CN106929525B - 一种基因工程菌及其在制备莱鲍迪甙a中的应用 - Google Patents

一种基因工程菌及其在制备莱鲍迪甙a中的应用 Download PDF

Info

Publication number
CN106929525B
CN106929525B CN201710123817.1A CN201710123817A CN106929525B CN 106929525 B CN106929525 B CN 106929525B CN 201710123817 A CN201710123817 A CN 201710123817A CN 106929525 B CN106929525 B CN 106929525B
Authority
CN
China
Prior art keywords
ugpase
rebaudioside
ugt
reaction
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710123817.1A
Other languages
English (en)
Other versions
CN106929525A (zh
Inventor
李艳
李阳阳
周伯雅
严明
陈可泉
郝宁
张竹山
于青海
陈剑波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinghua Green Biological Preparation Co ltd
Nanjing Tech University
Original Assignee
Xinghua Green Biological Preparation Co ltd
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinghua Green Biological Preparation Co ltd, Nanjing Tech University filed Critical Xinghua Green Biological Preparation Co ltd
Priority to CN201710123817.1A priority Critical patent/CN106929525B/zh
Publication of CN106929525A publication Critical patent/CN106929525A/zh
Application granted granted Critical
Publication of CN106929525B publication Critical patent/CN106929525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • C12P19/56Preparation of O-glycosides, e.g. glucosides having an oxygen atom of the saccharide radical directly bound to a condensed ring system having three or more carbocyclic rings, e.g. daunomycin, adriamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07009UTP-glucose-1-phosphate uridylyltransferase (2.7.7.9), i.e. UDP-glucose-pyrophosphorylase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/34Vector systems having a special element relevant for transcription being a transcription initiation element

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种基因工程菌及其在制备莱鲍迪甙A中的应用,首先构建得到产甜叶菊糖基转移酶UGT76G1和UDP‑葡萄糖焦磷酸化酶UGPase的基因工程菌,它是在组成型表达甜叶菊糖基转移酶UGT的重组菌基础上,过表达UDP‑葡萄糖焦磷酸化酶UGPase,增加糖基化反应的糖基供体量。然后建立全细胞催化反应体系,将甜菊甙转化为莱鲍迪甙A。菌用量浓度为1~10g/L;葡萄糖用量20~120g/L;底物甜菊糖甙的用量为1~20g/L,催化反应过程中,对细胞催化剂进行表面活性剂处理,增加了细胞通透性,大幅提高了莱鲍迪甙A的产量。本发明利用胞内UDPG的合成途径,提高胞内UDPG糖基共体量,避免其额外添加、实现再生循环,酵母的培养和重组酶的表达同时进行,缩短了重组菌培养及重组酶表达的周期。

Description

一种基因工程菌及其在制备莱鲍迪甙A中的应用
技术领域
本发明涉及一种产甜叶菊糖基转移酶UGT76G1和UDP-葡萄糖焦磷酸化酶UGPase的基因工程菌及其在制备莱鲍迪甙A中的应用,属于生物工程技术领域。
背景技术
甜菊糖是一种从甜味菊茎叶中提取的天然甜味剂,其主要成分为甜菊糖甙,它是一种高甜度、低热值的非发酵性的天然甜味剂。甜度约为蔗糖的200~300倍,其中提纯的莱鲍迪甙A糖的甜度约为蔗糖的450倍,味感更佳。甜菊糖的热值仅为蔗糖的1/300[1],与蔗糖、葡萄糖等天然甜味剂,甜密素、阿斯巴甜等化学合成甜味剂相比,甜菊糖具有热量低、甜度高、味质好、耐高温、稳定性好等特点,摄入人体后不被吸收,不产生热量[2],是糖尿病和肥胖病患者适用的甜味剂。对人体安全无毒,而且还兼有促进代谢、治疗胃酸的作用,对肥胖症、糖尿病、动脉硬化等有辅助疗效[3,4,5]。由于甜菊糖苷属非发酵性物质,具有耐热、稳定、防腐等性能,所以加到食品饮料中不易变性、变质。此外,它对酸碱度的要求不高,保存时间长,不易结块、褐变。因此,可以被广泛应用于食品领域。甜菊糖是目前世界已发现并经我国卫生部、轻工业部批准使用的最接近蔗糖口味的天然低热值甜味剂[6]。是继甘蔗甜菜糖之外第三种有开发价值和健康推崇的天然蔗糖替代品,被国际誉为“世界第三蔗糖”。
甜菊叶中三种最主要的糖苷成分在叶片中的含量通常为:甜菊苷(Stevioside,St甙)占叶片干重9.1%,莱鲍迪甙A(Rebaudioside A,RA甙)占3.8%,莱鲍迪苷C占0.6%[7]。近年来,包括以上三种糖苷组分在内,研发人员已从甜叶菊中分离得到11 种糖苷。其中RA甙与其它糖苷相比,其甜度高,且甜味纯正,口感也更接近蔗糖,甘苦味和甘草异味低,稳定性好,是一种理想的天然高倍甜味剂产品。因此,提高甜菊糖甙的含量,尤其是提高RA 甙的纯度,获得高品质的甜菊糖,成为甜菊糖产业升级和产品改进的重要目标和内容。
采用分离提纯工艺来分离RA甙与St甙生产RA甙,其中HPLC法分离RA 甙和St甙的效果最好,但其处理量太小,难以放大化后用于工业化生产;重结晶法工艺繁复,能量消耗大,时间周期长,且存在有机溶剂残留等问题;树脂吸附虽然吸附和交换容量大,容易规模化生产,但莱鲍迪甙A(RA甙) 与含量高的甜菊甙(St甙) 在化学结构和极性上非常相近,造成对RA 甙的吸附选择性比较小,影响分离效果,使得莱鲍迪甙A得率低,在工业实际应用中存在一定的困难。目前生物酶法合成RA甙的方法需要外加昂贵的UDP-葡萄糖为底物,通过UDP-葡萄糖基转移酶的作用,催化St甙生成RA甙,致使酶催化St甙合成RA甙的经济性较差、缺乏市场竞争力。
参考文献
[1]陈慕英,于喜水孙玉华,等.中医药信息[J].2001,18(3):23.
[2] CarakoStas MC,Curry LL,Boileau AC,et al.Overview: the hiStory,technical function and safety of rebaudioside A,a naturally occurring Steviolglycoside,for use in food and beverages[J].Food Chem Toxicol,2008,46(7):1-10.
[3]JanM C .Geuns .PhytochemiStry[M],2003,64 :913.
[4]Carebaudioside AkoStas MC, Curry LL, Boileau AC, et al. Overview:thehiStory,technical function and safety of rebaudioside A,a naturebaudiosideAlly occurring Steviol glycoside,for use in food and beverebaudioside Ages[J].Food Chem Toxicol,2008,46 Suppl 7:S1-S10.
[5]Shibata H, et al. Glucosylation of Steviol and Steviol-glucosidesin extrebaudioside Acts from Stevia rebaudiana Bertoni[J].Plant Physiol,1991,95 (1):152一156.
[6]Shibata H, et al.Steviol and Steviol-glycosideglucosyltrebaudiosideAnsferebaudioside Ase activitiesin Stevia rebaudiana Bertoni-purification andpartial charebaudioside Acterization[J].Arch Biochem Biophys,1995,321 (2):390~396.
[7]Brebaudioside Andle JE, etal.Steviol glycoside biosynthesisPhytoehemiStry,2007,68 (14):1855-1863。
发明内容
本发明所要解决的一个技术问题是提供一株能够高效共表达糖基转移酶UGT76G1和UDP-葡萄糖焦磷酸化酶UGPase的基因工程菌。
本发明所要解决的第二个技术问题是提供上述工程菌的构建方法。
本发明所要解决的第三个技术问题是提供上述工程菌的诱导表达方法。
本发明所要解决的第四个技术问题是提供上述工程菌的应用。
一种产甜叶菊糖基转移酶UGT76G1和UDP-葡萄糖焦磷酸化酶UGPase的基因工程菌,它是将UGT76G1和UGPase编码基因插入到含有两个强启动子PGK1 和TEF1的组成型酿酒酵母穿梭质粒pESC-LEUD 中,并将重组质粒导入表达宿主酿酒酵母Saccharomycescerevisiae YPH499(pESC-LEUD)中得到的工程菌YPH499- pESCD-UGT-UGPase。
UGT76G1编码基因插入载体的酶切位点为SalⅠ和XhoⅠ;UGPase编码基因插入载体的酶切位点为SpeI和Sac I。
所述的UGT76G1编码基因为GenBank, No. GenBank :AY345974. 1,该基因序列命名为UGT,序列见SEQ.NO.2所示。所述的UGPase编码基因为GenBank,Gene ID: 853830,该基因序列命名为UGPase,序列见SEQ.NO.1所示。
该基因工程菌在组成型表达甜叶菊糖基转移酶UGT的重组菌基础上,过表达UDP-葡萄糖焦磷酸化酶UGPase,增加糖基化反应的糖基供体量。
上述基因工程菌的构建方法,包括以下步骤:
1)用限制性内切酶SalⅠ和XhoⅠ双酶切UGT基因片段和pESCD载体,连接UGT基因片段纯化产物与pESCD载体,得到重组质粒pESCD-UGT;
2)用限制性内切酶SpeⅠ和SacⅠ双酶切UGPase基因片段和pESCD-UGT载体,连接UGPase基因片段纯化产物与pESCD-UGT载体,得到重组质粒pESCD-UGT-UGPase;
3)将鉴定后的阳性克隆的质粒导入酿酒酵母Saccharomyces cerevisiae YPH499中,得到基因工程菌YPH499- pESCD-UGT-UGPase。
上述基因工程菌的产酶方法,具体来说,是将基因工程菌YPH499- pESCD-UGT-UGPase按1~5%的接种量接种到碳源为20g/L葡萄糖的培养基上培养上,培养16~32h;培养基配方为:6.7 g/LYNB,20 g/L葡萄糖,0.1g/L腺嘌呤,0.1g/L半胱氨酸,0.1g/L精氨酸,0.1g/L尿嘧啶,0.1g/L苏氨酸,0.1g/L赖氨酸,0.1g/L色氨酸,0.05g/L组氨酸,0.05g/L天冬氨酸,0.05g/L甲硫氨酸,0.05g/L异亮氨酸,0.05g/L苯丙氨酸,0.05g/L丝氨酸,0.05g/L脯氨酸,0.05g/L酪氨酸,0.05g/L缬氨酸。
上述基因工程菌在生产莱鲍迪甙A中的应用。建立全细胞催化反应体系,将甜菊甙转化为莱鲍迪甙A。以共表达糖基转移酶UGT76G1和葡萄糖焦磷酸化酶的基因工程菌为全细胞催化剂,菌用量浓度为1~10g/L;葡萄糖用量20~120g/L;底物甜菊糖甙的用量为1~20g/L,底物甜菊糖甙的纯度为55~95%;其它参与反应的物质分别为:改善细胞通透性的有机溶剂,调节代谢途径的物质,反应得到莱鲍迪甙A。
优选为:菌用量浓度2g/L;葡萄糖的用量40g/L;底物甜菊糖甙1~20g/L。
所述通透剂为表面活性剂或者螯合剂。所述表面活性剂为SDS、F-68或者TritonX-100;所述螯合剂为EDTA。所述通透剂的浓度分别为:SDS:浓度0.2~2%;F-68:浓度0.5~2%;Triton X~100:浓度0.5~2%;螯合剂:EDTA,浓度0.2~2%。
所述的调节代谢途径的物质为柠檬酸钠,用量为0.5~10g/L,优选2g/L;
所述的反应在磷酸钾缓冲液体系中完成,反应pH6.8~8.0,浓度50-100mM,优选pH8.0、浓度100mM,镁离子浓度1~10g/L,反应温度25~42 ℃,优选30℃,反应时间8~96h,优选24h。
添加一定量的柠檬酸钠,RA甙产量最高达到1650.3mg/L;说明添加适量浓度的柠檬酸钠,对调节酵母代谢途径从而促进UDPG生成起到较大作用,这种有效的转化结果可能是由于柠檬酸钠是糖酵解途径中6-磷酸果糖激酶的有效抑制剂,即在一定程度上抑制了糖酵解途径,促使6-磷酸葡萄糖转化成1-磷酸葡萄糖,进而提高了UDPG的合成量。
所述的催化反应,反应8-24h结束,优选pH8.0、100mM的磷酸钾缓冲洗菌两遍,加入上述营养缺陷性培养基10-100mL,30℃、200rpm摇床活化菌2-3h。用所述缓冲清洗活化的菌两次,检验催化剂的重复利用率。结果显示细胞重复利用五次,转化效率仍在30%以上。
有益效果:本发明利用基因工程技术,获得可以将糖基转移酶UGT76G1和UDP-葡萄糖焦磷酸化UGPase共表达的重组菌,利用胞内UDPG的合成途径,提高胞内UDPG糖基共体量,避免其额外添加、实现再生循环,实现莱鲍迪甙A合成量的增加。
本发明使用组成型强启动子替换了常用的诱导型启动子,酵母的培养和重组酶的表达同时进行,且无需使用半乳糖来诱导表达目的基因,这一工作缩短了重组菌培养及重组酶表达的周期,组成型强启动子增加酶的表达量及其活性,无需诱导剂,有利于降低生产成本。
本发明采用全细胞催化,实现胞内酶系的稳定及其细胞的重复利用,重复利用五次,莱鲍迪甙A相对产量可达30%以上。尤其是采用SDS作为透性化试剂,应用于全细胞催化反应,无毒性,降低细胞损害,改善细胞稳定性,SDS通透效果较其它表面活性剂能力强,莱鲍迪甙A产量可达1238.2mg/L。
本发明提供的共表达甜叶菊糖基转移酶UGT76G1、葡萄糖焦磷酸化酶UGP的重组酿酒酵母,催化能力强,可以实现不同品质甜菊糖(纯度55~95%)的转化,提高莱鲍迪甙A的含量,混合糖甙中莱鲍迪甙A含量可达60%以上。
本发明简化了全细胞催化合成莱鲍迪甙A时对微生物细胞进行通透化处理的繁琐程序,向反应体系中直接加入通透试剂,分离反应液得到产物。采用该重组菌进行全细胞催化反应,以混合糖甙为底物,反应后莱鲍迪甙A含量从10%提高到63%以上。
附图说明
图1 UGT76G1催化Stevioside(St甙)生成 Rebaudioside A(RA甙)的过程;
图2pESCD-UGT-UGPase质粒示意图;
图3细胞内UDPG合成途径;
图4全细胞催化合成莱鲍迪甙A的产量;
图5柠檬酸钠对催化反应的影响;
图6透性化试剂处理的细胞对合成莱鲍迪甙A的影响;
图7通透剂对细胞完整性的影响;
图8细胞重复利用率。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1:重组酵母的构建
1、糖基转移酶UGT基因的获取:
根据AY345974. 1基因序列,进行密码子优化,优化后的基因序列命名为UGT,并由南京金思瑞公司完成基因合成,序列见SEQ.NO.2。
根据UGT基因序列设计引物
上游引物(-sense含SalⅠ)为P1:
5’-cactatagggcccgggcgtcgacATGTCTGAAAATAAGACTGAAACT-3’
下游引物(-sense含XhoⅠ)为P2:
5’- TCTTAGCTAGCCGCGGTACCAAGCTTACTCGAGTTATAATGATGAAAT-3’
所有引物由上海申能博彩公司合成。
基因的PCR条件(50 u L体系):
PCR体系:50μL
ddH2O:19μL
P1:2μL
P2:2μL
模板:2μL
2×Phanta Master Mix:25μL
94 ℃变性5min,按如下参数循环30次:94℃变性30s,60℃退火30s,72℃延伸2min。最后72℃延伸l0min。
2、UDP-葡萄糖焦磷酸化酶UGPase基因的获取
UGPase基因来源于酿酒酵母Saccharomyces cerevisiae YPH499,序列见SEQ.NO.1所示。
根据数据库NCBI和CloneEZ PCR Cloning Kit 设计引物:
上游引物(-sense含SpeⅠ)为P3:
5’-ATTACAAGCGGCCGCACTAGTATGTCCACTAAGAAGCACACCAAAACAC
AT-3’
下游引物(-sense含SacⅠ)为P4:
3’-AGAATTGTTAATTAAGAGCTCATGTCCACTAAGAAGCACACCAAAACAC
AT-3’
PCR条件(50 u L体系):
PCR体系:50μL
ddH2O:19μL
P3:2μL
P4:2μL
模板:2μL
2×Phanta Master Mix:25μL
94℃变性5min。按如下参数循环30次:94℃变性45s,59℃退火45s,72℃延伸1min。最后72℃延伸l0min。
3、重组工程菌YPH499(pESCD-UGT-UGPase)获得:
用上述PCR扩增UGT、UGP基因,双酶切后并用核酸胶纯化回收。纯化后的片段分别与PMD18-T Vector载体(Takara)连接,连接条件: T4连接酶16℃、反应8h。将10u1的连接物产物PMD18-T-UGT、PMD18-T-UGPase热击转化至DH5α感受态中。转化物涂布于含有含100ug/mlAp的平板上,37℃培养过夜,筛选阳性克隆。获得正确序列的克隆载体PMD18-T-UGT和PMD18-T-UGPase。
分别用SalⅠ和XhoⅠ双酶切克隆载体PMD18-T-UGT和pESCD。胶回收酶切产物后进行连接反应,构建出表达载体pESCD-UGT。挑出鉴定后正确的阳性克隆载体pESCD-UGT。
分别用SpeⅠ和SacⅠ双酶切克隆载体PMD18-T-UGPase和pESCD-UGT。胶回收酶切产物后进行连接反应,构建出表达载体:质粒pESCD-UGT-UGPase与Saccharomycescerevisiae YPH499感受态混匀,电击法转化完毕后,加入1mL冰预冷的山梨醇溶液将菌体混匀,将菌体悬液涂布于SC-L筛选培养基平板上至于30℃培养,直至单个菌落出现。
实施例2:重组酿酒酵母菌共表达UGT和UGPase
菌种活化:在无菌环境中,将甘油管保存菌种涂布于YPDA平板上,30℃生长24-36小时。挑取YPDA平板上的单菌落三区划线涂布于SC筛选性培养基,30℃生长24-36小时。
重组菌发酵培养:挑取SC筛选性平板上单菌落转接到液体SC培养基中,30℃生长16-20小时,6000rpm,离心5min,并用磷酸钾缓冲洗菌体两遍。
其中,营养丰富型培养基YPDA配方为:10g/L酵母提取物,20g/L蛋白胨,20g/L葡萄糖,0.75g/L腺嘌呤。筛选型培养基SC配方为:6.7 g/LYNB,20 g/L葡萄糖,0.1g/L腺嘌呤,0.1g/L半胱氨酸,0.1g/L精氨酸,0.1g/L尿嘧啶,0.1g/L苏氨酸,0.1g/L赖氨酸,0.1g/L色氨酸,0.05g/L组氨酸,0.05g/L天冬氨酸,0.05g/L甲硫氨酸,0.05g/L异亮氨酸,0.05g/L苯丙氨酸,0.05g/L丝氨酸,0.05g/L脯氨酸,0.05g/L酪氨酸,0.05g/L缬氨酸。
实施例3:酶活测定方法的确立
将离心收集的重组酿酒酵母细胞,用0.1mM磷酸钾缓冲液(pH8.0)洗涤两次,高压破碎细胞。然后4°C,6000r/min离心30 min收集酶粗提液备用。
测定UGT酶活力反应体系:
在3 mL的反应体系中(1.2 mM St 甙、4 mM UDPG、3 mM MgCl2、0.89 mg粗酶、pH =8.0),加入酶粗提液进行反应,30 °C室温3 h后,加入水饱和正丁醇漩涡震荡终止反应。用正丁醇萃取得到的上清液用高效液相色谱(HPLC)进行分析。对照菌作相同处理。
测定UGP酶活力反应体系:
利用UGP可逆反应,其催化反应生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶和6-磷酸葡萄糖脱氢酶作用下将NADP转化为NADPH,在340nm的吸光值增加速率反映了UGP活性。
UGT酶活力单位定义为:在上述反应条件下,30 °C,1 min催化形成1 μmol 莱鲍迪甙A所需要的酶量为1个活力单位(U)。
UGP酶活力单位定义为:每毫克细胞蛋白每分钟消耗1nmol的NADP为一个酶活力单位。
HPLC法色谱分析条件如下:
色谱柱:Lichrospher NH2柱(250mm X 4. 6mm, 5 u m);流动相为乙睛:水20;V:V);流速:1mL/min;柱温:40℃;检测波长:210nm。
采用上述方法测定实施例2中重组酿酒酵母菌的酶活,结果见表1。
表1酵母菌株表达酶的活力
Figure 780117DEST_PATH_IMAGE001
实施例4:建立全细胞催化反应体系
取实施例2中的沉淀转移至用50m1小三角瓶中,建立全细胞催化反应体系。此反应体系为20ml,其中菌体2.0g/L,底物St甙2g/L;葡萄糖40g/L; MgCl2 6g/L;SDS 2g/L;用磷酸钾缓冲液定容至20ml,pH调节为8.0,200rpm, 30℃,反应48h后,取样品离心,将上清样品被存在-20℃备于液相分析。通过加入葡萄糖,过表达UGP增加碳流量向合成糖基供体UDPG方向进行,从而增加莱鲍迪甙A的产量,其产量达到1238.2mg/L。催化反应过程中,对细胞催化剂进行表面活性剂处理,增加了细胞通透性,提高了细胞的稳定性,产量增加显著。
实施例5:代谢调节物质柠檬酸钠的影响
基因工程菌浓度2.0g/L,按照实例4的方法,转移至用50m1小三角瓶中,加入终浓度为40g/L的葡萄糖,底物St甙2g/L, MgCl2 6g/L,SDS 2g/L,并加入柠檬酸;用磷酸钾缓冲液定容至l0ml,pH调至8.0。取五份平行样,加入的柠檬酸钠浓度分别为0g/L,1g/L,2g/L,5g/L,10g/L,30°C,200rpm,反应48h后,取样品离心,将上清样品被存在-20℃备于液相分析。柠檬酸钠浓度0~2 g/L时,RA甙的生成量逐渐增加;在2g/L时,RA甙产量达到最高;当浓度在2~5 g/L时,RA甙量呈现明显下降趋势。柠檬酸钠浓度为2g/L时,RA甙的产量最高为1650.3mg/L。
实施例6:底物浓度的影响
湿菌体浓度2.0g/L,按照实例4的方法,转移至用50m1小三角瓶中,加入终浓度为40g/L的葡萄糖, MgCl2 6g/L,SDS 2g/L,用磷酸钾缓冲液定容至20ml, pH调至8.0。按上述方法,取四份平行样,加入的底物St甙浓度分别为1g/L 、2g/L、4g/L、10g/L、12g/L,30°C,200rpm,反应48h后,取样品离心,将上清样品被存在-20℃备于液相分析。菌体催化底物所得RA甙的产率随着St甙浓度的升高呈现下降趋势;在St甙浓度为2g/L的时RA甙产率达到最高,为89.2%。St甙为4g/L时,RA甙的产量最高为2783.5mg/L。
实施例7:SDS浓度对催化反应的影响
工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为40g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2,用量2g/L,反应温度30℃、200rpm摇床反应24小时,用pH 8.0、100mM 的磷酸钾缓冲定容至20mL。反应温度30℃、200rpm摇床反应24小时。取四份平行样,加入SDS的浓度分别为1 g/L、2 g/L、5 g/L、1 g/L,反应24小时,取反应液离心取上清,放于4℃备液相检测分析。其中,当SDS浓度为2 g/L,莱鲍迪甙A最大产量为1347.4mg/L;当SDS浓度为5g/L,莱鲍迪甙A产量为1106.1mg/L;当SDS浓度为1g/L,莱鲍迪甙A最低产量为976.4mg/L。
实施例8:F-68浓度对催化反应的影响
工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为80g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2,用量2g/L,用pH 8.0、100mM 的磷酸钾缓冲定容至20mL,反应温度30℃、200rpm摇床反应24小时。取三份平行样,加入F-68的浓度分别为5g/L、10g/L、15g/L,反应24小时,取反应液离心取上清,放于4℃备液相检测分析。其中,当F-68浓度为15g/L时,莱鲍迪甙A最低产量为464.7mg/L;当F-68浓度为10g/L时,莱鲍迪甙A最高产量为695.8mg/L。
实施例9:Triton X-100浓度对催化反应的影响
工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为80g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2,用量2g/L,用pH 8.0、100mM 的磷酸钾缓冲定容至20mL,反应温度30℃、200rpm摇床反应24小时。取四份平行样,加入Triton X-100的浓度分别为5g/L、10g/L、15g/L,反应24小时,反应液离心取上清,放于4℃备液相检测分析。其中,当Triton X-100浓度为15g/L时,莱鲍迪甙A最低产量为534.2mg/L;当Triton X-100浓度为10g/L时,莱鲍迪甙A最高产量为806.7mg/L。
实施例10:EDTA浓度对催化反应的影响
基因工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为40g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2,用量2g/L,用pH 8.0、100mM 的磷酸钾缓冲定容至20mL,反应温度30℃、200rpm摇床反应24小时。取四份平行样,加入EDTA的浓度分别为2g/L、5g/L、10g/L,15g/L反应24小时,取反应液离心取上清,放于4℃备液相检测分析。其中,当EDTA浓度为2g/L时,莱鲍迪甙A最低产量为97.9mg/L;当EDTA浓度为5g/L时,莱鲍迪甙A最低产量为410.6mg/L;当EDTA浓度为10g/L时,莱鲍迪甙A最高产量为575.3mg/L。
实施例11:催化细胞的重复利用率
第一次反应体系:基因工程菌的用量按湿菌体计为2.0g/L,葡萄糖的用量为40g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2 2g/L,通透剂SDS 2g/L,反应温度30℃、200rpm摇床反应24小时。取反应液离心取上清,放于4℃备液相检测分析。第二次反应体系:第一次反应结束后,用pH 8.0、100mM 的磷酸钾缓冲清洗菌体,并用SC选择性培养基10mL,30℃、200rpm摇床活化2小时。使用第一次反应条件。如此条件,重复反应五次。结果见图8所示,细胞重复利用3次产量可以达到60%,细胞重复利用五次莱鲍迪甙A相对产量都在30%以上。
实施例12:低纯度甜菊糖甙的转化
基因工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为40g/L,镁离子使用MgCl2用量2g/L,反应温度30℃、200rpm摇床反应24小时,通透剂SDS剂1%,甜菊糖的用量为10g/L,其中甜菊糖甙含量分别为80.24%、25.31%、60.64%,莱鲍迪甙A含量在40%。经过反应转化混合糖甙中莱鲍迪甙A含量有大幅度提高,含量达到67%。
实施例13:透性化试剂对细胞稳定性的影响
基因工程菌的用量按湿菌体浓度2.0g/L添加,葡萄糖的用量为40g/L,甜菊糖的用量为2g/L,镁离子使用MgCl2,用量2g/L,反应温度30℃、200rpm摇床反应24小时。建立四个反应样,通透剂分别为SDS浓度为2 g/L、F-68浓度为10g/L时、Triton X-100浓度为10g/L、EDTA浓度为10g/L。反应12小时取反应液离心取菌泥,用10 mM Tris–HCl (pH 7)洗菌泥两遍。测定细胞稳定反应体系:包含0.25ug溶菌酶(100T),并用10 mM Tris–HCl (pH 7)调节菌量OD6000.2~0.4。酶标仪在波长600nm下,每10min测定一次吸光值,测定60min。经过SDS处理的细胞,前30min吸光值变化幅度小,说明细胞壁通透性强;而经过F-68处理的细胞,前30min吸光值变化幅度小,说明细胞壁通透性小。
SEQUENCE LISTING
<110> 南京工业大学;兴化格林生物制品有限公司
<120> 一种基因工程菌及其在制备莱鲍迪甙A中的应用
<130>
<160> 6
<170> PatentIn version 3.3
<210> 1
<211> 1500
<212> DNA
<213> 人工序列
<400> 1
tcaatgttcc aagatttgca aattaccagt aacgacaaca ttttccaata tggagccgtt 60
tggaatatcg attttatgac cgtcggagca aacgatgatg acagtacccc tcaaagtgac 120
atctttacct aaaaagacgt taccagtgat ggtcaaatga tctagctcga cgatttttgg 180
gatgtgaggg attcttgcgt taaaaccaga aacctttttg aaatgcgagc ccaacttgat 240
taatgggttt ggaccaaaac gggatgggtc taacttcaaa gaaccgtgtt ccagacggaa 300
tagatctgat ttaaccagca acaaatcgga acaggtcttg acaggcaaga atcttgatct 360
tggaacgaca acaccgtgag caccatcaaa atgcctgata gcagcaccac aagcggtttc 420
taattgtaag acattaattt catgaccgtc tcttgttata gttttttggt ttggaatgat 480
ttccatctcc aaattgctcg attcgatcaa cctctttact gctttcagat tgatccataa 540
gttattcgtg ttgaagttgg taaactttct gatatttttg aattcgtcaa tgtgttcttt 600
tggaacttgg gcgacttcca ataaacggac ttgaccatcg taagaaatca aagtaccacc 660
tttaacatcg gctctggtct tatcagtcaa ttccattata tattcggcac cagtctcgat 720
catgtggttt aaaattttta agtcgacggt agcacccaag ttgtcaccgt tagaaacaaa 780
taatatttct cttccttggg caattaaggc atccagttca ccagatacgt gtaaagattc 840
aaacaaatca ccgtgacctg gtggatacca agcatccagt ggagaatcgt attcggtggg 900
gacaggcaat aaagaatcct tgtagactct tgggaacctg gattgattga aagatctgat 960
tctgattctg ttagcggaat acttcttaat caagtgttcc gtatccttgt cagtgttgaa 1020
agaattcatc aataacaatg gcacgtcgct atcgtactgt ctgttcaagt attcaatttg 1080
acgaacagac aaatccaaaa aggtgtttcc ctctctcact tcaataacag atttagggcc 1140
aacgcagccc atggaggtac ccagcccacc gttcaacttc aaaacagcca atttggaaag 1200
gtttgagaca ttctcgggct gctgagaaat aatttcatac ttaaccactt catccgggtt 1260
gggagacttg atcttgtccc attccaaggt ggttctagaa gacttctcta ccaaatatct 1320
cctgaaaagc gtgaaaaacg aatccagttc gttctcaaac ttagcgcgag cagcatcgtc 1380
aagtttacta gagtccgcca acttgtttaa ggcgtttctc atttgtgagg cagcaacgct 1440
gtttgtgttg ctctcgaatg cataagtgga atgtgttttg gtgtgcttct tagtggacat 1500
<210> 2
<211> 1380
<212> DNA
<213> 人工序列
<400> 2
atgtctgaaa ataagactga aactactgtt agaagaagaa gaagaattat tttgtttcca 60
gttccatttc aaggtcatat taatccaatt ttgcaattgg ctaatgtttt gtactcaaag 120
ggtttttcta ttactatttt tcatactaat tttaataaac caaaaacttc taattatcct 180
cattttacat ttagatttat tttagataat gatccacaag atgaaagaat ttctaatttg 240
ccaactcatg gtccattagc tggtatgaga ataccaatta ttaatgaaca tggtgcagat 300
gaattgagaa gagaattgga attgttgatg ttggcttctg aagaagatga agaagtttct 360
tgtttgatta ctgatgcttt gtggtacttt gcacaatctg ttgctgattc tttgaatttg 420
agaagattgg ttttgatgac ttcttcattg tttaattttc atgctcatgt ttcattgcca 480
caatttgatg aattgggtta cttggatcct gatgataaga ctagattgga agaacaagct 540
tcaggttttc ctatgttgaa agttaaagat attaagtcag cttattctaa ttggcaaatt 600
ttgaaagaaa ttttgggtaa aatgattaaa caaactaaag cttcatctgg tgttatttgg 660
aactctttta aagaattgga agaatctgaa ttggaaactg ttattagaga aattcctgct 720
ccatcatttt tgattccatt gcctaaacat ttgacagcat catcttcttc tttgttggat 780
catgatagaa ctgtttttca atggttggat caacaaccac catcttctgt tttgtatgtt 840
tcttttggtt ctacatctga agttgatgaa aaagactttt tagaaattgc tagaggtttg 900
gttgattcta agcaatcatt tttgtgggtt gttagacctg gttttgttaa aggttctact 960
tgggttgaac ctttgccaga tggtttctta ggtgaaagag gtagaattgt taaatgggtt 1020
ccacaacaag aagttttagc tcatggtgct attggtgctt tttggactca ttctggttgg 1080
aactctactt tagaatctgt ttgtgaaggt gttccaatga ttttctctga ttttggtttg 1140
gatcaaccat taaatgctag atacatgtct gatgttttga aagttggtgt ttacttggaa 1200
aatggttggg aaagaggtga aattgctaat gctattagaa gagttatggt tgatgaagaa 1260
ggtgaatata ttagacaaaa tgcaagagtt ttgaagcaaa aggctgatgt ttctttgatg 1320
aagggtggtt cttcttatga atctttggaa tctttggttt cttatatttc atcattataa 1380
<210> 3
<211> 47
<212> DNA
<213> 人工序列
<400> 3
cactataggg cccgggcgtc gacatgtctg aaaataagac tgaaact 47
<210> 4
<211> 48
<212> DNA
<213> 人工序列
<400> 4
tcttagctag ccgcggtacc aagcttactc gagttataat gatgaaat 48
<210> 5
<211> 51
<212> DNA
<213> 人工序列
<400> 5
attacaagcg gccgcactag tatgtccact aagaagcaca ccaaaacaca t 51
<210> 6
<211> 51
<212> DNA
<213> 人工序列
<400> 6
agaattgtta attaagagct catgtccact aagaagcaca ccaaaacaca t 51

Claims (10)

1.一种产甜叶菊糖基转移酶UGT76G1和UDP-葡萄糖焦磷酸化酶UGPase的基因工程菌,其特征在于,它是将UGT76G1和UGPase编码基因插入到含有两个强启动子PGK1 和TEF1的组成型酿酒酵母穿梭质粒pESC-LEUD中,并将重组质粒导入表达宿主酿酒酵母Saccharomycescerevisiae YPH499中得到的工程菌;UGT76G1编码基因插入载体的酶切位点为SalⅠ和XhoⅠ;UGPase编码基因插入载体的酶切位点为SpeI和Sac I;
其中,所述的UGT76G1编码基因为GenBank,No.GenBank:AY345974.1,该基因序列命名为UGT;所述的UGPase编码基因为GenBank,Gene ID: 853830,该基因序列命名为UGPase;
所述工程菌利用胞内UDPG的合成途径,提高胞内UDPG糖基共体量,避免其额外添加、实现再生循环,实现莱鲍迪甙A合成量的增加;采用该工程菌进行全细胞催化反应,以混合糖甙为底物,反应后莱鲍迪甙A含量从10%提高到63%以上。
2.权利要求1所述的基因工程菌的构建方法,其特征在于,包括以下步骤:
1)用限制性内切酶SalⅠ和XhoⅠ双酶切UGT基因片段和pESCD载体,连接UGT基因片段纯化产物与pESCD载体,得到重组质粒pESCD-UGT;
2)用限制性内切酶SpeⅠ和SacⅠ双酶切UGPase基因片段和pESCD-UGT载体,连接UGPase基因片段纯化产物与pESCD-UGT载体,得到重组质粒pESCD-UGT-UGPase;
3)将鉴定后的阳性克隆的质粒导入酿酒酵母Saccharomyces cerevisiae YPH499中,得到基因工程菌YPH499- pESCD-UGT-UGPase。
3.权利要求1所述的基因工程菌的诱导表达方法,其特征在于,挑取重组工程菌的单菌落到SC-L培养基中,30℃振荡培养过夜,然后按1~5%接种量接种到碳源为葡萄糖的培养基上,培养时间为16~28h 。
4.权利要求1所述的基因工程菌在生产莱鲍迪甙A中的应用。
5.根据权利要求4所述的应用,其特征在于,利用全细胞催化法,以组成型表达UGT和UGPase的基因工程菌为全细胞催化剂,加入细胞通透剂改变细胞的通透性,以甜菊甙和葡萄糖为底物,添加镁离子以及调节代谢物质,反应得到莱鲍迪甙A。
6.根据权利要求5所述的应用,其特征在于,基因工程菌的用量按湿菌体计为1~10g/L;葡萄糖的用量为20~120g/L;甜菊甙的用量为1~20g/L;所述的细胞通透剂为有机试剂,用量为0.2~10%;镁离子用量为1~l0g/L。
7.根据权利要求5所述的应用,其特征在于,所述的调节代谢物质为柠檬酸钠,用量为0.5~10g/L。
8.根据权利要求5所述的应用,其特征在于,所述的反应在磷酸钾缓冲液体系中完成,反应pH为6. 8~8.0,反应温度为25~42 ℃,反应时间为8~96h。
9.根据权利要求6所述的应用,其特征在于,所述有机试剂为表面活性剂或者螯合剂,所述表面活性剂为SDS、F~68或者Triton X~100,所述螯合剂为EDTA。
10.根据权利要求9所述的应用,其特征在于,所述SDS浓度为0.2~2%;F~68浓度0.5~2%,Triton X~100浓度0.5~2%, EDTA浓度0.2~2%。
CN201710123817.1A 2017-03-03 2017-03-03 一种基因工程菌及其在制备莱鲍迪甙a中的应用 Active CN106929525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710123817.1A CN106929525B (zh) 2017-03-03 2017-03-03 一种基因工程菌及其在制备莱鲍迪甙a中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710123817.1A CN106929525B (zh) 2017-03-03 2017-03-03 一种基因工程菌及其在制备莱鲍迪甙a中的应用

Publications (2)

Publication Number Publication Date
CN106929525A CN106929525A (zh) 2017-07-07
CN106929525B true CN106929525B (zh) 2020-07-03

Family

ID=59424238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710123817.1A Active CN106929525B (zh) 2017-03-03 2017-03-03 一种基因工程菌及其在制备莱鲍迪甙a中的应用

Country Status (1)

Country Link
CN (1) CN106929525B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486160A (zh) * 2018-03-13 2018-09-04 兴化格林生物制品有限公司 高密度发酵合成莱鲍迪苷a的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050850A (zh) * 2009-10-30 2011-05-11 兴化格林生物制品有限公司 甜菊甙及高纯度莱鲍迪甙a的提取新工艺
CN102559528A (zh) * 2012-02-09 2012-07-11 南京工业大学 一种产甜叶菊糖基转移酶ugt76g1的基因工程菌及其应用
CN104232496A (zh) * 2014-09-18 2014-12-24 广州康琳奈生物科技有限公司 一种重组毕赤酵母工程菌及其在合成莱鲍迪苷a中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102050850A (zh) * 2009-10-30 2011-05-11 兴化格林生物制品有限公司 甜菊甙及高纯度莱鲍迪甙a的提取新工艺
CN102559528A (zh) * 2012-02-09 2012-07-11 南京工业大学 一种产甜叶菊糖基转移酶ugt76g1的基因工程菌及其应用
CN104232496A (zh) * 2014-09-18 2014-12-24 广州康琳奈生物科技有限公司 一种重组毕赤酵母工程菌及其在合成莱鲍迪苷a中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana;Alex Richman等;《The Plant Journal》;20051231;第41卷;第56–67页 *
拟南芥蔗糖合酶基因合成、重组表达及其在酶催化合成莱鲍迪甙A 中的初步应用;杜婷等;《食品工业科技》;20151201;第36卷(第23期);摘要,第157页左栏第1段至第161页最后1段 *
生物法合成尿苷二磷酸葡萄糖的研究进展;陈圣等;《中国生物工程杂志》;20120915;第32卷(第9期);摘要,第125页左栏第1段至第128页左栏最后1段 *
酿酒酵母组成型表达甜叶菊糖基转移酶UGT76G1 及相关性质研究;王钰等;《食品工业科技》;20141223;第36卷(第13期);第162页左栏第1段至第170页左栏倒数第1段 *
重组酿酒酵母全细胞催化合成莱鲍迪苷A;刘欢等;《食品与发酵工业》;20120731;第38卷(第7期);第6-17页 *

Also Published As

Publication number Publication date
CN106929525A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN107058446B (zh) 一组糖基转移酶及其应用
EP2902410B1 (en) Method for producing stevioside compounds by microorganism
CN104726523B (zh) 一种酶法制备莱鲍迪苷m的方法
JP6379112B2 (ja) レバウディオサイドdおよびレバウディオサイドmの改良された産生方法
CN109750072B (zh) 一种酶法制备莱鲍迪苷e的方法
CN104232723B (zh) 一组糖基转移酶及其应用
JP2018516081A (ja) 配糖体を産生するための熱処理
CN106834389B (zh) 一种重组菌催化莱鲍迪甙a制备莱鲍迪甙m2的方法
CN106754595A (zh) 一株重组菌及其在催化莱鲍迪甙a生成莱鲍迪甙d中的应用
CN115341008A (zh) 一组糖基转移酶及其应用
CN114350727B (zh) 联合磷酸化与atp再生系统合成d-阿洛酮糖的方法
CN109652481A (zh) 一种环糊精糖基转移酶在生产α-糖基橙皮苷中的应用
CN109402154B (zh) 一种利用协同调控策略提高重组菌产异荭草苷产量的方法
CN115109787B (zh) 一组糖基转移酶基因及其在制备三七/人参皂苷中的应用
CN106929525B (zh) 一种基因工程菌及其在制备莱鲍迪甙a中的应用
CN111455003A (zh) 一种微藻制备d-阿洛酮糖的方法
CN114836398B (zh) 糖基转移酶突变体在定向合成非天然人参皂苷中的应用
CN110892068B (zh) Udp-糖基转移酶
CN114045273B (zh) 糖基转移酶OsUGT91C1突变体及其应用
CN111424065B (zh) 使用糖基转移酶对甜菊糖苷类化合物进行糖基化方法
CN110484576B (zh) 一种提高榴菌素和榴菌素b产量的方法
CN114717276A (zh) 联合磷酸糖酶与atp再生系统合成d-阿洛酮糖的方法
CN110872586B (zh) 固定化葡萄糖基转移酶及制备方法及催化生产莱鲍迪苷d的方法
CN114517161A (zh) 高产赤霉素ga3的基因工程菌、构建方法及应用
CN110072995B (zh) 贝壳杉烯酸羟化酶

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant