WO2014047967A1 - 乙醇燃料醇含量检测方法及模块 - Google Patents

乙醇燃料醇含量检测方法及模块 Download PDF

Info

Publication number
WO2014047967A1
WO2014047967A1 PCT/CN2012/082730 CN2012082730W WO2014047967A1 WO 2014047967 A1 WO2014047967 A1 WO 2014047967A1 CN 2012082730 W CN2012082730 W CN 2012082730W WO 2014047967 A1 WO2014047967 A1 WO 2014047967A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethanol
fuel
content
preset
deviation
Prior art date
Application number
PCT/CN2012/082730
Other languages
English (en)
French (fr)
Inventor
何博
李�杰
王立辉
王先瑞
虞坚
胡俊勇
曹明柱
马标
Original Assignee
安徽江淮汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽江淮汽车股份有限公司 filed Critical 安徽江淮汽车股份有限公司
Priority to BR112014026095A priority Critical patent/BR112014026095A2/pt
Publication of WO2014047967A1 publication Critical patent/WO2014047967A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0626Measuring or estimating parameters related to the fuel supply system
    • F02D19/0634Determining a density, viscosity, composition or concentration
    • F02D19/0636Determining a density, viscosity, composition or concentration by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to the field of flexible fuel vehicles, and particularly relates to a method and a module for detecting alcohol fuel alcohol content. Background technique
  • Fuel ethanol is a renewable energy source and can be produced from raw materials such as grain and various plant fibers.
  • Ethanol flexible fuel refers to a fuel that is added in a certain proportion of fuel ethanol in a gasoline component oil and mixed by a specific process.
  • the ethanol flexible fuel is usually called ethanol fuel.
  • ethanol fuel is the development focus of renewable energy in the world. Its advantages are as follows: high octane number and good antiknock performance; high oxygen content, which is conducive to full combustion; Precipitation and condensation; can effectively reduce vehicle exhaust emissions, improve energy structure; convenient for storage and transportation.
  • the object of the present invention is to provide an alcohol fuel alcohol content detecting method and module for a flexible fuel automobile, and obtain an alcohol content in the ethanol fuel, thereby improving the performance of the fuel automobile.
  • the invention provides a method for detecting alcohol fuel alcohol content, comprising the following steps:
  • the preset fuel injection amount F p (n+1) is set to F p (n) - jxF p (n), where j is the fuel injection amount correction coefficient;
  • the fuel deviation stable value S in the step (11) is 0.03.
  • the method further comprises:
  • the oil level signal of the oil level sensor is collected and it is judged whether the oil level is increased.
  • the front oxygen sensor starts the step of detecting the oxygen content of the automobile exhaust gas.
  • the step (8) is: collecting the water temperature measured by the water temperature sensor, determining whether the water temperature is higher than the evaporation temperature of the ethanol, and when the water temperature is higher than the evaporation temperature of the ethanol, the current ethanol content A r (n) and ethanol
  • the amount of volatilization V a (n) is obtained as the current fuel injection amount F r (n).
  • the ethanol volatilization rate B(n) is obtained from the total amount of ethanol in the oil and the water temperature, and the total amount of ethanol in the oil is obtained from the total amount of fuel injection £ (i).
  • the ethanol volatilization temperature is 20 °C.
  • the invention also provides an ethanol fuel alcohol content detecting module, which is used for receiving a front oxygen sensor
  • the measured vehicle exhaust gas oxygen content 0 (n) signal, the air-fuel ratio a e (n) is obtained from the oxygen content 0 (n) and the preset ethanol content Ap (n), and then the air-fuel ratio a e (n)
  • the engine intake amount G obtains the fuel injection amount F c (n), and then calculates the fuel deviation F d (n) according to the fuel injection amount F e (n) and the preset injection amount F p (n), and Obtaining the ethanol content deviation A d (n) from the fuel deviation F d (n), and calculating the current ethanol content A r (n) according to the ethanol content deviation A d (n) and the preset ethanol content Ap(n), Obtaining the current fuel injection amount F r (n) from the current ethanol content A r (n), and injecting the fuel with the current fuel injection amount F r (n), when IF
  • the ethanol content correction coefficient k is 0.01 to 0.03, and the fuel injection correction coefficient j is 0.015 to 0.03.
  • the fuel deviation stable value S is 0.03.
  • the invention discloses a method and a module for detecting the alcohol content of an ethanol fuel, which can conveniently obtain the alcohol content in the ethanol fuel, adjust the fuel injection amount from the ethanol content to achieve the optimal air-fuel ratio, and reduce the pollutants in the automobile exhaust gas.
  • the emissions laid the foundation.
  • FIG. 1 is a schematic flow chart of a method for detecting an alcohol content of an ethanol fuel according to the present invention.
  • FIG. 2 is a schematic view showing the structure of an electric appliance of an embodiment of an ethanol fuel alcohol content detecting module according to the present invention.
  • FIG. 1 is a schematic diagram of a method for detecting an alcohol content of an ethanol fuel according to the present invention.
  • the steps of the detection method are as follows:
  • the first step the oxygen content of the vehicle exhaust gas measured by the oxygen sensor before collection O(n), where n is the number of cycles.
  • the second step The air-fuel ratio a c (n) is obtained from the oxygen content O(n) and the preset ethanol content Ap(n), where the air-fuel ratio a c (n) does not truly represent the actual air-fuel ratio of the automobile.
  • the initial value of the preset ethanol content Ap(n) Ap(l) usually refers to the ethanol content obtained after the end of the cycle of the alcohol content detection method, and can also be set by the operator. Establish a relationship between the oxygen content of the automobile exhaust, the ethanol content and the air-fuel ratio.
  • the ⁇ - ⁇ - ⁇ table can be obtained from the experiment or calculated, and can be found from the ⁇ - ⁇ - ⁇ table.
  • Corresponding relationship between the ethanol content and the air-fuel ratio at the oxygen content of a certain vehicle exhaust gas for example, when the oxygen content of the automobile exhaust gas is determined, a value corresponding to the air-fuel ratio corresponding to the ethanol content can be found from the ⁇ - ⁇ - ⁇ table.
  • the fuel injection amount F c (n) is obtained from the air-fuel ratio a c (n) and the engine intake air amount G.
  • the fuel injection amount F c (n) here does not really represent the actual fuel injection amount of the automobile.
  • Establish a GaF meter for the relationship between engine intake air quantity, air-fuel ratio and fuel injection quantity.
  • the GaF meter can be obtained experimentally or calculated.
  • the GaF meter can be used to find the air-fuel ratio under a certain engine intake air quantity.
  • a value of the fuel injection amount corresponding to the air-fuel ratio can be found by the GaF meter.
  • the initial value F p (l) of the preset fuel injection amount F p (n) usually refers to the fuel injection amount obtained from the ethanol content after the end of the cycle of the alcohol content detection method, and can also be set by the operator. .
  • Step 5 The deviation of the fuel F d (n), the content of ethanol to obtain a deviation A d (n).
  • the DF table can be obtained experimentally or calculated.
  • the correspondence between fuel deviation and ethanol content deviation can be found by the DF table, for example, when the fuel deviation is determined.
  • the value of the deviation of the ethanol content corresponding to the fuel deviation can be found by the DF table.
  • Step 6 Calculate the current B based on the ethanol content deviation A d (n) and the preset ethanol content Ap(n)
  • the alcohol content A r (n) A d (n) + A p (n).
  • Step 7 When F d (n) > 0, set the preset ethanol content A p (n+1) to A p (n) - kx ⁇ ⁇ ( ⁇ ), when F d (n) ⁇ 0 , the preset ethanol content A p (n+1) is set to A p (n) + kxA p (n), where k is the ethanol content correction coefficient, preferably, the ethanol content correction coefficient k is 0.01 ⁇ 0.03.
  • the ethanol content should be preset with a relatively slow change, that is, the preset ethanol content is changed to a certain value when the preset ethanol content is set to a new value.
  • Eighth step a current alcohol content A r (n), to obtain the current amount of fuel injection F r (n).
  • the AF table can be obtained experimentally or calculated.
  • the corresponding relationship between the ethanol content and the fuel injection amount can be found from the AF table, for example, when the ethanol content is determined.
  • the value of the fuel injection amount corresponding to the ethanol content can be found by the AF table.
  • Step 9 When F d (n) > 0, set the preset fuel injection amount F p (n+1) to F p (n) + jxF p (n), when F d (n) ⁇ 0, the preset fuel injection amount F p (n+1) is set to Fp(n) - jxF p (n), where j is the fuel injection amount correction coefficient, and preferably, the fuel injection amount correction coefficient j is 0.015 ⁇ 0.03.
  • the fuel injection quantity should be preset with a relatively slow change, that is, the preset injection quantity changes according to a certain step size when the preset injection quantity is set to a new value.
  • Step 10 Inject the fuel with the current fuel injection amount F r (n) and cycle through the first step to the ninth step.
  • Step 11 When IF d (n) I ⁇ S, the cycle is stopped, where S is the fuel deviation stable value, and preferably, the fuel deviation stable value S is 0.03.
  • the alcohol content of the ethanol fuel in the fuel tank is usually changed because the vehicle operator adds fuel to the fuel tank. Therefore, the oil for collecting the oil level sensor can be increased before the first step of the method.
  • the bit signal and judge whether the oil level is increased.
  • the front oxygen sensor starts the step of detecting the oxygen content of the automobile exhaust gas.
  • the eighth step of the ethanol fuel alcohol content detection method can also be: collecting water temperature sensing The measured water temperature determines whether the water temperature is higher than the ethanol volatilization temperature. When the water temperature is higher than the ethanol volatilization temperature, the current fuel content F r is obtained from the current ethanol content A r (n) and the ethanol volatilization amount V a (n).
  • the original eighth step of the method is still used, that is, the current fuel content A r (n) is obtained, and the current fuel injection amount F r (n) is obtained, preferably,
  • the ethanol volatilization temperature was 20 °C.
  • the VAF table can be obtained from experiments or calculated. From the VAF table, the ethanol content and the spray can be found under a certain amount of ethanol volatilization.
  • the corresponding relationship of the amount of oil for example, when the amount of ethanol volatilization is determined, a value corresponding to the amount of fuel injected corresponding to the ethanol content can be found by the VAF table.
  • injection total amount refers to the sum of the fuel injection amount after the vehicle is started. Establish a table UM of the relationship between the total amount of fuel injected and the total amount of ethanol in the oil. The UM table can be obtained by experiment or calculated.
  • the corresponding amount of total fuel injected and the total amount of ethanol in the oil can be found from the UM table.
  • the relationship for example, when the total amount of fuel injection is determined, the value of the total amount of ethanol in the oil corresponding to the total amount of fuel injected can be found by the UM meter.
  • a TMB table can be established for the relationship between the water temperature, the total amount of ethanol in the oil and the volatilization rate of the ethanol.
  • the TMB table can be obtained experimentally or calculated. From the TMB table, the oil can be found at a certain water temperature.
  • the correspondence between the total amount of ethanol and the evaporation rate of ethanol for example, when the engine water temperature is determined, a value of the evaporation rate of ethanol corresponding to the total amount of ethanol in the oil can be found by the TMB table.
  • FIG. 2 it is a schematic diagram of an electrical structure of an embodiment of an ethanol fuel alcohol content detecting module according to the present invention.
  • the ethanol content detecting module 1 receives the measured signal of the oxygen content of the automobile exhaust gas of the front oxygen sensor, and outputs a signal of the fuel injection amount.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明为乙醇燃料汽车提供一种乙醇燃料醇含量检测方法及模块,其中方法包括以下步骤:采集汽车尾气氧含量O(n);由O(n)和预设乙醇含量Ap(n),获得空燃比αc(n);由αc(n)和发动机进气量G,获得喷油量Fc(n);计算燃油偏差Fd(n)=[Fc(n)Ν−Fp(n)]/Fp(n),Fp(n)为预设喷油量;由 Fd(n),获得乙醇含量偏差Ad(n);计算当前乙醇含量Ar(n)=Ad(n)+Ap(n);修正Ap(n+1);由Ar(n),获得当前喷油量Fr(n);修正Fr(n+1);以Fr(n)喷射燃油,并循环上述步骤;|Fd(n)|<燃油偏差稳定值S时,停止循环。本发明提出的乙醇燃料醇含量检测方法,可检测出燃油中乙醇含量,提高了燃料汽车的使用性能。

Description

乙醇燃料醇含量检测方法及模块
技术领域
本发明涉及灵活燃料汽车领域, 特别涉及一种乙醇燃料醇含量检测方 法及模块。 背景技术
燃料乙醇属于可再生能源,可由粮食及各种植物纤维等原料加工制得。 乙醇灵活燃料是指在汽油组分油中按体积比加入一定比例的燃料乙醇, 并 通过特定工艺混配而成的一种燃料, 通常将乙醇灵活燃料称为乙醇燃料。 乙醇燃料作为一种新型清洁燃料, 是目前世界上可再生能源的发展重点, 其优点如下: 辛烷值高, 抗爆性能良好; 含氧量高, 有利于充分燃烧; 可有效 疏通燃油杂质的沉淀和凝结; 可有效降低汽车尾气排放, 改善能源结构; 储运 使用方便。
在乙醇燃料使用过程中, 常面临着乙醇燃料中醇含量变化的问题, 当 醇含量变化时, 发动机喷油量并不会随着醇含量变化而相应的改变, 容易 造成喷油量过多或过少的情况, 燃料难以完全燃烧, 汽车尾气中的污染物 也将增多。 现在常采用在燃料箱里加装乙醇含量传感器来实现乙醇含量的 判断, 但是该传感器价格昂贵, 不利于产品成本控制。
因此, 如何筒便地得到乙醇燃料中的醇含量便成为本领域技术人员急 需解决的技术问题。 发明内容
本发明的目的在于为灵活燃料汽车提供了一种乙醇燃料醇含量检测方 法及模块, 得到了乙醇燃料中的醇含量, 提高了燃料汽车的使用性能。
本发明提供了一种乙醇燃料醇含量检测方法, 包括以下步骤:
( 1 ) 采集前氧传感器测得汽车尾气氧含量 O(n), 其中 n为循环次数;
( 2 ) 由所述氧含量 O(n)和预设乙醇含量 Ap(n) , 获得空燃比 ac(n);
( 3 ) 由所述空燃比 ae(n)和发动机进气量 G, 获得喷油量 Fc(n); (4)根据所述喷油量?^!!)和预设喷油量 Fp(n), 计算燃油偏差 Fd(n), 其中所述燃油偏差 Fd(n)=[Fc(n) - Fp(n)]/ Fp(n);
(5) 由所述燃油偏差 Fd(n), 获得乙醇含量偏差 Ad(n);
(6)根据所述乙醇含量偏差 Ad(n)和预设乙醇含量 Ap(n), 计算当前乙 醇含量 Ar(n);
( 7 ) Fd(n) > 0时, 将所述预设乙醇含量 Ap(n+1)置为 Ap(n) - kxAp(n), Fd(n) < 0时, 将所述预设乙醇含量 Ap(n+1)置为 Ap(n) + kx Αρ(η) , 其中 k为 乙醇含量修正系数;
(8) 由所述当前乙醇含量 Ar(n), 获得当前喷油量 Fr(n);
(9) Fd(n) > 0时,将所述预设喷油量 Fp(n+1)置为 Fp(n) + jxFp(n), Fd(n)
<0时, 将所述预设喷油量 Fp(n+1)置为 Fp(n)- jxFp(n), 其中 j为喷油量修 正系数;
( 10) 以所述当前喷油量 Fr(n)喷射燃油, 并循环步骤( 1) ~ (9) ; ( 11 ) 当 I Fd(n) I <S时, 停止循环, 其中 S为燃油偏差稳定值。 优选地, 所述步骤(7) 中乙醇含量修正系数 k为 0.01 ~ 0.03, 所述步 骤 ( 9 ) 中喷油量修正系数 j为 0.015 ~ 0.03。
优选地, 所述步骤 ( 11 ) 中的燃油偏差稳定值 S为 0.03。
优选地, 在所述步骤 ( 1 ) 前还包括:
采集油位传感器的油位信号并判断油位是否增加, 当油位增加时, 前 氧传感器开始检测汽车尾气氧含量 0的步骤。
优选地, 所述步骤(8)为: 采集水温传感器测得的水温, 判断水温是 否高于乙醇挥发温度, 当水温高于乙醇挥发温度时, 由所述当前乙醇含量 Ar(n)和乙醇挥发量 Va(n), 获得当前喷油量 Fr(n)。
进一步地, 所述步骤 ( 8 ) 中的乙醇挥发量 Va(n)由乙醇挥发速度 B(n) 及转速 N计算得出: Va(n)=[30 X B(n)] /N;
所述乙醇挥发速度 B(n)由机油中乙醇总量和水温获得, 所述机油中乙 醇总量由喷油总量 £ (i)获得。
i=l
优选地, 所述乙醇挥发温度为 20°C。
本发明还提供了一种乙醇燃料醇含量检测模块, 用于接收前氧传感器 的测得的汽车尾气氧含量 0(n)的信号,由氧含量 0(n)和预设乙醇含量 Ap(n) 获得空燃比 ae(n) , 然后由所述空燃比 ae(n)和发动机进气量 G获得喷油量 Fc(n) , 接着根据所述喷油量 Fe(n)和预设喷油量 Fp(n)计算燃油偏差 Fd(n) , 并由所述燃油偏差 Fd(n)获得乙醇含量偏差 Ad(n), 根据所述乙醇含量偏差 Ad(n)和预设乙醇含量 Ap(n)计算当前乙醇含量 Ar(n) , 由所述当前乙醇含量 Ar(n)获得当前喷油量 Fr(n) , 并以所述当前喷油量 Fr(n)喷射燃油, 当 I Fd(n) I 小于燃油偏差稳定值 S时, 停止接收前氧传感器的测得的汽车尾气 氧含量 0(n)的信号, 以及当 Fd(n) > 0时, 将所述预设乙醇含量 Ap(n+1)置 为 Ap(n) - kxAp(n)并将所述预设喷油量 Fp(n+1)置为 Fp(n) + jxFp(n) ,当 Fd(n) < 0时, 将所述预设乙醇含量 Ap(n+1)置为 Ap(n) + kxAp(n)并将所述预设喷 油量 Fp(n+1)置为 Fp(n) _ jxFp(n) , 其中 k为乙醇含量修正系数, j为喷油量 修正系数。
优选地, 所述乙醇含量修正系数 k为 0.01 ~ 0.03 , 所述喷油量修正系 数 j为 0.015 ~ 0.03。
优选地, 所述燃油偏差稳定值 S为 0.03。
本发明提出的一种乙醇燃料醇含量检测方法及模块, 能够筒便的得出 乙醇燃料中的醇含量, 为由乙醇含量调整喷油量进而达到最佳空燃比, 以 及减少汽车尾气中污染物的排放奠定了基础。 附图说明
图 1为本发明一种乙醇燃料醇含量检测方法的流程示意图。
图 2为本发明一种乙醇燃料醇含量检测模块实施例的电器结构示意图。 1 乙醇含量检测模块。 具体实施方式
为使发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 对本发明的具体实施方式做详细的说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明, 但是本 发明还可以采用其他不同于在此描述的其它方式来实施, 本领域技术人员 可以在不违背本发明内涵的情况下做类似推广, 因此本发明不受下面公开 的具体实施例的限制。
请参阅图 1 , 为本发明一种乙醇燃料醇含量检测方法的流程示意图, 该检测方法的步骤如下:
第一步: 采集前氧传感器测得汽车尾气氧含量 O(n), 其中 n为循环次 数。
第二步: 由氧含量 O(n)和预设乙醇含量 Ap(n) , 获得空燃比 ac(n) , 此 处的空燃比 ac(n)并不真实代表汽车的实际空燃比。预设乙醇含量 Ap(n)的初 值 Ap(l)通常是指汽车前次启动时醇含量检测方法循环结束后得到乙醇含 量, 也可由操作者自行设定。 建立一个汽车尾气氧含量、 乙醇含量及空燃 比的关系表 Ο-Α-α表, 所述 Ο-Α-α表可由实验得出或者是计算得出, 由 Ο-Α-α表可查得在某一汽车尾气氧含量下, 乙醇含量与空燃比的对应关系, 例如当汽车尾气氧含量确定时, 可以由 Ο-Α-α表查得一个与乙醇含量对应 的空燃比的值。
第三步: 由所述空燃比 ac(n)和发动机进气量 G, 获得喷油量 Fc(n)。 此 处的喷油量 Fc(n)并不真实代表汽车的实际喷油量。建立一个发动机进气量、 空燃比和喷油量的关系表 G-a-F表, 所述 G-a-F表可由实验得出或者是计 算得出, 由 G-a-F表可查得在某一发动机进气量下, 空燃比与喷油量的对 应关系, 例如当发动机进气量确定时, 可由 G-a-F表查得一个与空燃比对 应的喷油量的值。
第四步:根据喷油量 Fe(n)和预设喷油量 Fp(n) ,计算燃油偏差 Fd(n)=[Fc(n) - Fp(n)]/ Fp(n)。预设喷油量 Fp(n)的初值 Fp(l)通常是指汽车前次启动时醇含 量检测方法循环结束后由乙醇含量得出的喷油量,也可由操作者自行设定。
第五步: 由所述燃油偏差 Fd(n) , 获得乙醇含量偏差 Ad(n)。 建立一个 燃油偏差和乙醇含量偏差的关系表 D-F表, 所述 D-F表可由实验得出或者 是计算得出, 由 D-F表可查得燃油偏差与乙醇含量偏差的对应关系, 例如 当燃油偏差确定时, 可由 D-F表查得一个与燃油偏差对应的乙醇含量偏差 的值。
第六步: 根据乙醇含量偏差 Ad(n)和预设乙醇含量 Ap(n) , 计算当前乙 醇含量 Ar(n)= Ad(n)+ Ap(n)。
第七步: 当 Fd(n) > 0时,将预设乙醇含量 Ap(n+1)置为 Ap(n) - kx Αρ(η) , 当 Fd(n) < 0时, 将预设乙醇含量 Ap(n+1)置为 Ap(n) + kxAp(n) , 其中 k为乙 醇含量修正系数, 优选地, 乙醇含量修正系数 k为 0.01 ~ 0.03。 为了让汽 车发动机运行稳定, 避免醇含量检测方法中当前乙醇含量变化太大, 应该 相对緩慢的变化预设乙醇含量, 即在预设乙醇含量置为新值时按一定的步 长变化。
第八步: 由当前乙醇含量 Ar(n) , 获得当前喷油量 Fr(n)。 建立一个乙醇 含量和喷油量的关系表 A-F表,所述 A-F表可由实验得出或者是计算得出, 由 A-F表可查得乙醇含量与喷油量的对应关系, 例如当乙醇含量确定时, 可由 A-F表查得一个与乙醇含量对应的喷油量的值。
第九步:当 Fd(n) > 0时,将所述预设喷油量 Fp(n+1)置为 Fp(n) + jxFp(n) , 当 Fd(n) < 0时, 将所述预设喷油量 Fp(n+1)置为 Fp(n) - jxFp(n), 其中 j为喷 油量修正系数, 优选地, 喷油量修正系数 j为 0.015 ~ 0.03。 为了让发动机 运行稳定, 避免喷油量变化过大的沖击, 应该相对緩慢的变化预设喷油量, 即在预设喷油量置为新值时按一定的步长变化。
第十步: 以当前喷油量 Fr(n)喷射燃油, 并循环第一步至第九步。
第十一步: 当 I Fd(n) I < S时, 停止循环, 其中 S为燃油偏差稳定值, 优选地, 燃油偏差稳定值 S为 0.03。
以上已经结合本发明的实施例详细描述了乙醇燃料醇含量检测方法的 各个步骤。
特别地, 在实际运用中, 油箱中的乙醇燃料的醇含量发生变化原因通 常是由于汽车操作人员往油箱中添加了燃油, 因此, 在方法的第一步之前 也可增加采集油位传感器的油位信号, 并判断油位是否增加, 当油位增加 时, 前氧传感器开始检测汽车尾气氧含量 0的步骤。
此外, 乙醇燃料汽车在发动机启动水温较低时, 由于喷射出的燃油雾 化效果不佳, 乙醇易形成大量的小液滴进入到发动机机油中, 但是这部分 挥发的乙醇也终将进入气缸参加到燃油燃烧中, 进而影响到实际参加燃烧 的燃料量, 因此, 乙醇燃料醇含量检测方法第八步也可为: 采集水温传感 器测得的水温, 判断水温是否高于乙醇挥发温度, 当水温高于乙醇挥发温 度时, 由当前乙醇含量 Ar(n)和乙醇挥发量 Va(n), 获得当前喷油量 Fr(n), 当水温低于乙醇挥发温度时, 仍采用方法中的原第八步运行, 即由当前乙 醇含量 Ar(n), 获得当前喷油量 Fr(n), 优选地, 所述乙醇挥发温度为 20°C。 建立一个乙醇挥发量、 乙醇含量和喷油量的关系表 V-A-F表, 所述 V-A-F 表可由实验得出或者是计算得出,由 V-A-F表可查得在某一乙醇挥发量下, 乙醇含量与喷油量的对应关系, 例如当乙醇挥发量确定时, 可由 V-A-F表 查得一个与乙醇含量对应喷油量的值。
进一步地, 乙醇挥发量 Va(n)根据乙醇挥发速度 B(n)及转速 N计算得 出: Va(n)= [30 B(n)] /N, 乙醇挥发速度 B(n)由机油中乙醇总量和水温获 得, 机油中乙醇总量由喷油总量 )获得, 此处提到的术语 "喷油总量" 是指汽车自启动后喷油量的和。 建立一个喷油总量和机油中乙醇总量的关 系表 U-M表, 所述 U-M表可由实验得出或者是计算得出, 由 U-M表可查 得喷油总量与机油中乙醇总量的对应关系, 例如当喷油总量确定时, 可由 U-M表查得一个与喷油总量对应的机油中乙醇总量的值。 此外, 还可建立 一个水温、机油中乙醇总量和乙醇挥发速度的关系表 T-M-B表,所述 T-M-B 表可由实验得出或者是计算得出, 由 T-M-B表可查得在某一水温下, 机油 中乙醇总量与乙醇挥发速度的对应关系, 例如当发动机水温确定时, 可由 T-M-B表查得一个与机油中乙醇总量对应的乙醇挥发速度的值。
请参阅图 2 , 为本发明一种乙醇燃料醇含量检测模块实施例的电器结 构示意图。 如图所示, 乙醇含量检测模块 1接收前氧传感器的测得的汽车 尾气氧含量的信号, 并输出喷油量的信号。
虽然本发明是结合以上实施例进行描述的, 但本发明并不被限定于上 述实施例, 而只受所附权利要求的限定, 本领域普通技术人员能够容易地 对其进行修改和变化, 但并不离开本发明的实质构思和范围。

Claims

权 利 要 求
1、 一种乙醇燃料醇含量检测方法, 包括以下步骤:
( 1 )采集前氧传感器测得汽车尾气氧含量 0(n), 其中 n为循环次数;
(2) 由所述氧含量 O(n)和预设乙醇含量 Ap(n), 获得空燃比 ac(n);
(3) 由所述空燃比 ae(n)和发动机进气量 G, 获得喷油量 Fc(n);
( 4 )根据所述喷油量 Fe(n)和预设喷油量 Fp(n),计算燃油偏差 Fd(n)=[Fc(n) -Fp(n)]/Fp(n);
(5) 由所述燃油偏差 Fd(n), 获得乙醇含量偏差 Ad(n);
(6)根据所述乙醇含量偏差 Ad(n)和预设乙醇含量 Ap(n), 计算当前乙醇 含量 Ar(n)=Ad(n)+Ap(n);
( 7)Fd(n) > 0时,将所述预设乙醇含量 Ap(n+1)置为 Ap(n) - kxAp(n), Fd(n) <0时,将所述预设乙醇含量 Ap(n+1)置为 Ap(n) + kxAp(n), 其中 k为乙醇含量 修正系数;
(8) 由所述当前乙醇含量 Ar(n), 获得当前喷油量 Fr(n);
(9) Fd(n) > 0 时, 将所述预设喷油量 Fp(n+1)置为 Fp(n) + jxFp(n), Fd(n) < 0时,将所述预设喷油量 Fp(n+1)置为 Fp(n) -jxFp(n),其中 j为喷油量修正系 数;
( 10) 以所述当前喷油量 Fr(n)喷射燃油, 并循环步骤(1 ) ~ (9) ; ( 11 ) I Fd(n) I <S时, 停止循环, 其中 S为燃油偏差稳定值。
2、 如权利要求 1所述的乙醇燃料醇含量检测方法, 其特征在于, 所述步 骤(7) 中乙醇含量修正系数 k为 0.01 ~ 0.03, 所述步骤(9) 中喷油量修正系 数 j为 0.015 ~ 0.03。
3、 如权利要求 1所述的乙醇燃料醇含量检测方法, 其特征在于, 所述步 骤( 11 ) 中的燃油偏差稳定值 S为 0.03。
4、 如权利要求 1所述的乙醇燃料醇含量检测方法, 其特征在于, 在所述 步骤( 1 )前还包括:
采集油位传感器的油位信号并判断油位是否增加, 当油位增加时, 前氧传 感器开始检测汽车尾气氧含量 0的步骤。 5、 如权利要求 1所述的乙醇燃料醇含量检测方法, 其特征在于, 在所述 步骤(8 )为: 采集水温传感器测得的水温, 判断水温是否高于乙醇挥发温度, 当水温高于乙醇挥发温度时, 由所述当前乙醇含量 Ar(n)和乙醇挥发量 Va(n) , 获得当前喷油量 FV(n)。
6、 如权利要求 5所述的乙醇燃料醇含量检测方法, 其特征在于, 所述步 骤( 8 )中的乙醇挥发量 Va(n)根据乙醇挥发速度 B(n)及转速 N计算得出: Va(n)= [30xB(n)] /N;
所述乙醇挥发速度 B(n)由机油中乙醇总量和水温获得,所述机油中乙醇总 量由喷油总量 获得。 7、 如权利要求 5所述的乙醇燃料醇含量检测方法, 其特征在于, 所述乙 醇挥发温度为 20°C。
8、 一种乙醇燃料醇含量检测模块, 用于接收前氧传感器的测得的汽车尾 气氧含量 0(n)的信号, 由氧含量 0(n)和预设乙醇含量 Ap(n)获得空燃比 ac(n), 然后由所述空燃比 ae(n)和发动机进气量 G获得喷油量 Fe(n), 接着根据所述喷 油量 Fe(n)和预设喷油量 Fp(n)计算燃油偏差 Fd(n), 并由所述燃油偏差 Fd(n)获 得乙醇含量偏差 Ad(n), 根据所述乙醇含量偏差 Ad(n)和预设乙醇含量 Ap(n)计 算当前乙醇含量 Ar(n), 由所述当前乙醇含量 Ar(n)获得当前喷油量 Fr(n), 并输 出喷油量 η)的喷射信号, 当 I Fd(n) I小于燃油偏差稳定值 S时, 停止循环, 以及当 Fd(n) > 0时, 将所述预设乙醇含量 Ap(n+1)置为 Ap(n) - kxAp(n)并将所 述预设喷油量 Fp(n+1)置为 Fp(n) + jxFp(n), 当 Fd(n) < 0时, 将所述预设乙醇含 量 Ap(n+1)置为 Ap(n) + kxAp(n)并将所述预设喷油量 Fp(n+1)置为 Fp(n) - jxFp(n), 其中 k为乙醇含量修正系数, j为喷油量修正系数。
9、 如权利要求 8所述的乙醇燃料醇含量检测模块, 其特征在于, 所述乙 醇含量修正系数 k为 0.01 ~ 0.03 , 所述喷油量修正系数 j为 0.015 ~ 0.03。
10、 如权利要求 8所述的乙醇燃料醇含量检测模块, 其特征在于, 所述燃 油偏差稳定值 S为 0.03。
PCT/CN2012/082730 2012-09-29 2012-10-10 乙醇燃料醇含量检测方法及模块 WO2014047967A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112014026095A BR112014026095A2 (pt) 2012-09-29 2012-10-10 método e módulo de detecção do teor de álcool em álcool combustível

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210376044.5A CN102877971B (zh) 2012-09-29 2012-09-29 乙醇燃料醇含量检测方法及模块
CN201210376044.5 2012-09-29

Publications (1)

Publication Number Publication Date
WO2014047967A1 true WO2014047967A1 (zh) 2014-04-03

Family

ID=47479441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082730 WO2014047967A1 (zh) 2012-09-29 2012-10-10 乙醇燃料醇含量检测方法及模块

Country Status (3)

Country Link
CN (1) CN102877971B (zh)
BR (1) BR112014026095A2 (zh)
WO (1) WO2014047967A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482193B (zh) * 2014-11-13 2016-08-24 安徽江淮汽车股份有限公司 乙醇灵活燃料汽车的换挡提示方法
CN104481716B (zh) * 2014-11-17 2017-01-04 安徽江淮汽车股份有限公司 一种乙醇灵活燃料发动机喷油量控制方法及系统
CN106611067B (zh) * 2015-10-23 2020-02-25 联合汽车电子有限公司 Ems系统油品自学习值的修正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255661A (en) * 1992-08-24 1993-10-26 Chrysler Corporation Method for determining fuel composition using oxygen sensor feedback control
JP2006077683A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd エンジンのアルコール濃度推定装置
CN101153565A (zh) * 2006-09-25 2008-04-02 本田技研工业株式会社 多种燃料发动机用燃料喷射控制装置
CN101809268A (zh) * 2007-08-13 2010-08-18 丰田自动车株式会社 用于内燃发动机的控制设备和控制方法
CN101900046A (zh) * 2009-05-27 2010-12-01 通用汽车环球科技运作公司 乙醇含量确定系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224244A (ja) * 1990-12-21 1992-08-13 Honda Motor Co Ltd エンジンの空燃比制御装置
JP2007009903A (ja) * 2005-06-01 2007-01-18 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
TW200817581A (en) * 2006-08-29 2008-04-16 Honda Motor Co Ltd Fuel injection control device
JP2008267355A (ja) * 2007-04-24 2008-11-06 Denso Corp フレックス燃料機関の燃料供給制御装置
JP2009002251A (ja) * 2007-06-22 2009-01-08 Toyota Motor Corp 内燃機関の空燃比制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255661A (en) * 1992-08-24 1993-10-26 Chrysler Corporation Method for determining fuel composition using oxygen sensor feedback control
JP2006077683A (ja) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd エンジンのアルコール濃度推定装置
CN101153565A (zh) * 2006-09-25 2008-04-02 本田技研工业株式会社 多种燃料发动机用燃料喷射控制装置
CN101809268A (zh) * 2007-08-13 2010-08-18 丰田自动车株式会社 用于内燃发动机的控制设备和控制方法
CN101900046A (zh) * 2009-05-27 2010-12-01 通用汽车环球科技运作公司 乙醇含量确定系统和方法

Also Published As

Publication number Publication date
CN102877971A (zh) 2013-01-16
CN102877971B (zh) 2015-04-01
BR112014026095A2 (pt) 2017-06-27

Similar Documents

Publication Publication Date Title
CN102893003B (zh) 内燃机的控制装置
CN103547783B (zh) 内燃机的空燃比失衡检测装置
US8527184B2 (en) SBS logical bio-diesel sensor
JP2008309159A (ja) ディーゼル燃料の品質を検出するための方法
JP2009243407A (ja) 多種燃料エンジンの燃料噴射制御装置
JP2009036022A (ja) 内燃機関の異種燃料混入判定装置
WO2014047967A1 (zh) 乙醇燃料醇含量检测方法及模块
Tziourtzioumis et al. Experimental investigation of the effect of a B70 biodiesel blend on a common-rail passenger car diesel engine
CN102829837B (zh) 一种喷油量测量方法、装置和系统
WO2016078175A1 (zh) 一种乙醇灵活燃料发动机喷油量控制方法及系统
JP2009036023A (ja) 内燃機関の異種燃料混入判定装置
US20090210134A1 (en) Internal combustion engine controller
CN103850852A (zh) 用于检测发动机早燃的系统及方法
JP2006258026A (ja) 内燃機関の制御装置
JP2006220010A (ja) 内燃機関の燃料噴射制御装置
WO2010100729A1 (ja) 内燃機関の制御装置
JP2012132411A (ja) 内燃機関の制御装置
Han et al. Influence of coupling action of oxygenated fuel and gas circuit oxygen on soot generation in a diesel engine
CN112555038A (zh) 一种充气量的控制方法及系统
JP2005048625A (ja) エンジンのアルコール濃度推定装置およびエンジンの制御装置
JP5018679B2 (ja) フレキシブル燃料機関の燃料噴射制御装置
Chen et al. Combined impact of n-butanol additive and spark timing on combustion and efficiency of a GDI engine
US8126633B2 (en) Method for operating an internal combustion engine
WO2011101962A1 (ja) 内燃機関の燃料性状判定装置
JP4325573B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885557

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014026095

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014026095

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141020