhancing the stevioside glycoside precursor pathway; or
  • the kit includes: the host cell for synthesizing a stevioside compound.
  • a combination for preparing a shellene, the combination comprising: (a) geranylgeranyl pyrophosphate synthase (GGPPS) , and (b) a bifunctional shellene synthase (CPS/KS).
  • GGPPS geranylgeranyl pyrophosphate synthase
  • CPS/KS bifunctional shellene synthase
  • the combination for preparing an ocene further comprises: 1-deoxy-D-xylulose-5-phosphate synthase, 2 -C-methyl-D-erythritol 4-phosphate cytidylyltransferase, 2-methylerythrose-2,4-cyclodiphosphate synthase MCS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase) and isopentenyl-di hos hate delta-isomerase (IDI, isopentenyl-di hos hate delta-isomerase).
  • IDI isopentenyl-di hos hate delta-isomerase
  • kits for preparing a shellene comprising: the expression construct for preparing a shellene; more preferably comprising the An expression construct for the stevioside glycoside precursor pathway-enhanced; or the kit comprises: the host cell for preparing a shellene.
  • Figure 1 Structural formula of stevioside compounds.
  • Figure 2 Schematic diagram of the biosynthesis process of Rebaudioside A.
  • Figure 3A plasmid pET28a-ggw ⁇ map, insertion site Ncol/Hindlll;
  • FIG. 3B plasmid pET2 ⁇ c-Inserted gene, Inserted gene is cdps, cps/ks, ks, ko, kah, ugt85c2, ugtbl, ugt74gl, wg 76gJ plasmid insertion site of nine genes cloned separately (Ndel/Hindlll);
  • FIG. 3C plasmid pET21d-cpr map (insertion site Ncol/Hindlll);
  • FIG. 3D plasmid pJF47 (pET21d- ⁇ - ⁇ pD- ⁇ pF-W) map
  • Figure 3E plasmid pZQ110 (pET28a-ggp/ ⁇ -c/ ⁇ /fc?-fco- ⁇ -g S5c2-g W-g 74W-ugt76gl-cpr) map;
  • Figure 3F the restriction endonuclease map of the plasmid pZQllO vector
  • Figure 3G fi pPIC3.5K-Inserted gene, Inserted gene is cdps, cps/ks, ks, ko, kah, ugt85c2, ugtbl, ugt74gl, wg 76 ⁇ Plasmid insertion sites for the cloning of nine genes (Bglll/Notll)
  • Figure 3H plasmid pZQ2l0 (pSYl-ggpps-cps/ks-ko-kah-ugt85c2-iigtbl-iigt74gl-ugt76gl-cpr) map;
  • Figure 31 PCR validation map of plasmid p ZQ210 vector.
  • FIG. 4A SDS-PAGE map of cdps gene and ugt85c2 gene expression
  • Figure 4B SDS-PAGE map of ko gene and ks gene expression
  • FIG. 4C SDS-PAGE map of kah gene expression
  • Figure 4D SDS-PAGE map of ugt74gl gene expression
  • Figure 4E SDS-PAGE map of ugt76gl gene expression.
  • Figure 5A is a GC-MS chart of the amygene in the fermentation broth obtained in Example 6;
  • Fig. 5B shows the production of the shellene in the fermentation broth obtained in Example 6.
  • Figure 6B is a HPLC-MS chart of the mandelic acid in the fermentation broth obtained in Example 7;
  • Figure 6C is a HPLC-MS diagram of steviol in the fermentation broth obtained in Example 7;
  • Figure 6D is a HPLC-MS diagram of the steviol monoglycoside in the fermentation broth obtained in Example 7;
  • Fig. 6F shows the production of rebaudioside A in the fermentation broth obtained in Example 7.
  • Example 1 1 HPLC-MS diagram of steviol monoglycoside and steviol glycoside in the fermentation broth obtained.
  • the inventors have intensively studied for the first time to reveal key enzymes for heterologous biosynthesis of stevioside compounds, thereby enabling heterologous biosynthesis of stevioside compounds.
  • stevioside refers to a compound selected from the group consisting of steviol, steviol monoglycoside, steviol glycoside, stevioside, stevioside rebaudioside A or stevioside rebaudioside B. .
  • the "gene expression cassette” refers to a gene expression system comprising all the necessary elements required for expression of a polypeptide of interest (an enzyme of the invention), which typically comprises the following elements: a promoter, a gene encoding a polypeptide Sequences, terminators; in addition, optionally include signal peptide coding sequences, etc.; these elements are operably linked.
  • operably connected (connected) or “operably connected (connected)” means two or A spatial arrangement of the functionality of a plurality of nucleic acid regions or nucleic acid sequences.
  • the promoter region is placed at a specific position relative to the nucleic acid sequence of the gene of interest such that transcription of the nucleic acid sequence is directed by the promoter region such that the promoter region is "operably linked” to the nucleic acid sequence.
  • expression construct refers to a recombinant DNA molecule comprising a desired nucleic acid coding sequence, which may comprise one or more gene expression cassettes.
  • the "construct” is typically included in an expression vector.
  • heterologous refers to the relationship between two or more nucleic acid or protein sequences from different sources, and the relationship between proteins (or nucleic acids) from different sources and host cells is known. For example, if the combination of a nucleic acid and a host cell is generally not naturally occurring, the nucleic acid is heterologous to the host cell. A particular sequence is “heterologous” to the cell or organism into which it is inserted. Synthetic pathway protein and its expression system
  • the present invention relates to geranylgeranyl pyrophosphate synthase, Cuban pyrophosphate synthase, amylin synthase, bifunctional shell synthase (or alternatively, Cuban pyrophosphate) during the synthesis of steviosides Synthetase and amylin synthase), enamelate oxidase, eductate-13ct-hydroxylase, UGT85C2 glycosyltransferase, UGT74G1 glycosyltransferase, UGT76G1 glycosyltransferase, UGTB1 glycosyltransferase, and cells Pigment P450 redox protein.
  • the enzyme is also involved in the progenitor pathway-enhanced enzyme, and the pro-enzyme-enhanced enzyme may be any pyruvic acid (PYR) and glyceraldehyde 3-phosphate (G3P) which can catalyze the central metabolic pathway.
  • PYR pyruvic acid
  • G3P glyceraldehyde 3-phosphate
  • the precursor is converted to an enzyme which synthesizes a common precursor of isopentenyl pyrophosphate (IPP) and dimethylpropenyl pyrophosphate (DMAPP); preferably, the precursor pathway-enhanced enzyme comprises: 1-deoxygenated wood Glyco-5-phosphate synthase (DXS), 2-methylerythrose-4-phosphatidyltransferase (CMS), 2-methylerythrose-2,4-cyclodiphosphate synthase (MCS) And isopentenyl pyrophosphate isomerase (IDI).
  • DXS 1-deoxygenated wood Glyco-5-phosphate synthase
  • CMS 2-methylerythrose-4-phosphatidyltransferase
  • MCS 2-methylerythrose-2,4-cyclodiphosphate synthase
  • IDI isopentenyl pyrophosphate isomerase
  • the geranylgeranyl pyrophosphate synthase is derived from Canadian yew or stevia (more preferably, derived from Canadian yew); said Cuban pyrophosphate
  • the synthase is derived from stevia or slow-growing soybean rhizobium (more preferably, from stevia); the olefinene synthase is derived from stevia or slow-growing soybean rhizobium (preferably, from stevia) ( More preferably, it is derived from stevia);
  • the bifunctional shellene synthase is derived from Physcomitrella sinensis or Gibberella serrata (more preferably, from Physcomitrella chinensis); From stevia, Gib
  • the IBGT glycosyltransferase is derived from sweet potato; or the cytochrome P450 redox Protein is derived from Artemisia annua Leptosphaeria dark, Fujikura gibberellic Stevia or Arabidopsis (more preferably, from dark Leptosphaeria).
  • a bifunctional shellene synthase is used; and the geranylgeranyl pyrophosphate synthase is derived from Taxus chinensis, and the bifunctional shellene synthase is derived from ⁇ , the eicosene oxidase, the butenoic acid-13ct-hydroxylase, UGT85C2 glycosyltransferase, UGT74G1
  • the glycosyltransferase, UGT76G1 glycosyltransferase is derived from stevia; the UGTB1 glycosyltransferase is derived from S. cerevisiae; and the cytochrome P450 redox protein is derived from Helminthosporium.
  • the yew-derived geranyl pyrophosphate synthase derived from Taxus chinensis has a N-terminal plastid transit peptide sequence removed on the basis of a wild type; preferably, removed N-terminal 98 amino acids.
  • the cytochrome P450 redox protein derived from Artemisia annua L. has a N-terminal transmembrane region sequence removed on the wild type; preferably, the N-terminal 66 amino acids are removed.
  • the above enzyme or protein may be naturally occurring, for example, it may be isolated or purified from an automatic plant or microorganism. Furthermore, the enzyme or protein may also be artificially produced, for example, recombinant enzymes or proteins may be produced according to conventional genetic engineering recombinant techniques. Preferably, the invention employs a recombinant enzyme or protein.
  • the enzyme or protein comprises a full-length enzyme or protein or a biologically active fragment thereof (also referred to as an active fragment), and the active fragment of CPS/KS having a CDPS and KS bifunctional enzyme in the present invention is YDTAWXA DXDD and DDXXD , or YDTAWXA DXDD and DEXXE, the active fragments of UGTB1 glycosyltransferase are GHVGP and NGGYGG.
  • the amino acid sequence of an enzyme or protein formed by substitution, deletion or addition of one or more amino acid residues is also included in the present invention.
  • the biologically active fragment of an enzyme or protein means as a polypeptide which still retains all or part of the function of the full length enzyme or protein. Typically, the biologically active fragment retains at least 50% of the activity of the full length enzyme or protein. Under more preferred conditions, the active fragment is capable of maintaining 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 99 of the full length enzyme or protein. %, or 100% activity.
  • the enzyme or protein or biologically active fragment thereof comprises a replacement sequence for a portion of a conserved amino acid that does not affect its activity or retains its partial activity. Proper replacement of amino acids is well known in the art, and the techniques can be readily implemented and ensure that the biological activity of the score is not altered.
  • the present invention may also employ a modified or modified enzyme or protein, for example, an enzyme or protein which is modified or modified to promote its half-life, effectiveness, metabolism and/or protein potency.
  • the modified or modified enzyme or protein may be a conjugate or it may comprise a substituted or artificial amino acid.
  • the modified or modified enzyme or protein may have little in common with a naturally occurring enzyme or protein, but may also perform the same or substantially the same function as the wild type without causing other adverse effects. That is, any variation that does not affect the biological activity of the enzyme or protein can be applied to the present invention.
  • the invention also encompasses an isolated nucleic acid encoding a biologically active fragment of the enzyme or protein, or a complementary strand thereof.
  • the coding sequence of each enzyme or protein can be codon optimized to increase expression efficiency.
  • the DNA sequence encoding the biologically active fragment of the enzyme or protein can be synthesized synthetically in whole sequence or by PCR amplification. After obtaining the DNA sequence encoding the biologically active fragment of the enzyme or protein, it is ligated into a suitable expression construct (such as an expression vector) and transferred to a suitable host cell. Finally, the desired host protein is obtained by culturing the transformed host cells.
  • the invention also encompasses expression constructs comprising a nucleic acid molecule encoding a biologically active fragment of the enzyme or protein.
  • the expression construct may comprise one or more gene expression cassettes encoding the enzyme or protein, and may further comprise an expression control sequence operably linked to the sequence of the nucleic acid molecule to facilitate expression of the protein.
  • the design of such expression control sequences is well known in the art.
  • an inducible or constitutive promoter can be used according to different needs, and the inducible promoter can achieve more controllable protein expression and compound production, which is advantageous for industrial application.
  • an expression construct comprising the gene expression cassette of the following enzyme: geranylgeranyl pyrophosphate synthase (GGPPS), selected from (I) Cuba pyrophosphate synthase (CDPS) and the enzymes of the shellene synthase (KS) or ( ⁇ ) bifunctional shellene synthase (CPS/KS), the shellene oxidase (KO), the cytochrome ⁇ 450 redox protein (CPR), the uric acid -13 alpha-hydroxylase, UGT85C2 glycosyltransferase and UGTB1/IBGT glycosyltransferase. More preferably, the expression construct further comprises a gene expression cassette of the following enzyme: UGT74G1 glycosyltransferase and/or UGT76G1 glycosyltransferase.
  • the establishment of expression constructs is currently a technique familiar to those skilled in the art. Thus, the skilled artisan will readily be able to establish the expression construct after learning the enzyme or protein of choice desired.
  • the gene sequence encoding the enzyme or protein can be inserted into a different expression construct (such as an expression vector) or inserted into the same expression construct, as long as the enzyme or protein can be efficiently expressed after being transferred into the cell. can.
  • recombinant cells containing a biologically active fragment nucleic acid sequence encoding the enzyme or protein are also included in the present invention.
  • "Host cells” include prokaryotic cells and eukaryotic cells. Common prokaryotic host cells include Escherichia coli, Bacillus subtilis, and the like; commonly used eukaryotic host cells include yeast cells, insect cells, and mammalian cells.
  • the cell is selected from the group consisting of, but not limited to, a Gram-negative DE3 lysogenic strain, a yeast cell. More preferably, the Gram-negative bacteria DE3 lysogenic strain is (but not limited to): Escherichia coli, Bacillus subtilis; more preferably, the E.
  • yeast cell is (but not limited to): Pichia pastoris, Saccharomyces cerevisiae, Kluyveromyces lactis.
  • the Pichia pastoris is selected from the group consisting of GS115, MC100-3, SMD1163, SMD1165, SMD1 168 or KM71; preferably, the Saccharomyces cerevisiae is selected from the group consisting of W303, CEN.PK2, S288c, FY834 or S1949; Preferably, the K. lactis is selected from the group consisting of GG799.
  • suitable expression vectors are known in the art, so that it is easy to select a suitable expression vector as a backbone vector for cloning the gene, for example, when the cell is a bacterial cell, the pET series is used.
  • An expression vector (such as pET28a) is used to recombinantly express each enzyme; when the cell is a yeast cell, pPICC (such as pPICC3.5) or pSY series expression vector (such as pSY01) is used.
  • Transformation of host cells with recombinant DNA can be carried out using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of absorbing DNA can be harvested after the exponential growth phase, treated by methods such as CaCl 2 or MgCl 2 , and the procedures used are well known in the art. Conversion can also be carried out by electroporation if desired.
  • the host is a eukaryote, the following DNA transfection methods can be used: Calcium phosphate coprecipitation, routine Mechanical methods such as microinjection, electroporation, liposome packaging, and the like.
  • the obtained transformant can be cultured by a conventional method to express an enzyme or a protein encoded by the gene of the present invention.
  • the medium used in the culture may be selected from various conventional media depending on the host cell used.
  • the cultivation is carried out under conditions suitable for the growth of the host cells.
  • the present invention discloses a method for producing a stevioside compound by heterologous synthesis of microorganisms.
  • the stevioside compounds (including rebaudioside A) are obtained in a chassis cell by artificially combining different sources of enzymes related to the biosynthesis of stevioside compounds using synthetic biology techniques.
  • GGPPS geranylgeranyl pyrophosphate
  • CDPS Cuban pyrophosphate synthase
  • KS shellene synthase
  • urethane more Jiadi, replacing CDPS and KS with bifunctional shellene synthase (CPS/KS, ⁇ gene coding)
  • CPS/KS bifunctional shellene synthase
  • KO cytochrome P450 oxidized protein shellene oxidase
  • KAH mandelic acid hydroxylase
  • Stevioside is subjected to a UGT85C2 glycosyltransferase to obtain a steviol monoglycoside, which is further subjected to a one-step glycosylation reaction to obtain a steviol glycoside.
  • the stevioside diglucoside acts on the UGT74G1 glycosyltransferase to obtain stevioside, which is finally subjected to UGT76G1 glycosyltransferase to form stevioside rebaudioside A.
  • the present inventors succeeded in the heterologous biosynthesis of stevioside compounds by using the above-mentioned series of enzymes for the first time, in particular, the use of UGTB 1/IBGT-glycosyltransferase for converting steviol monoglycosides into steviol
  • a glycoside (which is capable of adding a glycosyl group to the C-2' site of C- 13 glucose of steviol monoglycoside) overcomes the technical problem of the inability to convert steviol monoglycosides to steviosides in the prior art.
  • glycosyltransferase required for the step of obtaining a steviol diglycoside from a steviolylation reaction of steviol monoglycoside in the biosynthesis of stevioside compounds is unknown in the prior art; In this study, a large number of glycosyltransferase genes were screened, and it was finally found that UGTB 1 or IBGT glycosyltransferase could achieve further glycosylation at the C-2 ' site of C-13 glucose at the substrate.
  • a suitable UGTB 1/IBGT glycosyltransferase can function as uridine-5 '-diphosphate glucosyl: steviol- 13-0-glucoside transferase (also known as steviol- 13-monoglucoside 1) , the role of 2-glucosylase, confers a glucose moiety on the C-2' of the receptor molecule, Stevi- 13-0-glucoside, 13-0-glucose.
  • a suitable UGTB 1/IBGT-like glycosyltransferase can also function as a uridine-5'-diphosphate glucosyl group: a catechin transferase, which is given to the receptor molecule rutin (Rubusoside) 13-0 - G-2 of glucose is transferred to the glucose fraction.
  • rutin Rubusoside
  • Suitable UGTB 1/IBGT glycosyltransferases can also catalyze the reaction of stevioside substrates other than steviol- 13-0-glucoside and catechin, for example, Stevioside can be used as a substrate, Portuguese The glucose moiety is transferred to the C-2' of the 19-0-glucose residue to produce rebaudioside E.
  • Rebaudioside D can also be produced by transferring rebaudioside A as a substrate and transferring the glucose moiety to C-2 ' of the 19-0-glucose residue.
  • the UGTB 1/IBGT glycosyltransferase generally does not transfer the glucose moiety to the steviol compound having 1, 3-bound glucose at the C-13 position, ie, the glucose moiety does not occur to the steviol 1, 3- Transfer of glycosides and 1,3-saffin.
  • a suitable UGTB 1/IBGT glycosyltransferase can transfer a sugar moiety other than uridine diphosphate glucose.
  • a suitable UGTB 1/IBGT glycosyltransferase can act as a uridine 5 ' -diphosphate D-xylosyl: steviol- 13-0-glucoside transferase to transfer the xylose moiety to the receptor.
  • a suitable UGTB 1/IBGT glycosyltransferase can function as a uridine 5 '-diphosphate L-rhamnosyl: steviol- 13-0-glucoside transferase, a rhamnose moiety Transfer to the receptor molecule steviol- 13-0-glucoside in 13-0-glucose C-2 '.
  • IPP and DMAPP for the synthesis of quinones are obtained, and techniques known to those skilled in the art can be employed.
  • the present inventors have simplified the technique of applying a gene such as r, ispE, ispG, ispH, etc. to the central metabolic pathway of pyruvic acid (PYR).
  • G3P glyceraldehyde 3-phosphate
  • IPP isopentenyl pyrophosphate
  • DMAPP dimethyl propylene pyrophosphate
  • 1-deoxyxylose-5-phosphate synthase DXS, gene encoding
  • 2-methylerythrose-4-phosphocytidine transferase CMS, ⁇ pD gene coding
  • MCS 2-methylerythrose-2,4-cyclodiphosphate synthase
  • IPP and DMAPP can be converted into each other under the action of isoprene pyrophosphate isomerase (coding gene ⁇ ).
  • the stevioside compound is a reaction product of a diterpenoid shellene. As a major intermediate, shellene is more efficient in the synthesis of downstream stevioside compounds.
  • KS is a bifunctional enzyme with CDPS and KS, which can significantly improve the synthesis efficiency of shellene.
  • the yield of key intermediate chitosan can reach above 1 g/L, and rebaudioside A can reach above 10 mg/L.
  • the method can replace the plant extraction method to obtain stevioside compounds, especially the rebaudioside A with great market value, and has broad application prospect and development potential.
  • the method of the invention overcomes the shortcomings of traditional cumbersome extraction from plants, large environmental impacts, damage to natural resources, etc., and has the advantages of low cost, small floor space, and controllable product quality.
  • the invention is further illustrated below in conjunction with specific embodiments. It should be understood that these examples are merely illustrative of the invention. It is not intended to limit the scope of the invention.
  • the experimental methods in the following examples which do not specify the specific conditions are usually prepared according to conventional conditions such as J. Sambrook et al., Molecular Cloning Experiment Guide, 3rd Edition, Science Press, 2002, or according to the manufacturer. The suggested conditions. Percentages and parts are by weight unless otherwise stated.
  • Example 1 Obtainment of a protein used in a heterologous synthetic pathway of a stevioside compound compound
  • NCBI National Bioinformatics Database
  • GGPPS Cuban pyrophosphate synthase
  • CDPS Cuban pyrophosphate synthase
  • KS Ethereum synthase
  • Bmdyrhizobium japonicum derived from Physcomitrella patens and Gibberella serrata ( ⁇ 'bbere//fl/w wroO's bifunctional shellene synthase (CPS/KS), derived from stevia rebaudiana), Arabidopsis thaliana, fiibberella fujikuroi, and Bradyrhizobium japonicum ⁇ JI shell Olefinase (; KO), from Stevia 03 ⁇ 4eW ⁇ 3 ⁇
  • Shellene synthase BAC47415 slow-growing soybean rhizobium bifunctional shellene synthase BAF61 135 small bowl
  • UGT74G1 glycosyltransferase AAR06920
  • IBGT glycosyltransferase ABL74480.1 is optimized by codon optimization methods well known in the art, such as Optimizer (http://genomes.urv.es/OPTIMIZER/), and the coding sequence of the selected enzyme is optimized and synthesized. Details are as follows:
  • the amino acid sequence of the yak-based geranyl-based pyrophosphate sweet-sweet yellow takinase derived from the Canadian yew is shown in SEQ ID.
  • CDPS stevia-derived Cuban pyrophosphate synthase
  • KS stevia-derived amylin synthase
  • the amino acid sequence of the stearyl oxidase (KO) derived from stevia is shown in SEQ ID NO: 7, and the codon-optimized DNA sequence is shown in SEQ ID NO: 8.
  • the amino acid sequence of the stearyl-derived eicoate-13 ⁇ -hydroxylase (KAH) is shown in SEQ ID NO: 9, and the crypto-optimized DNA sequence is shown in SEQ ID NO: 10.
  • amino acid sequence of the stevia-derived UGT85C2 glycosyltransferase is shown in SEQ ID NO: 11, and the codon-optimized DNA sequence is shown in SEQ ID NO: 12.
  • amino acid sequence of the stevia-derived UGT74G1 glycosyltransferase is shown in SEQ ID NO: 13, and the codon-optimized DNA sequence is shown in SEQ ID NO: 14.
  • amino acid sequence of the stevia-derived UGT76G1 glycosyltransferase is shown in SEQ ID NO: 15, and the optimized DNA sequence is shown in SEQ ID NO: 16.
  • CPR cytochrome P450 redox protein
  • SEQ ID NO: 17 The amino acid sequence of the cytochrome P450 redox protein (CPR) derived from Artemisia annua L. is shown in SEQ ID NO: 17, and 66 amino acids of the N-terminal transmembrane sequence region of the wild-type CPR protein are excised, and then Candida tropicalis (C)
  • the N-terminal sequence of the CPR protein (AAU10466) of ra/ ⁇ 'cfl/ ⁇ ) finally obtaining the CPR protein modified in the present invention, and the dense
  • SEQ ID NO: 18 The amino acid sequence of the cytochrome P450 redox protein (CPR) derived from Artemisia annua L. is shown in SEQ ID NO: 17, and 66 amino acids of the N-terminal transmembrane sequence region of the wild-type CPR protein are excised, and then Candida tropicalis (C)
  • AAU10466 The N-terminal sequence of the CPR protein (
  • the amino acid sequence of the cytochrome P450 redox protein derived from C. globosa is shown in SEQ ID NO: 19, and the codon-optimized DNA sequence is shown in SEQ ID NO: 20.
  • the amino acid sequence of the bifunctional shellene synthase (CPS/KS) derived from Physcomitrella chinensis is shown in SEQ NO: 21, and the codon-optimized DNA sequence is shown in SEQ NO: 22.
  • the amino acid sequence of the bifunctional shellene synthase (CPS/KS) derived from Gibberella sinensis is shown in SEQ NO: 23, the codon-optimized DNA sequence, see SEQ NO: 24.
  • the amino acid sequence of the Cuban pyrophosphate synthase derived from the slow-growing soybean rhizobium is shown in SEQ ID NO: 25, the codon-optimized DNA sequence, see SEQ ID NO: 26.
  • amino acid sequence of the amyrene synthase from the source of the slow-growing soybean rhizobium is shown in SEQ ID NO: 27, the codon-optimized DNA sequence, see SEQ ID NO: 28.
  • the amino acid sequence of the shellene oxidase derived from Rhizobium solani is SEQ ID NO: 29, and the codon-optimized DNA sequence is shown in SEQ ID NO: 30.
  • the amino acid sequence of the shellene oxidase derived from Gibberella serrata is shown in SEQ ID NO: 31, and the codon-optimized DNA sequence is shown in SEQ ID NO: 32.
  • the amino acid sequence of the cytochrome P450 redox protein derived from Gibberella sinensis is shown in SEQ ID NO: 33, and the codon-optimized DNA sequence is shown in SEQ ID NO: 34.
  • the amino acid sequence of the cytochrome P450 redox protein derived from stevia is shown in SEQ ID NO: 35, and the DNA sequence optimized by codon is shown in SEQ ID NO: 36.
  • the amino acid sequence of the shellene oxidase from Arabidopsis thaliana is shown in SEQ ID NO: 37, codon optimized
  • the DNA sequence is shown in SEQ ID NO: 38.
  • the amino acid sequence of the cytochrome P450 redox protein derived from Arabidopsis thaliana is shown in SEQ ID NO: 39, codon-optimized DNA sequence, see SEQ ID NO: 40.
  • the amino acid sequence of the glycosyltransferase derived from S. cerevisiae UGTB1 gene is shown in SEQ ID NO: 41, and the codon-optimized DNA sequence is shown in SEQ ID NO: 42.
  • amino acid sequence of the stearyl-derived econate-13 ⁇ -hydroxylase ( ⁇ ) is shown in SEQ ID NO: 43, and the optimized DNA sequence is shown in SEQ ID NO: 44.
  • GGPP stevia-derived geranylgeranyl pyrophosphate synthase
  • the amino acid sequence of the mandelic acid-13 ⁇ -hydroxylase derived from Arabidopsis thaliana is shown in SEQNO: 47, and the codon-optimized DNA sequence is shown in SEQNO: 48.
  • the amino acid sequence of the mandelic acid-13 ⁇ -hydroxylase derived from Arabidopsis thaliana is shown in SEQ NO: 49, and the codon-optimized DNA sequence is shown in SEQNO: 50.
  • amino acid sequence of the glycosyltransferase derived from sweet potato (Genbank No.: ABL74480.1) is shown in SEQ NO: 51, and the codon-optimized DNA sequence is shown in SEQ NO: 52.
  • IBGT vs. IBGT Ipomoea batatas Ganzi vs. UGT74G1 : Stevia rebaudianai ⁇ 36%
  • IBGT vs. IBGT Ipomoea batatas Ganzi vs. UGT76G1 : Stevia rebaudianai ⁇ 28%
  • IBGT the amino acid sequence homology of the same functional protein from different sources is low.
  • CDPS derived from Stevia is only 50% and 58% identical to CPS/KS with CDPS and KS bifunctional enzymes derived from P. sylvestris and P. sinensis, respectively.
  • the highest homology between CSK and KS with CDPS and KS bifunctional enzymes derived from stevia-derived KS was only 36% and 64%, respectively.
  • the homology of UGTB1 glycosyltransferase from S. cerevisiae to UGT85C2 glycosyltransferase, UGT74G1 glycosyltransferase and UGT76G1 glycosyltransferase from Stevia is only 33% 83% and 45%.
  • CPS/KS The homology of CPS/KS is higher in several fungi sources, and the CPS/KS origin of Physcomitrella sinensis is relatively low, but they all contain aspartic acid-rich regions, which are CPS and KS. Fragment of enzyme activity, of which CPS The active fragment is an N-terminal sequence starting from YDTAWXA with DXDD, and the KS active fragment is a C-terminal sequence having DDXXD or DEXXE, and X is any amino acid.
  • the active fragment of UGTB1 is GHVGP located at positions 16 to 20 of the amino acid sequence and NGGYGG located at position 343 to position 343.
  • the geranylgeranyl pyrophosphate synthase, Cuban pyrophosphate synthase, ocene synthase, bifunctional shellene synthase, elastene oxidase, and uric acid-13ct-hydroxyl obtained from the optimization of Example 1
  • the genes related to the enzyme, UGT85C2 glycosyltransferase, UGT74G1 glycosyltransferase, UGT76G1 glycosyltransferase and cytochrome P450 redox protein were cloned into the corresponding plasmids for the bacterial rebaudioside A synthesis pathway gene expression vector. Construct.
  • the Spel restriction site was added after the optimized stop codon TAA of the ggpps gene, and then cloned into the Ncol/Hindlll restriction site of the plasmid pET28a (purchased from Novagen) to obtain pET28a-ggp / ⁇ Fig. 3A) .
  • Plasmids ⁇ 21& ⁇ , pET2la-cps/ks, pET21a-, pET21a-fco, pET2la-kah, pET2la-ugt85c2, pET2la-ugtbl, pET2la-ugt74gl, pET2la- were obtained at the Ndel/BamHI locus (purchased from Novagen).
  • Ugt76gl (Fig. 3B), / /wert gewe in Fig.
  • 3b are cdps, cps/ks, ks, ko, kah, ugt85c2, ugtbl, ugt74gl, ugt76gl Plasmid insertion sites (NdeI/HindIII) of nine genes cloned separately.
  • the Spel site was added after the stop codon TAA of the optimized cpr gene, and then cloned into the Ncol/Hindlll site of plasmid pET21d (purchased from Novagen) to obtain plasmid pET21d-cpr (Fig. 3C).
  • the plasmid pZQllO was constructed as follows: a tandem assembly of heterologous pathway genes was performed using a method similar to that provided by the New England Bio lab BioBrick Assembly Kit; that is, the plasmid ⁇ 28&- ⁇ / was first digested with Spel/Hindlll. ⁇ (Source of Taxus chinensis), digest the plasmid pET21a-c/ ⁇ / (Xiao Li bowl) with Xbal/Hindlll, and directly recover pET28a-g ⁇ / «carrier and gel recovery c/ ⁇ / with PCR cleaning kit.
  • the restriction plasmid (Xbal/Hindlll double enzyme digestion) verification map of the expression plasmid is shown in Fig. 3F, wherein M1 is Marker 1, molecular weight is DS15000; 1 is negative control product; 2-4 is pZQllO product; M2 is Marker 2 , the molecular weight is DS5000.
  • M1 is Marker 1
  • molecular weight is DS15000
  • 1 is negative control product
  • 2-4 pZQllO product
  • M2 Marker 2
  • the molecular weight is DS5000.
  • the plasmid pZQllO was digested with Xbal/Hindlll to obtain two bands of about 5300/16500, respectively, and it was found that pZQllO was correctly constructed.
  • the inventors Based on a method similar to the plasmid pZQllO, the inventors also constructed recombinant expression plasmids for expressing intermediates or products, as shown in Table 4.
  • Glycan intermediate production GGPPS Taxus (Canadian yew) (insert Ncol/Hindlll site of pET28a)
  • Shellene CDPS Stevia (stevia) (insert Xbal/Hindlll site of pET28a)
  • KS Stevia « ⁇ & ⁇ (Stevia) (inserted into the Xbal/Hindlll site of pET28a)
  • GGPPS Taxus (Canadian Taxus) (insert Ncol/Hindlll site of pET28a)
  • CPS/KS Physcomitrella atera (Xiao Li Bowling (insert Xbal/Hindlll site of ET28a)
  • GGPPS Taxus (Canadian Taxus) (insert Ncol/Hindlll site of pET28a)
  • CPS/KS Gibberellafiijikuroi (B store (insert Xbal/Hindlll site of ET28a) pZQl P ET28a-GGPPS-CPS/KS
  • GGPPS Stevia rebaudiana (sweet leaves: Ncol/Hindlll site of K pET28a)
  • CPS/KS Physcomitrella patem (J, Difficulty: Xbal/Hindlll site of K pET28a)
  • GGPPS Stevia rebaudiana (sweet leaf: Ncol/Hindlll site of K pET28a)
  • CPS/KS (3 ⁇ 4 « ⁇ 3 ⁇ 4 ⁇ '6#3 ⁇ 4 ⁇ 3 ⁇ 4) (insert Xbal/Hindlll site of pET28a)
  • Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a)
  • CDPS Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • KS Stevia rebaudianai Stevia (insert ET28a Xbal/Hindlll locus)
  • KO Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: 44) (Xbal/Hindlll inserted into pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (insert Xbal/Hindlll site of pET28a)
  • GGPPS Taxus canadensisi mouth yew) (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Physcomitrella patens (j, stand bowl) (insert Xbal/Hindlll site of ET28a) KO.Stevia rebaudiana (stevia) (Insert Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Stevia rebaudiana (SEQ ID NO: 44) (Xbal/Hindlll of ⁇ pET28a
  • CPR Phaeosphaeria sp. 1487, dark-bulb crane (inserted into the Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana (stevia (insert Xbal/Hindlll site of pET28a)
  • GGPPS Taxus canadensis yew) ⁇ (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Gibberella fiijikuroi (Tengcangchi) (insert Xbal/Hindlll site of pET28a)
  • KO Stevia rebaudiana (stevia) Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Stevia rebaudiana (SEQ ID NO: 44) (Xbal/Hindlll inserted into pET28a)
  • CPR Phaeosphaeria sp. 1487 dark bulb cavity (inserted into the Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a) Synthetic Stevia pZQl P ET28a-GGPPS-CDPS-KS-KO -KAH-CPR-UGT85C2-UGTBl
  • Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a)
  • CDPS Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a) KS.Stevia rebaudianai Stevia (insert Xbal/Hindlll site of ET28a) KO: Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of pET28a) KAH: Stevia rebaudiana (sweet leaf ⁇ SEQ ID NO: Xbal/Hindlll inserted into pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (inserted into the Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a) UGTB1 glycosyltransferase (Stachyphyllum) ( Insert the Xbal/Hindlll site of ET28a) pZQl P ET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
  • GGPPS Taxus canadensisi mouth yew) (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Physcomitrella patens (j, stand bowl) (insert Xbal/Hindlll site of ET28a)
  • KO Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: Xbal/Hindlll inserted into pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (inserted into the Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a) UGTB1 glycosyltransferase (Stachyphyllum) ( Insert the Xbal/Hindlll site of ET28a) pZQl P ET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
  • Taxus canadensisi mouth yew (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Gibberella fiijikuroi (Fuji Cangchi) (insert Xbal/Hindlll site of pET28a) KO.Stevia rebaudiana (Stevia (Xbal/Hindlll site inserted into pET28a) KAH: Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: Insert Xbal/Hindlll of pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a) UGTB1 glycosyltransferase Stomamoen yeast (insert pET28a Xbal/Hindlll site) pSY200 pET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl
  • GGPPS Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a)
  • CDPS Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • KO Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: 44) (Xbal/Hindlll 3 ⁇ 4
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of ET28a)
  • IBGT glycosyltransferase insert Xbal/Hindlll site of pET28a
  • GGPPS Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a) CPS/KS Physcomitrella paten ⁇ ) (Xbal/Hindlll site inserted into ET28a)
  • KO Stevia rebaudiana (Stevia (Xbal inserted into pET28a) /Hindlll site)
  • KAH Stevia rebaudiana (sweet leaf ⁇ SEQ ID NO: 44) (insert Xbal/Hindlll site of pET28a)
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of ET28a)
  • IBGT glycosyltransfer gamma Xbal/ inserted into pET28a Hindlll site
  • GGPPS Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Gibberella fiijikuroi (Fuji Cangchi) (Xbal/Hindlll site inserted into pET28a)
  • KO Stevia rebaudianai Stevia (insert pET28a) Xbal/Hindlll site)
  • KAH Stevia rebaudiana (sweet leaf ⁇ SEQ ID NO: 44) (insert Xbal/Hindlll site of pET28a)
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of ET28a) IBGT glycosyltransfer) (Xbal/ inserted into pET28a Hindlll locus) Stevia sugar path P ZQ9 P ET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl-UGT74Gl-UGT76
  • GGPPS Taxus canadensis (Canadian yew) (insert Ncol/Hindlll site of ET28a)
  • Synthetic Rabbo CDPS Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • Diglucoside A KS Stevia rebaudianai Stevia (Insert Xbal/Hindlll site of ET28a)
  • KO Stevia rebaudiana (Stevia (inserted into the Xbal/Hindlll site of pET28a)
  • KAH Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: 44) (Xbal/Hindlll inserted into pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (Xbal/ inserted into pET28a) Hindlll locus)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a) pZQl pET28a-GGPPS-CPS/KS- KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 10
  • CPR Phaeosphaeria sp. 1487, dark sphere cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of ET28a)
  • GT74G1 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of pET28a)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of pET28a) UGTB1 sugar Base transferase (Stachyphyllum sp.) (insert Xbal/Hindlll site of ET28a) pZQl pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -
  • Taxus canadensisi mouth yew (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Gibberella fiijikuroi (Fuji Cangchi) (insert Xbal/Hindlll site of pET28a) KO.Stevia rebaudiana (Stevia (Xbal/Hindlll site inserted into pET28a) KAH: Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: 44) (Xbal/Hindlll inserted into pET28a
  • CPR Phaeosphaeria sp. I 87 dark ball cavity (insert Xbal/Hindlll site of pET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (Xbal/ inserted into pET28a) Hindlll locus)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a) pZQll pET28a-GGPPS-CPS/KS- KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 1
  • CPR Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of ET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of pET28a)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (inserted into the Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a) pZQl pET28a-GGPPS-CPS/KS-KO-KAH- CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1
  • Taxus canadensis (Kaleidopsis chinensis) (insert Ncol/Hindlll site of ET28a)
  • CPS/KS Gibberella fiijikuroi (Fuji Cangchi) (insert Xbal/Hindlll site of pET28a) KO.Stevia rebaudiana (Stevia (Xbal/Hindlll site inserted into pET28a) KAH: Stevia rebaudiana (Sweet leaf ⁇ SEQ ID NO: 44) (insert pET28aXbaI/HindIII bit
  • CPR Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of ET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of pET28a)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (inserted into the Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a) pZQl pET28a-GGPPS-CPS/KS-KO-KAH- CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 12
  • GGPPS Taxus canaden
  • KO Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of pET28a)
  • KAH Arabidopsis pET28aXbaI/HindIII
  • CPR Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of ET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of pET28a)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (inserted into the Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a) pET28a-GGPPS-CPS/KS-KO-KAH-CPR -UGT85C2-UGTB 1 -UGT74G1 -UGT76G1
  • CPR Stevia rebaudiana (Stevia (insert Xbal/Hindlll site of ET28a)
  • UGT85C2 Stevia rebaudiana ⁇ Stevia (Xbal/Hindlll site inserted into pET28a)
  • UGT74G1 Stevia rebaudia Stevia rebate (insert Xbal/Hindlll site of pET28a)
  • UGT76G1 Stevia rebaudia Stevia rebaudiana (insert Xbal/Hindlll site of pET28a) UGTB1 glycosyltransferase (Stachyphyllum spp.) (insert Xbal/Hindlll site of ET28a)
  • Example 3 Construction of fungal expression vector
  • the geranylgeranyl pyrophosphate synthase, Cuban pyrophosphate synthase, ocene synthase, bifunctional shellene synthase, elastene oxidase, and uric acid-13ct-hydroxyl obtained from the optimization of Example 1
  • the gene encoding the enzyme, UGT85C2 glycosyltransferase, UGTB1 glycosyltransferase, UGT74G1 glycosyltransferase, UGT76G1 glycosyltransferase and cytochrome P450 redox protein was cloned into the corresponding plasmid for the fungal rebaudioside A Construction of a synthetic gene expression plasmid.
  • the original pA0815 vector (purchased from Invitrogen) was first modified, and BamHI and Xhol cleavage sites were introduced after the terminator of pA0815 by site-directed mutagenesis.
  • the modified pA0815 was named pSY01.
  • the BamHI site in the pET28a-ggw ⁇ gene was removed by site-directed mutagenesis.
  • the Bglll site in the pET21 ⁇ -ks gene was removed by site-directed mutagenesis.
  • the ggpps gene was amplified by PCR, and the EcoRI restriction site was introduced at both ends (four A bases were added before ATG), and the PCR fragment was digested with EcoRI, and the vector was digested with EcoRI.
  • pS Y01, the pS Y01 vector and the ggpps fragment were directly recovered by a clean kit; then the pS Y01 vector and the fragment were ligated with T4 DNA ligase to construct plasmid pSY01- ⁇ w ⁇ .
  • the cdps gene (yew source) was amplified by PCR, and Bglll and Notl restriction sites were introduced at both ends (four A bases were added before ATG), and Bglll and Notl were used for digestion.
  • the PCR fragment At the same time, the BPICHI and Notl double-digested vector pPIC3.5KC was purchased from Invitrogen), and the PPIC3.5K vector and cdps fragment were directly recovered by the cleaning kit, and then the pPIC3.5K vector and the cdps fragment were ligated with T4 DNA ligase to construct plasmid pPIC3. .5K-c ⁇ .
  • PCR was carried out using pPIC3.5K-c/ «/; as template, 5 'AOX-c/ «/; -TT was amplified, Bglll and Xhol restriction sites were introduced at both ends, and the PCR was digested with Bglll and Xhol. Fragment, simultaneously digest the vector pSY01-ggw « with BamHI and Xhol, directly recover the pSYO l- ⁇ w ⁇ vector and the 5 'AOX-c/ ⁇ /-TT fragment with a cleaning kit, and then pSYO l with T4 DNA ligase The -ggw ⁇ vector and the fragment were ligated to construct a plasmid.
  • the plasmid pSY210 was verified by PCR with a primer specific for the full-length UGT74G1 glycosyltransferase-encoding gene, and a band of about 1383 bp was obtained, and pSY210 was constructed correctly.
  • plasmid pZQ210 Based on a method similar to the construction of plasmid pZQ210, the inventors also constructed recombinant expression plasmids for expression of intermediates or products, as shown in Table 5.
  • Chitin GGPP Taxus canadensis (Canadian yew) (insert the EcoRI site of pSYOI)
  • CDPS Stevia rebaudia Stevia rebaudiana (insert BamHI/XhoI site of pSYOI) KS.Stevia rebaudia Stevia rebaudia (insert BamHI/XhoI site of pSYOI) pZQ132 pSY01-GGPP-CPS/KS
  • GGPP Taxus cawa m «X Canadian yew) (insert the EcoRI site of pSYO I)
  • CPS/KS Physcomitrella patens (BamHI/XhoI position of Xiaoli Bowl pSYO I pZQ133 pSY01-GGPP-CPS/KS
  • GGPP Taxus canadensis (Canadian yew)
  • EcoRI site of K pSYO I
  • CPS/KS Gibberella fujikuroi (Fujikuchi) ( ⁇ ? BamHI/XhoI site of K pSYO I) pZQ201 pSY01-GGPP-CPS/ KS
  • GGPP Stevia rebaudiana (Stevia rebaudiana ( ⁇ pSY's EcoRI site)
  • CPS/KS Physcomitrella patens Xiaoli bowl)
  • K pSYO I BamHI/XhoI site
  • pZQ202 pSYOl-GGPP-CPS/KS
  • GGPP Stevia rebaudiana (Erythrina (EpiRI site of ⁇ pSY) CPS/KS: Gibberella fujikuroi (Fujikura) ( ⁇ ? BamHI/XhoI site of K pSYO I) Stevia sugar pSY22 pSY01-GGPP-CDPS-KS -KO-KAH-CPR-UGT85C2-UGTBl-UGT74Gl-UGT76Gl
  • GGPP Taxus canadensis (Canadian yew) (EcoRI site inserted into pSYO l)
  • CDPS Stevia rebaudiana, Stevia (BamHI/XhoI site inserted into pSYO 1)
  • Synthetic Laibao KS Stevia rebaudiana, sweet Yeju (insert BamHI/XhoI site of pSYO 1)
  • Diglucoside A KO Stevia rebaudiana, Ste
  • KAH Stevia rebaudiana (gffn ⁇ ) (SEQ ID NO: 10 or SEQ ID NO: inserted into the BamHI/XhoI site of pSYO l)
  • CPR Phaeosphaeria sp. I 87 dark sphere cavity quotient (insert BamHI/XhoI site of pSYO l)
  • UGT85C2 Stevia rebaudia Stevia rebaudia (insert BamHI/XhoI site of pSYO l)
  • UGT74G1 Stevia rebaudiana, stevia (insert pSYO l BamHI/XhoI locus)
  • UGT76G1 Stevia rebaudiana, Stevia rebaudiana (BamHI/XhoI site inserted into pSYO l) UGTB1 glycosyltransferase, S.
  • GGPP Taxus canadensis (Canadian yew) (insert the EcoRI site of pSYO l)
  • CPS/KS Physcomitrella patens, Xiaoli bowl) (BamHI/XhoI site inserted into pSYO l)
  • KO Stevia rebaudiana, stevia (insert pSYO) l BamHI/XhoI locus)
  • KAH Stevia rebaudiana (sweet leaf ⁇ SEQ ID NO: 10) ( ⁇ pSYO 1
  • CPR Phaeosphaeria sp. I 87 dark sphere cavity quotient (insert BamHI/XhoI site of pSYO l)
  • UGT85C2 Stevia rebaudia Stevia rebaudia (insert BamHI/XhoI site of pSYO l)
  • UGT74G1 Stevia rebaudiana, stevia (insert pSYO l BamHI/XhoI locus)
  • UGT76G1 Stevia rebaudiana, Stevia rebaudiana (BamHI/XhoI site inserted into pSYO l) UGTB1 glycosyltransferase, S.
  • GGPP Taxus canadensis (Canadian yew) (insert the EcoRI site of pSYO l)
  • CPS/KS Gibberella jiijikuroi (Fuji Cangchi) (BamHI/XhoI site inserted into pSYO l)
  • KO Stevia rebaudiana, Stevia (insert pSYO) l BamHI/XhoI locus)
  • KAH Stevia rebaudiana (sweet leaf ⁇ SEQ ID NO: inserted into pSYO 1
  • CPR Phaeosphaeria sp. I 87 dark sphere cavity quotient (insert BamHI/XhoI site of pSYO l)
  • UGT85C2 Stevia rebaudia Stevia rebaudia (insert BamHI/XhoI site of pSYO l)
  • UGT74G1 Stevia rebaudiana, stevia (insert pSYO l BamHI/XhoI locus)
  • UGT76G1 Stevia rebaudiana, Stevia rebaudiana (BamHI/XhoI site inserted into pSYO l) UGTB1 glycosyltransferase, S.
  • GGPP Taxus canadensis (Canadian yew) (insert the EcoRI site of pSYO l)
  • CPS/KS Physcomitrella patens, xiaoli bowl) (insert BamHI/XhoI site of pSYO l)
  • KO Stevia rebaudiana, stevia (inserted into the BamHI/XhoI site of pSYOl)
  • KAH Stevia rebaudia Stevia rebaudia (SEQ ID NO: 10) (inserted into pSYO 1
  • CPR Stevia rebaudiana, Stevia rebaudiana (inserted into the BamHI/XhoI site of pSYOl)
  • UGT85C2 Stevia rebaudia Stevia rebaudiana (insert BamHI/XhoI site of pSYOl)
  • UGT74G1 Stevia rebaudiana, Stevia rebaudiana (insert BamHI/XhoI site of pSYOl)
  • UGT76G1 Stevia rebaudiana, stevia (BamHI/XhoI site inserted into pSYOl) UGTB1 glycosyltransferase, S.
  • GGPP Taxus canadensis (Canadian yew) (EcoRI site inserted into pSYOl)
  • CPS/KS Gibberella jiijikuroi (Fuji Cangchi) (BamHI/XhoI site inserted into pSYOl)
  • KO Stevia rebaudiana, Stevia (BamHI inserted into pSYOl) /XhoI locus)
  • KAH Stevia rebaudia Stevia rebaudiana (SEQ ID NO: 44) (inserted into pSYO 1
  • CPR Stevia rebaudiana, Stevia rebaudiana (inserted into the BamHI/XhoI site of pSYOl)
  • UGT85C2 Stevia rebaudia Stevia rebaudiana (insert BamHI/XhoI site of pSYOl)
  • UGT74G1 Stevia rebaudiana, Stevia rebaudiana (insert BamHI/XhoI site of pSYOl)
  • UGT76G1 Stevia rebaudiana, Stevia rebaudiana (insert BamHI/XhoI site inserted into pSYOl) UGTB1 glycosyltransferase (Stamaya yeast) (BamHI/XhoI site inserted into pSYOl)
  • Example 4 Expression of each gene in Escherichia coli Situation
  • the plasmid pET21a-ci3 ⁇ 4 «, pET21a- ⁇ , pET21a-fco, pET2la-kah, pET2la-ugt85c2, pET2la-ugt74gl, ⁇ 21 a-ugt76gl obtained in Example 2 were transformed into host cell BL21 (DE3), respectively.
  • Each monoclonal was picked into 2 ml of LB medium (100 mg/L ampicillin), cultured overnight at 37 ° C, and then transferred to 2 ml of fresh LB supplemented with the same antibiotic with 1% (v/v) inoculum.
  • the medium was cultured at 37 ° C until the OD600 was 0.3-0.4, and IPTG was added to a final concentration of 0.1 mol, and induced to express at 18 ° C for 6 h, and then each fermentation broth was subjected to SDS-PAGE analysis.
  • Fig. 4A The results are shown in Fig. 4A, Fig. 4B, Fig. 4C, Fig. 4D and Fig. 4E.
  • Fig. 4A It can be seen from Fig. 4A that the gene/ «, g S5C2 is clearly expressed, and the gene sum can be seen from Fig. 4B; It can be seen that the gene 1 ⁇ 2 is clearly expressed in 4C.
  • Fig. 4D It can be seen from Fig. 4D that the gene wg 74 ⁇ has less expression, and it can be seen from Fig. 4E that the gene ugt76gl is clearly expressed.
  • Example 5 Vector transformation and prokaryotic expression
  • the gene expression plasmid for the synthesis of rebaudioside A or its intermediate obtained in Example 2 and the precursor pathway-enhancing expression plasmid pJF47C were co-transformed into host cell E. coli BL21 (DE3) to obtain a transformed Lai.
  • the genome of MG1655 was first extracted, and then the genes were amplified by PCR in the following primers and cloned into the NcoI/EcoRI site of plasmid pET21d.
  • pET21c- /3 ⁇ 4 ⁇ was digested with Spel/EcoRI
  • Xbal/EcoRI was digested with ⁇ 21 ⁇ - ⁇ '
  • the pET21c-/3 ⁇ 4 ⁇ vector and idi gene fragment were recovered, and the two were ligated to construct plasmid pET21d-ispF-idi
  • the SET/EcoRI was digested with pET21c- / ⁇ )
  • pET21d-ispF-idi was digested with Xbal/EcoRI
  • pET21c- / ⁇ vector and ispF-idi gene fragment were recovered, and pET21d-ispD-ispF-idi was constructed and ligated
  • Spel/EcoRI was digested with pET21d- ⁇
  • pET21d-ispD-ispF-idi was digested with Xbal/EcoRI.
  • the pET21d-vector and the ispD-ispF-idi gene fragment were recovered, and the plasmid pET21d-dxs-ispD-ispF-idi was constructed. Named pJF47. Gene Genbank No. Primer sequence cloning site
  • dxs-R CGGAATTCACTAGTTTATGCCAGCCACCTT
  • ⁇ D-R CGGAATTCACTAGTTTATGTATTCTCCTGATGGATGGTT
  • idi-R CGGAATTCTTATTTAAGCTGGGTAAATGCAG
  • Example 6 Detection of the shellene product of the recombinant cell of the partially synthesized stevioside intermediate ocene prepared in Example 5.
  • the expression plasmid containing Rebaudioside A or its intermediate synthesis gene obtained in Example 5 and the recombinant Escherichia coli E. coli BL21 (DE3) which enhanced the expression plasmid pJF47 obtained by fermentation of the precursor plasmid were fermented and subjected to detection of ocene.
  • Example 5 1 ml of the fermentation broth obtained in Example 5 was added, 50 ul of 2 M HCl was added, then an equal volume of ethyl acetate was added, and the mixture was ultrasonicated for 1 min in an ice bath, then vortexed at room temperature for 20 min, centrifuged at 12,000 rpm for 1 min, and the organic phase was layered to absorb the organic phase. The residual aqueous phase was extracted once more with an equal volume of ethyl acetate. After combining the organic phases, the extracted product (containing a shellene) was obtained, and the shellene was directly detected by GC-MS.
  • GC-MS detection conditions for ocene Agilent 7890-5975 GC MS system was used.
  • the column is HP-5MS, the carrier gas is helium, and the flow rate is lml/min. Injection volume 5ul, no split, injection temperature 250 °C.
  • the column heating procedure was: 100 ° C for 2 min, 5 ° C / min to 250 ° C, then 250 ° C for 15 min.
  • the solvent was delayed by 4.50 min.
  • Scan method Select ion scan (m/z 272).
  • the dissociation voltage is 70 eV.
  • the shellene yield of the recombinant strain obtained by E.ci ⁇ ' BL21(DE3) is shown in Fig. 5B and Table 6.
  • Example 7 Product Detection of Recombinant Cells of Partially Synthesized Rebaudioside A Prepared by Example 5
  • HPLC-MS conditions for the determination of the acid of the succinic acid, stevioside, and stevioside HPLC-MS (Aglient, LC 1200/MS-QTOF6520), C 18 reversed phase column (Waters, Xterra, 2.1 x 50 mm) .
  • Mobile phase Phase A is methanol + 0.1% formic acid and phase B is water + 0.1% formic acid.
  • Mass spectrometry conditions Negative ion scanning with a scan range (m/z) of 100-1500.
  • Fig. 6B shows the detection results of the isenoic acid.
  • the results of high resolution mass spectrometry show that there are 303.2291 ions in the positive ion scan; wherein Fig. 6C is the detection result of steviol, and the result of high resolution mass spectrometry shows the positive ion.
  • Fig. 6C is the detection result of steviol
  • Figure 6D shows the detection results of steviol monoglycosides.
  • the results of high-resolution mass spectrometry show that there are 481.2754 ions in the positive ion scan
  • Figure 6E shows the detection results of Rebaudioside A, high resolution.
  • the highest yielding expression vector was pZQ HO, the production of rebaudioside A reached l lmg/L, its GGPP was derived from Canadian yew, CPS/KS was derived from xiaoli ⁇ , KO and KAH were derived from stevia, CPR was derived from Helicobacter pylori, UGT76G1, UGT74G1 and UGT85C2 are derived from stevia, and UGTB1 glycosyltransferase is derived from S. cerevisiae.
  • the expression plasmid vector for synthesizing Rebaudioside A obtained in Example 3 was digested with Sail, linearized, and electrotransferred into the host cell Pichia pastoris KM71 (purchased from Invitrogen) to obtain plasmid integration into the genome.
  • Recombinant Pichia pastoris KM71 at the His site then pick the monoclonal to BMGY liquid medium, incubate at 30 °C for 24 hours, collect the cells by centrifugation, add 10% glycerol to prepare the seed solution, and store at -80 °C. .
  • Example 8 Preparation of a partially synthesized stevioside intermediate ocene recombinant shell yeast
  • Example 8 1 ml of the fermentation broth obtained in Example 8 was added, 50 ul of 2 M HCl was added, then an equal volume of ethyl acetate was added, and the mixture was ultrasonicated for 1 min in an ice bath, then vortexed at room temperature for 20 min, centrifuged at 12,000 rpm for 1 min, and the organic phase was layered to absorb the organic phase. The residual aqueous phase was extracted once more with an equal volume of ethyl acetate. After combining the organic phases, the shellene was directly detected by GC-MS, and the product ocene was successfully detected. The yields are shown in Fig. 7 and Table 8.
  • Example 8 1 ml of the fermentation broth obtained in Example 8 was added, an equal volume of ethyl acetate was added, and the mixture was immersed in an ice bath for 1 min, and then vortexed at room temperature. After shaking for 20 min, centrifugation at 12000 rpm for 1 min, the organic phase was layered, the organic phase was aspirated, and the residual aqueous phase was extracted once with an equal volume of ethyl acetate. After combining the organic phases, the stevioside compounds were extracted, including the isenoic acid, stevia. Alcohol, steviol monoglycoside and rebaudioside A.
  • the highest expression vector of rebaudioside A is pZQ210
  • the production of rebaudioside A is 12 mg/L
  • the GGPP is derived from Canadian yew
  • the CPS/KS is derived from xiaolibei.
  • KO and KAH are derived from stevia
  • CPR is derived from Helminthosporium
  • UGT76G1, UGT74G1 and UGT85C2 are derived from Stevia
  • UGTB1 glycosyltransferase is derived from S. cerevisiae.
  • Example 5 1 ml of the fermentation broth obtained in Example 5 was added, an equal volume of ethyl acetate was added, and the mixture was ultrasonicated for 1 min in an ice bath, then vortexed at room temperature for 20 min, centrifuged at 12,000 rpm for 1 min, the organic phase was separated, the organic phase was aspirated, and the residual aqueous phase was reused. An equal volume of ethyl acetate was extracted once, and after combining the organic phases, extraction was carried out to obtain steviol monoglycoside and steviol diglucoside. The obtained organic phase was dried under vacuum, and then the residue was re-dissolved with 500 liter of acetonitrile, and the product was examined by HPLC-MS.
  • pZQ107, pZQ108, pZQ109 pSY200, pSY201 and pSY202 all contain UGT85c2 glycosyltransferase and UGTB1 glycosyltransferase or IBGT glycosyltransferase, and they can successfully detect steviol diglucoside in their fermentation broth (Fig. 9A, 9B and 9D).
  • the present inventors also tested steviol monoglycosides and steviol diglucosides of prokaryotic cells transformed with different expression vectors. Yield, the results are shown in Figure 10 and Table 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种利用微生物生产甜菊糖苷类化合物的方法,包括利用牻牛儿基牻牛儿基焦磷酸合成酶(GGPPS),古巴焦磷酸合成酶(CDPS),贝壳烯合成酶(KS),双功能贝壳烯合酶(CPS/KS),贝壳烯氧化酶(KO),细胞色素P450氧化还原蛋白(CPR),贝壳烯酸-13α-羟化酶,UGT85C2糖基转移酶,和UGTB1/IBGT糖基转移酶(可选地包括UGT74G1糖基转移酶和/或UGT76G1糖基转移酶),进行甜菊糖苷类化合物的异源生物合成。

Description

利用微生物生产甜菊糖苷类化合物的方法
技术领域
本发明属于合成生物学领域; 更具体地, 本发明涉及利用微生物生产甜菊糖苷类化合 物的方法。 背景技术
莱鲍迪苷 A(RebA)是
Figure imgf000002_0001
rebfl ^'imfl)中提取的新型天然甜味剂,它具有 甜度高, 热值含量低, 稳定性好等特点。 莱鲍迪苷 A与其它甜菊糖苷相比, 它的甜度最 高, 约为蔗糖的 450倍以上, 热值仅为蔗糖的 1/300。 莱鲍迪苷 A甜度高、 色泽洁白、 甜味纯正、 无异味, 因此它是一种蔗糖以及化学合成甜味剂的天然最佳替代品, 被国际 上誉为 "世界第三糖源" 。
目前从甜叶菊中分离得到的甜菊糖苷类化合物的结构式如图 1所示, 随着 Rl、 R2 为不同, 产生不同侧链修饰的的甜菊糖苷类化合物, 具体见表 1。 甜菊糖中莱鲍迪苷 A 含量越高, 甜味就越纯正, 也就受越多的消费者青睐, 因此在甜菊糖生产过程中必须提 高产品中莱鲍迪苷 A的含量。
表 1、 从甜叶菊分离的甜菊糖苷类化合物
序号 化合物 R1 R2
1 甜菊醇 H H
2 a
甜菊醇单糖苷 H β o-Glc
3 甜菊醇双糖苷 H P-Glc-P-Glc(2→l)
4 甜茶素 β-Glc β-Glc
5 甜菊糖苷 β-Glc P-Glc-P-Glc(2→l)
6 甜菊糖莱鲍迪苷 A β-Glc P-Glc-P-Glc(2→l) β-Glc (3→1)
7 甜菊糖莱鲍迪苷 B H P-Glc-P-Glc(2→l) β-Glc (3→1)
8 甜菊糖莱鲍迪苷 C β-Glc P-Glc-a-Rha(2→l)
9 甜菊糖莱鲍迪苷 D P-Glc-P-Glc(2 →1) P-Glc-P-Glc(2→l) β-Glc (3→1)
10 甜菊糖莱鲍迪苷 E P-Glc-P-Glc(2 →1) P-Glc-P-Glc(2→l)
1 1 甜菊糖莱鲍迪苷 F β-Glc P-Glc-a-Xly(2→l)
12 杜可尔苷 A β-Glc P-Glc-a-Rha(2→l) 目前, 甜菊糖苷类化合物已被广泛的用于食品、 饮料、 医药、 化妆品等行 研究表明, 甜菊糖苷类化合物还具有预防高血压, 糖尿病, 心脏病等保健作用。 因此, 甜菊糖苷类化合物的需求在近年来快速增长。
目前市场上的莱鲍迪苷 A主要是从甜菊叶中提取, 制备流程主要为: 干燥粉碎甜菊 叶、 液相浸提、 除杂、 树脂处理、 喷雾干燥和精制等步骤。 通常情况下, 甜叶菊叶片可 以积累多达占干重 4%-20%的甜菊糖。 但是甜菊的种植需要占用大量的土地, 而且甜菊 糖生产存在甜菊品质参差不齐、 原料转化效率不高和提取产品的纯度低等诸多问题。 因 此研究一种原料易得、生产安全和提取方法简单的新型的莱鲍迪苷 A大规模生产方法显 得非常必要。
随着近十年合成生物学技术的进步, 利用微生物异源合成的方法生产某些化合物成 为可能。 它将具有成本低, 占地面积少, 产品质量易控等优, 但目前还未见有异源生物 合成莱鲍迪苷 A的报道, 其关键的技术难题是, 在莱鲍迪苷 A生物合成途径中, 从甜 菊醇单糖苷经一步糖基化反应得到甜菊醇双糖苷的转移酶是未知的。 因此, 本领域迫切 需要克服现有技术难题, 实现莱鲍迪苷 A的微生物合成。 发明内容
本发明的目的在于提供一种利用微生物生产甜菊糖苷类化合物的方法。
本发明在第一方面, 提供了一种分离的多肽, 其特征在于, 所述的多肽是非甜叶菊 来源的糖基转移酶, 用于催化在甜菊糖苷类化合物的 0-葡萄糖残基的 C-2' 再转移上 一个糖。
优选地, 其氨基酸序列与甜叶菊来源的具有同一功能的酶的氨基酸序列一致性不大 于 95%, 较佳的, 不大于 80%; 较佳的, 不大于 70%; 较佳的, 不大于 60%; 较佳的, 不大于 50%; 更佳的, 不大于 40%; 更佳的, 不大于 30%。
在一个优选例中, 所述的非甜叶菊来源糖基转移酶来源于斯塔摩酵母 (Starmerella bombicola)或甘薯 (Ipomoea batatas)。
在另一优选例中,所述的来源于斯塔摩酵母的糖基转移酶,其特征在于,具有如 SEQ ID NO: 41的氨基酸序列 (称为 UGTB1)或在 SEQ ID NO: 41基础上经过一个或多个氨基 酸残基的取代、 缺失或添加而形成的同功能衍生蛋白。
在另一优选例中,所述的来源于甘薯的糖基转移酶,其特征在于,具有如 SEQ ID NO: 51所示的氨基酸序列 (称为 IBGT), 或在 SEQ ID NO: 51基础上经过一个或多个氨基酸 残基的取代、 缺失或添加而形成的同功能衍生蛋白。
本发明在另一方面, 提供了一种分离的核苷酸序列, 其特征在于, 所述的核苷酸序 列编码非甜叶菊来源的糖基转移酶, 用于催化在甜菊糖苷类化合物的 0-葡萄糖残基的 C-2' 再转移上一个糖。
在一个优选例中, 所述的核苷酸序列具有: (1)如 SEQ ID NO:42所示的序列, 或与
SEQ ID NO: 42同源度在 70%及以上的序列 (较佳的, 在 80%以上; 更佳的在 90%以上, 更佳的在 95%以上 X2)如 SEQ ID NO:52所示的序列, 或与 SEQ ID NO: 52同源度在在 70%及以上的序列 (较佳的, 在 80%以上; 更佳的在 90%以上, 更佳的在 95%以上)。
在另一优选例中,所述的核苷酸序列是 (1)如 SEQ ID NO:42所示的序列或 (2)如 SEQ ID NO:52所示的序列。 本发明在另一方面, 提供了一种非甜叶菊来源的糖基转移酶的用途, 用于在宿主细 胞中重组表达以制备甜菊糖苷类化合物, 其特征在于, 催化在甜菊糖苷类化合物的 0- 葡萄糖残基的 C-2, 再转移上一个糖。
在一个优选例中, 所述的糖基转移酶的催化底物包括但不限于甜菊醇 -13-0-葡萄糖 苷 (又称甜菊醇单糖苷)、 甜茶素 (又称甜叶悬钩子苷)、 甜菊糖苷、 莱鲍迪苷 A; 优选的, 催化甜菊醇单糖苷生成甜菊醇双糖苷。
本发明在另一方面, 提供了一种合成甜菊糖苷类化合物的方法, 其特征在于, 在宿 主细胞中重组表达能催化在甜菊糖苷类化合物的 0-葡萄糖残基的 C-2' 再转移上一个 糖的非甜叶菊来源的糖基转移酶。 。
在一个优选例中, 所述的宿主细胞还含有下述中的一个或多个:
(a)栊牛儿基栊牛儿基焦磷酸合成酶,
(b)选自以下 (I)或 (Π)的酶: (I)古巴焦磷酸合成酶和贝壳烯合成酶, (Π)双功能贝壳烯 合酶,
(c)贝壳烯氧化酶,
(d)细胞色素 P450氧化还原蛋白,
(e)贝壳烯酸 -13 α -羟化酶,
(f) UGT85C2糖基转移酶,
(h) UGT74G1糖基转移酶,
(i) UGT76G1糖基转移酶。
在另一优选例中, 所述的的宿主细胞还含有包括以下酶的基因表达盒: 1-脱氧木糖
-5-磷酸合成酶, 2-甲基赤藓糖 -4-磷酸胞苷转移酶, 2-甲基赤藓糖 -2,4-环二磷酸合成酶和 异戊烯焦磷酸异构酶。
在另一优选例中, 所述的宿主细胞选自: 原核微生物细胞或真核微生物细胞。
在另一优选例中, 所述的原核微生物是: 大肠杆菌, 枯草芽孢杆菌, 醋酸杆菌、 棒 状杆菌、 短杆菌; 更佳地, 所述大肠杆菌选自: BL21、 BLR、 DH10B、 HMS、 CD43、 JM109、 DH5 α或 Noveblue; 或所述的真核微生物细胞是: 酵母菌、 霉菌、 担子菌; 所 述的酵母菌是: 毕赤酵母, 酿酒酵母, 乳酸克鲁维酵母。 较佳地, 所述的毕赤酵母选自 GS115、 MC100-3、 SMD1163、 SMD1165、 SMDl 168或 KM71; 较佳地, 所述的酿酒酵 母选自 W303、 CEN.PK2、 S288c、 FY834或 S1949; 较佳地, 所述的乳酸克鲁维酵母选 自 GG799。
在本发明的另一方面, 提供一种合成甜菊糖苷类化合物的方法, 包括: 在细胞中 重组表达 (较佳地, 为异源表达
(a)栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS),
(b)选自以下 (I)或 (Π)的酶: (I)古巴焦磷酸合成酶 (CDPS)和贝壳烯合成酶 (KS), (II) 双功能贝壳烯合酶 (CPS/KS), (c)贝壳烯氧化酶 (KO),
(d)细胞色素 P450氧化还原蛋白 (CPR),
(e)贝壳烯酸 - 13 α -羟化酶,
f) UGT85C2糖基转移酶, 和
(g)UGTB l/IBGT糖基转移酶;
培养所述的细胞, 从而生成甜菊糖苷类化合物。
在一个优选例中, 还包括重组表达:
(h) UGT74G l糖基转移酶, 禾口 /或
(i) UGT76G l糖基转移酶。
在另一优选例中, 重组表达所述的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴焦磷酸合 成酶、 贝壳烯合成酶、 贝壳烯氧化酶、 贝壳烯酸 - 13 α -羟化酶、 UGT85C2糖基转移酶和 UGTB 1/IBGT糖基转移酶, 从而合成甜菊醇双糖苷。
在另一优选例中, 重组表达所述的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴焦磷酸合 成酶、 贝壳烯合成酶、 贝壳烯氧化酶、 贝壳烯酸 - 13 α -羟化酶、 UGT85C2糖基转移酶, UGTB 1/IBGT糖基转移酶和 UGT74G1糖基转移酶, 从而合成甜菊糖苷。
在另一优选例中, 重组表达所述的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴焦磷酸合 成酶、 贝壳烯合成酶、 贝壳烯氧化酶、 贝壳烯酸 - 13 α -羟化酶、 UGT85C2糖基转移酶, UGTB 1/IBGT糖基转移酶, UGT74G 1糖基转移酶和 UGT76G1糖基转移酶, 从而合成莱 鲍迪苷 Α。
在另一优选例中, (b)项中, 采用 (Π)双功能贝壳烯合酶。
在另一优选例中, 所述的方法中, 所述的栊牛儿基栊牛儿基焦磷酸合成酶来源于加 拿大红豆杉(Γ<¾;α« cimi½?ew;^)或甜叶菊 rebaudiana)(i ^i& , 来源于加拿大红豆 杉);
所述的古巴焦磷酸合成酶来源于甜叶菊或慢生大豆根瘤菌 (Bradyrhizobium fl/w 'c m) (;优选地, 来源于甜叶菊);
所述的贝壳烯合成酶来源于甜叶菊或慢生大豆根瘤菌 (优选地, 来源于甜叶菊); 所述的双功能贝壳烯合酶来源于小立碗藓 (Physcomitrella patens)或藤仓赤霉 {Gibberella fujikuroi) (优选地, 来源于小立碗藓);
所述的贝壳烯氧化酶来源于甜叶菊、 藤仓赤霉、 阿拉伯芥 (ArabWo/^ thaliana)或 慢生大豆根瘤菌 (优选地, 来源于甜叶菊);
所述的贝壳烯酸 - 13ct-羟化酶来源于甜叶菊、 阿拉伯芥 (优选地, 来源于甜叶菊); 所述的 UGT85C2糖基转移酶、 UGT74G1糖基转移酶、 UGT76G1糖基转移酶来源 于甜叶菊;
所述的 UGTB 1 糖基转移
Figure imgf000005_0001
bombicola); 所述的 IBGT 糖基转移酶来源于甘薯 (Ipomoea batatas) ;所述的细胞色素 P450氧化还原蛋白来源于黄 花蒿 (Ar em a imm i , 暗球腔菌 (Phaeosphaeria sp. L487), 藤仓赤霉, 甜叶菊或阿拉伯 芥 (优选地, 来源于暗球腔菌)。
在另一优选例中, (b)项中, 采用 (Π)双功能贝壳烯合酶; 且, 所述的栊牛儿基栊牛 儿基焦磷酸合成酶来源于加拿大红豆杉, 所述的双功能贝壳烯合酶来源于小立碗藓, 所 述的贝壳烯氧化酶、 贝壳烯酸 -13ct-羟化酶、 UGT85C2糖基转移酶、 UGT74G1糖基转移 酶、 UGT76G1糖基转移酶来源于甜叶菊; 所述的 UGTB1糖基转移酶来源于斯塔摩酵母; 所述的细胞色素 P450氧化还原蛋白来源于暗球腔菌; 所述的 IGBT糖基转移酶来源于 甘薯 (Ipomoea batatas)。
在另一优选例中, 所述的来源于加拿大红豆杉的栊牛儿基栊牛儿基焦磷酸合成酶, 在野生型的基础上去除了 N端的质体转运肽序列; 较佳地, 去除了 N端 98个氨基酸; 所述的来源于黄花蒿的细胞色素 P450氧化还原蛋白, 在野生型基础上去除了 N端 跨膜区序列; 较佳地, 去除了 N端 66个氨基酸。
在另一优选例中, 所述的栊牛儿基栊牛儿基焦磷酸合成酶具有 SEQ ID NO: 1 或 SEQ ID NO: 45所示的氨基酸序列, 或在 SEQ ID NO: 1或 SEQ ID NO: 45基础上经过一 个或多个 (如 1-30个,较佳地 1-20个,更佳地 1-10个,更佳地 1-5个)氨基酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
所述的古巴焦磷酸合成酶具有 SEQ ID NO: 3或 SEQ ID NO: 25所示的氨基酸序列, 或在 SEQ ID NO: 3或 SEQ ID NO: 25基础上经过一个或多个 (如 1-30个,较佳地 1-20个, 更佳地 1-10个,更佳地 1-5个)氨基酸残基的取代、缺失或添加而形成的同功能衍生蛋白; 所述的贝壳烯合成酶具有 SEQ ID NO: 5或 SEQ ID NO: 27所示的氨基酸序列, 或 在 SEQ ID NO: 5或 SEQ ID NO: 27基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个,更佳地 1-5个)氨基酸残基的取代、缺失或添加而形成的同功能衍生蛋白; 所述的双功能贝壳烯合酶具有 SEQ ID NO: 21或 SEQ ID NO: 23所示的氨基酸序 歹 lj, 或在 SEQ ID NO: 21或 SEQ ID NO: 23基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基酸残基的取代、缺失或添加而形成的同功能 衍生蛋白;
所述的贝壳烯氧化酶具有 SEQ ID NO: 7、SEQ ID NO: 3 K SEQ ID NO: 37或 SEQ ID NO: 29所示的氨基酸序列, 或在 SEQ ID NO: 7、 SEQ ID NO: 31、 SEQ ID NO: 37或 SEQ ID NO: 29基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
所述的贝壳烯酸 -13α-羟化酶具有 SEQ ID NO: 9、 SEQ ID NO: 43、 SEQID NO: 47 或 SEQ ID NO: 49所示的氨基酸序列,或在 SEQ ID NO: 9、 SEQ ID NO: 43、 SEQID NO: 47或 SEQ ID NO: 49基础上经过一个或多个氨基酸残基的取代、 缺失或添加而形成的 同功能衍生蛋白;
UGT85C2糖基转移酶具有 SEQ ID NO: 1 1所示的氨基酸序列,或在 SEQ ID NO: 1 1 基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基 酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
UGT74G1糖基转移酶具有 SEQ ID NO: 13所示的氨基酸序列,或在 SEQ ID NO: 13 基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基 酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
UGT76G1糖基转移酶具有 SEQ ID NO: 15所示的氨基酸序列,或在 SEQ ID NO: 15 基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基 酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
所述的 UGTB1糖基转移酶具有 SEQ ID NO: 41所示的氨基酸序列,或在 SEQ ID NO: 41基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个) 氨基酸残基的取代、 缺失或添加而形成的同功能衍生蛋白;
所述的 IBGT糖基转移酶具有 SEQ ID NO: 51所示的氨基酸序列,或在 SEQ ID NO: 51基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个) 氨基酸残基的取代、 缺失或添加而形成的同功能衍生蛋白; 或
所述的细胞色素 P450氧化还原蛋白具有 SEQ ID NO: 17、 SEQ ID NO: 19、 SEQ ID
NO: 33、 SEQ ID NO: 35或 SEQ ID NO: 39所示的氨基酸序列,或在 SEQ ID NO: 17、 SEQ ID NO: 19、 SEQ ID NO: 33、 SEQ ID NO: 35或 SEQ ID NO: 39基础上经过一个或多个 (如 1-30个, 较佳地 1-20个, 更佳地 1-10个, 更佳地 1-5个)氨基酸残基的取代、 缺失或添 加而形成同功能衍生蛋白。
在另一优选例中, 所述的栊牛儿基栊牛儿基焦磷酸合成酶的编码基因具有 SEQ ID
NO: 2或 SEQ ID NO: 46所示的核苷酸序列, 或与 SEQ ID NO: 2或 SEQ ID NO: 46序列 有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列;
所述的古巴焦磷酸合成酶的编码基因具有 SEQ ID NO: 4或 SEQ ID NO: 26所示的 核苷酸序列, 或与 SEQ ID NO: 4或 SEQ ID NO: 26序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码 同功能蛋白的核苷酸序列;
所述的贝壳烯合成酶的编码基因具有 SEQ ID NO: 6或 SEQ ID NO: 28所示的核苷 酸序列, 或与 SEQ ID NO: 6或 SEQ ID NO: 28序列有 70%以上 (较佳地 80%以上; 更佳 地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码同功 能蛋白的核苷酸序列;
所述的双功能贝壳烯合酶的编码基因具有 SEQ ID NO: 22或 SEQ ID NO: 24所示的 核苷酸序列, 或与 SEQ ID NO: 22或 SEQ IDNO: 24序列有 50%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码 同功能蛋白的核苷酸序列; 所述的贝壳烯氧化酶的编码基因具有 SEQ ID NO: 8、 SEQ ID NO: 32、 SEQ ID NO: 38或 SEQ ID NO: 30所示的核苷酸序列, 或与 SEQ ID NO: 8、 SEQ ID NO: 32、 SEQ ID NO: 38或 SEQ ID NO: 30序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列; 所述的贝壳烯酸 -13α-羟化酶的编码基因具有 SEQ ID NO: 10、 SEQ ID NO: 44、 SEQ
ID NO: 48或 SEQ ID NO: 50所示的核苷酸序列, 或与 SEQ ID NO: 10、 SEQ ID NO: 44、 SEQ ID NO: 48或 SEQ ID NO: 50序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷 酸序列;
UGT85C2糖基转移酶的编码基因具有 SEQ ID NO: 12所示的核苷酸序列,或与 SEQ
ID NO: 12序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳 地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列;
UGT74G1糖基转移酶的编码基因具有 SEQ ID NO: 14所示的核苷酸序列,或与 SEQ ID NO: 14序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳 地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列;
UGT76G1糖基转移酶的编码基因具有 SEQ ID NO: 16所示的核苷酸序列,或与 SEQ ID NO: 16序列有 70%以上 (较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳 地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列;
所述的 UGTB1糖基转移酶的编码基因具有 SEQ ID NO: 42所示的核苷酸序列, 或 与 SEQ ID NO: 42序列有 50%以上 (较佳地 60%以上; 较佳地 70%以上; 较佳地 80%以 上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的 编码同功能蛋白的核苷酸序列;
所述的 IBGT糖基转移酶的编码基因具有 SEQ ID NO: 52所示的核苷酸序列, 或与 SEQ ID NO: 42序列有 50%以上 (较佳地 60%以上; 较佳地 70%以上; 较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码 同功能蛋白的核苷酸序列或
所述的细胞色素 P450氧化还原蛋白的编码基因具有 SEQ ID NO: 18、 SEQ ID NO: 20、 SEQ ID NO: 34、 SEQ ID NO: 36或 SEQ ID NO: 40所示的核苷酸序列; 或与 SEQ ID NO: 18、 SEQ ID NO: 20、 SEQ ID NO: 34、 SEQ ID NO: 36或 SEQ ID NO: 40序列有 70% 以上 (;较佳地 80%以上; 更佳地 90%以上; 更佳的 93%以上; 更佳地 95%以上; 更佳的 97%以上)相同性的编码同功能蛋白的核苷酸序列。
在另一优选例中, 所述的细胞选自 (但不限于); 原核微生物细胞, 真核微生物细胞。 在另一优选例中, 所述的原核微生物是 (但不限于): 大肠杆菌, 枯草芽孢杆菌, 醋 酸杆菌、 棒状杆菌、 短杆菌; 更佳地, 所述大肠杆菌选自: BL21、 BLR、 DH10B、 HMS、 CD43、 JM109、 DH5a或 Noveblue。 在另一优选例中, 所述的真核微生物细胞是 (但不限于): 酵母菌、 霉菌、 担子菌; 所述的酵母菌是 (但不限于): 毕赤酵母, 酿酒酵母, 乳酸克鲁维酵母。 较佳地, 所述的 毕赤酵母选自 GS 115、 MC100-3、 SMD1163、 SMD1165、 SMD1 168或 KM71; 较佳地, 所述的酿酒酵母选自 W303、 CEN.PK2、 S288c、 FY834或 S1949; 较佳地, 所述的乳酸 克鲁维酵母选自 GG799。
在另一优选例中, 当所述的细胞为革兰氏阴性菌株, 采用 pET、 pBAD和 pQE系列 表达载体 (如 pET28a 和 pET21c)来重组表达各酶; 或当所述的细胞为酵母细胞, 采用 pPIC (如 pPIC3.5)或 pSY系列表达载体 (如 pSYOl)来重组表达各酶。
在另一优选例中, 所述的方法包括: 将各 (a)-(g)及可选地 (h)-(i)各酶的编码基因插 入到所述的重组表达载体中, 构建基因表达盒, 用于重组表达所述的酶。
在本发明的另一方面, 提供一种用于合成甜菊糖苷类化合物的表达构建物 (如表达 载体), 其中包括以下酶的基因表达盒:
(a)栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS),
(b)选自以下 (I)或 (Π)的酶: (I)古巴焦磷酸合成酶 (CDPS)和贝壳烯合成酶 (KS), (II) 双功能贝壳烯合酶 (CPS/KS),
(c)贝壳烯氧化酶 (KO),
(d)细胞色素 P450氧化还原蛋白 (CPR),
(e)贝壳烯酸 -13 α -羟化酶,
f) UGT85C2糖基转移酶, 和
(g)UGTBl/IBGT糖基转移酶。
在另一优选例中,所述的用于合成甜菊糖苷类化合物的表达构建物还包括以下酶的 基因表达盒:
(h) UGT74Gl糖基转移酶, 禾口 /或
(i) UGT76Gl糖基转移酶。
在本发明的另一方面, 提供一种用于甜菊糖苷类化合物前体途径强化的表达构建 物, 其包括以下酶的基因表达盒:
1-脱氧木糖 -5-磷酸合成酶 (DXS), 2-甲基赤藓糖 -4-磷酸胞苷转移酶 (CMS), 2-甲基 赤藓糖 -2,4-环二磷酸合成酶 (MCS)和异戊烯焦磷酸异构酶 (IDI)。
在本发明的另一方面, 提供一种用于合成甜菊糖苷类化合物的宿主细胞, 其中包含 所述的用于合成甜菊糖苷类化合物的表达构建物。
在另一优选例中,所述的用于合成甜菊糖苷类化合物的宿主细胞为非生殖材料及非 繁殖材料。
在另一优选例中, 所述的用于合成甜菊糖苷类化合物的细胞选自 (但不限于); 原核 微生物细胞, 真核微生物细胞。
在另一优选例中,所述的用于合成甜菊糖苷类化合物的宿主细胞中还包括所述的用 于甜菊糖苷类化合物前体途径强化的表达构建物。
在本发明的另一方面, 提供一种制备贝壳烯的方法, 包括: 在原核微生物细胞, 真 核微生物细胞中重组表达 (较佳地, 为异源表达):
(a)栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS), 和
双功能贝壳烯合酶 (CPS/KS)。
在另一优选例中,所述的栊牛儿基栊牛儿基焦磷酸合成酶来源于加拿大红豆杉或甜 叶菊; 或所述的双功能贝壳烯合酶来源于小立碗藓或藤仓赤霉。
在本发明的另一方面, 提供一种用于制备贝壳烯的表达构建物, 其中包括以下酶的 基因表达盒:
(a)栊牛儿基栊牛儿基焦磷酸合成酶和
(b)双功能贝壳烯合酶。
在本发明的另一方面, 提供一种用于制备贝壳烯的宿主细胞, 其中包含所述的用于 制备贝壳烯的表达构建物;和 /或所述的用于甜菊糖苷类化合物前体途径强化的表达构建 物。
在另一优选例中, 所述的制备贝壳烯的宿主细胞是革兰氏阴性 DE3 溶源化菌株, 酵母细胞。
在本发明的另一方面, 提供 UGTB1/IBGT糖基转移酶的用途, 用于将甜菊醇单糖 苷转化为甜菊醇双糖苷 (较佳地, 在甜菊醇单糖苷的 C-13葡萄糖的 C-2 ' 位点上加上糖 基)。
在本发明的另一方面, 提供双功能贝壳烯合酶的用途, 用于将香叶基香叶基焦磷酸 转化为贝壳烯。
在本发明的另一方面, 提供一种用于制备甜菊糖苷类化合物的酶的组合, 所述组合 包括:
(a)栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS),
(b)选自以下 (I)或 (Π)的酶: (I)古巴焦磷酸合成酶 (CDPS)和贝壳烯合成酶 (KS), (II) 双功能贝壳烯合酶 (CPS/KS),
(c)贝壳烯氧化酶 (KO),
(d)细胞色素 P450氧化还原蛋白 (CPR),
(e)贝壳烯酸 -13 α -羟化酶,
(f) UGT85C2糖基转移酶, 禾口
(g) UGTBl/IBGT糖基转移酶。
在另一优选例中, 所述的酶的组合还包括:
(h) UGT74Gl糖基转移酶,
(i) UGT76Gl糖基转移酶。
在本发明的另一方面, 提供一种用于制备甜菊糖苷类化合物的试剂盒, 所述试剂盒 中包括: 所述的用于合成甜菊糖苷类化合物的表达构建物; 更佳地还包括所述的用于甜 菊糖苷类化合物前体途径强化的表达构建物; 或
所述试剂盒中包括: 所述的用于合成甜菊糖苷类化合物的宿主细胞。
在本发明的另一方面, 提供一种用于制备贝壳烯的组合 (如含有酶的试剂盒), 所述 组合包括: (a)栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS), 和 (b)双功能贝壳烯合酶 (CPS/KS)。
在另一优选例中, 所述的用于制备贝壳烯的组合还包括: 1-脱氧木酮糖 -5-磷酸合成 酶 (DXS, l-deoxy-D-xylulose-5-phosphate synthase) , 2-甲基赤藓糖 -4-磷酸胞苷转移酶 (CMS, 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase), 2-甲基赤藓糖 -2,4-环二磷 酸合成酶 (MCS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase)和异戊烯焦磷酸异 构酉每 (IDI, isopentenyl-di hos hate delta-isomerase)。
在本发明的另一方面, 提供一种用于制备贝壳烯的试剂盒, 所述试剂盒中包括: 所 述的用于制备贝壳烯的表达构建物; 更佳地还包括所述的用于甜菊糖苷类化合物前体途 径强化的表达构建物; 或所述试剂盒中包括: 所述的用于制备贝壳烯的宿主细胞。
本发明的其它方面由于本文的公开内容, 对本领域的技术人员而言是显而易见的。 附图说明
图 1、 甜菊糖苷类化合物的结构式。
图 2、 莱鲍迪苷 A的生物合成过程示意图。 图 3A、 质粒 pET28a-ggw^图谱, 插入 位点 Ncol/Hindlll;
图 3B、质粒 pET2\c-Inserted gene, Inserted gene为 cdps, cps/ks,ks,ko,kah,ugt85c2, ugtbl , ugt74gl , wg 76gJ九个基因单独克隆的质粒插入位点 (Ndel/Hindlll);
图 3C、 质粒 pET21d-cpr图谱 (插入位点 Ncol/Hindlll);
图 3D、 质粒 pJF47(pET21d-^^-^pD-^pF-W)图谱;
图 3E、质粒 pZQ110(pET28a-ggp/^-c/^/fc?-fco-^^- g S5c2- g W- g 74W -ugt76gl-cpr) 图谱;
图 3F、 质粒 pZQllO载体的酶切验证图谱;
图 3G、 fi pPIC3.5K-Inserted gene, Inserted gene为 cdps, cps/ks, ks, ko, kah, ugt85c2, ugtbl , ugt74gl, wg 76^九个基因单独克隆的质粒插入位点(Bglll/Notll); 图 3H、质粒 pZQ2l0(pSYl-ggpps-cps/ks-ko-kah-ugt85c2-iigtbl-iigt74gl -ugt76gl-cpr) 图谱;
图 31、 质粒 p ZQ210载体的 PCR验证图谱。
图 4A、 cdps基因和 ugt85c2基因表达的 SDS-PAGE图谱;
图 4B、 ko基因和 ks基因表达的 SDS-PAGE图谱;
图 4C、 kah基因表达的 SDS-PAGE图谱; 图 4D、 ugt74gl基因表达的 SDS-PAGE图谱;
图 4E、 ugt76gl基因表达的 SDS-PAGE图谱。
图 5A、 实施例 6所得的发酵液中的贝壳烯的 GC-MS图;
图 5B、 实施例 6所得的发酵液中的贝壳烯产量。
图 6A、 实施例 7所得的发酵液中的 HPLC图;
图 6B、 实施例 7所得的发酵液中的贝壳烯酸的 HPLC-MS图;
图 6C、 实施例 7所得的发酵液中的甜菊醇的 HPLC-MS图;
图 6D、 实施例 7所得的发酵液中的甜菊醇单糖苷的 HPLC-MS图;
图 6E、 实施例 Ί所得的发酵液中的莱鲍迪苷 A的 HPLC-MS图;
图 6F、 实施例 7所得的发酵液中的莱鲍迪苷 A产量。
图 7、 实施例 9所得的发酵液中的贝壳烯产量。
图 8、 实施例 10所得的发酵液中的莱鲍迪苷 A产量。
图 9、 实施例 1 1所得发酵液中甜菊醇单糖苷和甜菊醇双糖苷 HPLC-MS图。
9a、含 pZQ 107表达载体的工程菌发酵液中甜菊醇单糖苷和甜菊醇双糖苷 HPLC-MS 图。
9b、含 pZQ 108表达载体的工程菌发酵液中甜菊醇单糖苷和甜菊醇双糖苷 HPLC-MS 图。
9c、含 pZQ 105表达载体的工程菌发酵液中甜菊醇单糖苷和甜菊醇双糖苷 HPLC-MS 图。
9d、含 pZQ 109表达载体的工程菌发酵液中甜菊醇单糖苷和甜菊醇双糖苷 HPLC-MS 图。
图 10、 实施例 1 1中不同来源表达质粒转化细胞后的甜菊醇单糖苷和甜菊醇双糖苷
具体实施方式
本发明人经过深入的研究, 首次揭示了甜菊糖苷类化合物异源生物合成的关键酶, 从而可实现甜菊糖苷类化合物的异源生物合成。 术语
如本文所用, 所述的 "甜菊糖苷类化合物"是指选自甜菊醇、 甜菊醇单糖苷、 甜菊 醇双糖苷、 甜菊糖苷、 甜菊糖莱鲍迪苷 A或甜菊糖莱鲍迪苷 B的化合物。
如本文所用, 所述的 "基因表达盒"是指包含有表达目的多肽 (本发明中为酶)所需 的所有必要元件的基因表达系统, 通常其包括以下元件: 启动子、编码多肽的基因序列, 终止子; 此外还可选择性包括信号肽编码序列等; 这些元件是操作性相连的。
如本文所用, 所述的 "可操作地连接 (相连) " 或 "操作性连接 (相连) " 是指两个或 多个核酸区域或核酸序列的功能性的空间排列。 例如: 启动子区被置于相对于目的基因 核酸序列的特定位置, 使得核酸序列的转录受到该启动子区域的引导, 从而, 启动子区 域被 "可操作地连接" 到该核酸序列上。
如本文所用, 所述的 "表达构建物" 是指重组 DNA分子, 它包含预期的核酸编码 序列, 其可以包含一个或多个基因表达盒。 所述的 "构建物"通常被包含在表达载体中。
如本文所用, 所述的 "异源"是指来自不同来源的两条或多条核酸或蛋白质序列之 间的关系, 获知来自不同来源的蛋白 (或核酸)与宿主细胞之间的关系。 例如, 如果核酸 与宿主细胞的组合通常不是天然存在的, 则核酸对于该宿主细胞来说是异源的。 特定序 列对于其所插入的细胞或生物体来说是 "异源的" 。 合成途径的蛋白及其表达系统
本发明涉及甜菊糖苷类化合物合成过程中的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴 焦磷酸合成酶、 贝壳烯合成酶、 双功能贝壳烯合酶 (或可选地, 古巴焦磷酸合成酶及贝壳 烯合成酶)、 贝壳烯氧化酶、 贝壳烯酸 -13ct-羟化酶、 UGT85C2 糖基转移酶、 UGT74G1 糖基转移酶、 UGT76G1糖基转移酶, UGTB1糖基转移酶, 和细胞色素 P450氧化还原 蛋白。 上述蛋白在细胞中的共同表达可实现甜菊糖苷类化合物的合成。 较佳地, 合成途 径的上游, 还涉及前体途径强化的酶, 所述的前体途径强化的酶可以是任何可将中心代 谢途径的丙酮酸 (PYR)和 3-磷酸甘油醛 (G3P)前体转化为萜类合成通用前体异戊烯焦磷 酸 (IPP)和二甲基丙烯基焦磷酸 (DMAPP)的酶; 优选地, 所述的前体途径强化的酶包括: 1-脱氧木糖 -5-磷酸合成酶 (DXS), 2-甲基赤藓糖 -4-磷酸胞苷转移酶 (CMS), 2-甲基赤藓糖 -2,4-环二磷酸合成酶 (MCS)和异戊烯焦磷酸异构酶 (IDI)。
本发明人还研究了不同来源的酶应用于合成中间产物贝壳烯及终产物甜菊糖类化 合物的效率, 获得了一系列具有较好的效果的酶。 因此, 作为本发明的优选方式, 所述 的栊牛儿基栊牛儿基焦磷酸合成酶来源于加拿大红豆杉或甜叶菊 (更优选地,来源于加拿 大红豆杉); 所述的古巴焦磷酸合成酶来源于甜叶菊或慢生大豆根瘤菌 (更优选地, 来源 于甜叶菊); 所述的贝壳烯合成酶来源于甜叶菊或慢生大豆根瘤菌 (优选地, 来源于甜叶 菊) (更优选地, 来源于甜叶菊); 所述的双功能贝壳烯合酶来源于小立碗藓或藤仓赤霉 (更 优选地, 来源于小立碗藓); 所述的贝壳烯氧化酶来源于甜叶菊、 藤仓赤霉、 阿拉伯芥或 慢生大豆根瘤菌 (更优选地, 来源于甜叶菊); 所述的贝壳烯酸 -13ct-羟化酶、 UGT85C2 糖基转移酶、 UGT74G1糖基转移酶、 UGT76G1糖基转移酶来源于甜叶菊;所述的 UGTB1 糖基转移酶来源于斯塔摩酵母;所述的 IBGT糖基转移酶来源于甘薯;或所述的细胞色素 P450氧化还原蛋白来源于黄花蒿, 暗球腔菌, 藤仓赤霉, 甜叶菊或阿拉伯芥 (更优选地, 来源于暗球腔菌)。 作为本发明的更优选方式, 采用双功能贝壳烯合酶; 且, 所述的栊牛 儿基栊牛儿基焦磷酸合成酶来源于加拿大红豆杉, 所述的双功能贝壳烯合酶来源于小立 碗藓, 所述的贝壳烯氧化酶、 贝壳烯酸 -13ct-羟化酶、 UGT85C2糖基转移酶、 UGT74G1 糖基转移酶、 UGT76G1糖基转移酶来源于甜叶菊; 所述的 UGTB1糖基转移酶来源于斯 塔摩酵母; 所述的细胞色素 P450氧化还原蛋白来源于暗球腔菌。
作为本发明的更优选方式,所述的来源于加拿大红豆杉的栊牛儿基栊牛儿基焦磷酸 合成酶, 在野生型的基础上去除了 N端的质体转运肽序列; 较佳地, 去除了 N端 98个 氨基酸。 所述的来源于黄花蒿的细胞色素 P450氧化还原蛋白, 在野生型基础上去除了 N端跨膜区序列; 较佳地, 去除了 N端 66个氨基酸。
在本发明中, 上述的酶或蛋白可以是天然存在的, 比如其可被分离或纯化自动植物 或微生物。 此外, 所述的酶或蛋白也可以是人工制备的, 比如可以根据常规的基因工程 重组技术来生产重组酶或蛋白。 优选的, 本发明可采用重组的酶或蛋白。
任何适合的酶或蛋白均可用于本发明。所述的酶或蛋白包括全长的酶或蛋白或其生 物活性片段 (或称为活性片段),在本发明中具有 CDPS和 KS双功能酶的 CPS/KS的活性 片段为 YDTAWXA DXDD禾卩 DDXXD, 或 YDTAWXA DXDD禾卩 DEXXE, UGTB1 糖基转移酶的活性片段为 GHVGP和 NGGYGG。 经过一个或多个氨基酸残基的取代、 缺失或添加而形成的酶或蛋白的氨基酸序列也包括在本发明中。酶或蛋白的生物活性片 段的含义是指作为一种多肽, 其仍然能保持全长的酶或蛋白的全部或部分功能。通常情 况下, 所述的生物活性片段至少保持 50%的全长酶或蛋白的活性。 在更优选的条件下, 所述活性片段能够保持全长酶或蛋白的 55%、 60%、 65%、 70%、 75%、 80%、 85%、 90%、 95%、 97%、 99%、 或 100%的活性。 酶或蛋白或其生物活性片段包括一部分保守氨基酸 的替代序列, 所述经氨基酸替换的序列并不影响其活性或保留了其部分的活性。 适当替 换氨基酸是本领域公知的技术, 所述技术可以很容易地被实施, 并且确保不改变所得分 子的生物活性。 这些技术使本领域人员认识到, 一般来说, 在一种多肽的非必要区域改 变单个氨基酸基本上不会改变生物活性。 见 Watson等 Molecular Biology of The Gene, 第四版, 1987, The Benjamin/Cummings Pub. Co. P224。
本发明也可采用经修饰或改良的酶或蛋白, 比如, 可采用为了促进其半衰期、 有效 性、代谢和 /或蛋白的效力而加以修饰或改良的酶或蛋白。所述经过修饰或改良的酶或蛋 白可以是一种共轭物, 或其可包含被取代的或人工的氨基酸。 所述经过修饰或改良的酶 或蛋白可以是与天然存在的酶或蛋白具有较小的共同点, 但也能发挥与野生型相同或基 本相同的功能, 且不会带来其它不良影响。 也就是说, 任何不影响酶或蛋白的生物活性 的变化形式都可应用于本发明中。
本发明还包括了编码所述的酶或蛋白的生物活性片段的分离的核酸,也可以是其互 补链。 作为本发明的优选方式, 可对各酶或蛋白的编码序列进行密码子优化, 以提高表 达效率。编码酶或蛋白的生物活性片段的 DNA序列,可以全序列人工合成,也可用 PCR 扩增的方法获得。 在获得了编码所述的酶或蛋白的生物活性片段的 DNA序列之后, 将 其连入合适的表达构建物 (如表达载体)中, 再转入合适的宿主细胞。 最后通过培养转化 后的宿主细胞, 得到所要的蛋白。 本发明还包括了包含编码所述酶或蛋白的生物活性片段的核酸分子的表达构建物。 所述的表达构建物可包括一个或多个编码所述酶或蛋白的基因表达盒, 还可包含与所述 核酸分子的序列操作性相连的表达调控序列, 以便于蛋白的表达。 所述的表达调控序列 的设计是本领域公知的。 表达调控序列中, 根据不同的需要, 可以应用诱导型或组成型 的启动子, 诱导型的启动子可实现更可控的蛋白表达以及化合物生产, 有利于工业化应 用。
作为本发明的优选方式, 提供了一种表达构建物, 其包括以下酶的基因表达盒: 栊 牛儿基栊牛儿基焦磷酸合成酶 (GGPPS), 选自 (I)古巴焦磷酸合成酶 (CDPS)和贝壳烯合成 酶 (KS)或 (Π)双功能贝壳烯合酶 (CPS/KS)的酶, 贝壳烯氧化酶 (KO), 细胞色素 Ρ450氧化 还原蛋白(CPR), 贝壳烯酸 -13 α -羟化酶, UGT85C2糖基转移酶和 UGTB1/IBGT糖基转 移酶。 更优选的, 所述的表达构建物还包括以下酶的基因表达盒: UGT74G1 糖基转移 酶和 /或 UGT76G1糖基转移酶。
表达构建物的建立目前已经是本领域技术人员熟悉的技术。 因此, 在得知了所需选 择的酶或蛋白之后, 本领域技术人员易于进行表达构建物的建立。 编码酶或蛋白的基因 序列可以被插入到不同的表达构建物 (如表达载体)中, 也可以被插入到同一表达构建物 中, 只要在转入到细胞后酶或蛋白能够被有效地表达即可。
此外,含有编码所述酶或蛋白的生物活性片段核酸序列的重组细胞也包括在本发明 中。 "宿主细胞"包括原核细胞和真核细胞。 常用的原核宿主细胞包括大肠杆菌、 枯草 杆菌等; 常用的真核宿主细胞包括酵母细胞、 昆虫细胞和哺乳动物细胞。 作为本发明的 优选方式, 所述的细胞选自 (但不限于); 革兰氏阴性 DE3溶源化菌株, 酵母细胞。 更优 选地, 所述的革兰氏阴性菌 DE3溶源化菌株是 (但不限于): 大肠杆菌, 枯草芽孢杆菌; 更佳地, 所述大肠杆菌选自: BL21(DE3)、 BLR(DE3)、 DH10B(DE3)、 HMS(DE3)、 CD43(DE3)、 JM109(DE3)、 DH5a(DE3)或 Noveblue(DE3)。 更优选地, 所述的酵母细胞 是 (但不限于): 毕赤酵母, 酿酒酵母, 乳酸克鲁维酵母。 较佳地, 所述的毕赤酵母选自 GS115、 MC100-3、 SMD1163、 SMD1165、 SMD1 168或 KM71; 较佳地, 所述的酿酒酵 母选自 W303、 CEN.PK2、 S288c、 FY834或 S1949; 较佳地, 所述的乳酸克鲁维酵母选 自 GG799。
针对细菌细胞或真菌细胞, 本领域已知适合的表达载体是哪些, 因此人们易于选择 到合适的表达载体作为克隆编码基因的骨架载体, 例如, 当所述的细胞为细菌细胞时, 采用 pET 系列表达载体 (如 pET28a)来重组表达各酶; 当所述的细胞为酵母细胞, 采用 pPICC (如 pPICC3.5)或 pSY系列表达载体 (如 pSY01)。
用重组 DNA转化宿主细胞可用本领域技术人员熟知的常规技术进行。 当宿主为原 核生物如大肠杆菌时, 能吸收 DNA的感受态细胞可在指数生长期后收获, 用例如 CaCl2 或 MgCl2等方法处理, 所用的步骤在本领域众所周知。 如果需要, 转化也可用电穿孔的 方法进行。 当宿主是真核生物, 可选用如下的 DNA转染方法: 磷酸钙共沉淀法, 常规 机械方法如显微注射、 电穿孔、 脂质体包装等。
获得的转化子可以用常规方法培养, 表达本发明的基因所编码的酶或蛋白。根据所 用的宿主细胞, 培养中所用的培养基可选自各种常规培养基。 在适于宿主细胞生长的条 件下进行培养。 合成甜菊糖苷类化合物的方法
本发明公开一种利用微生物异源合成生产甜菊糖苷类化合物的方法。利用合成生物 学技术将不同来源的与甜菊糖苷类化合物生物合成相关的酶进行人工组合, 在底盘细胞 中获得甜菊糖苷类化合物 (含莱鲍迪苷 A)。
本发明的合成甜菊糖苷类化合物的生物合成过程参见图 2。 以中心代谢途径的丙酮 酸 (PYR)和 3-磷酸甘油醛 (G3P)为前体,获得萜类合成的通用前体异戊烯焦磷酸 (IPP)和二 甲基丙烯基焦磷酸 (DMAPP)开始, 依次经过栊牛儿基栊牛儿基焦磷酸 (GGPPS , ggw^基 因编码), 古巴焦磷酸合酶 (CDPS, 基因编码), 贝壳烯合酶 (KS, 基因编码)形成 贝壳烯 (更佳地, 以双功能贝壳烯合酶 (CPS/KS , ^基因编码)取代 CDPS和 KS), 随 后细胞色素 P450氧化蛋白贝壳烯氧化酶 (KO, 基因编码)催化贝壳烯形成贝壳烯酸, 并进一步被贝壳烯酸羟化酶 (KAH, kah 基因编码)氧化形成二萜母核甜菊醇。 甜菊醇经 UGT85C2 糖基转移酶作用, 得到甜菊醇单糖苷, 又经一步糖基化反应, 得到甜菊醇双 糖苷。 甜菊醇双糖苷在 UGT74G1 糖基转移酶作用, 得到甜菊糖苷, 最终经 UGT76G1 糖基转移酶作用, 形成甜菊糖莱鲍迪苷 A。
本发明人第一次应用上述的一系列酶成功实现了甜菊糖苷类化合物的异源生物合 成,特别是将 UGTB 1/IBGT—类糖基转移酶用于将甜菊醇单糖苷转化为甜菊醇双糖苷 (其 能在甜菊醇单糖苷的 C- 13葡萄糖的 C-2 ' 位点上加上糖基), 克服了现有技术中无法将 甜菊醇单糖苷转化为甜菊糖双糖苷的技术问题。 对于甜菊糖苷类化合物的生物合成中从 甜菊醇单糖苷经一步糖基化反应得到甜菊醇双糖苷这一步骤所需要的糖基转移酶在现 有技术中是未知的; 而本发明人经过深入的研究, 筛选了大量的糖基转移酶基因, 最终 发现 UGTB 1或 IBGT糖基转移酶可以实现在底物的 C- 13葡萄糖的 C-2 ' 位点上进一步 糖基化。
合适的 UGTB 1/IBGT 类糖基转移酶可以发挥尿苷 -5 ' - 二磷酸葡糖基: 甜菊醇 - 13-0- 葡萄糖苷转移酶( 又被称为甜菊醇 - 13- 单葡萄糖苷 1, 2- 葡糖基化酶) 的作用, 给受体分子甜菊醇 - 13-0- 葡萄糖苷中 13-0- 葡萄糖的 C-2 ' 转移上葡萄糖部分。
一般来说,合适的 UGTB 1/IBGT类糖基转移酶还可以发挥尿苷 -5 ' - 二磷酸葡糖基: 甜茶素转移酶的作用,给受体分子甜茶素 (Rubusoside)中 13-0- 葡萄糖的 C-2 ' 转移上葡 萄糖部分。
合适的 UGTB 1/IBGT类糖基转移酶还可以催化利用除了甜菊醇 - 13-0- 葡萄糖苷和 甜茶素以外的甜菊糖苷底物的反应, 例如可以利用甜菊糖苷 (Stevioside)作为底物, 将葡 萄糖部分转移到 19-0-葡萄糖残基的 C-2 ' 上从而产生莱鲍迪苷 E。还可以利用莱鲍迪苷 A 作为底物, 将葡萄糖部分转移到 19-0- 葡萄糖残基的 C-2 ' 上从而产生莱鲍迪苷 D。 但是, UGTB 1/IBGT类糖基转移酶一般不会给在 C- 13 位置具有 1, 3- 结合的葡萄糖的 甜菊醇化合物转移葡萄糖部分,即不会发生葡萄糖部分到甜菊醇 1, 3- 二糖苷和 1,3- 甜 菊苷的转移。
合适的 UGTB 1/IBGT 类糖基转移酶可以转移来自除了尿苷二磷酸葡糖以外的糖部 分。 例如, 合适的 UGTB 1/IBGT类糖基转移酶可以发挥尿苷 5 ' - 二磷酸 D- 木糖基: 甜菊醇 - 13-0- 葡萄糖苷转移酶的作用, 将木糖部分转移到受体分子甜菊醇 - 13-0- 葡萄 糖苷中 13-0- 葡萄糖的 C-2 ' 。 另一个例子, 合适的 UGTB 1/IBGT类糖基转移酶可以发 挥尿苷 5 ' - 二磷酸 L- 鼠李糖基: 甜菊醇 - 13-0- 葡萄糖苷转移酶的作用, 将鼠李糖部 分转移到受体分子甜菊醇 - 13-0- 葡萄糖苷中 13-0- 葡萄糖的 C-2 ' 。
获得萜类合成的通用前体 IPP和 DMAPP , 可以采用本领域技术人员已知的技术。 作为本发明的优选方式, 为了获得 IPP和 DMAPP , 相对于现有技术中还应用 r、 ispE、 ispG、 ispH等基因的技术方案, 本发明人进行了简化, 以中心代谢途径的丙酮酸 (PYR) 和 3-磷酸甘油醛 (G3P)为前体, 萜类合成的通用前体异戊烯焦磷酸 (IPP)和二甲基丙烯基 焦磷酸 (DMAPP)在 1 -去氧木糖 -5-磷酸途径的作用下, 依次经过 1 -脱氧木糖 -5-磷酸合成 酶 (DXS, 基因编码), 2-甲基赤藓糖 -4-磷酸胞苷转移酶 (CMS , ^pD基因编码), 2-甲 基赤藓糖 -2,4-环二磷酸合成酶 (MCS, ispF基因编码)的催化合成。 IPP和 DMAPP在异戊 烯焦磷酸异构酶 (编码基因 ^^作用下可以相互转化。 合成贝壳烯的方法
甜菊糖苷类化合物是以二萜类化合物贝壳烯为骨架的反应产物。贝壳烯作为一种主 要的中间产物, 其生成效率的提高将有利于下游甜菊糖苷类化合物的高效合成。
为了提高贝壳烯合成效率的方法, 本发明人通过反复实验, 最终发现采用双功能贝 壳烯合酶 (CPS/KS)取代古巴焦磷酸合成酶 (CDPS)及贝壳烯合成酶 (KS), CPS/KS 是具有 CDPS和 KS的双功能酶, 能够显著地提高贝壳烯合成效率。 本发明的有益效果
利用本发明的方法, 关键中间产物贝壳烯产量能达到 l g/L以上, 莱鲍迪苷 A达到 10mg/L 以上。 该方法可替代植物提取法获得甜菊糖苷类化合物、 特别是具有巨大市场 价值的莱鲍迪苷 A, 具有广阔的应用前景和发展潜力。
本发明的方法克服了传统从植物中提取时繁琐, 受环境影响大, 破坏自然资源等缺 点, 具有成本低, 占地面积少, 产品质量可控等优点。 下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明本发明 而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规 条件如 J.萨姆布鲁克等编著, 分子克隆实验指南, 第 3版, 科学出版社, 2002中所述的 条件, 或按照制造厂商所建议的条件。 除非另外说明, 否则百分比和份数按重量计算。 实施例 1、 甜菊糖苷类化合物化合物异源合成途径中所用的蛋白的获得
甜菊糖苷类化合物莱鲍迪苷 A 异源合成途径中所用的栊牛儿基栊牛儿基焦磷酸合 成酶、 古巴焦磷酸合成酶、 贝壳烯合成酶、 双功能贝壳烯合酶、 贝壳烯氧化酶、 贝壳烯 酸 - 13α-羟化酶、 UGT85C2糖基转移酶、 UGTB 1糖基转移酶、 UGT74G1糖基转移酶、 UGT76G 1糖基转移酶及细胞色素 Ρ450氧化还原蛋白的基因来源与合成。
首先从美国国立生物信息学数据库 (NCBI)中选取了来源于加拿大红豆杉 (7¾; « cimi^e/^'W和甜叶菊 rebfl ^'ima)的栊牛儿基栊牛儿基焦磷酸合成酶 (GGPPS) , 来 源于甜叶菊 0¾eW<¾ reb<¾w<i im<¾)和慢生大豆根瘤菌 (£ra<iyrWzob m ^po 'c m)的古巴焦磷 酸合成酶 (CDPS), 来源于甜叶菊 ( eWii rebaudiana)和慢生大豆根瘤菌 (Bmdyrhizobium japonicum)的贝壳烯合成酶(KS), 来源于小立碗藓 (Physcomitrella patens)和藤仓赤霉 (<^'bbere//fl/w wroO的双功能贝壳烯合酶 (CPS/KS) , 来源于甜叶菊 rebaudiana)、 阿拉伯芥 (Ambidopsis thaliana)、 藤仓赤霉 (fiibberella fujikuroi)和慢生大豆根瘤菌 (Bradyrhizobium japonicum) ^} JI壳烯氧化酶 (; KO), 来源于甜叶菊 0¾eW<¾ rebaudiana) ^} JI 壳烯酸 - 13-羟化酶 (KAH)、 UGT85C2糖基转移酶、 UGT74G 1糖基转移酶、 UGT76G 1糖 基转移酶, 来源于斯塔摩酵母 0¾irmere//fl bombicola)\JGTB l 糖基转移酶, 来源于甘薯 (Ipomoea batatas)IBGT 糖基转移酶, 以及来源于黄花蒿 (Artem annua) , 暗球腔菌 (Phaeosphaeria sp. L487) 甜叶菊 (5YeW<¾ rebaudiana)、
Figure imgf000018_0001
/i / im )禾口
Figure imgf000018_0002
/^ r )的细胞色素 P450氧化还原蛋白, 所选取酶的信息如表 2。
表 2、 异源途径构建中所涉及的基因
基因名称 Genbank号 来源
GGPP合成酶 AAD16018 加拿大红豆杉
GGPP合成酶 ABD92926.2 甜叶菊
古巴焦磷酸合成酶 AAB87091 甜叶菊
古巴焦磷酸合酶 BAC47414 慢生大豆根瘤菌 贝壳烯合成酶 AAD34294 甜叶菊
贝壳烯合成酶 BAC47415 慢生大豆根瘤菌 双功能贝壳烯合酶 BAF61 135 小立碗藓
双功能贝壳烯合酶 Q9UVY5.1 藤仓赤霉
双功能贝壳烯合酶 CAH18005. 1 中间赤霉
双功能贝壳烯合酶 BAA22426 暗球腔菌
双功能贝壳烯合酶 CAP07655 痂囊腔菌
贝壳烯氧化酶 AAQ63464 甜叶菊 贝壳烯氧化酶 094142.1
贝壳烯氧化酶 AF047719 阿 ¾f白芥
贝壳烯氧化酶 NP—768785 侵生大豆根瘤菌
贝壳烯酸 -13ct-羟化酶 ABD60225 甜叶菊
贝壳烯酸 -13ct-羟化酶 AEH65419 甜叶菊
贝壳烯酸 -13ct-羟化酶 AED93376.1 阿拉伯芥
贝壳烯酸 -13ct-羟化酶 AED93377.1 阿拉伯芥
UGT85C2糖基转移酶 AAR06916
UGT74G1糖基转移酶 AAR06920
UGT76G1糖基转移酶 AAR06912
UGTB1糖基转移酶 ADT71703 斯
细胞色素 P450氧化还原蛋白 ABM88789
细胞色素 P450氧化还原蛋白 BAG85333 暗球腔菌
细胞色素 P450氧化还原蛋白 CAE09055.1 藤仓赤霉
细胞色素 P450氧化还原蛋白 ABB88839 甜叶菊
细胞色素 P450氧化还原蛋白 X66016 阿拉伯芥
IBGT糖基转移酶 ABL74480.1 通过本领域公知的密码子优化方法, 如 Optimizer(http://genomes.urv.es/OPTIMIZER/), 优化了所选取的酶的编码序列, 并进行了合成, 具体情况如下:
所用的来源于加拿大红豆杉的栊牛儿基栊牛儿基焦磷酸合甜甜甜黄塔成酶的氨基酸序列见 SEQ ID 摩花叶叶叶
NO: 1, 去除了野生型 GGPP合成酶 N端 98个氨基酸 (质体转运肽菊菊菊酵蒿), 然后加上甲硫氨酸, 获得改造后的重组 GGPP合成酶,然后进行密码子优化,优化后的 DN母A序列见 SEQ ID NO: 2。
来源于甜叶菊的古巴焦磷酸合成酶 (CDPS)的氨基酸序列见 SEQ ID NO: 3, 经密码 子优化后的 DNA序列见 SEQ ID NO: 4。
来源于甜叶菊的贝壳烯合成酶 (KS)的氨基酸序列见 SEQ ID NO: 5, 经密码子优化 后的 DNA序列见 SEQ ID NO: 6。
来源于甜叶菊的贝壳烯氧化酶 (KO)的氨基酸序列见 SEQ ID NO: 7, 经密码子优化 后的 DNA序列见 SEQ ID NO: 8。
来源于甜叶菊的贝壳烯酸 -13α-羟化酶 (KAH)的氨基酸序列见 SEQ ID NO: 9, 经密 码子优化后的 DNA序列, 见 SEQ ID NO: 10。
来源于甜叶菊的 UGT85C2糖基转移酶的氨基酸序列见 SEQ ID NO: 11, 经密码子 优化后的 DNA序列见 SEQ ID NO: 12。
来源于甜叶菊的 UGT74G1糖基转移酶的氨基酸序列见 SEQ ID NO: 13, 经密码子优化 后的 DNA序列见 SEQ ID NO: 14。
来源于甜叶菊的 UGT76G1糖基转移酶的氨基酸序列见 SEQ ID NO: 15, 经优化后 的 DNA序列见 SEQ ID NO: 16。
来源于黄花蒿的细胞色素 P450氧化还原蛋白 (CPR)的氨基酸序列见 SEQ ID NO: 17, 切除了野生型 CPR 蛋白 N 端跨膜序列区的 66 个氨基酸, 然后加上热带假丝酵母 (C. ra/^'cfl/^)的 CPR蛋白 (AAU10466)N端序列, 最终获得本发明中改造的 CPR蛋白, 经密 码子优化后的 DNA序列见 SEQIDNO: 18。
来源暗球腔菌的细胞色素 P450氧化还原蛋白的氨基酸序列见 SEQ ID NO: 19, 经 密码子优化后的 DNA序列见 SEQ ID NO: 20。
来源小立碗藓的双功能贝壳烯合酶 (CPS/KS)的氨基酸序列见 SEQ NO: 21, 经密码 子优化后的 DNA序列, 见 SEQNO: 22。
来源藤仓赤霉的双功能贝壳烯合酶 (CPS/KS)的氨基酸序列见 SEQNO: 23, 经密码 子优化后的 DNA序列, 见 SEQNO: 24。
来源慢生大豆根瘤菌的古巴焦磷酸合成酶的氨基酸序列见 SEQIDNO: 25, 经密码 子优化后的 DNA序列, 见 SEQIDNO: 26。
来源慢生大豆根瘤菌的贝壳烯合成酶的氨基酸序列见 SEQIDNO: 27, 经密码子优 化后的 DNA序列, 见 SEQIDNO: 28。
来源慢生大豆根瘤菌的贝壳烯氧化酶的氨基酸序列见 SEQIDNO: 29, 经密码子优 化后的 DNA序列见 SEQ IDNO: 30。
来源藤仓赤霉的贝壳烯氧化酶的氨基酸序列见 SEQIDNO: 31, 经密码子优化后的 DNA序列见 SEQ IDNO: 32。
来源藤仓赤霉的细胞色素 P450氧化还原蛋白的氨基酸序列见 SEQ ID NO: 33, 经 密码子优化后的 DNA序列见 SEQ IDNO: 34。
来源甜叶菊的细胞色素 P450氧化还原蛋白的氨基酸序列见 SEQ ID NO: 35, 经密 码子优化后的 DNA序列见 SEQIDNO: 36。
来源阿拉伯芥的贝壳烯氧化酶的氨基酸序列见 SEQIDNO: 37, 经密码子优化后的
DNA序列见 SEQ IDNO: 38。
来源阿拉伯芥的细胞色素 P450氧化还原蛋白的氨基酸序列见 SEQ ID NO: 39, 经 密码子优化后的 DNA序列, 见 SEQIDNO: 40。
来源于斯塔摩酵母的糖基转移酶 UGTB1基因的氨基酸序列见 SEQ ID NO: 41, 经 密码子优化后的 DNA序列见 SEQ IDNO: 42。
来源于甜叶菊的贝壳烯酸 -13 α -羟化酶 (ΚΑΗ)的氨基酸序列见 SEQ ID NO: 43, 经 优化的 DNA序列见 SEQ IDNO: 44。
来源于甜叶菊的栊牛儿基栊牛儿基焦磷酸合成酶 (GGPP)的氨基酸序列见 SEQ ID NO: 45, 经优化后的 DNA序列见 SEQ IDNO: 46。
来源于阿拉伯芥的贝壳烯酸 -13 α -羟化酶 (Genbank 号: AED93376.1)的氨基酸序列 见 SEQNO: 47, 经密码子优化后的 DNA序列见 SEQNO: 48。
来源于阿拉伯芥的贝壳烯酸 -13α-羟化酶 (Genbank 号: AED93377.1)的氨基酸序列 见 SEQNO: 49, 经密码子优化后的 DNA序列见 SEQNO: 50。
来源于甘薯的糖基转移酶 (Genbank号: ABL74480.1)的氨基酸序列见 SEQ NO: 51, 经密码子优化后的 DNA序列见 SEQNO: 52。
其他蛋白可由相同方法得到优化的 DNA序列。
进一步地, 本发明人分析了不同来源的经鉴定发现为同功能蛋白的序列同源性, 结 果如表 3 <
表 3、 不同来源氨基酸序列同源性分析
蛋白 来源 同源性
(NCBI blastP)
GGPPS Stevia rebaudianai^ v^. Taxus 力口拿大红 68%
CDPS 50%
CDPS 58%
CDPS Stev 57%
KS Stev 43%
KO Stevi
Figure imgf000021_0001
a 55%
菌)
KO Stevia rebaudianai^ ― Gibberellafujikuroi( ^^9) 25%
KO Stevia
Figure imgf000021_0002
61 %
CPR 34%
CPR 75%
CPR 66%
KS 36%
KS 64%
Figure imgf000021_0003
CPS/KS Gib be re lla fuj ikuroi( ^ vs. Physcomitrella patensi^ AL^i^) 34%
KS vs. KS.'Stevia (甜叶菊) vs. CPSKS: Physcomitrella paim (小立碗藓) 36%
Gibberella jhjikuroi( 仓赤雾 64%
Figure imgf000021_0004
UGTB l vs. UGTB 1 Starmerella bombicola斯塔摩酵母 vs. UGT85C2: Stevia 33%
UGT85C2 rebaudianai^口十菊)
UGTB l vs. UGTB 1 Starmerella bombicola斯塔摩酵母 vs. UGT74G 1 Stevia 83%
UGT74G1 rebaudianai^口十菊)
UGTB l vs. UGT76G1 Starmerella bombicola斯塔摩酵母 vs. UGT76G1 Stevia 45%
UGT76G1 rebaudianai^口十菊)
3 1 %
Figure imgf000021_0005
IBGT vs. IBGT: Ipomoea batatas甘暮 vs. UGT74G1 : Stevia rebaudianai^ 36%
UGT74G1
IBGT vs. IBGT: Ipomoea batatas甘暮 vs. UGT76G1 : Stevia rebaudianai^ 28%
UGT76G1
UGTB l vs. UGT76G1 : Starmerella bombicola斯塔摩酵母 vs. IBGT : Ipomoea batatas 22%
IBGT 从表 3中可知, 不同来源的相同功能蛋白氨基酸序列同源性较低。 例如从甜菊来源 的 CDPS分别与小立碗藓和藤仓赤霉来源的具有 CDPS和 KS双功能酶的 CPS/KS最高 同源性仅有 50%和 58%。从甜菊来源的 KS分别与小立碗藓和藤仓赤霉来源的具有 CDPS 和 KS 双功能酶的 CPS/KS 最高同源性仅有 36%和 64%。 另外, 从斯塔摩酵母来源的 UGTB1 糖基转移酶与从甜菊来源的 UGT85C2 糖基转移酶、 UGT74G1 糖基转移酶和 UGT76G1糖基转移酶的同源性也仅有 33% 83%和 45%
几种真菌来源的 CPS/KS同源度较高, 小立碗藓来源的 CPS/KS同源度相对较低, 但它们都含有富含天冬氨酸的区域, 是具有 CPS和 KS 两个酶活性的片段, 其中 CPS 活性片段为从 YDTAWXA开始,具有 DXDD的 N端序列, KS活性片段为具有 DDXXD 或 DEXXE的 C端序列, X为任意氨基酸。 UGTB1的活性片段是位于氨基酸序列 16位 到 20位的 GHVGP和 338位到 343位 NGGYGG。
实施例 2、 原核表达载体的构建
将实施例 1优化所得的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴焦磷酸合成酶、 贝壳 烯合成酶、 双功能贝壳烯合酶、 贝壳烯氧化酶、 贝壳烯酸 -13ct-羟化酶、 UGT85C2 糖基 转移酶、 UGT74G1糖基转移酶、 UGT76G1糖基转移酶及细胞色素 P450氧化还原蛋白 的相关基因克隆到相应的质粒上, 进行细菌莱鲍迪苷 A合成途径基因表达载体的构建。
在优化后的 ggpps基因的终止密码子 TAA后加入 Spel酶切位点, 然后将其克隆到 质粒 pET28a (购自 Novagen)的 Ncol/Hindlll酶切位点上, 得到 pET28a-ggp /^图 3A)。
在优化后的 c<i/«, cps/ks , ks, ko, kah, ugt85c2 , ugtbl , ugt74gl , ugt76gl 9 基因的终止密码子 TAA 后面分别加入 Spel 位点, 然后将这些基因分别克隆到质粒 pET21a(购 自 Novagen)的 Ndel/BamHI 位点上, 分别得到质粒 ρΕΤ21& φ , pET2la-cps/ks , pET21a- , pET21a-fco, pET2la-kah, pET2la-ugt85c2 , pET2la-ugtbl , pET2la-ugt74gl, pET2la-ugt76gl (图 3B), 图 3b中的/ /wert gewe为 cdps, cps/ks, ks, ko, kah, ugt85c2 , ugtbl , ugt74gl , ugt76gl 九个基因单独克隆的质粒插入位点 (NdeI/HindIII)。
在优化后的 cpr基因的终止密码子 TAA后加入 Spel位点, 然后将其克隆到质粒 pET21d (购自 Novagen)的 Ncol/Hindlll位点上, 得到质粒 pET21d-cpr (图 3C)。
作为举例,质粒 pZQllO构建如下:采用了类似 New England Bio lab公司的 BioBrick Assembly Kit试剂盒提供的方法, 进行异源途径基因的串联组装; 即首先用 Spel/Hindlll 双酶切质粒 ρΕΤ28&-^ρ/ ^(加拿大红豆杉来源),用 Xbal/Hindlll酶切质粒 pET21a-c/^/ (小 立碗藓),分别用 PCR清洁试剂盒直接回收 pET28a-g^/«载体和胶回收 c/^/^DNA片段; 然后用 T4 DNA连接酶将 pET28a-ggp/^载体和 c/^/^DNA片段进行连接, 构建质粒
Figure imgf000022_0001
采用相同的方法用再将 (;甜叶菊来源)、 ½/ι (;甜叶菊来源)、 ugt85c2( 叶菊来源)、 g W (斯塔摩酵母来源)、 g 74^ (甜叶菊来源)、 g 76^ (甜叶菊来源) ΦΓ (暗球 腔菌来源)逐步串联, 最终获得细菌莱鲍迪苷 Α合成基因表达质粒 pZQllO载体 (图 3E)。 该表达质粒的酶切 (Xbal/Hindlll双酶酶切)验证图谱如图 3F所示, 其中 Ml为 Marker 1, 分子量为 DS15000; 1为阴性对照产物; 2-4为 pZQllO产物; M2为 Marker 2, 分子量 为 DS5000。 从图 3F可以看出, 质粒 pZQllO用 Xbal/Hindlll双酶切后得到两条大小分 别为 5300/16500左右的条带, 可以得出 pZQllO构建正确。
基于与质粒 pZQllO类似的方法, 本发明人还构建了一些用于表达中间体或产物的 重组表达质粒, 如表 4。
表 4、 细菌鲍迪苷 A合成途径基因表达质粒信息 质粒 全称 合成甜菊 PZQ3 PET28a-GGPPS-CDPS-KS
糖中间产 GGPPS: Taxus (加拿大红豆杉)(插入 pET28a的 Ncol/Hindlll位点) 物贝壳烯 CDPS: Stevia (甜叶菊)(插入 pET28a的 Xbal/Hindlll位点)
KS: Stevia «Αακί&κα (甜叶菊)(插入 pET28a的 Xbal/Hindlll位点)
PSY32 PET28a-GGPPS-CPS/KS
GGPPS: Taxus (加拿大红豆杉) (插入 pET28a的 Ncol/Hindlll位点)
CPS/KS: Physcomitrella atera (小立碗玲 (插入 ET28a的 Xbal/Hindlll位点)
PSY33 PET28a-GGPPS-CPS/KS
GGPPS: Taxus (加拿大红豆杉)(插入 pET28a的 Ncol/Hindlll位点)
CPS/KS: Gibberellafiijikuroi(B储 (插入 ET28a的 Xbal/Hindlll位点) pZQl PET28a-GGPPS-CPS/KS
01 GGPPS: Stevia rebaudiana (甜叶 : K pET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patem( J、立碗難 : K pET28a的 Xbal/Hindlll位点) pZQl pET28a-GGPPS-CPS/KS
02 GGPPS: Stevia rebaudiana (甜叶 : K pET28a的 Ncol/Hindlll位点) CPS/KS: (¾ «^ ¾< '6#¾^¾) (插入 pET28a的 Xbal/Hindlll位点) 合成甜菊 pZQl PET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2
醇单糖苷 04 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CDPS: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KS: Stevia rebaudianai甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) pZQl PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2
05 GGPPS: Taxus canadensisi口拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patens( j、立碗 ) (插入 ET28a的 Xbal/Hindlll位点) KO.Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶菊 (SEQ ID NO: 44)( \ pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. 1487、暗球腔鶴 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) pZQl PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2
06 GGPPS: Taxus canadensis加拿大红豆杉)~ (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶菊 (SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点) CPR: Phaeosphaeria sp. 1487暗球腔截 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) 合成甜菊 pZQl PET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl
醇双糖苷 07 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点)
CDPS: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KS.Stevia rebaudianai甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
08 GGPPS: Taxus canadensisi口拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patens( j、立碗 ) (插入 ET28a的 Xbal/Hindlll位点)
KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
09 GGPPS: Taxus canadensisi口拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点)
CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点) KO.Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移釅斯塔摩酵 (插入 pET28a的 Xbal/Hindlll位点) pSY200 pET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl
GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CDPS: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KS.Stevia rebaudianai甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) \KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll ¾|
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) IBGT糖基转移默甘暴 (插入 pET28a的 Xbal/Hindlll位点) pSYZOl PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS Physcomitrella paten 小立碗 ) (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana(甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll位 点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) IBGT糖基转移默甘暴 (插入 pET28a的 Xbal/Hindlll位点)
PSY202 PET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTBl
GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点) KO:Stevia rebaudianai甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll位 点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) IBGT糖基转移職甘 ) (插入 pET28a的 Xbal/Hindlll位点) 甜菊糖途 PZQ9 PET28a-GGPPS-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl-UGT74Gl-UGT76 径的串 Gl
联, GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) 合成莱鲍 CDPS: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) 迪苷 A KS: Stevia rebaudianai甜叶菊 (插入 ET28a的 Xbal/Hindlll位点)
KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 10 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patens( j、立碗 ) (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. 1487、暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) GT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1
20 GGPPS: Taxus canadensisi口拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点)
CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点) KO.Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点)
CPR: Phaeosphaeria sp. I 87暗球腔簡 (插入 pET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQll pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 1 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patens( j、立碗 ) (插入 ET28a的 Xbal/Hindlll位点) KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28a的 Xbal/Hindlll
位点)
CPR: Stevia rebaudiana (甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1
21 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点)
CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点) KO.Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 44) (插入 pET28aXbaI/HindIII位
CPR: Stevia rebaudiana (甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pZQl pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 12 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Physcomitrella patens小立碗 ) (插入 ET28a的 Xbal/Hindlll位点)
KO: Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Arabidopsis
Figure imgf000027_0001
pET28aXbaI/HindIII位
CPR: Stevia rebaudiana (甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) pET28a-GGPPS-CPS/KS-KO-KAH-CPR-UGT85C2-UGTB 1 -UGT74G1 -UGT76G1 GGPPS: Taxus canadensis (加拿大红豆杉) (插入 ET28a的 Ncol/Hindlll位点) CPS/KS: Gibberella fiijikuroi (藤仓赤 ) (插入 pET28a的 Xbal/Hindlll位点)
KO.Stevia rebaudiana (甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) KAH: Arabidopsis
Figure imgf000027_0002
pET28aXbaI/HindIII位
CPR: Stevia rebaudiana (甜叶菊 (插入 ET28a的 Xbal/Hindlll位点) UGT85C2: Stevia rebaudiana{甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT74G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGT76G1 : Stevia rebaudia 甜叶菊 (插入 pET28a的 Xbal/Hindlll位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 ET28a的 Xbal/Hindlll位点) 实施例 3、 真菌表达载体的构建
将实施例 1优化所得的栊牛儿基栊牛儿基焦磷酸合成酶、 古巴焦磷酸合成酶、 贝壳 烯合成酶、 双功能贝壳烯合酶、 贝壳烯氧化酶、 贝壳烯酸 -13ct-羟化酶、 UGT85C2 糖基 转移酶、 UGTB1 糖基转移酶、 UGT74G1 糖基转移酶、 UGT76G1 糖基转移酶及细胞色 素 P450氧化还原蛋白的相关基因克隆到相应的质粒上, 进行真菌莱鲍迪苷 A合成基因 表达质粒的构建。
首先将原始的 pA0815 载体 (;购自 Invitrogen)进行改造, 采用定点突变 PCR 在 pA0815的终止子后引入 BamHI和 Xhol酶切位点, 改造后的 pA0815命名为 pSY01。 通过定点突变 PCR将 pET28a-ggw^基因内的 BamHI位点去掉。 通过定点突变 PCR将 pET21 Ά-ks基因内的 Bglll位点去掉。
以 pET28a-ggw^为模板, 通过 PCR扩增 ggpps基因, 在两端分别引入 EcoRI酶切 位点 (ATG前面加入 4个 A碱基), 用 EcoRI酶切该 PCR片段, 同时用 EcoRI酶切载体 pS Y01,用清洁试剂盒直接回收 pS Y01载体和 ggpps片段;然后用 T4DNA连接酶将 pS Y01 载体和 片段进行连接, 构建质粒 pSY01-^w^。
以 ρΕΤ21&-ί·φ 为模板, 通过 PCR扩增 cdps基因 (红豆杉来源), 在两端分别引入 Bglll和 Notl酶切位点 (ATG前面加入 4个 A碱基), 用 Bglll和 Notl酶切该 PCR片段, 同时用 BamHI和 Notl双酶切载体 pPIC3.5KC购自 Invitrogen) , 用清洁试剂盒直接回收 PPIC3.5K载体和 cdps片段,然后用 T4DNA连接酶将 pPIC3.5K载体和 cdps片段进行连 接, 构建质粒 pPIC3.5K-c^^。 采用相同的方法用分别将 c / 、 ks、 ko、 kah、 ugt85c2 , ugt74gl、 ugt76gl及 cpr构建到 pPIC3.5K上(图中 Inserted gene位置)。
以 pPIC3.5K-c/«/; 为模板进行 PCR,扩增出 5 'AOX-c/«/; -TT,两端分别引入 Bglll 和 Xhol酶切位点, 用 Bglll和 Xhol酶切该 PCR片段, 同时用 BamHI和 Xhol双酶切载 体 pSY01-ggw«, 用清洁试剂盒直接回收 pSYO l-^w^载体和 5 'AOX-c/^/ -TT片段, 然后用 T4DNA连接酶将 pSYO l-ggw^载体和 片段进行连接, 构建质 粒。 采用相同的方法用再将 c/^/ (小立碗藓来源)、 (甜叶菊来源)、 fci ^(甜叶菊来源)、 g S5c2(甜叶菊来源)、 g W (斯塔摩酵母来源)、 g 74W (甜叶菊来源)、 g 76^ (甜叶菊来源) 及 cpr (暗球腔菌来源)逐步串联,最终获得表达质粒 pSY210(图 3G)。质粒 pSY210的 PCR 验证图谱如图 31所示, 其中 Ml 为 Marker, 分子量为 DS2000 ; 1 为阳性对照产物; 2 和 3为 pSY210产物。 从图 31可以看出, 质粒 pSY210用特异性针对全长 UGT74G1糖 基转移酶编码基因的引物做 PCR验证, 得到一条大小约 1383bp的条带, 可见 pSY210 构建正确。
基于与构建质粒 pZQ210类似的方法, 本发明人还构建了一些用于表达中间体或产 物的重组表达质粒, 如表 5。
表 5、 真菌鲍迪苷 A合成途径基因表达质粒信息 质粒名称 别名
合成到贝 pSY16 pSY01-GGPP-CDPS-KS
壳烯 GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYOI的 EcoRI位点)
CDPS: Stevia rebaudia 甜叶菊 (插入 pSYOI的 BamHI/XhoI位点) KS.Stevia rebaudia 甜叶菊 (插入 pSYOI的 BamHI/XhoI位点) pZQ132 pSY01-GGPP-CPS/KS
GGPP: Taxus cawa m«X加拿大红豆杉) (插入 pSYO I的 EcoRI位点) CPS/KS: Physcomitrella patens (小立碗 pSYO I的 BamHI/XhoI位 pZQ133 pSY01-GGPP-CPS/KS
GGPP: Taxus canadensis (加拿大红豆杉) ^: K pSYO I的 EcoRI位点) CPS/KS: Gibberella fujikuroi (藤仓赤 ) (^? K pSYO I的 BamHI/XhoI位点) pZQ201 pSY01-GGPP-CPS/KS
GGPP: Stevia rebaudiana (甜叶菊(^ pSY 的 EcoRI位点) CPS/KS: Physcomitrella patens小立碗 ) ^: K pSYO I的 BamHI/XhoI位点) pZQ202 pSYOl-GGPP-CPS/KS
GGPP: Stevia rebaudiana (甜叶菊(^ pSY 的 EcoRI位点) CPS/KS: Gibberella fujikuroi (藤仓赤 ) (^? K pSYO I的 BamHI/XhoI位点) 甜菊糖途 pSY22 pSY01-GGPP-CDPS-KS-KO-KAH-CPR-UGT85C2-UGTBl-UGT74Gl-UGT76Gl 径的串 GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYO l的 EcoRI位点) 联, CDPS: Stevia rebaudiana、甜叶菊 (插入 pSYO 1的 BamHI/XhoI位点) 合成莱鲍 KS:Stevia rebaudiana、甜叶菊 (插入 pSYO 1的 BamHI/XhoI位点) 迪苷 A KO:Stevia rebaudiana、甜叶菊 (插入 pSYO 1的 BamHI/XhoI位点)
KAH: Stevia rebaudiana(gffn†^)(SEQ ID NO: 10还是 SEQ ID NO: 插入 pSYO l的 BamHI/XhoI位点)
CPR: Phaeosphaeria sp. I 87暗球腔商 (插入 pSYO l的 BamHI/XhoI位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT74G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT76G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGTB1糖基转移酶、斯塔摩酵母) (插入 pSYO l的 BamHI/XhoI位点) pZQ210 pSY01-GGPP-CPS/KS-KO-KAH-CPR- UGT85C2- UGTB 1 - UGT74G 1 - UGT76
Gl
GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYO l的 EcoRI位点) CPS/KS: Physcomitrella patens、小立碗 ) (插入 pSYO l的 BamHI/XhoI位点) KO:Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 10)( \ pSYO 1的
BamHI/XhoI位点)
CPR: Phaeosphaeria sp. I 87暗球腔商 (插入 pSYO l的 BamHI/XhoI位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT74G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT76G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGTB1糖基转移酶、斯塔摩酵母) (插入 pSYO l的 BamHI/XhoI位点) pZQ220 pSY01-GGPP-CPS/KS-KO-KAH-CPR- UGT85C2- UGTB 1 - UGT74G 1 - UGT76
Gl
GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYO l的 EcoRI位点) CPS/KS: Gibberella jiijikuroi (藤仓赤 ) (插入 pSYO l的 BamHI/XhoI位点) KO:Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) KAH: Stevia rebaudiana (甜叶 ^ SEQ ID NO: 插入 pSYO 1的
BamHI/XhoI位点)
CPR: Phaeosphaeria sp. I 87暗球腔商 (插入 pSYO l的 BamHI/XhoI位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT74G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGT76G1: Stevia rebaudiana、甜叶菊 (插入 pSYO l的 BamHI/XhoI位点) UGTB1糖基转移酶、斯塔摩酵母) (插入 pSYO l的 BamHI/XhoI位点) pZQ211 pSY01-GGPP-CPS/KS-KO-KAH-CPR- UGT85C2- UGTB 1 - UGT74G 1 - UGT76
Gl
GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYO l的 EcoRI位点) CPS/KS: Physcomitrella patens、小立碗 ) (插入 pSYO l的 BamHI/XhoI位点) KO:Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) KAH: Stevia rebaudia 甜叶菊 (SEQ ID NO: 10) (插入 pSYO 1的
BamHiyXhoI位点)
CPR: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT74G1: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT76G1: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGTB1糖基转移酶、斯塔摩酵母) (插入 pSYOl的 BamHI/XhoI位点) pSY01-GGPP-CPS/KS-KO-KAH-CPR- UGT85C2- UGTB 1 - UGT74G 1 - UGT76
G1
GGPP: Taxus canadensis (加拿大红豆杉) (插入 pSYOl的 EcoRI位点) CPS/KS: Gibberella jiijikuroi (藤仓赤 ) (插入 pSYOl的 BamHI/XhoI位点) KO:Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) KAH: Stevia rebaudia 甜叶菊 (SEQ ID NO: 44) (插入 pSYO 1的
BamHI/XhoI位点)
CPR: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT85C2: Stevia rebaudia 甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT74G1: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGT76G1: Stevia rebaudiana、甜叶菊 (插入 pSYOl的 BamHI/XhoI位点) UGTB1糖基转移酶 (斯塔摩酵母) (插入 pSYOl的 BamHI/XhoI位点) 实施例 4、 各基因在大肠杆菌中的表达状况
将实施例 2 所得的质粒 pET21a-ci¾«, pET21a-^, pET21a-fco, pET2la-kah , pET2la-ugt85c2, pET2la-ugt74gl , ρΕΎ21 a-ugt76gl分别转化宿主细胞 BL21(DE3)。
分别挑取各单克隆到 2ml的 LB培养基中(100mg/L氨苄青霉素), 37°C培养过夜,然 后以 1%(ν/ν)的接种量转接到 2ml 加有相同抗生素的新鲜 LB 培养基中, 37°C培养至 OD600为 0.3-0.4, 加入 IPTG至终浓度为 O.lmM后, 18°C诱导表达 6h, 然后将各发酵 液进行 SDS-PAGE分析。
结果如图 4A、 图 4B、 图 4C、 图 4D及图 4E所示, 从图 4A中可以看出基因 /«, g S5C2明显表达, 从图 4B中可以看出基因 和; 明显表达, 从图 4C中可以看出基 因½ 明显表达, 从图 4D中可以看出基因 wg 74^有较少表达, 从图 4E中可以看出基 因 ugt76gl明显表达。 实施例 5、 载体的转化及原核表达
将实施例 2所得的各用于莱鲍迪苷 A或其中间体合成的基因表达质粒和前体途径强 化表达质粒 pJF47C图 3D)共同转化宿主细胞 E.coli BL21(DE3), 得到转化有莱鲍迪苷 A 或其中间体合成的基因表达质粒和 pJF47的重组大肠杆菌 E.ci^BL21(DE3)。 首先提取 . //MG1655 的基因组, 然后下表引物 PCR扩增各基因, 分别克隆到质粒 pET21d 的 NcoI/EcoRI 位点上。 然后用 Spel/EcoRI 酶切 pET21c- /¾^Ρ, Xbal/EcoRI 酶切 ρΕΤ21ά- ώ',回收 pET21c-/¾^载体和 idi基因片段,将两者连接,构建质粒 pET21d-ispF-idi; 接着将 Spel/EcoRI酶切 pET21c- / Ζ),用 Xbal/EcoRI酶切 pET21d-ispF-idi,回收 pET21c- / Ζ) 载体和 ispF-idi基因片段,连接构建 pET21d-ispD-ispF-idi;再将 Spel/EcoRI酶切 pET21d- ^^, 用 Xbal/EcoRI酶切 pET21d-ispD-ispF-idi, 回收 pET21d- 载体和 ispD-ispF-idi基因片段, 连接构建质粒 pET21d-dxs-ispD-ispF-idi, 命名为 pJF47。 基因 Genbank No. 引物序列 克隆位点
dxs NP 414954.1 dxs-F: CATGCCATGGGCATGAGTTTTGATATTGCCAAATACCCG NcollEcoRl
dxs-R: CGGAATTCACTAGTTTATGCCAGCCACCTT
ispD NP 417227.1 ^Z)-F:CATGCCATGGGCATGGCAACCACTCATTTGGATGTT Ncol/ EcoRI
,^D-R:CGGAATTCACTAGTTTATGTATTCTCCTGATGGATGGTT
ispF NP— 417226.1 ispF-F: CATGCCATGGGCATGCGAATTGGACACGGTTTTG NcoI/EcoRI
ispF-R: CGGAATTCACTAGTTCATTTTGTTGCCTTAATGAGTAG
idi NP 417365.1 idi-F: CATGCCATGGGCATGCAAACGGAACACGTCATTTTA Ncol/ EcoRI
idi-R: CGGAATTCTTATTTAAGCTGGGTAAATGCAG
然后挑取单克隆至含有氨苄青霉素(100mg/L)和卡那霉素 (50mg/L)的 LB液体
Figure imgf000031_0001
中, 37 °C培养 8h后, 离心收集菌体, 加入 10%(v/v)的甘油制备种子液, -80 °C保存。
以 5%(v/v)的接种量接入装有 10ml M9培养基 (购自上海生工) (含 100mg/L氨苄青霉 素, 50mg/L卡那霉素)的 100ml摇瓶中, 37°C培养至 OD约为 0.4后,加入 0.05mM IPTG 诱导培养, 然后 22 °C培养 5天后, 收集发酵液, -80 °C冷冻保存。 实施例 6、实施例 5制备的部分合成甜菊糖中间产物贝壳烯的重组细胞的贝壳烯产 物检测
进行实施例 5所得的含有莱鲍迪苷 A或其中间体合成基因的表达质粒和前体途径强 化表达质粒 pJF47的重组大肠杆菌 E. coli BL21(DE3)发酵生产, 进行贝壳烯的检测。
取 lml实施例 5所得的发酵液,加入 50ul 2M的 HC1,然后加入等体积的乙酸乙酯, 冰浴超声 lmin, 然后室温下漩涡震荡 20min, 12000rpm离心 lmin, 使有机相分层, 吸 取有机相, 残留的水相再用等体积乙酸乙酯萃取 1次, 合并有机相后, 获得经萃取的产 物 (含贝壳烯), 用 GC-MS直接检测贝壳烯。
贝壳烯的 GC-MS检测条件:采用 Agilent 7890-5975 GC MS系统。柱子为 HP-5MS , 载气为氦气, 流速 lml/min。 进样量 5ul, 不分流, 进样温度 250 °C。 柱子升温程序为: 100°C保持 2min, 以 5 °C/min升温至 250°C, 然后 250°C保持 15min。 溶剂延迟 4.50min。 扫描方式: 选择离子扫描 (m/z 272)。 解离电压为 70eV。
检测贝壳烯的质谱图结果见图 5A, 贝壳烯的出峰时间为 1 1.212min。 各载体转化
E.ci^' BL21(DE3)获得的重组菌株的贝壳烯产量见图 5B和表 6。
表 6、 实施例 6和实施例 8所得的部分发酵液中的贝壳烯产量 宿主 转化宿主的质粒 OD6( ) 贝壳烯产量 值 (mg/L)
BL21(DE3) PET28a+pJF47 24.7 0
(对照, 空白质粒)
BL21(DE3) pZQ3+pJF47 31.8 189
BL21(DE3) pSY32+pJF47 24.0 1 105
BL21(DE3) pSY33+pJF47 24.2 876
BL21(DE3) pZQ 101+pJF47 20.1 403
BL21(DE3) PZQ 102+pJF47 22.3 296 由表 6结果可见, 除空载体 pET28a外, 贝壳烯产量最低的是采用 pZQ3(GGPP是加 拿大红豆杉来源, CDPS和 KS是甜叶菊来源)转化的细胞, 其产量只有 189mg/L。 贝壳 烯产量最高的是采用 pSY32(GGPP是加拿大红豆杉来源, CDPKS是小立碗藓来源)转化 的细胞, 其产量达到 1 105mg/L。
结果表明, 在 E. 表达系统中, 双功能的 CPS/KS模块比 CDPS和 KS双模块同 时表达合成贝壳烯更优, 且小立碗藓来源的 CPS/KS、 加拿大红豆杉来源的 GGPPS效果 尤佳。 实施例 7、 实施例 5制备的部分合成莱鲍迪苷 A的重组细胞的产物检测
取 1ml实施例 5所得的发酵液, 加入等体积的乙酸乙酯, 冰浴超声 lmin, 然后室温 下漩涡震荡 20min, 12000rpm离心 l min, 使有机相分层, 吸取有机相, 残留的水相再 用等体积乙酸乙酯萃取 1次,合并有机相后,萃取获得含甜菊糖苷类化合物的萃取产物, 包括贝壳烯酸, 甜菊醇, 甜菊醇单糖苷和莱鲍迪苷 A。 将获得的有机相真空干燥, 然后 加入 500ul乙腈重溶残留物, 用 HPLC-MS检测产物。
贝壳烯酸, 甜菊糖醇, 甜菊糖苷化合物的 HPLC-MS检测条件: 采用 HPLC-MS进 行检测 (Aglient , LC 1200/MS-QTOF6520) , C 18反相色谱柱 (Waters, Xterra, 2.1 x50 mm)。 流动相 A相为甲醇 +0.1 %甲酸, B相为水 +0.1 %甲酸。采用梯度洗脱: 0-35min, A由 30% 增加到 100%, B由 70%将至 0。 流速 0.2ml/min, 进样量 8ul。 质谱条件: 采用负离子扫 描, 扫描范围 (m/z) 100- 1500。
结果见图 6, 其中图 6B 为贝壳烯酸的检测结果, 高分辨率质谱的结果显示正离子 扫描存在着 303.2291离子; 其中图 6C为甜菊醇的检测结果, 高分辨率质谱的结果显示 正离子扫描存在着 3 19.2244离子, 其中图 6D为甜菊醇单糖苷的检测结果, 高分辨率质 谱的结果显示正离子扫描存在着 481.2754离子, 其中图 6E为莱鲍迪苷 A的检测结果, 高分辨率质谱的结果显示正离子扫描存在着 967.43离子,最终结果表明该重组大肠杆菌 成功地合成了贝壳烯酸, 甜菊醇、 甜菊醇单糖苷和莱鲍迪苷 A, 其中各载体转化细胞的 莱鲍迪苷 A产量见图 6F和表 7。
表 7
样品 OD6QQ值 莱鲍迪苷 A产量 (mg/L)
BL21 (DE3)(pET28a+p JF47) 23.9 0
(对照, 空白质粒)
BL21 (DE3)(pZQ9+p JF47) 25.6 1.8 BL21 (DE3)(pZQ 1 10+p JF47) 20.2 1 1
BL21 (DE3)(pZQ 120+p JF47) 22.3 8.4
BL21 (DE3)(pZQ 1 1 1 +p JF47) 21 4.0
BL21 (DE3)(pZQ 121 +p JF47) 21.2 3.0
BL21 (DE3)(pZQ 1 12+p JF47) 22.5 2 从莱鲍迪苷 A合成途径可知, 斯塔摩酵母来源的 UGTB 1糖基转移酶成功地将甜菊 醇单糖苷的 C-13葡萄糖的 C-2'位点上进一步糖基化生成甜菊醇双糖苷。 对莱鲍迪苷 A 产量比较可见, 不同来源的蛋白对其产莱鲍迪苷 A 有影响。 产量最高的表达载体是 pZQ HO , 莱鲍迪苷 A产量达到 l lmg/L, 其 GGPP来源于加拿大红豆杉, CPS/KS来源 于小立碗藓, KO和 KAH来源于甜叶菊, CPR来源于暗球腔菌, UGT76G1、 UGT74G1 和 UGT85C2来源于甜叶菊, UGTB1糖基转移酶来源于斯塔摩酵母。 实施例 8、 真菌载体的转化及酵母表达
将实施例 3所得的用于合成莱鲍迪苷 A的表达质粒载体用 Sail将质粒酶切,使其线 性化, 电转到宿主细胞毕赤酵母 KM71(购自 Invitrogen)后得到具有质粒整合到基因组上 His位点的重组毕赤酵母 KM71 ; 然后挑取单克隆至 BMGY液体培养基中, 30 °C培养 24 小时后, 离心收集菌体, 加入 10%的甘油制备种子液, -80°C保存。
挑取单克隆到含 50ml BMGY的 500ml摇瓶中, 过夜 28 °C, 250rpm培养至 OD600 为 2-4C约 16-20h)。离心收集菌体,去掉上清培养基,将菌体转移到含 l OmlBMMY的 100ml 摇瓶中, 28 °C, 250rpm培养, 每 24小时加入 50μ1的甲醇, 培养 5天后, 收集发酵液, -80°C冷冻保存。 实施例 9、实施例 8制备的部分合成甜菊糖中间产物贝壳烯的重组酵母细胞的贝壳 烯产物检测
进行实施例 8所得的重组毕赤酵母 KM71发酵生产的产物贝壳烯进行检测。
取 lml实施例 8所得的发酵液,加入 50ul 2M的 HC1,然后加入等体积的乙酸乙酯, 冰浴超声 lmin, 然后室温下漩涡震荡 20min, 12000rpm离心 lmin, 使有机相分层, 吸 取有机相, 残留的水相再用等体积乙酸乙酯萃取 1次, 合并有机相后, 用 GC-MS直接 检测贝壳烯, 成功检测到产物贝壳烯, 其产量见图 7和表 8。
表 8
样品 OD600值 贝壳烯产量 (mg/L)
KM71(pPIC3.5K)(对照, 空白质粒) 24.7 0
KM71 (pSY16) 124 189
KM71 (pZQ132) 143 1 172
KM71 (pZQ133) 135 827
KM71 (pZQ201) 120 438
KM71 (pZQ202) 123 342 从产量上比较可知, 在毕赤酵母表达系统中,双功能的 CPS/KS比 CDPS/KS的组合 具有更优异的合成贝壳烯的效果。 选用最优的表达载体 pZQ132, 贝壳烯产量达到 1172mg/L, 比选用 pSY16表达载体产量高了 5.4倍。 实施例 10、 实施例 8制备的部分合成莱鲍迪苷 A的重组酵母细胞的产物检测 取 lml实施例 8所得的发酵液, 加入等体积的乙酸乙酯, 冰浴超声 lmin, 然后室温 下漩涡震荡 20min, 12000rpm离心 lmin, 使有机相分层, 吸取有机相, 残留的水相再 用等体积乙酸乙酯萃取 1次, 合并有机相后, 萃取获得甜菊糖苷类化合物, 包括贝壳烯 酸, 甜菊醇, 甜菊醇单糖苷和莱鲍迪苷 A。 将获得的有机相中真空干燥, 然后加入 500ul 乙腈重溶残留物, 用 HPLC-MS检测产物, 高分辨率质谱的结果显示正离子扫描存在着 303.2291离子、 319.2244离子、 481.2754离子和 967.43离子, 结果表明该重组毕赤酵母 成功地合成了贝壳烯酸, 甜菊醇、 甜菊醇单糖苷和莱鲍迪苷 A。 各重组酵母细胞的莱鲍 迪苷 A产量见图 8和表 9。
表 9
样品 OD6Q()值 莱鲍迪苷 A产量 (mg/L)
KM71(pPIC3.5K)(对照, 空白质粒) 24.7 0
KM71 (pSY22) 120 1.7
KM71 (pZQ210) 132 12
KM71 (pZQ220) 141 8.9
KM71 (pZQ211) 118 4.5
KM71 (pZQ221) 119 3.6
从图 8和表 9可知, 莱鲍迪苷 A产量最高的表达载体是 pZQ210, 莱鲍迪苷 A产量 达到 12mg/L, 其 GGPP来源于加拿大红豆杉, CPS/KS来源于小立碗藓, KO和 KAH来 源于甜叶菊, CPR来源于暗球腔菌, UGT76G1、 UGT74G1和 UGT85C2来源于甜叶菊, UGTB1糖基转移酶来源于斯塔摩酵母。 实施例 11、 UGTB1或 IBGT糖基转移酶的功能研究
取 lml实施例 5所得的发酵液, 加入等体积的乙酸乙酯, 冰浴超声 lmin, 然后室温 下漩涡震荡 20min, 12000rpm离心 lmin, 使有机相分层, 吸取有机相, 残留的水相再 用等体积乙酸乙酯萃取 1次, 合并有机相后, 萃取获得甜菊醇单糖苷和甜菊醇双糖苷。 将获得的有机相中真空干燥, 然后加入 500ul乙腈重溶残留物, 用 HPLC-MS检测产物, 结果见图 9。从图 9C可知,只含 UGT85c2糖基转移酶,不含 UGTB1糖基转移酶或 IBGT 糖基转移酶的 pZQ104、 pZQ105和 pZQ106发酵液中只能检测到甜菊醇单糖苷, 不能检 测到甜菊醇双糖苷。 而 pZQ107、 pZQ108、 pZQ109 pSY200、 pSY201和 pSY202中都 含有 UGT85c2糖基转移酶和 UGTB1糖基转移酶或 IBGT糖基转移酶, 它们的发酵液中 都能成功检测到甜菊醇双糖苷(图 9A、 9B和 9D)。
本发明人还检测了不同表达载体转化的原核细胞的甜菊醇单糖苷和甜菊醇双糖苷 产量, 结果如图 10和表 10。
表 10
样品 OD600 甜菊醇单糖苷产量 甜菊醇双糖苷产
值 (mg/L) (mg/L)
BL21 (DE3)(pET28a+pJF47) 23.0 0 0
(对照, 空白质粒)
BL21 (DE3)(pZQ 104+p JF47) 24.9 24 0
BL21 (DE3)(pZQ 105+pJF47) 20.6 150 0
BL21 (DE3)(pZQ 106+pJF47) 22.1 98 0
BL21 (DE3)(pZQ 107+pJF47) 21.3 0.08 33
BL21 (DE3)(pZQ 108+pJF47) 21.9 1.3 206
BL21 (DE3)(pZQ 109+pJF47) 22.7 0.7 134
BL21 (DE3)(pSY200+pJF47) 21.1 0.09 31
BL21 (DE3)(pSY200+pJF47) 21.3 1.2 215
BL21 (DE3)(pSY200+pJF47) 22.8 0.6 140 从图 10和表 10可知, 不含 UGTB1 糖基转移酶或 IBGT糖基转移酶的表达载体 pZQ104、 pZQ105和 pZQ106和阴性对照 pET28a都只能生产甜菊醇单糖苷, 不能生产甜 菊醇双糖苷。从生物催化效率上看, UGTB1糖基转移酶或 IBGT糖基转移酶对甜菊醇单 糖苷的转化效率非常高, 转化效率可达 99%以上。 在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引 用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员 可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书所限定 的范围。

Claims

权 利 要 求
I . 一种分离的多肽, 其特征在于, 所述的多肽是非甜叶菊来源的糖基转移酶, 用于催化 在甜菊糖苷类化合物的 0-葡萄糖残基的 C-2' 再转移上一个糖。
2. 如权利要求 1所述的糖基转移酶,其特征在于,其氨基酸序列与甜叶菊来源的具有同 一功能的酶的氨基酸序列一致性不大于 95%。
3. 如权利要求 1所述的糖基转移酶,其特征在于,所述的非甜叶菊来源糖基转移酶来源 于斯塔摩酉孝母 (Sto/ r /fl bombicola)或甘薯 (Ipomoea batatas)
4. 如权利要求 3所述的来源于斯塔摩酵母的糖基转移酶, 其特征在于, 具有如 SEQ ID NO:41的氨基酸序列 (称为 UGTB1)或在 SEQ ID NO: 41基础上经过一个或多个氨基酸残基的 取代、 缺失或添加而形成的同功能衍生蛋白。
5. 如权利要求 3所述的来源于甘薯的糖基转移酶, 其特征在于, 具有如 SEQ ID NO: 51 所示的氨基酸序列 (称为 IBGT),或在 SEQ ID NO: 51基础上经过一个或多个氨基酸残基的取 代、 缺失或添加而形成的同功能衍生蛋白。
6. 一种分离的核苷酸序列, 其特征在于, 所述的核苷酸序列编码如权利要求 1-5所述多 肽。
7. 如权利要求 6所述的核苷酸序列,其特征在于,所述的核苷酸序列具有:(1)如 SEQ ID NO: 42所示的序列, 或与 SEQ ID NO: 42同源度在 70%及以上的序列; (2)如 SEQ ID NO:52 所示的序列, 或与 SEQ ID NO: 52同源度在在 70%及以上的序列。
8. 如权利要求 7所述的核苷酸序列,其特征在于,所述的核苷酸序列具有:(1)如 SEQ ID
NO:42所示的序列, 或与 SEQ ID NO: 42同源度在 80%及以上的序列; (2)如 SEQ ID NO:52 所示的序列, 或与 SEQ ID NO: 52同源度在在 80%及以上的序列。
9. 一种如权利要求 1-5种任一项所述的非甜叶菊来源的糖基转移酶的用途,用于在宿主 细胞中重组表达以制备甜菊糖苷类化合物, 其特征在于, 催化在甜菊糖苷类化合物的 0-葡 萄糖残基的 C-2'再转移上一个糖。
10. 如权利要求 9所述的用途, 其特征在于, 所述的糖基转移酶的催化底物包括但不限 于甜菊醇 -13-0-葡萄糖苷 (又称甜菊醇单糖苷)、 甜茶素 (又称甜叶悬钩子苷)、 甜菊糖苷、 莱鲍 迪苷 A; 优选的, 催化甜菊醇单糖苷生成甜菊醇双糖苷。
I I . 一种合成甜菊糖苷类化合物的方法, 其特征在于, 在宿主细胞中重组表达如权利要 求 1-10任一项中所述的糖基转移酶或核苷酸序列。
12. 如权利要求 11所述的方法,其特征在于,所述的宿主细胞还含有下述中的一个或多 个.
(a) 栊牛儿基栊牛儿基焦磷酸合成酶,
(b) 选自以下 (I)或 (Π)的酶:(I)古巴焦磷酸合成酶和贝壳烯合成酶,(Π)双功能贝壳烯合酶, (C) 贝壳烯氧化酶,
(d) 细胞色素 P450氧化还原蛋白,
(e) 贝壳烯酸 -13ct-羟化酶,
(f) UGT85C2糖基转移酶,
Ch) UGT74Gl糖基转移酶,
(i) UGT76G1糖基转移酶。
13. 如权利要求 11或 12所述的方法, 其特征在于, 所述的的宿主细胞还含有包括以下 酶的基因表达盒: 1-脱氧木糖 -5-磷酸合成酶, 2-甲基赤藓糖 -4-磷酸胞苷转移酶, 2-甲基赤藓 糖 -2,4-环二磷酸合成酶和异戊烯焦磷酸异构酶。
14. 如权利要求 11-13任一所述的方法, 其特征在于, 所述的宿主细胞选自: 原核微生 物细胞或真核微生物细胞。
15. 如权利要求 14所述的原核微生物是: 大肠杆菌, 枯草芽孢杆菌, 醋酸杆菌、 棒状杆菌、 短杆菌; 更佳地, 所述大肠杆菌选自: BL21、 BLR、 DH10B、 HMS、 CD43、 JM109、 DH5ct或 Noveblue; 或所述的真核微生物细胞是: 酵母菌、 霉菌、 担子菌; 所 述的酵母菌是: 毕赤酵母, 酿酒酵母, 乳酸克鲁维酵母。 较佳地, 所述的毕赤酵母选自 GS 1 15、 MC100-3、 SMD 1 163、 SMD1 165、 SMDl 168或 KM71; 较佳地, 所述的酿酒酵 母选自 W303、 CEN.PK2、 S288c、 FY834或 S 1949; 较佳地, 所述的乳酸克鲁维酵母选 自 GG799。
PCT/CN2013/084618 2012-09-29 2013-09-29 利用微生物生产甜菊糖苷类化合物的方法 WO2014048392A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/432,147 US9611498B2 (en) 2012-09-29 2013-09-29 Method for producing stevioside compounds by microorganism
CA2886893A CA2886893C (en) 2012-09-29 2013-09-29 Method for producing stevioside compounds by microorganism
EP13841968.4A EP2902410B1 (en) 2012-09-29 2013-09-29 Method for producing stevioside compounds by microorganism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210378341 2012-09-29
CN201210378341.3 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014048392A1 true WO2014048392A1 (zh) 2014-04-03

Family

ID=50387027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084618 WO2014048392A1 (zh) 2012-09-29 2013-09-29 利用微生物生产甜菊糖苷类化合物的方法

Country Status (5)

Country Link
US (1) US9611498B2 (zh)
EP (1) EP2902410B1 (zh)
CN (1) CN103710318B (zh)
CA (1) CA2886893C (zh)
WO (1) WO2014048392A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104886B2 (en) * 2016-12-08 2021-08-31 Dsm Ip Assets B.V. Kaurenoic acid hydroxylases

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY180803A (en) 2010-06-02 2020-12-09 Evolva Inc Recombinant production of steviol glycosides
WO2013022989A2 (en) 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
AU2014214004B2 (en) 2013-02-06 2018-05-24 Evolva Sa Methods for improved production of Rebaudioside D and Rebaudioside M
MY184253A (en) 2013-02-11 2021-03-29 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
US20150305380A1 (en) * 2013-12-23 2015-10-29 International Flavors & Fragrances Inc. Transglucosylated rubus suavissimus extract and methods of preparation and use
SG10201901007PA (en) 2014-08-11 2019-03-28 Evolva Sa Production of steviol glycosides in recombinant hosts
AU2015314251A1 (en) 2014-09-09 2017-03-16 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2016054534A1 (en) * 2014-10-03 2016-04-07 Conagen Inc. Non-caloric sweeteners and methods for synthesizing
CN107109453A (zh) * 2014-11-05 2017-08-29 马努斯生物合成股份有限公司 甜菊醇糖苷的微生物产生
US10364450B2 (en) 2015-01-30 2019-07-30 Evolva Sa Production of steviol glycoside in recombinant hosts
US10604743B2 (en) 2015-03-16 2020-03-31 Dsm Ip Assets B.V. UDP-glycosyltransferases
EP3332018B1 (en) 2015-08-07 2022-07-27 Evolva SA Production of steviol glycosides in recombinant hosts
CA2999638A1 (en) 2015-10-05 2017-04-13 Dsm Ip Assets B.V. Kaurenoic acid hydroxylases
US10760085B2 (en) 2015-10-05 2020-09-01 Dsm Ip Assets B.V. Kaurenoic acid hydroxylases
CN108473995B (zh) * 2015-12-10 2022-10-18 埃沃尔瓦公司 在重组宿主中产生甜菊醇糖苷
MY198001A (en) 2016-04-13 2023-07-25 Evolva Sa Production of steviol glycoside in recombinant hosts
WO2017198682A1 (en) 2016-05-16 2017-11-23 Evolva Sa Production of steviol glycosides in recombinant hosts
WO2018012644A1 (ko) * 2016-07-11 2018-01-18 아주대학교산학협력단 스테비올 배당체 생산용 재조합 미생물
WO2018083338A1 (en) 2016-11-07 2018-05-11 Evolva Sa Production of steviol glycosides in recombinant hosts
RU2764803C2 (ru) * 2017-03-06 2022-01-21 Конаджен Инк. Биосинтетическое получение стевиолового гликозида ребаудиозида d4 из ребаудиозида e
US11365417B2 (en) 2017-09-12 2022-06-21 Bio Capital Holdings, LLC Biological devices and methods of use thereof to produce steviol glycosides
GB2589146A (en) 2019-11-25 2021-05-26 Multi Packaging Solutions Uk Ltd Tray
CN111424065B (zh) * 2020-03-24 2022-08-16 金禾益康(北京)生物科技有限公司 使用糖基转移酶对甜菊糖苷类化合物进行糖基化方法
CN114480322B (zh) * 2020-11-11 2023-11-21 东北林业大学 燕麦糖基转移酶AsUGT73E5及其在甾体皂苷合成中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides
WO2011154523A1 (en) * 2010-06-11 2011-12-15 Universiteit Gent Yeast strains modified in their sophorolipid production and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009105612A2 (en) * 2008-02-20 2009-08-27 Ceres, Inc. Nucleotide sequences and corresponding polypeptides conferring improved nitrogen use efficiency characteristics in plants
DE102010014680A1 (de) 2009-11-18 2011-08-18 Evonik Degussa GmbH, 45128 Zellen, Nukleinsäuren, Enzyme und deren Verwendung sowie Verfahren zur Herstellung von Sophorolipiden
WO2012075030A1 (en) * 2010-11-30 2012-06-07 Massachusetts Institute Of Technology Microbial production of natural sweeteners, diterpenoid steviol glycosides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011153378A1 (en) * 2010-06-02 2011-12-08 Abunda Nutrition, Inc. Recombinant Production of Steviol Glycosides
WO2011154523A1 (en) * 2010-06-11 2011-12-15 Universiteit Gent Yeast strains modified in their sophorolipid production and uses thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 19 December 2006 (2006-12-19), XP055265405, retrieved from NCBI Database accession no. ABL74480.1 *
JOSEPH SAMBROOK: "Molecular Cloning: A Laboratory Manual", 2002, SCIENCE PRESS
NI, WANCHAO ET AL.: "Advances on the Steviol Glycoside Biosynthesis and It's Key Enzymes.", BIOTECHNOLOGY BULLETIN, 26 April 2008 (2008-04-26), pages 48 - 53, XP055253389 *
SAERENS, K. M. J. ET AL.: "Cloning and functional characterization of the UDP-glucosyltransferase UgtBl involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain.", YEAST, vol. 28, no. 4, 16 January 2011 (2011-01-16), pages 279 - 292, XP055009424 *
See also references of EP2902410A4
WATSON ET AL.: "Molecular Biology of The Gene", 1987, THE BENJAMIN/CUMMINGS PUB. CO., pages: 224

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104886B2 (en) * 2016-12-08 2021-08-31 Dsm Ip Assets B.V. Kaurenoic acid hydroxylases
US11913034B2 (en) 2016-12-08 2024-02-27 Dsm Ip Assets B.V. Kaurenoic acid hydroxylases

Also Published As

Publication number Publication date
EP2902410B1 (en) 2022-01-05
EP2902410A4 (en) 2016-05-18
US9611498B2 (en) 2017-04-04
EP2902410A1 (en) 2015-08-05
CN103710318B (zh) 2017-01-18
US20150252401A1 (en) 2015-09-10
CA2886893A1 (en) 2014-04-03
CA2886893C (en) 2019-05-07
CN103710318A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
WO2014048392A1 (zh) 利用微生物生产甜菊糖苷类化合物的方法
JP7061145B2 (ja) レバウディオサイドdおよびレバウディオサイドmの改良された産生方法
AU2020200157B2 (en) Recombinant production of steviol glycosides
EP2645847B1 (en) Microbial production of natural sweeteners, diterpenoid steviol glycosides
CN109402158B (zh) 一种产岩藻糖基乳糖的重组表达质粒载体、代谢工程菌及生产方法
US9885030B2 (en) Polynucleotide for recombinant expression of sucrose isomerase
WO2021164673A1 (zh) 双功能碳苷糖基转移酶及其应用
CN111943996B (zh) 络塞维类似物及生产该络塞维类似物的基因工程菌和其应用
WO2015139599A1 (zh) 新的贝壳烯酸-13α-羟化酶、其编码基因及其应用
CN107929296B (zh) 一种非天然人参皂苷的制备方法及应用
CN114032222B (zh) 糖链延伸糖基转移酶突变体及其编码基因以及基因工程菌和它们的应用
CN106929525B (zh) 一种基因工程菌及其在制备莱鲍迪甙a中的应用
KR101581185B1 (ko) 대장균에서 페튜니아 유래 당전이효소 PeF3GalGT 유전자를 이용한 퀘세틴-3-O-갈락토사이드의 대량생산 방법
CN115975827A (zh) 用于甜茶素生产的宿主细胞及方法
CN113444703A (zh) 催化糖链延伸的糖基转移酶突变体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2886893

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14432147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013841968

Country of ref document: EP