WO2014046121A1 - レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法 - Google Patents

レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法 Download PDF

Info

Publication number
WO2014046121A1
WO2014046121A1 PCT/JP2013/075136 JP2013075136W WO2014046121A1 WO 2014046121 A1 WO2014046121 A1 WO 2014046121A1 JP 2013075136 W JP2013075136 W JP 2013075136W WO 2014046121 A1 WO2014046121 A1 WO 2014046121A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
laser
laser dicing
region
release
Prior art date
Application number
PCT/JP2013/075136
Other languages
English (en)
French (fr)
Inventor
陽輔 佐藤
明徳 佐藤
朋治 宮永
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012206769A external-priority patent/JP5583724B2/ja
Priority claimed from JP2012206770A external-priority patent/JP5583725B2/ja
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2014046121A1 publication Critical patent/WO2014046121A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • H01L2221/68336Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding involving stretching of the auxiliary support post dicing

Definitions

  • the present invention relates to a laser dicing sheet that is a dicing sheet used when a laser beam is used in a dicing process for dicing a plate-like member such as a semiconductor wafer, and a laser dicing sheet that is a laminate of the laser dicing sheet and a release sheet.
  • the present invention relates to a method for producing a chip body obtained by separating a plate-like member into pieces using a release sheet laminate and its laser dicing sheet.
  • ⁇ As wafers that are brittle members become thinner, there is a higher risk of breakage during processing and transportation.
  • chipping or the like occurs particularly on the back side of the semiconductor wafer, and the die strength of the chip is significantly reduced.
  • a so-called stealth dicing method in which a dicing line is formed while a modified portion is selectively formed by irradiating the inside of a semiconductor wafer with a laser beam, and the semiconductor wafer is cut starting from the modified portion.
  • Patent Document 1 a so-called stealth dicing method is proposed in which a dicing line is formed while a modified portion is selectively formed by irradiating the inside of a semiconductor wafer with a laser beam, and the semiconductor wafer is cut starting from the modified portion.
  • the stealth dicing method after forming the modified portion by irradiating the inside of the semiconductor wafer with a laser beam, the ultrathin semiconductor wafer is attached to an adhesive sheet (dicing sheet) composed of a base material and an adhesive layer, By expanding the adhesive sheet, the semiconductor wafer can be divided (diced) along the dicing line, and semiconductor chips can be produced with high yield.
  • a laser is used as a processing means in the dicing process as described above, and a laser is also used as a tool for accurately aligning a plate-like member such as a semiconductor wafer in the dicing process.
  • a dicing sheet also referred to as “laser dicing sheet” in the present specification
  • laser dicing sheet used when laser light is used in the dicing process allows the laser to pass through the laser dicing sheet. Therefore, it must have excellent transparency to the laser.
  • Patent Document 2 discloses a base resin film and a pressure sensitive adhesive sheet in which a pressure sensitive adhesive layer is formed on the base resin film, and a parallel ray in a wavelength region of 400 to 1100 nm.
  • a wafer sticking pressure-sensitive adhesive sheet having a transmittance of 80% or more is disclosed, and in a preferred embodiment of the sheet, the arithmetic average roughness Ra of the surface opposite to the surface on which the pressure-sensitive adhesive layer of the base resin film is formed is 0.1 to 0.3 ⁇ m.
  • making the surface opposite to the surface on which the adhesive layer of the base resin film is formed as a smooth surface has advantages such as improving dicing workability for the laser dicing sheet.
  • the surface opposite to the side facing the pressure-sensitive adhesive layer of the base material of the laser dicing sheet also referred to as “back surface of the base material” in this specification
  • the following problems may occur. It was revealed.
  • the pressure-sensitive adhesive layer of the laser dicing sheet is on the surface opposite to the side facing the base material (the surface on which the plate-like member is pasted during use) until it is used in the dicing process.
  • the release surface of the release sheet is affixed so that the adhesive layer is not contaminated or deteriorated.
  • the laser dicing sheet-release sheet laminate also referred to as “DR laminate” in this specification, which is a laminate of the laser dicing sheet and the release sheet thus obtained, is stored in various forms.
  • a laser dicing sheet having a circular shape with an outer diameter slightly larger than the inner diameter of the ring frame to be attached is described as a specific example, a plurality of the above circular laser dicing sheets are formed on the release surface of the long release sheet.
  • the release sheet may be stored in the form of a long body that is laminated side by side in a direction parallel to the long direction of the release sheet. It may be stored at.
  • a single laser dicing sheet may be stored in the form of a stack obtained by stacking a number of layers of a DR laminate formed by attaching a single release sheet.
  • the back surface of the substrate of the laser dicing sheet of the DR laminate, and the release sheet peeling surface of another DR laminate closest to the DR laminate Is in contact with the opposite surface (also referred to as “releasable sheet back surface” in this specification).
  • the opposite surface also referred to as “releasable sheet back surface” in this specification.
  • the adhesion between the back surface of the release sheet of another DR laminate that is in contact with the back surface may be increased.
  • a problem when the adhesion is increased will be described by taking a wound body in which a DR laminated body having a long body shape is wound so that the laser dicing sheet is inside.
  • the release sheet in the outermost layer is pulled, and the laser dicing sheet that is attached to the release surface located on the inner peripheral side (core side) of the release sheet is also the outermost periphery.
  • the unwinding operation is normally performed by being unwound from the winding body together with the release sheet.
  • the laser dicing sheet that should be fed out originally is that of the laser dicing sheet. Peeling occurs at the interface between the pressure-sensitive adhesive side surface and the release surface of the outermost release sheet. As a result, the laser dicing sheet is not fed out together with the outermost release sheet, but remains on the back surface of the release sheet of the DR laminate located on the inner peripheral side.
  • the laser dicing sheet is peeled off from the DR laminated body that has been fed out, it is not possible to carry out the pasting operation between the laser dicing sheet and the plate-like member.
  • the laser dicing sheet attached to the back surface of the release sheet of the DR laminate may significantly reduce the workability of the subsequent release sheet winding operation. Specifically, it is exemplified that the sheet is wound around a pinch roller for winding the release sheet. In such a case, the feeding operation of the DR laminated body in the form of a wound body must be stopped.
  • DR laminate supply failure such a problem is also referred to as “DR laminate supply failure”.
  • the same DR laminate supply failure may occur even in a DR laminate in the form of a stack.
  • the DR laminate In the case of a DR laminate having a laser dicing sheet attached to the lower layer side of the release sheet, the DR laminate is obtained by holding the release sheet in the same manner as the DR laminate in the form of the winding body. When turning off, only the release sheet is turned off, and the laser dicing sheet may remain in the stack.
  • a stack of DR laminates in which a laser dicing sheet is attached to the upper layer side of the release sheet when the DR laminate is turned over by grasping the release sheet, the laser dicing of the lower DR laminate is performed. There may be a problem that the sheet is also flipped together.
  • the present invention relates to a laser dicing sheet capable of reducing the possibility of a DR laminate supply failure occurring in a DR laminate in the form of such a wound body or stack, and lamination of the laser dicing sheet and a release sheet.
  • An object is to provide a laser dicing sheet-peeling sheet laminate (DR laminate) as a body, and a chip body manufacturing method for manufacturing a chip body by separating a plate-like member using the laser dicing sheet. To do.
  • the DR laminate includes a laser dicing sheet, and the laser dicing sheet includes an adhesive layer, a first sheet, and a second sheet.
  • the pressure-sensitive adhesive layer has a surface to which a release sheet is attached in a state where the release surfaces face each other until use, and a plate-like member is attached to the adhesive layer during use.
  • seat is laminated
  • a part of the laser beam is also referred to as “region”.
  • seat is laminated
  • the peel force with respect to the surface opposite to the peel surface is 50 mN / 50 mm or less.
  • One aspect of the present invention completed based on such knowledge is, firstly, a first sheet, a second sheet laminated on one surface of the first sheet, and the other of the first sheet.
  • Laser dicing sheet comprising a pressure-sensitive adhesive layer laminated on the surface, and a release sheet laminated such that the release surface faces the pressure-sensitive adhesive layer side surface of the laser dicing sheet-
  • a release sheet laminate wherein the second sheet has an annular shape in plan view, and is surrounded by the second sheet in plan view on one surface of the first sheet, and the second sheet is laminated.
  • the unexposed ring-exposed region includes a laser irradiation region irradiated with a laser when the laser dicing sheet is used, and the first sheet has a Young's modulus at 23 ° C. of 30 MPa or more.
  • One surface of the first sheet is at least 00 MPa, and at least the arithmetic average roughness Ra of the laser irradiation region is less than 0.1 ⁇ m, and the release surface of the release sheet is laminated with the laser dicing sheet
  • a stack obtained by placing a surface opposite to the release surface of the release sheet on one surface of the second sheet, and having an area that is not made, at 40 ° C.
  • a load of 19.6 N was applied for 1 hour from the release surface side of the test release sheet in an environment, and the sample was left to stand for 1 hour in an environment of 23 ° C. and a relative humidity of 50% with no load.
  • a laser dicing sheet-release sheet laminate (DR) characterized in that a peel force measured when the test release sheet of the stack after placing is peeled 180 ° is 50 mN / 50 mm or less Laminate To provide a (invention 1).
  • the base of the laser dicing sheet is composed of two types of sheets, one having a small arithmetic average roughness Ra and one adjusted so as to reduce the adhesion to the back of the release sheet. It is realized that the adhesiveness between the back surface of the material and the back surface of the release sheet is excessively increased and the problem that they are difficult to peel off is less likely to occur.
  • the first sheet has a linear transmittance of 80% or more at a wavelength of 1064 nm and a phase difference at a wavelength of 1064 nm at least in a portion irradiated with a laser when using a laser dicing sheet. Is preferably 100 nm or less (Invention 2).
  • the laser beam that has passed through the first sheet at the time of use is condensed in the plate-like member, as in stealth dicing, the energy of the irradiated laser is efficiently contained in the plate-like member. Therefore, dicing can be performed more appropriately.
  • seat has arithmetic mean roughness Ra of 0.3 micrometer or more (invention 3).
  • the surface of the second sheet opposite to the side facing the first sheet is made of a polyester film (Invention 4).
  • seat into the surface which consists of a polyester-type film among the base-material back surfaces of a laser dicing sheet it becomes easy to make said peeling force into 50 mN / 50mm or less.
  • the polyester film contains a resin material containing an aromatic compound and is relatively rigid, the adhesion to the back surface of the release sheet is difficult to increase, but such a material is used during laser light, particularly stealth dicing. In order to absorb the light of 1064 nm used, it was difficult to use as a base-material constituent material in the laser dicing sheet whose base material is a single layer.
  • the surface of the release sheet opposite to the side facing the laser dicing sheet (the back surface of the release sheet) has an arithmetic average roughness Ra of 0.1 ⁇ m or less.
  • Preferred (Invention 5) When the surface roughness of the back surface of the release sheet is in the above range, the arithmetic average roughness Ra of the back surface of the first sheet included in the DR laminate is difficult to increase. Therefore, the laser transmittance of the portion including the laser irradiation region in the first sheet is unlikely to decrease.
  • the release sheet is a long body, and a plurality of the laser dicing sheets are arranged apart from each other in the longitudinal direction of the release sheet and wound in the longitudinal direction. It is preferable to have the form of the wound body (Invention 6). In such a form, it is excellent in handling at the time of storage, and it is easy to automate the peeling operation at the time of use.
  • One aspect of the present invention is secondly a laser dicing sheet obtained by peeling the release sheet from the laser dicing sheet-release sheet laminate according to any of the above inventions (Inventions 1 to 6),
  • the area overlapping the exposed area in the ring of the first sheet on the surface opposite to the side facing the first sheet of the pressure-sensitive adhesive layer is a plate-like member when the laser dicing sheet is used.
  • a laser dicing sheet characterized in that it includes a region to which is attached (Invention 7).
  • the radius of the inscribed circle in plan view of the in-ring exposed region of the first sheet is greater than the radius of the circumscribed circle in plan view of the region to which the plate member is attached. Is preferably 2 mm or more (Invention 8).
  • a predetermined surface on the side opposite to the side facing the first sheet in the pressure-sensitive adhesive layer of the laser dicing sheet according to any of the inventions is provided.
  • the plate-like member is affixed to the region, and the first sheet and the pressure-sensitive adhesive layer are transmitted to the plate-like member through the exposed area in the ring of the first sheet of the laser dicing sheet.
  • the plate-like member is separated into individual pieces by extending the laser dicing sheet that is attached to the plate-like member after being irradiated with a laser and extending the laser dicing sheet in the main surface direction.
  • a chip body manufacturing method is provided, characterized in that a chip body is obtained (Invention 9).
  • the modified portion is appropriately formed inside the plate-like member by the laser beam that has passed through the laser dicing sheet and entered, the modified portion is expanded by the expanding process of extending the laser dicing sheet. It is more stable that the plate member is broken at the portion. Therefore, according to the manufacturing method of the present invention, the chip body can be manufactured with a high yield.
  • the substrate back surface of the laser dicing sheet provided in the DR laminate is composed of a plurality of portions.
  • One of the plurality of portions is a first region suitable as a laser incident surface.
  • Another one of the plurality of parts is a release sheet back surface (there may be a release sheet back surface of a DR laminate that is a component itself, or a DR laminate that is different from a DR laminate that is a component itself) It may be the back side of the release sheet of the body.)
  • the second region has low adhesion to the body.
  • a laser dicing sheet comprising a base material and an adhesive layer laminated on one surface of the base material,
  • the back surface which is the surface opposite to the side facing the pressure-sensitive adhesive layer of the substrate, has a first region whose surface roughness is less than 0.1 ⁇ m in arithmetic mean roughness Ra and 0.3 ⁇ m or more.
  • a second region, and the first region includes a laser incident region to which a laser is irradiated during use, and the second region is closer to the outer peripheral side of the laser dicing sheet in plan view than the laser incident region.
  • a laser dicing sheet that is provided (Invention 10).
  • the first surface of the substrate of the laser dicing sheet is low in arithmetic average roughness and hardly deteriorates in scattering and phase uniformity when the laser is transmitted.
  • a second region having low properties and by disposing the second region on the outer peripheral side of the laser incident region, the laser dicing sheet is in a stage before peeling the laser dicing sheet from the DR laminate. The problem of peeling off from the release surface of the release sheet is less likely to occur.
  • the surface roughness of the second region is preferably 0.5 ⁇ m or more in terms of arithmetic average roughness Ra (Invention 11). With such surface roughness, the adhesion between the laser dicing sheet and the back surface of the release sheet can be more stably reduced.
  • the second region is annular in a plan view, and the laser incident region is more than the inner periphery in the planar view of the second region. It is preferable to be located on the center side in the in-plane direction of the region (Invention 12).
  • the back surface of the base material is preferably composed of the first region and the second region (Invention 13).
  • the entire region other than the second region on the back surface of the base material can be used as the laser incident region, so that processing of the plate-like member (specifically, stealth dicing) Even if light such as laser is used for purposes other than the purpose (for example, alignment of plate-like members, alignment of ring frame), it is easy to secure a region where the light is incident. Become.
  • the base material preferably has a Young's modulus at 23 ° C. of 30 MPa to 600 MPa (Invention 14).
  • the base material has such characteristics, the base material is easily stretched uniformly in the expanding process, and therefore, the base material is not easily broken during the expanding process or the base material and the ring frame are peeled off.
  • the stealth dicing method it is difficult to cause a problem that the plate-like member on the laser dicing sheet is not appropriately cleaved or the alignment direction of the chip body formed by cleaving the plate-like member is not uniform. .
  • the second region is preferably formed by subjecting the back surface of the base material to a roughening treatment (Invention 15).
  • the laser dicing sheet according to the above-described invention can be easily produced by preparing a base material whose entire back surface is the first region.
  • the first region preferably has a linear transmittance of 80% or more at the wavelength of 1064 nm and a phase difference of 10 nm or less at the wavelength of 1064 nm (Invention 16).
  • the laser dicing sheet according to the above invention can be suitably used as a dicing sheet for stealth dicing.
  • the laser dicing sheet according to any one of the above inventions (Inventions 10 to 16) and the release surface thereof face the surface of the laser dicing sheet on the pressure-sensitive adhesive layer side.
  • a release sheet laminated with the laser dicing sheet, and the release surface of the release sheet has a region where the laser dicing sheet is not laminated (Invention 17).
  • Such a laser dicing sheet-release sheet laminate is less prone to the above-mentioned defective supply of the DR laminate.
  • arithmetic mean roughness Ra is 0.1 micrometer or less on the surface (back surface of a peeling sheet) on the opposite side to the laser dicing sheet side in the said peeling sheet (invention). 18).
  • the surface roughness of the back surface of the release sheet is in the above range, the arithmetic average roughness Ra of the first region of the laser dicing sheet included in the DR laminate is difficult to increase. Therefore, the laser transmittance of the portion including the laser irradiation region in the laser dicing sheet is difficult to decrease.
  • the release sheet is peeled from the laser dicing sheet-release sheet laminate according to the inventions (Inventions 17 and 18), and the adhesive layer side of the laser dicing sheet is removed.
  • a surface is exposed, a plate-like member is attached to a region overlapping the first region in plan view on the surface of the exposed adhesive layer side of the laser dicing sheet, and the first region is laser incident
  • the laser dicing sheet to which the plate-like member after being irradiated with a laser so as to pass through the base material and the pressure-sensitive adhesive layer and reach the plate-like member is attached
  • a chip body manufacturing method is provided in which the plate member is separated into individual pieces by extending in the main surface inward direction to obtain a chip body (Invention 19).
  • the modified portion is appropriately formed inside the plate-like member by the laser beam that has passed through the laser dicing sheet and entered, the modified portion is expanded by the expanding process of extending the laser dicing sheet. It is more stable that the plate member is broken at the portion. Therefore, according to the manufacturing method of the present invention, the chip body can be manufactured with a high yield.
  • the region irradiated with the laser at the time of use is configured from a surface opposite to the side facing the pressure-sensitive adhesive layer of the first sheet. Yes. For this reason, the problem that the laser beam is scattered when the laser is irradiated in the dicing process hardly occurs.
  • the laser dicing sheet provided in the DR laminate is a state in which the DR laminate before use is laminated (specifically, in the form of a winding body or a stack)
  • the first sheet of the second sheet in which the surface of the DR laminate that is in contact with the back surface of the release sheet is mainly set to have low adhesion to the back surface of the release sheet in FIG.
  • the side opposite to the side opposite to the side (the back side of the second sheet). For this reason, when a certain DR laminate is peeled off from the release sheet arranged so that the back side of the release sheet is in contact with the back side of the second sheet, the DR laminate becomes the back side of the second sheet and the release sheet.
  • the possibility of peeling between the pressure-sensitive adhesive layer of the laser dicing sheet and the peeling surface of the peeling sheet is reduced without peeling between the back surface and the back surface. Therefore, even if the DR laminated body according to one embodiment of the present invention is in the form of a wound body or a stacked body, a DR laminated body supply failure is unlikely to occur.
  • the laser dicing sheet according to another aspect of the present invention uses at least a part of the first region on the back surface of the substrate as a laser incident region, so that the laser light irradiated to the laser dicing sheet at the time of use is based. It is difficult for the material to be scattered by the material or to reduce the phase uniformity, and an appropriate laser beam can be applied to the plate member.
  • the DR laminated body according to another aspect of the present invention including such a laser dicing sheet the DR laminated body before use is laminated (specifically, the form of the winding body)
  • the surface in contact with the back surface of the release sheet of the DR laminate, that is, the back surface of the base material includes not only the first region but also the second region.
  • This second region is composed of a relatively rough surface. Further, the second region is usually provided on the outer peripheral side of the laser dicing sheet in a plan view than the laser incident region to which the laser is irradiated, which occupies most of the laser dicing sheet. For this reason, when it is going to peel off a certain DR laminated body from the peeling sheet arrange
  • Adhesion between the second region composed of a rough surface provided at a position close to the outer periphery of the dicing sheet and the back surface of the release sheet is the lowest, and peeling at this interface is likely to occur. . Therefore, even if the DR laminated body according to another aspect of the present invention described above is in the form of a wound body or a stacked body, a defective supply of the DR laminated body is unlikely to occur.
  • FIG. 1 is a schematic cross-sectional view of a laser dicing sheet-release sheet laminate (DR laminate) according to a first embodiment of the present invention.
  • the laser dicing sheet-release sheet laminate (DR laminate) according to the first embodiment of the present invention is in the form of a wound body, and the state where the DR laminate is fed out from this wound body is conceptually shown. It is a perspective view shown.
  • FIG. 3 is a cross-sectional view conceptually showing a state where a plurality of laser dicing sheet-release sheet laminates (DR laminates) according to the first embodiment of the present invention are in the form of a stack.
  • the DR laminated body is drawn
  • (a) is sectional drawing which shows notionally the stacked body by which the 2nd sheet
  • ( b) is a sectional view conceptually showing a state in which a load is applied to the stacked body. It is sectional drawing which shows notionally the state by which the plate-shaped member and the ring frame were affixed on the adhesive layer of the laser dicing sheet which concerns on the 1st Embodiment of this invention. It is a schematic sectional drawing of the laser dicing sheet-release sheet laminated body (DR laminated body) which concerns on the 2nd Embodiment of this invention.
  • the laser dicing sheet-release sheet laminate (DR laminate) according to the second embodiment of the present invention has a form of a wound body, and conceptually shows a state in which the DR laminate is drawn out from the wound body. It is a perspective view shown.
  • a laser dicing sheet-release sheet laminate (DR laminate) is drawn out from the wound body according to the second embodiment of the present invention, and one of the laser dicing sheets attached to the long release sheet is taken out. It is a fragmentary sectional view which shows the state just before going on conceptually.
  • FIG. 6 is a cross-sectional view conceptually showing a state where a plurality of laser dicing sheet-release sheet laminates (DR laminates) according to a second embodiment of the present invention are in the form of a stack. It is sectional drawing which shows notionally the state by which the plate-shaped member and the ring frame were affixed on the adhesive layer of the laser dicing sheet which concerns on the 2nd Embodiment of this invention.
  • DR laminates laser dicing sheet-release sheet laminates
  • the laser dicing sheet-release sheet laminate (DR laminate) 100 includes a first sheet 1 and a first sheet 1 A laser dicing sheet 10 comprising a second sheet 2 laminated on one side of the sheet 1 and an adhesive layer 3 laminated on the other side of the first sheet, and an adhesive layer of the laser dicing sheet 10 And a release sheet 11 laminated so that the release surface faces the 3 side surface.
  • the first sheet 1 and the second sheet 2 may be collectively referred to as a base material.
  • seat 1 of the dicing sheet 10 with which the DR laminated body 100 which concerns on the 1st Embodiment of this invention is provided has the function to permeate
  • the constituent material is not particularly limited as long as it does not break in the expanded process. Usually, it is composed of a film mainly composed of a resin-based material.
  • the film include: a polyvinyl chloride film, a vinyl chloride copolymer film, a polyethylene film such as a high density polyethylene (HDPE) film, a stretched or unstretched polypropylene film, a polybutene film, a polybutadiene film, a polymethylpentene film, A polyurethane film, an ethylene vinyl acetate copolymer film, and a film made of a water additive or a modified product thereof are used.
  • these crosslinked films and copolymer films are also used, and among them, a polyvinyl chloride film is preferable in consideration of expandability.
  • the above substrate may be a single type, or may be a laminated film in which two or more types are combined.
  • the first sheet 1 may contain various additives such as pigments, flame retardants, plasticizers, antistatic agents, lubricants, fillers, etc. in a film mainly composed of the above-mentioned resin-based material.
  • the content of such additives is not particularly limited, but should be within a range where the first sheet 1 exhibits a desired function and does not lose flexibility.
  • one surface of the first sheet 1 is a laser incident surface when in use, the material reduces the linear transmittance of the laser incident on the first sheet.
  • it contains (a pigment, a filler, etc.) it is preferable to adjust the content thereof to control the smoothness of the surface of the first sheet within a desired range.
  • the first sheet 1 has transparency to the ultraviolet rays. It is preferable.
  • seat 1 has the transmittance
  • a corona treatment is given or a primer layer is provided. It may be provided.
  • the Young's modulus at 23 ° C. of the first sheet 1 is 30 MPa or more and 600 MPa or less, preferably 50 MPa or more and 500 MPa or less, and more preferably 100 MPa or more and 400 MPa or less. Since the first sheet 1 having a Young's modulus at 23 ° C. of 30 MPa or more and 600 MPa or less is easily stretched uniformly during the expanding process, when the stealth dicing method is employed, the plate-like member on the laser dicing sheet 10 is Inconveniences such as variations in the alignment direction of the chip bodies that are not properly cut or the plate-like member is cut are less likely to occur.
  • the breaking elongation of the first sheet 1 is preferably 50% or more as a value measured by stretching at 200 mm / min at 23 ° C. and a relative humidity of 50%, and is 70% or more. Is more preferable, and 100% or more is particularly preferable.
  • the elongation at break is an elongation ratio relative to the original length of the test piece at the time of breaking the test piece in a tensile test based on JIS K7161: 1994 (ISO 527-1: 1993). Since the first sheet 1 having a breaking elongation of 50% or more is not easily broken during the expanding process, the plate-like member on the laser dicing sheet 10 is not properly cut or the plate-like member is divided. It is difficult for the chip body to fall off.
  • the planar view shape of the first sheet 1 (the shape viewed from the direction parallel to the normal to the main surface) is a plate-like member such as a semiconductor wafer that is a workpiece on the pressure-sensitive adhesive layer 3 side of the laser dicing sheet 10.
  • a sufficient area is secured around the ring frame used for transportation around the area, and the area affixed to these semiconductor wafers and the ring frame are secured.
  • a plurality of chips obtained by securing a suitable area between the pasted area and attaching a jig as a fulcrum when pulling down the ring frame in the expanding process, and separating the jig and the semiconductor wafer.
  • the shape is not particularly limited as long as a certain gap (several millimeters to several centimeters) is set in a plan view even after being stretched between the body and the body.
  • the plan view shape of the first seat 1 is a shape close to a circle corresponding to the shape created by the inner periphery of the ring frame.
  • the surface roughness of the surface irradiated with laser during use is at least from the viewpoint of increasing the laser transmittance.
  • the arithmetic average roughness Ra is less than 0.1 ⁇ m for the region irradiated with laser during use (also referred to as “laser irradiation region” in this specification).
  • the arithmetic average roughness Ra is a characteristic based on JIS B0601: 2001, measured by a contact-type surface roughness meter, and the same applies hereinafter.
  • the first sheet 1 preferably has a linear transmittance of 80% or more at a wavelength of 1064 nm of a light source used for stealth dicing from the viewpoint of improving the processing quality and processing accuracy of the dicing process, and is preferably 90% or more. More preferred.
  • the linear transmittance can be easily adjusted to such a range, and is preferably 0.08 ⁇ m or less. .
  • the arithmetic average roughness Ra in the laser irradiation region on the back surface of the first sheet 1 is preferably as small as possible, and the lower limit thereof is not particularly limited.
  • This arithmetic average roughness Ra usually has a lower limit of about 0.01 ⁇ m due to manufacturing limitations of the members constituting the back surface of the first sheet 1.
  • the arithmetic mean roughness Ra of the back surface of the first sheet 1 can be adjusted by a known method. For example, when producing a film that gives the first sheet 1 by extrusion molding, the surface shape of the cooling roll is transferred.
  • the film that gives the first sheet 1 that is a stretched film it can be performed by changing the amount and size of the filler added to the material of the film, casting the liquid, In the case of obtaining a film by curing, it can be carried out by adjusting the roughness of the process film used for casting.
  • the thickness of the first sheet 1 is not limited as long as the laser dicing sheet 10 can function properly in the dicing process and the expanding process described above. If it is excessively thin, there is a concern that it may be easily broken during the manufacturing process or use. On the other hand, it is preferable that the first sheet 1 has a phase difference at a wavelength of 1064 nm of a light source used for stealth dicing of 100 nm or less from the viewpoint of improving the processing quality and processing accuracy of the dicing process. If it is excessively thick, there is a concern that it will be difficult to set the above phase difference to 100 nm or less even if the material of the first sheet 1 is adjusted. Therefore, the thickness of the first sheet 1 is preferably 20 ⁇ m or more and 150 ⁇ m or less, more preferably 40 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 50 ⁇ m or more and 90 ⁇ m or less.
  • the pressure-sensitive adhesive layer 3 can be formed of various conventionally known pressure-sensitive adhesives. Such an adhesive is not limited at all, but, for example, an adhesive such as rubber-based, acrylic-based, silicone-based, or polyvinyl ether is used. Moreover, an energy ray polymerization type, a heat foaming type, or a water swelling type pressure sensitive adhesive can also be used. As the energy ray (ultraviolet ray, electron beam, etc.) polymerizable adhesive, it is particularly preferable to use an ultraviolet polymerizable adhesive.
  • the acrylic pressure-sensitive adhesive contains an acrylic polymer (A) in order to give sufficient pressure-sensitive adhesiveness and film-forming property (sheet processability) to the pressure-sensitive adhesive layer formed from the pressure-sensitive adhesive composition, and energy rays.
  • a polymerizable compound (B) a polymerizable compound (B).
  • the energy ray polymerizable compound (B) also contains an energy ray polymerizable group and polymerizes when irradiated with energy rays such as ultraviolet rays and electron beams, and has a function of reducing the adhesive strength of the pressure sensitive adhesive composition.
  • component (A AB) As what combines the property of said component (A) and (B), it replaces with these, and energy-beam polymerization type polymer (henceforth, component (A AB) may be used.
  • component (A AB) Such an energy beam polymerization type pressure-sensitive adhesive polymer (AB) has a property that has both the function of imparting adhesiveness and film-forming property and energy beam polymerizability.
  • the acrylic polymer (A) a conventionally known acrylic polymer can be used.
  • the weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000.
  • the molecular weight distribution (Mw / Mn, Mn is the number average molecular weight) is preferably 1.0 to 10, more preferably 1.0 to 3.0.
  • the glass transition temperature (Tg) of the acrylic polymer (A) is preferably in the range of ⁇ 70 to 30 ° C., more preferably in the range of ⁇ 60 to 20 ° C.
  • (meth) acrylic acid ester that is a monomer for forming the acrylic polymer (A)
  • (meth) acrylic acid ester methyl (meth) acrylate, ethyl (meth) acrylate, Alkyl (meth) acrylates having 1 to 18 carbon atoms in the alkyl group, such as propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate; cycloalkyl (meth) acrylate, benzyl (meth) acrylate (Meth) acrylates having a cyclic skeleton such as isobornyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, imide acrylate; 2-hydroxyethyl (meth) acrylate, 2 Having a hydroxyl group such as hydroxyethyl (
  • examples of the monomer for forming the acrylic polymer (A) include acrylic acid, methacrylic acid, itaconic acid, and acrylonitrile.
  • the acrylic polymer (A) may be copolymerized with vinyl acetate, styrene, vinyl acetate or the like.
  • the energy beam polymerizable compound (B) is a compound that polymerizes when irradiated with energy rays such as ultraviolet rays and electron beams.
  • Examples of the energy beam polymerizable compound include low molecular weight compounds (monofunctional and polyfunctional monomers and oligomers) having an energy beam polymerizable group, and specifically include trimethylolpropane triacrylate and tetramethylolmethane.
  • Tetraacrylate pentaerythritol triacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate or 1,4-butylene glycol diacrylate, 1,6-hexanediol diacrylate, dicyclopentadiene dimethoxydiacrylate, isobornyl Cyclic aliphatic skeleton-containing acrylate such as acrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate oligomer, Carboxy-modified acrylates, polyether acrylates, acrylate compounds such as itaconic acid oligomer is used.
  • Such a compound has at least one polymerizable double bond in the molecule, and usually has a molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • component (B) is used in a proportion of 10 to 400 parts by weight, preferably about 30 to 350 parts by weight, relative to 100 parts by weight of component (A).
  • the energy beam polymerization type pressure-sensitive adhesive polymer (AB) having the properties of the components (A) and (B) has an energy beam polymerizable group bonded to the main chain or side chain.
  • the main skeleton of the energy beam polymerization type polymer (AB) is not particularly limited, and can be the same as the above-described acrylic polymer (A).
  • the energy beam polymerizable group bonded to the main chain or side chain of the energy beam polymerization type polymer (AB) is, for example, a group containing an energy beam polymerizable carbon-carbon double bond, specifically (meth) An acryloyl group etc. can be illustrated.
  • the energy beam polymerizable group may be bonded to the energy beam polymerization type pressure-sensitive adhesive polymer via an alkylene group, an alkyleneoxy group, or a polyalkyleneoxy group.
  • the weight average molecular weight (Mw) of the energy beam polymerization type polymer (AB) is preferably 100,000 to 2,000,000, and more preferably 300,000 to 1,500,000.
  • the molecular weight distribution (Mw / Mn, Mn is the number average molecular weight) is preferably 1.0 to 10, more preferably 1.0 to 3.0.
  • the glass transition temperature (Tg) of the energy beam polymerization type polymer (AB) is preferably ⁇ 70 to 30 ° C., more preferably ⁇ 60 to 20 ° C.
  • the energy ray polymerization type polymer (AB) includes, for example, an acrylic polymer containing a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group, a substituent that reacts with the functional group, and It is obtained by reacting a polymerizable group-containing compound having 1 to 5 energy beam polymerizable carbon-carbon double bonds per molecule.
  • an acrylic polymer includes a (meth) acrylic acid ester monomer having a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group or a derivative thereof, and a monomer constituting the component (A) described above. And obtained by copolymerization.
  • Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate; Acrylic acid etc. are mentioned.
  • the energy ray polymerization type polymer (AB) obtained by such a production method, the weight average molecular weight (Mw), molecular weight distribution (Mw / Mn), glass transition temperature (Tg) of the above-mentioned energy ray polymerization type polymer (AB).
  • Mw weight average molecular weight
  • Mw / Mn molecular weight distribution
  • Tg glass transition temperature
  • a photopolymerization initiator in combination with the energy beam polymerizable compound (B) or the energy beam polymerization type polymer (AB).
  • the photopolymerization initiator include photoinitiators such as benzoin compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, thioxanthone compounds and peroxide compounds, and photosensitizers such as amines and quinones.
  • 1-hydroxycyclohexyl phenyl ketone benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyldiphenyl sulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, dibenzyl, diacetyl, ⁇ -chloranthraquinone Examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • the compounding quantity of this photoinitiator is not specifically limited, With respect to a total of 100 parts by mass (solid content, the same shall apply hereinafter) of the energy beam polymerizable compound (B) and the energy beam polymerizable adhesive polymer (AB), It is preferable to set it as 0.5 to 10 mass parts.
  • the pressure-sensitive adhesive composition may contain other components (such as a crosslinking agent) as necessary.
  • a crosslinking agent examples include organic polyvalent isocyanate compounds, organic polyvalent epoxy compounds, and organic polyvalent imine compounds.
  • the compounding quantity of this crosslinking agent is not specifically limited, It shall be 0.2 mass part or more and 10 mass parts or less with respect to a total of 100 mass parts of an acryl-type polymer (A) and an energy beam polymerization type polymer (AB). It is preferable.
  • the acrylic pressure-sensitive adhesive containing the acrylic polymer (A) and the energy beam polymerizable compound (B) as described above or the acrylic pressure-sensitive adhesive containing the energy beam polymerization-type pressure-sensitive polymer (AB) is irradiated with energy rays.
  • energy rays include ionizing radiation, that is, X-rays, ultraviolet rays, electron beams, and the like. Among these, ultraviolet rays that are relatively easy to introduce irradiation equipment are preferable.
  • near ultraviolet rays including ultraviolet rays having a wavelength of about 200 to 380 nm may be used for ease of handling.
  • the amount of ultraviolet light may be appropriately selected according to the type of the energy beam polymerizable compound (B) and the thickness of the pressure-sensitive adhesive layer 3, and is usually about 50 to 500 mJ / cm 2 , and is 100 to 450 mJ / cm 2. 200 to 400 mJ / cm 2 is more preferable.
  • the ultraviolet illumination is usually 50 ⁇ 500mW / cm 2 or so, preferably 100 ⁇ 450mW / cm 2, more preferably 200 ⁇ 400mW / cm 2.
  • the ultraviolet light source is not particularly limited, and for example, a high pressure mercury lamp, a metal halide lamp, a UV-LED, or the like is used.
  • the acceleration voltage may be appropriately selected according to the type of the energy beam polymerizable compound (B) and the thickness of the pressure-sensitive adhesive layer 3, and usually an acceleration voltage of 10 to 1000 kV. It is preferable that it is a grade.
  • the irradiation dose may be set within a range where the energy beam polymerizable compound (B) is appropriately polymerized, and is usually selected within a range of 10 to 1000 krad.
  • the electron beam source is not particularly limited, and for example, various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type are used. be able to.
  • various electron beam accelerators such as a Cockloft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type are used. be able to.
  • the thickness of the pressure-sensitive adhesive layer 3 is preferably in the range of 1 ⁇ m to 15 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m, and particularly preferably 3 ⁇ m to 8 ⁇ m.
  • the pressure-sensitive adhesive layer 3 is excessively thick, even if the material and thickness of the first sheet 1 are controlled, it is transmitted through the laminate of the first sheet 1 and the pressure-sensitive adhesive layer 3 during use. It may be difficult to make the intensity and phase uniformity of the laser reaching the member within a desired range.
  • the pressure-sensitive adhesive layer 3 is thick, the deformation of the base material during expansion does not easily propagate to the semiconductor wafer, and the semiconductor wafer There is a concern that this may cause a problem in the division. If the pressure-sensitive adhesive layer 3 is excessively thin, the pressure-sensitive adhesive layer may not be able to properly fix the plate-like member during use.
  • the DR laminate 100 according to the first embodiment of the present invention is a surface opposite to the side facing the first sheet 1 of the pressure-sensitive adhesive layer 3 of the laser dicing sheet 10 (plate-like when in use)
  • a release sheet 11 is laminated on the surface to which the member is attached in order to protect the pressure-sensitive adhesive layer until it is used.
  • the material constituting the release sheet 11 is arbitrary, and examples include a support film made of a plastic film and a release agent applied thereto.
  • the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • a polyester film having low stretchability and excellent dimensional stability and smoothness is preferable.
  • the release agent silicone-based, fluorine-based, long-chain alkyl-based, and the like can be used, and among these, a silicone-based material that is inexpensive and provides stable performance is preferable.
  • the plastic film that forms the support film for the release sheet 11 may function alone as a release sheet. That is, the peeling surface may be comprised from the surface of this support film.
  • the support film is a polyester film, it usually does not have releasability with respect to the pressure-sensitive adhesive as it is, so that it is preferable to apply a release agent to form a release surface.
  • a paper base such as glassine paper, coated paper, or high-quality paper or a laminated paper obtained by laminating a thermoplastic resin such as polyethylene on a paper base is used. Also good.
  • limiting in particular about the thickness of the peeling sheet 11 Usually, it is about 20 micrometers or more and 250 micrometers or less.
  • the surface of the release sheet 11 opposite to the side facing the laser dicing sheet 10 (specifically, the pressure-sensitive adhesive layer 3 of the laser dicing sheet 10) (also referred to as “rear surface of the release sheet 11” in this specification).
  • the arithmetic average roughness Ra is preferably 0.1 ⁇ m or less.
  • the arithmetic average roughness Ra of the entire back surface of the release sheet 11 may be 0.1 ⁇ m or less, and the arithmetic average roughness Ra of the region in contact with the laser irradiation region when the plurality of DR laminated bodies 100 are laminated. It may be 0.1 ⁇ m or less.
  • first DR laminate One DR laminate (referred to as “first DR laminate” in the description of this paragraph) 100, and another DR laminate (referred to as “second DR laminate” in the description of this paragraph) 100
  • the first DR laminated body 100 and the second DR laminated body may be part of the DR laminated body configured continuously.
  • the release sheet 11 of the first DR laminated body 100 When the back surface and the laser irradiation area of the back surface of the first sheet 1 of the second DR laminated body 100 are stacked so as to overlap, the back surface of the release sheet 11 of the first DR laminated body 100 is excessively rough.
  • the uneven shape on the back surface of the release sheet 11 is pressed against the laser irradiation region on the back surface of the first sheet 1 of the second DR laminate 100, whereby the back surface of the first sheet 1.
  • the uneven shape derived from the back surface of the 0 release sheet 11 is formed, and as a result, the arithmetic average roughness of the laser irradiation region on the back surface of the first sheet 1 of the second DR laminate 100 is increased. Can occur.
  • the arithmetic average roughness of the laser irradiation region on the back surface of the first sheet 1 of the second DR laminate 100 is increased, the laser light is transmitted through the portion of the first sheet 1 including the laser irradiation region. The risk of lowering the property increases. Therefore, as described above, when the arithmetic average roughness of the back surface of the release sheet 11 of the first DR laminate 100 is controlled within an appropriate range, the release sheet 11 of the first DR laminate 100 Due to the uneven shape of the surface on the back surface, it is preferable because the transmittance of the laser beam in the portion including the laser irradiation region of the first sheet 1 of the second DR laminate 100 is unlikely to decrease.
  • the arithmetic average roughness Ra on the back surface of the release sheet 11 is preferably 0.08 ⁇ m or less.
  • the lower limit of the arithmetic average roughness Ra on the back surface of the release sheet 11 is not particularly limited. From the viewpoint of facilitating the production of the member constituting the back surface of the release sheet 11, the arithmetic average roughness Ra of the back surface of the release sheet 11 is preferably 0.01 ⁇ m or more, and preferably 0.02 ⁇ m or more. More preferred.
  • the shape of the release sheet 11 is not particularly limited, but the pressure-sensitive adhesive layer 3 of the laser dicing sheet 10 is usually provided on the release surface of the release sheet 11 so that the laser dicing sheet 10 can be easily peeled from the release sheet 11. An area where the side surface is not attached is provided.
  • An example of a specific shape of the release sheet 11 is a long shape.
  • a specific example of the form of the DR laminate 100 in this case is a form in which a plurality of laser dicing sheets 10 are attached to the release surface of the release sheet 11 while being separated from each other in the longitudinal direction of the release sheet 11.
  • the DR laminate 100 may be stored as a long body.
  • one end of the DR laminate 100 in the longitudinal direction is fixed to the core material C and wound. And may be stored in the form of a wound body 100A.
  • FIG. 2 is a perspective view conceptually showing a state in which the DR laminated body 100 in the form of such a wound body 100A is drawn out.
  • a specific example of the form of the DR laminate 100 in this case is a form in which one laser dicing sheet 10 is attached to the release sheet 11.
  • the DR laminate 100 may be stored in the form of a stack 100 ⁇ / b> B in which a plurality of DR laminates 100 are laminated in the thickness direction of the DR laminate 100.
  • a cross-sectional view conceptually showing the DR laminate 100 in the form of such a stack 100B is shown in FIG.
  • seat 2 of the laser dicing sheet 10 with which the DR laminated body 100 which concerns on the 1st Embodiment of this invention is equipped is one surface of the 1st sheet
  • the second sheet 2 has an annular shape in plan view. When the planar view shape of the second sheet 2 is annular, the thick portion of the laser dicing sheet 10 is less likely to be unevenly distributed in the planar view. As a result, it is easy to avoid a situation in which tilting occurs when the DR laminate 100 is stacked due to uneven distribution of thick portions, or traces of uneven thick portions remain in the DR stack 100.
  • the term “annular” refers to a shape that is not completely annular but partially discontinuous (for example, a C-shape) in a plan view (the viewpoint direction is a direction parallel to the normal of the main surface). Shape).
  • the rear surface of the first sheet 1 is exposed in an annular inner region in plan view, that is, in a region surrounded by the second sheet 2 in plan view and in which the second sheet 2 does not exist.
  • this region on the back surface of the first sheet 1 is also referred to as an “in-ring exposed region”.
  • the in-ring exposed region includes a region (laser irradiation region) irradiated with a laser when the laser dicing sheet 10 is used.
  • the method for fixing the second sheet 2 to the first sheet 1 is not particularly limited.
  • the second sheet 2 has a structure including a base film 21 and an adhesive layer 22, and the second sheet 2 and the first sheet 1 are fixed by the adhesive layer 21. May be. Alternatively, these sheets may be fixed so as to directly contact each other by a method such as heat fusion.
  • the second sheet 2 has an annular shape in plan view, as described above, even when the DR laminated body 100 is in the form of the wound body 100A or the stacked body 100B, the wound body 100A.
  • the DR laminated body 100 (a part of the DR laminated body 100 in the case of the winding body 100A, one DR laminated body 100 in the case of the stack body 100B) is taken out from the stack body 100B, It is difficult for the laser dicing sheet 10 in the DR laminate 100 to peel off from the release sheet 11 (DR laminate supply failure).
  • FIG. 4 conceptually shows a state immediately before the DR laminate 100 is unwound from the winding body 100A and one of the laser dicing sheets 10 attached to the long release sheet 11 is made peelable. It is a fragmentary sectional view shown.
  • the wound body 100A shown in FIG. 4 has a DR laminate 100 in the form of a long body, and laser dicing is performed on the side closer to the rotation center of the winding core C of the wound body 100A (inner circumferential side). Winding is performed such that the sheet 10 is disposed and the release sheet 11 is disposed on the side (outer peripheral side) that is distal to the rotation center of the core C of the winding body 100A.
  • the outermost release sheet 11a and the outermost release sheet 11a are separated from each other.
  • the laser dicing sheet 10 to which the surface of the pressure-sensitive adhesive layer 3 is affixed, and the release sheet 11b on the inner circumference side of the outermost release sheet 11a (the opposite side to the release surface (the release sheet back side) are , which is disposed so as to be in contact with the second sheet 2 side surface (back surface of the base material) of the laser dicing sheet 10.), Peeling at the interface between the laser dicing sheet 10 and the release sheet 11 b Is generated, and the laser dicing sheet 10 can be appropriately made peelable.
  • this is also referred to as a surface of the second sheet 2 of the laser dicing sheet 10 opposite to the side facing the first sheet 1 (hereinafter referred to as “back surface of the second sheet 2”).
  • back surface of the second sheet 2 This is because the adhesion of the release sheet 11b to the back surface of the release sheet is appropriately controlled.
  • the stack obtained by placing the surface opposite to the release surface of the release sheet 11b on one surface of the second sheet 2 is in an environment of 40 ° C. and a relative humidity of 80%. Then, a load of 19.6 N was applied for 1 hour from the release surface side of the release sheet 11b, and then left to stand for 1 hour in an environment of 23 ° C. and a relative humidity of 50% with no load.
  • the peel force measured when the stack release sheet 11b is peeled 180 ° is 50 mN / 50 mm or less.
  • the second sheet 2 and the release sheet 11b of the laser dicing sheet 10 are not substantially different in peeling force even when a test sheet made of the same material is used instead.
  • the test method will be described. First, a test second sheet made of the same material as the second sheet 2 and a test release sheet made of the same material as the release sheet 11 are prepared. Next, as shown in FIG. 5A, a second test sheet corresponding to the surface of the second sheet 2 opposite to the side facing the first sheet 1 (the back surface of the second sheet 2). The second test sheet 51 is fixed so that one surface of the sheet 51, specifically, the surface 51a made of the base film 511 is exposed. In FIG.
  • the second test sheet 51 is fixed to the SUS flat plate 50 by the adhesive layer 512 of the second test sheet 51. Subsequently, a surface 52 a opposite to the release surface of the test release sheet 52 is placed on one surface 51 a of the second test sheet 51 to obtain the stack 53.
  • the release force A is 50 mN / 50 mm or less.
  • peeling may occur at the interface between the laser dicing sheet 10 and the inner circumferential peeling sheet 11b when the DR laminate 100 is unwound from the winding body 100A. Realized stably.
  • the peeling force A exceeds 50 mN / 50 mm, the peeling at the interface between the laser dicing sheet 10 and the outer circumferential release sheet 11 a is greater than the peeling at the interface between the laser dicing sheet 10 and the inner circumferential peeling sheet 11 b.
  • the possibility of delamination increases.
  • the DR laminated body 100 is not properly fed out, and the laser dicing sheet 10 remains on the outer peripheral surface (back surface of the release sheet) of the inner peripheral release sheet 11b.
  • the long DR laminate 100 is present in a state where the laser dicing sheet 10 exposes the pressure-sensitive adhesive layer 3 on the surface on the release sheet 11 side, There is an increased risk of serious problems such as adhesion of the pressure-sensitive adhesive layer 3 to parts in equipment for feeding such as a roller (for example, a pinch roller) that passes when the release sheet 11 is wound.
  • a roller for example, a pinch roller
  • the peel force A is preferably 45 mN / 50 mm or less, and more preferably 40 mN / 50 mm or less.
  • the lower limit of the peeling force A is not set from the viewpoint of reducing the possibility of a DR laminate supply failure.
  • the method for making said peeling force A 50 mN / 50 mm or less is not specifically limited. Specific examples are as follows. (First example) As a first example, controlling the surface roughness of the surface of the second sheet 2 opposite to the side facing the first sheet 1 (the back surface of the second sheet 2) can be mentioned. By increasing the surface roughness of the back surface of the second sheet 2, that is, by making it a rough surface, the true contact area between the back surface of the second sheet 2 and the back surface of the release sheet 11 can be reduced. At this time, the peeling force A decreases.
  • How much the surface roughness of the back surface of the second sheet 2 is set to control the peeling force A to 50 mN / 50 mm or less depends on the material of the base film constituting the back surface of the second sheet 2 Since it varies depending on the material of the support film of the release sheet 11 constituting the release sheet back surface, the surface roughness of the release sheet back surface, the pressure applied between the DR laminates 100 that overlap in the storage state, etc., it cannot be defined definitely. . However, if the arithmetic average roughness Ra of the back surface of the second sheet 2 is 0.3 ⁇ m or more, it is more stably realized that the peeling force A is 50 mN / 50 mm or less.
  • the arithmetic average roughness Ra of the back surface is 0.3 ⁇ m or more.
  • the peeling force A is controlled to 50 mN / 50 mm or less.
  • the adjustment of the arithmetic average roughness Ra of the back surface of the second sheet 2 can be performed by the same method as the adjustment of the arithmetic average roughness Ra of the back surface of the first sheet 1, and a rough surface such as a sandblast treatment It may be adjusted by the conversion process.
  • the laser dicing sheet 10 according to the first embodiment of the present invention is provided with the second sheet 2 so that the laser is irradiated as a material constituting the laser irradiation region as in this example.
  • a surface having a large arithmetic surface roughness Ra is provided on the same side as the surface including the laser irradiation region. As a result, it is realized that the DR laminated body supply failure hardly occurs.
  • the material is preferably a rigid material.
  • polyester materials such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a resin-based material can have rigid characteristics by including a structural unit derived from an aromatic compound in a polymer contained therein.
  • an aromatic compound-containing resin material has a high laser absorptivity, particularly a laser absorptivity at 1064 nm. For this reason, it is difficult to use an aromatic compound-containing resin-based material as a material constituting the laser irradiation region of the laser dicing sheet.
  • the laser dicing sheet 10 according to the first embodiment of the present invention includes the second sheet 2, so that an aromatic compound-containing resin-based material is used as a material constituting the laser irradiation region as in this example.
  • both the first example and the second example it is possible to more stably realize the control of the peeling force A to 50 mN / 50 mm or less by appropriately selecting the material constituting the release sheet 11.
  • the thickness of the second sheet 2 is not particularly limited, but if it is excessively thin, there is a concern that the second sheet 2 may break in the expanding process, and if it is excessively thick, the ring frame may be pulled down in the expanding process. There is concern that it will not be performed properly. Therefore, the thickness of the second sheet 2 is preferably 10 ⁇ m or more and 100 ⁇ m or less, more preferably 15 ⁇ m or more and 60 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 40 ⁇ m or less.
  • the positional relationship between the outer peripheral edge in the plan view of the second sheet 2 and the outer peripheral edge in the plan view of the first sheet 1 is not particularly limited.
  • the outer surface of the first sheet 1 and the outer surface of the second sheet 2 may be substantially continuous to form one surface, or the second sheet 2 may be more than the outer surface of the first sheet 1.
  • the outer surface of the second sheet may protrude outward in the main surface direction of the second sheet, or vice versa.
  • the outer side surface of the first sheet 1 protrudes excessively in plan view rather than the outer side surface of the second sheet 2, and as a result, the DR laminated body 100 is in the storage state before use in the first sheet 1
  • the surface (back surface) opposite to the side facing the pressure-sensitive adhesive layer 3 in the protruding portion of the sheet is in contact with the back surface of the release sheet 11 of the other DR laminate 100
  • the first sheet is formed in this portion.
  • the protrusion width in this case is preferably within a few mm.
  • the laser dicing sheet 10 according to the first embodiment of the present invention is obtained by peeling the release sheet 11 from the DR laminate 100 according to the first embodiment of the present invention.
  • the first sheet 1 of the laser dicing sheet 10 according to the first embodiment of the present invention has a surface on the side on which the second sheet 2 is laminated because the second sheet 2 is annular in plan view. Has an in-ring exposed region that is a region surrounded by the second sheet 2 and in which the second sheet is not laminated. And the area
  • the region where the plate member is affixed has a portion located outside the exposed region in the ring in plan view, depending on the material constituting the second sheet 2 (specifically, the base film 21 is PET). And a problem that a laser beam is not irradiated on the plate-shaped member may occur. Therefore, it is preferable that the region where the plate-like member is affixed is located entirely within the ring-exposed region in plan view. From the viewpoint of realizing such a relationship more stably, the diameter of the inscribed circle in the plan view of the in-ring exposed region is larger than the diameter of the circumscribed circle in the plan view of the region to which the plate member is attached. Is preferably 2 mm or more.
  • Manufacturing method of DR laminated body The manufacturing method of DR laminated body 100 which concerns on the 1st Embodiment of this invention is not specifically limited. What is necessary is just to manufacture combining a well-known coating method, the sticking method, the cutting method (a half cut is included), the peeling method, etc. suitably. Below, an example of the manufacturing method of DR laminated body 100 in which the 2nd sheet
  • the adhesive composition for forming the adhesive layer 3 is apply
  • the coating method is arbitrary, and examples include a die coater, a curtain coater, a spray coater, a slit coater, and a knife coater.
  • the drying method is also arbitrary. For example, the drying may be performed by heating at about 80 to 120 ° C. for several minutes, or may be air drying that is left in the atmosphere.
  • a resin film that gives the first sheet 1 is pasted on the surface of the pressure-sensitive adhesive layer 3 thus obtained opposite to the side facing the release sheet 11, and the release sheet 11, the pressure-sensitive adhesive layer 3, and the first The 1st laminated body by which the resin-type film which gives the sheet
  • stacked in this order is obtained.
  • an adhesive composition for preparing a resin film hereinafter also referred to as “base film” and a process film for providing the base film 21 of the second sheet 2 and forming the adhesive layer 22 on the process film.
  • coating method is not specifically limited like the case where said adhesive composition is apply
  • the obtained coating film is dried (this drying method is not particularly limited as in the case of drying the coating film of the pressure-sensitive adhesive composition).
  • the adhesive layer 22 formed on the process film is bonded to the surface on the side facing the first sheet 1 when it becomes a part of the second sheet 2 in the base film, and the base film is used.
  • An adhesive sheet on which the film, the coating film for providing the adhesive layer 22 and the process film are laminated is obtained. From the surface of the adhesive sheet on the base film side, the coating film that gives the base film and the adhesive layer 22 is cut into half the same shape as the in-ring exposed region to be formed on the first sheet, and the ring is cut. A portion having the same shape as the inner exposed region is removed.
  • the base film, the adhesive layer 22 and the resin film that gives the first sheet 1 are cut by half-cut from the surface of the DR laminate 100 on the base film side, and unnecessary portions are removed. Then, the external shape of the laser dicing sheet 10 is cut out. Thus, the DR laminate 100 in which the laser dicing sheet 10 is laminated on the release sheet 11 is obtained. In addition, you may further perform processes, such as a heating and curing, so that the adhesive bond layer 22 and the adhesive layer 3 may have appropriate adhesiveness as needed.
  • a plate-like member is attached to a predetermined region on the surface opposite to the side facing the first sheet 1 in the pressure-sensitive adhesive layer 3 of the laser dicing sheet 10.
  • the predetermined region is a portion that overlaps with the in-ring exposed region in plan view.
  • the plate-like member include a semiconductor wafer, a glass substrate, a ceramic substrate, an organic material substrate such as an FPC, and a member made of a metal material such as a precision component.
  • the surface on which the circuit is formed may be attached so as to face the adhesive layer 3, or the circuit is formed. It may be affixed so that the back surface which is not facing the adhesive layer 3.
  • FIG. 6 is a cross-sectional view conceptually showing the state in which the plate-like member 61 and the ring frame 62 are attached to the pressure-sensitive adhesive layer 3 of the laser dicing sheet 10 in this way.
  • the laser light source is a device that generates light with a uniform wavelength and phase.
  • the types of laser light include Nd-YAG laser, Nd-YVO laser, Nd-YLF laser, and titanium sapphire laser that generate pulsed laser light. The thing which causes multiphoton absorption can be mentioned.
  • the wavelength of the laser light is preferably 800 to 1100 nm, and more preferably 1064 nm.
  • the modified portion is formed inside the plate member 61 along the planned cutting line of the plate member 61 by the laser light irradiated inside the plate member 61 to form a dicing line.
  • the number of times the laser beam scans one scheduled cutting line may be one time or multiple times.
  • the irradiation position of the laser beam and the position of the planned cutting line between the circuits are monitored, and the laser beam is irradiated while aligning the laser beam. You may irradiate a laser beam separately for the alignment at this time.
  • the laser dicing sheet 10 to which the plate member after the laser irradiation is stuck is extended outward in the main surface direction of the sheet using an expanding device or the like.
  • a tensile force is applied to the plate member in accordance with the extension of the laser dicing sheet 10, and the modified portion in the plate member is brittlely broken by this tensile force.
  • the plate-like member 61 is cut along the dicing line into individual pieces, and a chip body is obtained as each of the divided pieces.
  • the method for extending the laser dicing sheet 10 may be appropriately set according to the type of the plate-like member 61 to be singulated, the structure / composition of the modified portion formed in the plate-like member 61, etc. In many cases, the film is stretched by about 5 to 50 mm at a speed of 5 to 600 mm / min.
  • the obtained chip body 71 on the laser dicing sheet 10 may be individually taken out by performing a pick-up process, or a cleaning process for removing crushed powder or the like may be performed before that.
  • a laser dicing sheet-release sheet laminate (DR laminate) 200 includes a substrate 201 and a substrate 201.
  • a laser dicing sheet 210 having a pressure-sensitive adhesive layer 203 laminated on one surface and a release sheet 211 are provided, and the release sheet 211 has a release surface opposite to the surface of the laser dicing sheet 210 on the pressure-sensitive adhesive layer 203 side.
  • the base material 21 included in the laser dicing sheet 210 according to the second embodiment of the present invention has a function of appropriately transmitting laser light (hereinafter also referred to as “laser transmission function”) and adhesion to the back surface of the release sheet.
  • Laser transmission function a function of appropriately transmitting laser light
  • adhesion reduction function a function of lowering
  • the base material 201 has a base material back surface 201 ⁇ / b> A (adhesive agent in the base material 201) composed of a single layered body in order to have the two functions described above.
  • a first region 201a and a second region 201b are provided on a surface opposite to the side facing the layer 203, that is, a surface on the substrate side as a laser dicing sheet.
  • region” 201a means the part whose surface roughness in 201 A of base material back surfaces is less than 0.1 micrometer in arithmetic mean roughness Ra.
  • the arithmetic average roughness Ra is a characteristic based on JIS B0601: 2001, measured by a contact-type surface roughness meter, and the same applies hereinafter.
  • the first region 201a includes a laser incident region 201c where a laser is incident upon use. In FIG. 8, the entire surface of the first region 201a is a laser incident region 201c.
  • the first region 201a is a smooth surface having a low arithmetic average roughness Ra
  • the laser incident on the laser incident region 201c set in the plane of the first region 201a is reflected or scattered. The possibility of doing so has been reduced.
  • the arithmetic average roughness Ra decreases, the laser transmittance increases. Therefore, the arithmetic average roughness Ra in the first region 201a is preferably as small as possible, and the lower limit thereof is not particularly limited.
  • the arithmetic average roughness Ra usually has a lower limit of about 0.01 ⁇ m due to restrictions on the manufacture of members constituting the substrate 201. Adjustment of the arithmetic average roughness Ra of the first region 201a can be performed by a known method.
  • the film which gives the base material 201 when manufacturing the film which gives the base material 201 by extrusion molding, it can carry out by transferring the surface shape of a cooling roll. Moreover, in manufacture of the film which provides the base material 201 in case the base material 201 is a stretched film, it can carry out by changing the quantity and size of the filler added to the material of a film. Moreover, when casting a liquid substance and making it harden
  • the “second region” 201b refers to a portion where the surface roughness of the back surface 201A of the base material is 0.3 ⁇ m or more in terms of arithmetic average roughness Ra.
  • the second area 201b is provided on the outer peripheral side of the laser dicing sheet 201 in a plan view (the direction of the line of sight is parallel to the normal of the main surface) than the laser incident area 201c.
  • FIG. 8 shows an outer peripheral side of a laser incident region 201c having a circular shape in plan view (in FIG. 8, the first region 201a and the laser incident region 201c coincide).
  • the outer peripheral edge of the laser incident area 201c that is, the first area 201a
  • the inner peripheral edge of the second area 201b are continuous.
  • the concept of the term “annular” includes not only a complete annular shape in a plan view as shown in FIG. 8, but also a partial discontinuity (for example, a C shape), or a large number of regions. The case where the whole is circular (for example, a radial ring shape) is also included.
  • the second region 201b is completely annular in plan view as shown in FIG. 8 and the entire inner periphery side is the first region 201a
  • the second region 201b The resulting adhesion reducing function of the substrate 201 will be described.
  • the DR laminate 200 is formed by laminating a plurality of laser dicing sheets 210 side by side in a direction parallel to the longitudinal direction of the sheet 211 on the peeling surface of the long peeling sheet 211.
  • a specific example is a case where the long body is formed in the form of a long body, and the long body is wound around the core 200C in the long direction and stored in the form of a winder 200A.
  • FIG. 10 conceptually shows a state immediately before the DR laminate 200 is unwound from the winding body 200A and one of the laser dicing sheets 210 attached to the long release sheet 211 is made peelable. It is a fragmentary sectional view shown.
  • the wound body 200A shown in FIG. 10 is a laser dicing method in which the DR laminate 200 in the form of an elongated body is closer to the rotation center of the winding core 200C of the winding body 200A (inner circumferential side). Winding is performed such that the sheet 210 is disposed and the release sheet 211 is disposed on the side (outer peripheral side) that is distal to the rotation center of the core 200C of the winding body 200A.
  • the outermost release sheet 211a and the outermost release sheet 211a are separated from each other.
  • the laser dicing sheet 210 to which the surface on the pressure-sensitive adhesive layer 203 side is affixed, and the surface opposite to the release surface (the back side of the release sheet) are in contact with the substrate back surface 201A of the laser dicing sheet 210. Separation occurs at the interface between the laser dicing sheet 210 and the release sheet 211b in the stack consisting of the release sheet 211b on the inner circumference side rather than the outer release sheet 211a, and the laser dicing sheet 210 can be appropriately peeled off. It can be in a state.
  • the back surface 201A of the base material is a second surface having a relatively rough surface (arithmetic average roughness Ra is 0.3 ⁇ m or more). Since the region 201b is annularly arranged in a plan view and the first region 201a having a relatively smooth surface (the arithmetic surface height Ra is less than 0.1 ⁇ m) is disposed on the inner peripheral side thereof, the base material When the separation between the back surface 201A and the release sheet 211b is performed, the separation is always performed from the interface between the second region 201b having a relatively rough surface and the back surface of the release sheet 211b, so that the surface is relatively smooth. The interface between the first region 201a and the back surface of the release sheet 211b does not become the start point of release.
  • the adhesiveness between the smooth first region 201a and the back surface of the release sheet 211b is the pressure-sensitive adhesive layer 203.
  • the long DR laminate 200 is present in a state where the laser dicing sheet 210 exposes the adhesive layer 203 on the surface on the release sheet 211 side, There is an increased risk of serious problems such as adhesion of the adhesive layer 203 to components in the equipment for feeding such as a roller (for example, a pinch roller) that passes when the release sheet 211 is wound.
  • a roller for example, a pinch roller
  • the surface roughness of the second region is preferably 0.5 ⁇ m or more in terms of arithmetic average roughness Ra, and is 0.7 ⁇ m or more. More preferably.
  • the upper limit of the arithmetic average roughness Ra of the second region is about 3 ⁇ m.
  • the substrate 201 has a function of transmitting laser light in the laser incident region 201c in the dicing step, and is not broken in the expanding step performed after the dicing step.
  • the constituent material is not particularly limited.
  • the characteristics relating to the material of the substrate 201 are described above. Since it is the same as that of the 1st sheet
  • the Young's modulus at 23 ° C. of the substrate 201 is preferably 30 MPa or more and 600 MPa or less, more preferably 50 MPa or more and 500 MPa or less, and particularly preferably 100 MPa or more and 400 MPa or less.
  • the base material 201 having a Young's modulus at 23 ° C. of 30 MPa or more and 600 MPa or less is easily stretched uniformly during the expanding process, and thus is excellent in suitability of the process, particularly when the stealth dicing method is employed. The trouble that the plate-like member on the sheet 210 is not appropriately cleaved or the alignment direction of the chip bodies formed by cleaving the plate-like member is less likely to occur.
  • the base material back surface of the base material 201 and the back surface of the DR laminate are in contact with the back surface when a rough region is not provided.
  • adhesiveness with the peeling sheet back surface of another DR laminated body is considered to be because it becomes easier to follow irregularities on the surface of another material with which the base material 201 is in contact.
  • the substrate back surface 201A is relatively rough as described above. Since the second region 201b made of a surface is provided, it is possible to prevent a DR laminate supply failure.
  • the thickness of the substrate 201 is not limited as long as the laser dicing sheet 210 can function properly in the above-described dicing process and expanding process. If it is excessively thin, there is a concern that it may be easily broken during the manufacturing process or use. On the other hand, it is preferable that the substrate 201 has a phase difference at a wavelength of 1064 nm of a light source used for stealth dicing of 100 nm or less from the viewpoint of improving the processing quality and processing accuracy of the dicing process. However, even if the material of the base material 201 is adjusted, there is a concern that it is difficult to make the above phase difference 100 nm or less. Therefore, the thickness of the substrate 1 is preferably 20 ⁇ m or more and 150 ⁇ m or less, more preferably 40 ⁇ m or more and 100 ⁇ m or less, and particularly preferably 50 ⁇ m or more and 90 ⁇ m or less.
  • the substrate rear surface 201 ⁇ / b> A of the substrate 201 is normally aligned with the first region 201 a and the laser irradiation region 201 c in plan view as described above, and when laser dicing is performed, In order to irradiate the laser until reaching the end of the plate-like member, the region of the adhesive layer 203 to which the plate-like member to be diced is stuck (also referred to as “member sticking region” in this specification) is a flat surface. It is included in the laser irradiation region 201c, that is, the first region 201a as viewed.
  • the details of the roughening treatment are not limited, and any known means such as sandblasting, plasma ashing, etching (wet / dry), or rolling may be used. In consideration of production cost, trade-off with other manufacturing processes, design freedom, etc., sandblasting is preferable.
  • the planar view shape of the base material 201 (the shape viewed from the direction parallel to the normal line of the main surface) is a plate-like member such as a semiconductor wafer that is a work piece on the surface on the pressure-sensitive adhesive layer 203 side of the laser dicing sheet 210.
  • a plate-like member such as a semiconductor wafer that is a work piece on the surface on the pressure-sensitive adhesive layer 203 side of the laser dicing sheet 210.
  • the planar view shape of the base material 201 is a shape close to a circle corresponding to the shape created by the inner periphery of the ring frame.
  • the back surface 201A of the substrate 201 only needs to include the first region 201a and the second region 201b including the laser incident region 201c, and includes regions other than these regions. It may or may not be included. That is, the base material back surface 201A may be composed of the first region 201a and the second region 201b, or another region (generically referred to as “third region” in this specification). You may have.
  • the feature of the third region derived from the feature of the first region 201a and the feature of the second region 201b is that the roughness of the surface is not less than 0.1 ⁇ m and less than 0.3 ⁇ m in terms of arithmetic average roughness Ra. Become.
  • the second region is formed by the sandblasting process, even if a technique such as masking is used, the result corresponds to the third region between the first region and the second region.
  • a region having a surface roughness may be formed.
  • the arrangement relationship between the first region and the second region on the substrate back surface 201A is the outer periphery of the laser dicing sheet 201 in a plan view than the laser incident region 201c set in the first region 201a.
  • the second region 201b is provided on the side.
  • the second region may be completely annular in a plan view, and the first region may be arranged on the inner peripheral side in the plan view.
  • a second region may be formed.
  • the outer side adhesiveness Between the base material back surface 201A and the inner surface of the release sheet 211b (hereinafter referred to as "the outer side adhesiveness"). It is highly dependent on the magnitude relationship with the “inner adhesion”), so that the outer adhesion is relatively lowered only by roughening the end in the longitudinal direction of the back surface 201A of the base material. can do.
  • the substrate back surface 201A whose entire surface is a smooth surface (that is, a surface corresponding to the first region 201a).
  • a plurality of small circular second regions 201b may be formed so that a line connecting the centers thereof draws a circle.
  • the nozzle is arranged at a predetermined distance from the base material back surface 201A, the sand blasting process is performed for a predetermined time, and the position of the nozzle is set on the base material back surface 201A.
  • the base material back surface 201 ⁇ / b> A having the above-described configuration can be configured by an operation of moving in the in-plane direction and performing sandblasting for a predetermined time.
  • the DR laminate 200 according to the second embodiment of the present invention has a surface opposite to the side facing the substrate 1 of the pressure-sensitive adhesive layer 203 of the laser dicing sheet 210 (a plate-like member is used during use).
  • a release sheet 211 is laminated on the surface to be affixed to protect the adhesive layer until it is used.
  • the material characteristics of the release sheet 211, the characteristics about the thickness of the release sheet 211, and the characteristics about the arithmetic average roughness Ra of the back surface of the release sheet 211 are the same as those of the DR laminate 100 according to the first embodiment of the present invention. Since it is the same as the characteristic which the peeling sheet 11 with which it has, description is abbreviate
  • the adhesive layer 203 of the laser dicing sheet 210 is usually provided on the release surface of the release sheet 211 so that the laser dicing sheet 210 can be easily released from the release sheet 211.
  • An area where the side surface is not attached is provided.
  • An example of the specific shape of the release sheet 211 is a long shape.
  • a specific example of the form of the DR laminate 200 in this case is a form in which a plurality of laser dicing sheets 210 are attached to the release surface of the release sheet 211 while being separated from each other in the longitudinal direction of the release sheet 211.
  • the DR laminated body 200 may be stored as a long body, but as shown in FIG. 9, one end of the DR laminated body 200 in the longitudinal direction is fixed to the core member 200C and wound. And may be stored in the form of a wound body 200A.
  • FIG. 9 is a perspective view conceptually showing a state in which the DR laminated body 200 in the form of such a wound body 200A is drawn out.
  • a specific example of the form of the DR laminate 200 in this case is a form in which one laser dicing sheet 210 is attached to the release sheet 211.
  • the DR laminate 200 may be stored in the form of a stack 200B in which a plurality of DR laminates 200 are laminated in the thickness direction of the DR laminate 200.
  • a cross-sectional view conceptually showing the DR laminate 200 in the form of such a stack 200B is shown in FIG.
  • a laser dicing sheet 210 according to the second embodiment of the present invention is obtained by peeling the release sheet 211 from the DR laminate 200 according to the second embodiment of the present invention.
  • the substrate 201 of the laser dicing sheet 210 according to the second embodiment of the present invention includes a laser dicing sheet 210 in a plan view of the first region 201a including the laser irradiation region 201c on the substrate back surface 201A and the laser irradiation region 201c. 2nd area
  • region 201b is provided in the outer peripheral side.
  • the first region 201a serves a laser transmission function
  • the second region 201b serves a function of reducing adhesion.
  • the laser dicing sheet 210 according to the second embodiment of the present invention can be suitably used as a dicing sheet in a dicing process using laser light, and a DR composed of the laser dicing sheet 210 and the release sheet 211.
  • the DR laminated body supply failure is unlikely to occur.
  • Manufacturing method of DR laminated body The manufacturing method of DR laminated body 200 which concerns on the 2nd Embodiment of this invention is not specifically limited. What is necessary is just to manufacture combining a well-known coating method, the sticking method, the cutting method (a half cut is included), the peeling method, a roughening process, etc. suitably. Below, an example of the manufacturing method of DR laminated body 200 which has a structure as shown in FIG. 7 is shown.
  • the adhesive composition for forming the adhesive layer 203 is apply
  • the coating method is arbitrary, and examples include a die coater, a curtain coater, a spray coater, a slit coater, and a knife coater.
  • the drying method is also arbitrary. For example, the drying may be performed by heating at about 80 to 120 ° C. for several minutes, or may be air drying that is left in the atmosphere.
  • a resin-based film is prepared that gives a base material 201 having a surface roughness with an arithmetic average roughness Ra of less than 0.1 ⁇ m.
  • the surface opposite to the surface having the surface roughness adjusted as described above is opposite to the surface facing the release sheet 211 of the pressure-sensitive adhesive layer 203 obtained using the pressure-sensitive adhesive composition.
  • the original fabric of the DR laminated body 200 in which the release sheet 211, the pressure-sensitive adhesive layer 203, and the resin film that gives the base material 201 are laminated in this order is attached to the side surface.
  • Sand blasting is performed on the area corresponding to the shape of the second area 201b on the surface of the DR laminate 200 on the base material 201 side, that is, on the surface whose surface roughness is adjusted, using a sand blasting apparatus.
  • a sandblasting process may be performed on the annular region correspondingly (as described later, the annular region is Since the unnecessary part located outside is removed, sandblasting may be performed at the same time.)
  • masking may be performed by attaching an adhesive film to the portion in a detachable manner.
  • disconnects the base material 201 and the adhesive layer 203 from the base material 201 side with respect to the 1st laminated body after a blast process so that the external shape of the base material 201 may be formed with a cutting line.
  • a laser dicing sheet 210 composed of a base material 201 and an adhesive layer 203 having the same outer diameter is laminated on the release surface of the release sheet 211.
  • a DR laminate 200 is obtained.
  • region formed by a sandblast process is an annular
  • a plate-like member is attached to a predetermined region on the surface opposite to the side facing the base material 201 in the pressure-sensitive adhesive layer 203 of the laser dicing sheet 210.
  • the predetermined region is a portion overlapping the laser irradiation region 201c in plan view.
  • the plate-like member include a semiconductor wafer, a glass substrate, a ceramic substrate, an organic material substrate such as an FPC, and a member made of a metal material such as a precision component.
  • the plate-shaped member is a semiconductor wafer or the like and a circuit is already formed, the surface on which the circuit is formed may be attached so as to face the adhesive layer 203, or the circuit is formed.
  • FIG. 12 is a cross-sectional view conceptually showing the state where the plate-like member 271 and the ring frame 272 are attached to the pressure-sensitive adhesive layer 203 of the laser dicing sheet 210 in this way.
  • the laser light source is a device that generates light with a uniform wavelength and phase.
  • the types of laser light include Nd-YAG laser, Nd-YVO laser, Nd-YLF laser, and titanium sapphire laser that generate pulsed laser light. The thing which causes multiphoton absorption can be mentioned.
  • the wavelength of the laser light is preferably 800 to 1100 nm, and more preferably 1064 nm.
  • the modified portion is formed inside the plate-like member 271 along the planned cutting line of the plate-like member 271 by the laser light irradiated inside the plate-like member 271 to form a dicing line.
  • the number of times the laser beam scans one scheduled cutting line may be one time or multiple times.
  • the irradiation position of the laser beam and the position of the planned cutting line between the circuits are monitored, and the laser beam is irradiated while aligning the laser beam. You may irradiate a laser beam separately for the alignment at this time.
  • the laser dicing sheet 210 to which the plate member 271 after the laser irradiation is attached is extended outward in the main surface direction of the sheet using an expanding device or the like.
  • a tensile force is applied to the plate member in accordance with the extension of the laser dicing sheet 210, and the modified portion in the plate member 271 is brittlely broken by this tensile force.
  • the plate-like member 271 is cut along the dicing line into individual pieces, and a chip body is obtained as each of the divided pieces.
  • the method of extending the laser dicing sheet 210 may be appropriately set according to the type of the plate-like member 271 to be singulated, the structure / composition of the modified portion formed inside the plate-like member 271, etc. In many cases, the film is stretched by about 5 to 50 mm at a speed of 5 to 600 mm / min.
  • the chip body on the obtained laser dicing sheet 210 may be individually taken out by performing a pickup process, or a cleaning process for removing crushed powder or the like may be performed before that.
  • a polyethylene terephthalate (PET) film (“SP-PET 381031” manufactured by Lintec Co., Ltd.), which has been subjected to a release treatment, is prepared and used for coating to form the adhesive layer on the release surface of the process film.
  • the composition was applied so that the thickness after drying was 5 ⁇ m, and the obtained coating film was dried at 100 ° C. for 1 minute to form an adhesive layer.
  • One surface of the base film (the surface opposite to the surface having the arithmetic average roughness of the above surface) is formed on the surface on the adhesive layer side of the laminate comprising the process film and the adhesive layer thus obtained. Affixed to obtain an adhesive sheet.
  • first half cut is performed on the adhesive sheet from the surface on the base film side to cut the base film and the coating film (this half cut is also referred to as “first half cut”), and the diameter is viewed in plan view.
  • 100 cutting lines (closed curves) having a circular shape of 210 mm were produced in the longitudinal direction of the original fabric.
  • a line connecting the centers of 100 circles formed by these cutting lines was made parallel to the longitudinal direction of the original fabric, and the distance between the centers of the two circles arranged at the closest positions was 278 mm.
  • the base film and the coating film inside these cutting lines were removed to obtain an adhesive sheet in which the process film was exposed in the portion corresponding to the exposed area in the ring.
  • the above-mentioned first laminate is obtained by removing the process film from the adhesive sheet on which the process film is exposed at the portion corresponding to the exposed region in the ring, and exposing the surface on the adhesive layer side.
  • the surface on the resin-based film side that gives the first sheet and the surface on the adhesive layer side of the adhesive sheet from which the first half-cut and unnecessary portions have been removed are bonded, and the DR laminate I got the original fabric.
  • a first laminate other than the base film, the adhesive layer, and the release sheet that is, a resin system that provides the first sheet
  • the film and pressure-sensitive adhesive layer were cut into half, and 100 cutting lines (closed curves) forming a circle having a diameter of 270 mm in plan view were produced.
  • the centers of the circles formed by these cutting lines were made to coincide with the centers of the circles having a diameter of 210 mm in plan view previously formed by the first half cut.
  • the first laminate other than the base film and the adhesive layer and the release sheet, which were outside the cutting line forming a circle having a diameter of 270 mm in plan view were removed.
  • a DR laminate was obtained in which 100 pieces of laser dicing sheets having the following shape and arrangement were arranged side by side in the longitudinal direction on the release surface of the long release sheet.
  • Planar shape of the exposed portion in the ring a circle having a diameter of 210 mm
  • Planar shape of the second sheet an annular shape having an inner diameter of 210 mm and a width of 30 mm
  • Laser planing shape of the laser dicing sheet a circle having a diameter of 270 mm Of laser dicing sheets in the longitudinal direction: 8mm
  • This DR laminate was wound in the longitudinal direction to form a wound body.
  • Example 1-2 The resin-based film that gives the base film of the second sheet in Example 1-1 was changed to a polybutylene terephthalate (PBT) film (thickness: 25 ⁇ m, surface arithmetic average roughness Ra: 0.02 ⁇ m), Except for changing the first half-cut method so that the shape of the exposed portion in the ring is a circle with a diameter of 205 mm and the shape of the second sheet is a ring shape with an inner diameter of 205 mm and a width of 37.5 mm, A manufacturing method similar to the manufacturing method of Example 1-1 was performed to prepare a wound body of the DR laminate.
  • PBT polybutylene terephthalate
  • Example 1-3 While changing the resin-based film that gives the base film of the second sheet in Example 1-1 to a low-density polyethylene (LPDE) film (thickness: 25 ⁇ m, surface arithmetic average roughness Ra: 0.7 ⁇ m), Example except that the first half-cutting method was changed so that the exposed portion in the ring had a circular shape with a diameter of 202 mm and the second sheet had a circular shape with an inner diameter of 202 mm and a width of 39 mm. A manufacturing method similar to the manufacturing method 1-1 was carried out to prepare a wound body of the DR laminate.
  • LPDE low-density polyethylene
  • Example 1-4 Implementation was performed except that the resin film for providing the base film of the second sheet in Example 1-1 was changed to a polypropylene (PP) film (thickness: 25 ⁇ m, arithmetic average roughness Ra of surface: 0.5 ⁇ m). A manufacturing method similar to the manufacturing method of Example 1-1 was performed to manufacture a wound body of the DR laminate.
  • PP polypropylene
  • PPG, Mw 400
  • IPDI isophorone diisocyanate
  • HEMA hydroxyethyl methacrylate
  • urethane acrylate oligomer 100 parts by mass of urethane acrylate oligomer, 110 parts by mass of a monofunctional monomer (isobornyl acrylate), and 2.2 parts by weight of a photopolymerization initiator (“Irgacure 184” manufactured by BASF)
  • the resin composition prepared above was applied on the release surface of a long release sheet (“SP-PET3811” manufactured by Lintec Corporation, thickness: 38 ⁇ m) to a thickness of 100 ⁇ m. did.
  • the obtained coating film was irradiated with ultraviolet rays (1500 mJ / cm 2 ) and polymerized to obtain a laminate composed of a release sheet and a polyurethane acrylate (PUA) film laminated on the release surface.
  • this laminate is also referred to as an intermediate laminate.
  • the surface of the polyurethane acrylate film exposed was the surface on the adhesive layer side of the laminate of the release sheet and the adhesive layer produced in Example 1-1. Affixed to.
  • the release sheet affixed to the resin film made of the polyurethane acrylate film in the laminate thus obtained was peeled off to obtain a first laminate.
  • the first half-cut method is changed except that the exposed portion in the ring has a circular shape with a diameter of 205 mm and the second sheet has a circular shape with an inner diameter of 205 mm and a width of 37.5 mm.
  • the same manufacturing method as that of Example 1-1 was carried out to obtain a wound body of the DR laminate.
  • the characteristics of the polyurethane acrylate film having a thickness of 100 ⁇ m obtained by separately preparing the intermediate laminate and peeling off both release sheets in the intermediate laminate were as follows. Arithmetic mean surface roughness Ra: 0.09 ⁇ m Linear transmittance at a wavelength of 1064 nm: 92.5% Phase difference at a wavelength of 1064 nm: 0.8 nm Young's modulus: 380 MPa
  • Example 1-1 The production method of Example 1-1 is the same as that of Example 1-1 except that the resin-based film providing the first sheet in Example 1-1 is changed to a low-density polyethylene (LDPE) film having a thickness of 80 ⁇ m and having the following characteristics.
  • LDPE low-density polyethylene
  • the manufacturing method was implemented and the wound body of DR laminated body was produced.
  • Young's modulus 100 MPa
  • Example 1-2 The resin film that gives the base film of the second sheet in Example 1-1 was changed to a polyvinyl chloride (PVC) film (thickness 25: ⁇ m, surface arithmetic average roughness Ra: 0.05 ⁇ m). In the same manner as in Example 1-1, a manufacturing method similar to the manufacturing method of Example 1-1 was performed to manufacture a wound body of the DR laminate.
  • PVC polyvinyl chloride
  • Example 1-1 The production method of Example 1-1 is the same as that of Example 1-1 except that the resin-based film providing the first sheet in Example 1-1 is changed to a polyvinyl chloride (PVC) film having a thickness of 80 ⁇ m and having the following characteristics.
  • PVC polyvinyl chloride
  • the manufacturing method was implemented and the wound body of DR laminated body was produced.
  • Young's modulus 260 MPa
  • Example 1-1 the resin-based film and the pressure-sensitive adhesive that give the first sheet from the side of the resin-based film that gives the first sheet to the first laminate without producing the second laminate A half cut for cutting the layer was performed, and a cutting line forming a circle having a diameter of 270 mm in plan view was produced. The first laminated body outside the cutting line was removed. Thus, the laser dicing sheet having a circular shape of 270 mm in plan view and not having the second sheet was laminated on the release surface of the release sheet so that the pressure-sensitive adhesive layer forms a contact surface with the release sheet. A wound body of the DR laminate was obtained.
  • This laminate was placed on a test bench, and the release surface of the test release sheet (“SP-PET3811” manufactured by Lintec) made of the same material as the release sheet of the DR laminate was placed on the surface of the resin film.
  • the opposite surface (release sheet back surface) was overlapped, and a 2 kg weight was placed on the release surface side of the release sheet in the resulting stack. This state was maintained for 1 hour in an environment of 40 ° C. and a relative humidity of 80%. Further, the weight was removed, and the mixture was allowed to stand for 1 hour under no load in an environment of 23 ° C. and 50% relative humidity.
  • the test release sheet for the stacked product after standing was 300 mm / mm at an angle of 180 ° with a universal tensile tester (Tensilon RTA-T-2M manufactured by Orientec Co., Ltd.) in an environment of 23 ° C. and 50% relative humidity.
  • the film was peeled off at a rate of minutes to obtain a peeling force.
  • the measurement results are shown in Table 1.
  • a laser irradiation device (“DFL7360” manufactured by DISCO, wavelength: 1064 nm)
  • DFL7360 a laser that focuses light inside the wafer through the laser dicing sheet from the side facing the adhesive layer of the silicon wafer is 2 mm ⁇
  • Irradiation was performed while scanning along a planned cutting line set to form a 2 mm chip body.
  • DDS2010 an expanding device manufactured by DISCO
  • the laser dicing sheet is pulled down at a speed of 300 mm / min, and the silicon wafer on the adhesive layer side surface of the laser dicing sheet The region to which is attached was extended 15 mm in the main surface inward and outward directions.
  • the DR laminated body of the example satisfying the conditions of the present invention was excellent in pre-cut property, and the DR laminated body supply failure was difficult to occur. Moreover, it was excellent in dicing properties and expanding properties.
  • a releasable adhesive film is applied to a circular region having a diameter of 210 mm on the surface of the resin film side that gives the base material in the raw material of the DR laminate. Then, after performing masking, sandblasting was performed using a sandblasting apparatus (PNEUMA BLASTER SFK-2 manufactured by Fuji Seisakusho). Next, the re-peelable adhesive film is peeled and removed, and a roughened region having an arithmetic average roughness Ra of 0.7 ⁇ m (an annular shape having an outer diameter of 280 mm and an inner diameter of 210 mm, the center of which is the original (Corresponding to the center in the opposite width direction) was obtained as the second region.
  • PNEUMA BLASTER SFK-2 manufactured by Fuji Seisakusho
  • the surface roughness in the second region was equal to that before the sandblast treatment, and the arithmetic surface height Ra was 0.03 ⁇ m. This sand blasting process was repeated every 300 mm in the lengthwise direction of the original fabric to form convenient 100 annular roughened regions.
  • a DR laminate was obtained in which 100 pieces of laser dicing sheets having the following shape and arrangement were arranged side by side in the longitudinal direction on the release surface of the long release sheet.
  • Planar shape of the laser dicing sheet a circle with a diameter of 270 mm
  • Planar shape of the first region a circle with a diameter of 210 mm
  • Planar shape of the second region an annulus with an outer diameter of 270 mm and an inner diameter of 210 mm containing the first region Longitudinal distance between two laser dicing sheets arranged in the nearest position: 30 mm
  • This DR laminate was wound in the longitudinal direction to form a wound body.
  • Example 2-2 to 2-4 and Comparative Example 2-2 Except that the inner diameter of the sandblasting range in Example 2-1 was changed to the inner diameter shown in Table 3, the same operation as in Example 2-1 was performed to obtain a wound body of the DR laminate.
  • Example 2-1 In Example 2-1, the same operation as in Example 2-1 was performed except that sandblasting was not performed. A wound body of DR laminated body laminated on the top was obtained.
  • Example 2-3 In Example 2-1, except that the entire surface of the base material was subjected to sandblasting, the same operation as in Example 2-1 was performed, and the laser dicing sheet having the second region of the back surface of the base material was 100 sheets release sheet A wound body of a DR laminate obtained by laminating on the release surface was obtained.
  • a laser that focuses light inside the wafer through the laser dicing sheet from the side facing the adhesive layer of the silicon wafer is 2 mm ⁇ Irradiation was performed while scanning along a planned cutting line set to form a 2 mm chip body.
  • the laser irradiation area at this time was included in the first area on the back surface of the substrate in any laser dicing sheet.
  • the laser dicing sheet After irradiating all the planned cutting lines with laser, using an expanding device (“DDS2010” manufactured by DISCO), the laser dicing sheet is pulled down at a speed of 300 mm / min, and the silicon wafer on the adhesive layer side surface of the laser dicing sheet The region to which is attached was extended 15 mm in the main surface inward and outward directions.
  • DISCO an expanding device
  • the DR laminated body of the example satisfying the conditions of the present invention was excellent in pre-cut property, and the DR laminated body supply failure was difficult to occur. Moreover, it was excellent in dicing properties and expanding properties. Note that “partially impossible” in the dicing property of Comparative Example 2-2 is that the outer diameter of the first region was smaller than the outer diameter (200 mm) of the semiconductor wafer, and therefore the laser was near the outermost peripheral edge of the semiconductor wafer. Irradiation is insufficient, which means that the semiconductor wafer was cut at a line different from the dicing scheduled line.
  • the laser dicing sheet-release sheet laminate according to the present invention is suitable as a laminate of a laser dicing sheet and a release sheet used in a dicing process including an operation of irradiating a laser so as to transmit the dicing sheet, such as stealth dicing. Used for.
  • SYMBOLS 100 ... DR laminated body 10 ... Laser dicing sheet 1 ... 1st sheet 2 ... 2nd sheet 21 ... Base film 22 ... Adhesive layer 3 ... Adhesive layer 11 ... Release sheet 100A ... Winding body 11a ... Outermost circumference Peeling sheet 11b ... Peeling sheet further on the inner circumference side than the outermost peeling sheet C ... Core material 100B ... Stack body 50 ... SUS flat plate 51 ... Second sheet for testing 511 ... Base film for second sheet for testing 512 ... Adhesive layer of second test sheet 51a ... One surface 52 of second test sheet 52 ... Release sheet for test 52a ... Surface opposite to the release surface of the test release sheet 53 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)

Abstract

 保管された状態にあるレーザーダイシングシート-剥離シート積層体(DR積層体)を取り出す際に不具合が生じにくいDR積層体として、レーザーダイシングシート(10)を第1のシート(1)、第1のシート(1)の一方の面に積層された第2のシート(2)、および第1のシートの他方の面に積層された粘着剤層(3)を備えた構成を備え、第1のシートはレーザーを透過させやすい構成する一方、第2のシート(2)を、その第1のシート(1)に対向する側と反対側の面の、剥離シート(11)の剥離面と反対側の面に対する剥離力が50mN/50mm以下となるようにされたDR積層体が提供される。かかるDR積層体から剥離シートを剥離してなるレーザーダイシングシート、およびそのレーザーダイシングシートを用いて板状部材を個片化してチップ体を製造するチップ体の製造方法も提供される。

Description

レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
 本発明は、半導体ウエハなどの板状部材をダイシングするダイシング工程においてレーザー光を用いる場合に使用されるダイシングシートであるレーザーダイシングシート、そのレーザーダイシングシートと剥離シートとの積層体であるレーザーダイシングシート-剥離シート積層体およびそのレーザーダイシングシートを用いて板状部材を個片化して得られるチップ体の製造方法に関する。
 半導体ウエハは表面に回路が形成された後、ウエハの裏面側に研削加工を施し、ウエハの厚さを調整する裏面研削工程およびウエハを所定のチップサイズに個片化するダイシング工程が行われる。
 近年の電子機器筐体のサイズダウンや多積層チップを用いた半導体装置の需要の増加にともない、その構成部材である半導体チップの薄型化が進められている。このため、従来350μm程度の厚みであったウエハを、50~100μmあるいはそれ以下まで薄くすることが求められるようになった。
 脆質部材であるウエハは、薄くなるにつれて、加工や運搬の際、破損する危険性が高くなる。このような極薄ウエハは、高速回転するダイシングブレードにより切断されると、半導体ウエハの特に裏面側にチッピング等が生じ、チップの抗折強度が著しく低下する。
 このため、レーザー光を半導体ウエハの内部に照射して選択的に改質部を形成させながらダイシングラインを形成して改質部を起点として半導体ウエハを切断する、いわゆるステルスダイシング法が提案されている(特許文献1)。ステルスダイシング法によれば、レーザー光を半導体ウエハの内部に照射して改質部を形成後、極薄の半導体ウエハを基材と粘着剤層とからなる粘着シート(ダイシングシート)に貼付し、粘着シートをエキスパンドすることで、ダイシングラインに沿って半導体ウエハを分割(ダイシング)し、半導体チップを歩留まりよく生産することができる。
 上記のような、ダイシング工程において加工手段としてレーザーが用いられる場合もあれば、ダイシング工程の際に半導体ウエハなどの板状部材を正確にアライメントするためのツールとしてもレーザーが用いられる場合もある。これらの場合のような、ダイシング工程においてレーザー光を用いる場合に使用されるダイシングシート(本明細書において、「レーザーダイシングシート」ともいう。)は、その使用にあたりこのレーザーダイシングシートをレーザーが透過するため、レーザーに対する優れた透過性を有していなければならない。
 かかる要求に応えるために、例えば、特許文献2には、基材樹脂フィルムと、前記基材樹脂フィルム上に粘着剤層が形成された粘着シートであって、400~1100nmの波長領域における平行光線透過率が80%以上であるウエハ貼着用粘着シートが開示され、当該シートの好ましい一態様では、基材樹脂フィルムの粘着剤層が形成された面の反対側の面の算術平均粗さRaが、0.1~0.3μmであることとされている。
特許第3762409号公報 特開2012-15236号公報
 特許文献2に開示されるように、基材樹脂フィルムの粘着剤層が形成された面の反対側の面を平滑面とすることは、レーザーダイシングシートにとってダイシング加工性を高めるなどの利点を有する。しかしながら、レーザーダイシングシートの基材における粘着剤層に対向する側と反対側の面(本明細書において「基材背面」ともいう。)を平滑面とすると、次のような問題が生じることが明らかになった。
 すなわち、一般的に、レーザーダイシングシートの粘着剤層は、ダイシング工程に使用されるまでの間、その基材に対向する側と反対側の面(使用時に板状部材が貼付される面)に剥離シートの剥離面が貼付されて、粘着剤層の汚染や劣化が生じないようにされている。こうして得られたレーザーダイシングシートと剥離シートとの積層体であるレーザーダイシングシート-剥離シート積層体(本明細書において「DR積層体」ともいう。)は、様々な形態で保管される。貼付されるべきリングフレームの内径よりもやや大きな外径の円の形状を有するレーザーダイシングシートを具体例として説明すれば、上記の円形のレーザーダイシングシートの複数が長尺の剥離シートの剥離面に当該剥離シートの長尺方向に平行な方向に並んで積層されてなる長尺体の形態で保管される場合もあれば、この長尺体が長尺方向に巻き取られて巻取体の形態で保管される場合もある。また、例えば1枚のレーザーダイシングシートが1枚の剥離シートに貼付されてなるDR積層体を何層も重ねて得られるスタック体の形態で保管される場合もある。
 DR積層体が巻取体やスタック体の形態で保管されると、DR積層体のレーザーダイシングシートの基材背面と、そのDR積層体に最近位の別のDR積層体における剥離シート剥離面とは反対側の面(本明細書において「剥離シート裏面」ともいう。)とが接した状態となる。保管状態によっては(具体的には、巻取体の巻き取り力が強い場合や、スタック体が積層方向に加圧された場合などが例示される。)、このDR積層体の基材背面と、当該背面に接する別のDR積層体の剥離シート裏面との密着性が高まることがあった。
 この密着性が高まったときの問題について、長尺体の形態を有するDR積層体がそのレーザーダイシングシートが内側になるように巻き取られた巻取体を一具体例として説明する。この巻取体からDR積層体を繰り出すときには、最外層にある剥離シートが引っ張られ、その剥離シートの内周側(巻芯側)に位置する剥離面に貼付するレーザーダイシングシートも、この最外周の剥離シートとともに巻取体から繰り出されることによって、繰り出し作業が正常に行われる。しかしながら、基材背面と、巻取体において一回り内周側に位置するDR積層体の剥離シート裏面との密着性が高い場合には、本来繰り出されるべきレーザーダイシングシートが、そのレーザーダイシングシートの粘着剤側の面と最外周の剥離シートの剥離面との界面で剥離してしまう。その結果、レーザーダイシングシートは最外周の剥離シートとともに繰り出されずに、一層内周側に位置するDR積層体の剥離シート裏面上に残留する。
 かかる事態が生じると、繰り出されたDR積層体はレーザーダイシングシートがはぎとられているため、その後のレーザーダイシングシートと板状部材との貼付作業を実施することができなくなる。さらに、DR積層体の剥離シート裏面に付着した状態のレーザーダイシングシートは、その後の剥離シートの巻き取り作業の作業性を著しく低下させる可能性がある。具体的には、剥離シートの巻取のためのピンチローラに巻き付いてしまうことが例示され、このような場合には巻取体の形態のDR積層体の繰り出し作業を停止しなければならない。以下、このような不具合を「DR積層体供給不良」ともいう。
 スタック体の形態のDR積層体でも同様のDR積層体供給不良は生じ得る。剥離シートの下層側にレーザーダイシングシートが貼付されているDR積層体のスタック体の場合には、上記の巻取体の形態のDR積層体の場合と同様に、剥離シートをつかんでDR積層体をめくり出したときに、剥離シートだけがめくり出され、レーザーダイシングシートはスタック体に残留する問題が生じ得る。剥離シートの上層側にレーザーダイシングシートが貼付されているDR積層体のスタック体の場合には、剥離シートをつかんでDR積層体をめくり出したときに、一層下側のDR積層体のレーザーダイシングシートも一緒にめくり出される問題が生じ得る。
 本発明は、このような巻取体やスタック体の形態にあるDR積層体にDR積層体供給不良が生じる可能性を低減させることができるレーザーダイシングシート、このレーザーダイシングシートと剥離シートとの積層体であるレーザーダイシングシート-剥離シート積層体(DR積層体)、およびそのレーザーダイシングシートを用いて板状部材を個片化してチップ体を製造するチップ体の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明者らが検討したところ得た知見は概略以下のとおりである。DR積層体はレーザーダイシングシートを備え、レーザーダイシングシートは、粘着剤層、第1のシートおよび第2のシートを備える。粘着剤層は、使用時までは剥離シートがその剥離面が対向した状態で貼付され、使用時に板状部材が貼付される面を有する。第1のシートは、粘着剤層の上記の板状部材に対する貼付面と反対側の面に積層され、その粘着剤層に対向する側と反対側の面の一部(本明細書において、面の一部を「領域」ともいう。)が使用時にレーザーの入射面となる。第2のシートは、第1のシートの粘着剤層に対向する側と反対側の面における使用時にレーザーが照射されない領域に積層される。第2のシートにおける第1のシートに対向する側と反対側の面(レーザーダイシングシートの基材背面の一部に相当する。)の、DR積層体が備える剥離シートの剥離シート裏面(剥離シートの剥離面と反対側の面)に対する剥離力を50mN/50mm以下とする。DR積層体のレーザーダイシングシートに上記の特徴を付与することによって、DR積層体供給不良が生じにくくなる。
 かかる知見に基づき完成された本発明の一態様は、第1に、第1のシート、前記第1のシートの一方の面に積層された第2のシート、および前記第1のシートの他方の面に積層された粘着剤層を備えたレーザーダイシングシートと、前記レーザーダイシングシートの前記粘着剤層側の面にその剥離面が対向するように積層された剥離シートとを備えたレーザーダイシングシート-剥離シート積層体であって、前記第2のシートは平面視形状が環状であり、前記第1のシートの一方の面における平面視で前記第2のシートに囲まれ前記第2のシートが積層されていない環内露出領域は、前記レーザーダイシングシートの使用時にレーザーが照射されるレーザー照射領域を含み、前記第1のシートは、23℃におけるヤング率が30MPa以上600MPa以下であって、前記第1のシートの一方の面は、少なくとも前記レーザー照射領域の算術平均粗さRaが0.1μm未満であり、前記剥離シートの剥離面は、前記レーザーダイシングシートが積層されていない領域を有し、前記第2のシートの一方の面上に前記剥離シートの剥離面と反対側の面を載置して得られる重積体について、40℃、相対湿度80%の環境下にて前記試験用剥離シートの剥離面側から19.6Nの荷重を1時間印加し、さらに23℃、相対湿度50%の環境下にて無荷重の状態で1時間静置し、静置後の前記重積体の前記試験用剥離シートを180°引き剥がししたときに測定される剥離力が、50mN/50mm以下であることを特徴とする、レーザーダイシングシート-剥離シート積層体(DR積層体)を提供する(発明1)。
 レーザーダイシングシートの基材背面を、算術平均粗さRaが小さいものと剥離シート裏面に対する密着性が低くなるように調整されたものとの2種類のシートによって構成することにより、レーザーダイシングシートの基材背面と剥離シートの裏面との密着性が過度に高まってこれらが剥離しにくくなるという問題を生じにくくすることが実現される。
 上記発明(発明1)において、前記第1のシートは、少なくともレーザーダイシングシートの使用時にレーザーが照射される部分について、前記波長1064nmにおける直線透過率が80%以上であるとともに、波長1064nmにおける位相差が100nm以下であることが好ましい(発明2)。かかる特性を有する場合には、ステルスダイシングのように、使用時に第1のシートを透過したレーザーを板状部材内で集光させたときに、照射したレーザーのエネルギーが効率的に板状部材内に伝達され、ダイシング加工がより適切に行われやすくなる。
 上記発明(発明1,2)において、前記第2のシートにおける前記第1のシートに対向する側と反対側の面は、算術平均粗さRaが0.3μm以上であることが好ましい(発明3)。このようにレーザーダイシングシートの基材背面のうち第2のシートから構成される領域を粗な面とすることにより、上記の剥離力を50mN/50mm以下とすること容易となる。
 上記発明(発明1から3)において、前記第2のシートにおける前記第1のシートに対向する側と反対側の面は、ポリエステル系フィルムの面からなることが好ましい(発明4)。レーザーダイシングシートの基材背面のうち第2のシートから構成される領域をポリエステル系フィルムからなる面とすることにより、上記の剥離力を50mN/50mm以下とすること容易となる。ポリエステル系フィルムは、芳香族化合物を含有する樹脂材料を含むため比較的剛直であるため、剥離シートの裏面に対する密着性が高まりにくいが、このような材料は、レーザー光、特にステルスダイシングの際に用いられる1064nmの光を吸収するため、基材が単層であるレーザーダイシングシートにおける基材構成材料として使用することは困難であった。
 上記発明(発明1から4)において、前記剥離シートにおける、前記レーザーダイシングシートに対向する側と反対側の面(剥離シートの背面)は、算術平均粗さRaが0.1μm以下であることが好ましい(発明5)。剥離シートの背面の表面粗さが上記の範囲である場合には、DR積層体が備える第1のシートの背面の算術平均粗さRaが大きくなりにくい。それゆえ、第1のシートにおけるレーザー照射領域を含む部分のレーザー透過性が低下しにくくい。
 上記発明(発明1から5)において、前記剥離シートは長尺体からなり、前記レーザーダイシングシートはその複数枚が前記剥離シートの長尺方向に互いに離間して配置され、長尺方向に巻き取られた巻取体の形態を有することが好ましい(発明6)。このような形態の場合には保管時の取り扱い性に優れ、使用の際に剥離作業を自動化しやすい。
 本発明の一態様は、第2に、上記の発明(発明1から6)のいずれかに係るレーザーダイシングシート-剥離シート積層体から前記剥離シートを剥離して得られるレーザーダイシングシートであって、前記粘着剤層の前記第1のシートに対向する側と反対側の面における前記第1のシートの前記環内露出領域と平面視で重複する領域は、前記レーザーダイシングシートの使用時に板状部材が貼付される領域を含むことを特徴とするレーザーダイシングシートを提供する(発明7)。
 このようなレーザーダイシングシートは、使用時に貼付された板状部材に対して、レーザーダイシングシートを透過するようにレーザーを照射した際に、レーザーが散乱したり位相の均一性が低下したりするなどの問題が生じにくい。
 上記発明(発明7)において、前記第1のシートの前記環内露出領域の平面視での内接円の半径は、前記板状部材が貼付される領域の平面視での外接円の半径よりも2mm以上大きいことが好ましい(発明8)。環内露出領域と板状部材とが係る関係を有することにより、レーザーダイシングシートに板状部材を貼付する際の作業性が高まり、平面視で環内露出領域に含まれない領域を有するように板状部材が貼付される可能性がより低減される。
 本発明の一態様は、第3に、上記発明(発明7,8)のいずれかに係るレーザーダイシングシートの前記粘着剤層における前記第1のシートに対向する側と反対側の面の所定の領域に、前記板状部材を貼付し、前記レーザーダイシングシートの前記第1のシートの前記環内露出領域を入射面として前記第1のシートおよび前記粘着剤層を透過して前記板状部材へと至るように、レーザーを照射し、前記レーザーを照射した後の前記板状部材が貼付している前記レーザーダイシングシートを主面内方向に伸長させることにより、前記板状部材を個片化して、チップ体を得ることを特徴とするチップ体の製造方法を提供する(発明9)。
 かかる製造方法によれば、レーザーダイシングシートを透過して入射したレーザー光によって板状部材の内部に適切に改質部が形成されるため、レーザーダイシングシートを伸長させるエキスパンド工程によってその改質部の部分で板状部材が破断されることがより安定的に生じる。それゆえ、本発明に係る製造方法によれば、チップ体を歩留まり高く製造することが可能となる。
 上記目的を達成するために、本発明者らが検討したところ、次の知見も得られた。DR積層体が備えるレーザーダイシングシートの基材背面が複数の部分から構成されるものとする。その複数の部分の一つを、レーザー入射面として適した第1の領域とする。上記の複数の部分の別の一つを剥離シート裏面(自らが構成要素となるDR積層体の剥離シート裏面である場合もあれば、自らが構成要素となるDR積層体とは別のDR積層体の剥離シート裏面である場合もある。)に対する密着性が低い第2の領域とする。レーザーダイシングシートに上記の特徴を付与することによって、DR積層体供給不良が生じにくくなる。
 かかる知見に基づき完成された本発明の別の一態様は、第1に、基材と、前記基材の一方の面に積層された粘着剤層とを備えたレーザーダイシングシートであって、前記基材の前記粘着剤層に対向する側と反対側の面である背面は、その表面の粗さが算術平均粗さRaで0.1μm未満である第1の領域および0.3μm以上である第2の領域を備え、前記第1の領域は使用時にレーザーが照射されるレーザー入射領域を含み、前記第2の領域は、前記レーザー入射領域よりも平面視で前記レーザーダイシングシートの外周側に設けられることを特徴とするレーザーダイシングシートを提供する(発明10)。
 レーザーダイシングシートの基材背面を、算術平均粗さが低くレーザーを透過させた際に散乱や位相の均一性の低下が生じにくい第1の領域と、算術平均粗さが大きく剥離シート裏面に対する密着性が低い第2の領域とを備えるものとし、第2の領域をレーザー入射領域よりも外周側に配置することによって、DR積層体からレーザーダイシングシートを剥離する前の段階で、レーザーダイシングシートが剥離シートの剥離面から剥がれてしまう不具合が生じにくくなる。
 上記発明(発明10)において、前記第2の領域の表面粗さは、算術平均粗さRaで0.5μm以上であることが好ましい(発明11)。このような表面粗さであることにより、レーザーダイシングシートと剥離シートの裏面との密着性をより安定的に低下させることができる。
 上記発明(発明10,11)において、前記第2の領域は平面視で環状であって、前記レーザー入射領域は、環状をなす前記第2の領域の平面視での内周よりも前記第2の領域の面内方向中心側に位置することが好ましい(発明12)。基材背面における第2の領域の配置を上記のようにすることにより、DR積層体を繰り出したりめくり出したりする際に、レーザーダイシングシートが剥離シートの剥離面から剥離してしまう不具合がより安定的に生じにくい。
 上記発明(発明10から12)において、前記基材の背面は、前記第1の領域と前記第2の領域とからなることが好ましい(発明13)。基材背面がこのような構成の場合には、基材背面における第2の領域以外の領域全体をレーザー入射領域とすることが可能となるため、板状部材の加工(具体的にはステルスダイシングが例示される。)以外の目的(例えば板状部材のアライメント、リングフレームのアライメント)で、レーザー等の光を使用する場合であっても、その光を入射させる領域を確保することが容易となる。
 上記発明(発明10から13)において、前記基材は、23℃におけるヤング率が30MPa以上600MPa以下であることが好ましい(発明14)。基材がかかる特性を有する場合には、エキスパンド工程において基材が均一に伸長されやすいため、エキスパンド工程の際に基材が破断したり基材とリングフレームとが剥離したりする不具合が生じにくい。特に、ステルスダイシング法を採用した場合には、レーザーダイシングシート上の板状部材が適切に割断されなかったり板状部材が割断されてなるチップ体の整列方向にばらつきが生じたりする不具合が生じにくい。
 上記発明(発明10から14)において、前記第2の領域は、前記基材の背面に対して粗面化処理が施されたことにより形成されたものであることが好ましい(発明15)。かかる方法により第2の領域が形成される場合には、背面全面が第1の領域からなる基材を用意すれば、上記の発明に係るレーザーダイシングシートを容易に作製することができる。
 上記発明(発明10から15)において、前記第1の領域は、前記波長1064nmにおける直線透過率が80%以上であるとともに、波長1064nmにおける位相差が100nm以下であることが好ましい(発明16)。第1の領域が上記の特性を有する場合には、上記の発明に係るレーザーダイシングシートはステルスダイシングのためのダイシングシートとして好適に用いることができる。
 本発明の別の一態様は、第2に、上記発明(発明10から16)のいずれかに係るレーザーダイシングシートと、前記レーザーダイシングシートの前記粘着剤層側の面にその剥離面が対向するように積層された剥離シートとを備え、前記剥離シートの剥離面には、前記レーザーダイシングシートが積層されていない領域を有するレーザーダイシングシート-剥離シート積層体を提供する(発明17)。
 かかるレーザーダイシングシート-剥離シート積層体は、前述のDR積層体供給不良が生じにくい。
 上記発明(発明17)において、前記剥離シートにおける前記レーザーダイシングシートに対向する側と反対側の面(剥離シートの背面)は、算術平均粗さRaが0.1μm以下であることが好ましい(発明18)。剥離シートの背面の表面粗さが上記の範囲である場合には、DR積層体が備えるレーザーダイシングシートの第1の領域の算術平均粗さRaが大きくなりにくい。それゆえ、レーザーダイシングシートにおけるレーザー照射領域を含む部分のレーザー透過性が低下しにくい。
 本発明の別の一態様は、第3に、上記発明(発明17,18)に係るレーザーダイシングシート-剥離シート積層体から前記剥離シートを剥離して前記レーザーダイシングシートの前記粘着剤層側の面を表出させ、前記レーザーダイシングシートの前記表出した粘着剤層側の面における平面視で前記第1の領域と重複する領域に板状部材を貼付し、前記第1の領域をレーザー入射面として、前記基材および前記粘着剤層を透過して前記板状部材へと至るようにレーザーを照射し、前記レーザーを照射した後の前記板状部材が貼付している前記レーザーダイシングシートをその主面内方向に伸長させることにより、前記板状部材を個片化して、チップ体を得ることを特徴とするチップ体の製造方法を提供する(発明19)。
 かかる製造方法によれば、レーザーダイシングシートを透過して入射したレーザー光によって板状部材の内部に適切に改質部が形成されるため、レーザーダイシングシートを伸長させるエキスパンド工程によってその改質部の部分で板状部材が破断されることがより安定的に生じる。それゆえ、本発明に係る製造方法によれば、チップ体を歩留まり高く製造することが可能となる。
 上記の本発明の一態様に係るDR積層体が備えるレーザーダイシングシートでは、使用時にレーザーが照射される領域は、第1のシートの粘着剤層に対向する側と反対側の面から構成されている。このため、ダイシング工程においてレーザーを照射したときにレーザー光が散乱する問題が生じにくい。その一方で、上記の本発明の一態様に係るDR積層体が備えるレーザーダイシングシートは、使用前のDR積層体が積層された状態(具体的には、巻取体の形態にある場合やスタック体の形態にある場合が例示される。)においてDR積層体の剥離シート裏面に接する面が、主として、剥離シート裏面に対する密着性が低くなるように設定された第2のシートの第1のシートに対向する側と反対側の面(第2のシートの背面)となる。このため、あるDR積層体をその第2のシートの背面に剥離シート裏面が接するように配置されていた剥離シートから引き剥がしたときに、DR積層体が第2のシートの背面とその剥離シート裏面との間で剥離せずに、レーザーダイシングシートの粘着剤層と剥離シートの剥離面との間で剥離してしまう可能性が低減されている。したがって、上記の本発明の一態様に係るDR積層体は、巻取体やスタック体の形態であっても、DR積層体供給不良が生じにくい。
 上記の本発明の別の一態様に係るレーザーダイシングシートは、基材背面における第1の領域の少なくとも一部をレーザー入射領域として用いることで、使用時にレーザーダイシングシートに照射されたレーザー光が基材によって散乱されたり位相の均一性が低下したりしにくく、適切なレーザー光を板状部材に照射することができる。しかも、このようなレーザーダイシングシートを備える上記の本発明の別の一態様に係るDR積層体によれば、使用前のDR積層体が積層された状態(具体的には、巻取体の形態にある場合やスタック体の形態にある場合が例示される。)においてDR積層体の剥離シート裏面に接する面、すなわち基材背面は、第1の領域のみならず第2の領域をも備え、この第2の領域は、相対的に粗な面から構成される。また、第2の領域は通常レーザーダイシングシートの大部分を占める、レーザーが照射されるレーザー入射領域よりも平面視でレーザーダイシングシートの外周側に設けられている。このため、あるDR積層体をその基材背面に剥離シート裏面が接するように配置されていた剥離シートから引き剥がそうとしたときに、剥離シートの剥離面と粘着剤層の面との密着性、粘着剤層と基材との密着性、および基材背面のうち第2の領域と剥離シートの裏面との密着性の間で最も密着性の低い界面にて剥離が生じるところ、平面視でダイシングシートの外周に近い位置に設けられている粗な面から構成される第2の領域と、剥離シートの裏面との密着性が最も低くなって、この界面での剥離が生じやすくなっている。それゆえ、上記の本発明の別の一態様に係るDR積層体は、巻取体やスタック体の形態であっても、DR積層体供給不良が生じにくい。
本発明の第1の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)の概略断面図である。 本発明の第1の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)が巻取体の形態をなし、この巻取体からDR積層体が繰り出されている状態を概念的に示す斜視図である。 本発明の第1の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)の複数がスタック体の形態をなしている状態を概念的に示す断面図である。 本発明の第1の実施形態に係る巻取体からDR積層体が繰り出されて、長尺の剥離シートに貼付しているレーザーダイシングシートの1枚を取り出そうとする直前の状態を概念的に示す部分断面図である。 本発明の第1の実施形態に係るレーザーダイシングシートの第2のシートにおける第1のシートに対向する側と反対側の面の剥離シートの剥離シート裏面に対する密着性を評価する方法を概念的に示す断面図であり、(a)はSUS製平板上に第2のシートが積層されその第2のシート上に剥離シートが重ねられてなる重積体を概念的に示す断面図であり、(b)はこの重積体に荷重を加えている状態を概念的に示す断面図である。 本発明の第1の実施形態に係るレーザーダイシングシートの粘着剤層に板状部材およびリングフレームが貼付された状態を概念的に示す断面図である。 本発明の第2の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)の概略断面図である。 本発明の第2の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)のレーザーダイシングシートの基材背面を概念的に示す平面図である。 本発明の第2の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)が巻取体の形態をなし、この巻取体からDR積層体が繰り出されている状態を概念的に示す斜視図である。 本発明の第2の実施形態に係る巻取体からレーザーダイシングシート-剥離シート積層体(DR積層体)が繰り出されて、長尺の剥離シートに貼付しているレーザーダイシングシートの1枚を取り出そうとする直前の状態を概念的に示す部分断面図である。 本発明の第2の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)の複数がスタック体の形態をなしている状態を概念的に示す断面図である。 本発明の第2の実施形態に係るレーザーダイシングシートの粘着剤層に板状部材およびリングフレームが貼付された状態を概念的に示す断面図である。
I 第1の実施形態
 以下、本発明の第1の実施形態について説明する。
1.レーザーダイシングシート-剥離シート積層体
 図1に示されるように、本発明の第1の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)100は、第1のシート1、第1のシート1の一方の面に積層された第2のシート2、および第1のシートの他方の面に積層された粘着剤層3を備えるレーザーダイシングシート10と、レーザーダイシングシート10の粘着剤層3側の面にその剥離面が対向するように積層された剥離シート11とを備える。以下の説明では、第1のシート1および第2のシート2を基材と総称する場合もある。
(1)第1のシート
 本発明の第1の実施形態に係るDR積層体100が備えるダイシングシート10の第1のシート1は、ダイシング工程においてレーザーを透過させる機能を有し、ダイシング工程の後に行われるエキスパンド工程などにおいて破断しない限り、その構成材料は特に限定されない。通常は樹脂系の材料を主材とするフィルムから構成される。そのフィルムの具体例として、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、高密度ポリエチレン(HDPE)フィルム等のポリエチレンフィルム、延伸若しくは無延伸のポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリウレタンフィルム、エチレン酢酸ビニル共重合体フィルム、およびその水添加物または変性物等からなるフィルムが用いられる。またこれらの架橋フィルム、共重合体フィルムも用いられ、中でもエキスパンド性を考慮すると、ポリ塩化ビニルフィルムが好ましい。上記の基材は1種単独でもよいし、さらにこれらを2種類以上組み合わせた積層フィルムであってもよい。
 第1のシート1は、上記の樹脂系材料を主材とするフィルム内に、顔料、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤が含まれていてもよい。こうした添加剤の含有量は特に限定されないが、第1のシート1が所望の機能を発揮し、柔軟性を失わない範囲に留めるべきである。また、前述のように第1のシート1の一方の面は、その一部が、使用時にレーザーの入射面となるため、第1のシートが入射したレーザーの直線透過率を低減させるような材料(顔料、フィラーなど)を含有する場合には、その含有量を調整して、第1のシートの面の平滑性を所望の範囲に制御することが好ましい。
 粘着剤層3がエネルギー線の照射により重合する材料を含む場合であって、重合させるために照射するエネルギー線として紫外線を用いる場合には、第1のシート1は紫外線に対して透過性を有することが好ましい。なお、上記のエネルギー線として電子線を用いる場合には第1のシート1は電子線に対する透過性を有していることが好ましい。
 また、第1のシート1における粘着剤層3が積層される側の面には、粘着剤層3を構成する粘着剤との密着性を向上するために、コロナ処理を施したり、プライマー層を設けたりしてもよい。
 第1のシート1の23℃におけるヤング率は、30MPa以上600MPa以下であり、50MPa以上500MPa以下であることが好ましく、100MPa以上400MPa以下であることがより好ましい。23℃におけるヤング率が30MPa以上600MPa以下である第1のシート1は、エキスパンド工程の際に均一に伸長されやすいため、ステルスダイシング法を採用した場合に、レーザーダイシングシート10上の板状部材が適切に切断されなかったり板状部材が切断されてなるチップ体の整列方向にばらつきが生じたりする不具合が生じにくい。
 また、第1のシート1の破断伸度は、23℃、相対湿度50%のときに200mm/分で延伸させることにより測定した値として50%以上であることが好ましく、70%以上であることがより好ましく、100%以上であることが特に好ましい。ここで、破断伸度はJIS K7161:1994(ISO 527-1:1993)に準拠した引張り試験における、試験片破壊時の試験片の長さの元の長さに対する伸び率である。上記の破断伸度が50%以上である第1のシート1は、エキスパンド工程の際に破断しにくいため、レーザーダイシングシート10上の板状部材が適切に切断されなかったり板状部材が分割されてなるチップ体が脱落したりする不具合が生じにくい。
 第1のシート1の平面視形状(主面の法線に平行な方向から見た形状)は、被加工物である半導体ウエハなどの板状部材をレーザーダイシングシート10の粘着剤層3側の面の中心を含む領域に貼付したときに、その周囲に、運搬などの際に用いるリングフレームに貼付される領域が十分に確保され、かつ、これらの半導体ウエハに貼付された領域とリングフレームに貼付された領域との間に、適切な領域が確保され、エキスパンド工程においてリングフレームを引き落とす際の支点となる治具を取りつけ、その治具と半導体ウエハを個片化して得られた複数のチップ体との間に伸長後も平面視である程度(数mmから数cm)の間隙が設定されるような形状であれば、特に限定されない。通常は、第1のシート1の平面視形状はリングフレームの内周が作る形状に対応して円に近い形状とされる。
 第1のシート1の主面のうち、使用時にレーザーが照射される側の面(本明細書において、「背面」ともいう。)の表面粗さは、レーザーの透過性を高める観点から、少なくとも、使用時にレーザーが照射される領域(本明細書において、「レーザー照射領域」ともいう。)について、算術平均粗さRaが0.1μm未満である。ここで、算術平均粗さRaは、接触式表面粗さ計により測定された、JIS B0601:2001に準拠した特性であり、以下において同様である。かかる表面粗さの条件を満たす場合には、レーザーが第1のシート1内で散乱されにくく、第1のシート1の直線透過率が低下しにくい。第1のシート1は、ステルスダイシングに用いられる光源の波長1064nmにおける直線透過率を80%以上とすることが、ダイシング工程の加工品質および加工精度を高める観点から好ましく、90%以上とすることがより好ましい。第1のシート1の背面のレーザー照射領域における算術平均粗さRaを上述した範囲内の値とすることで直線透過率をかかる範囲に調整しやすくなり、さらに0.08μm以下とすることが好ましい。算術平均粗さRaが小さくなるほど、レーザーの透過性は高まるため、第1のシート1の背面のレーザー照射領域における算術平均粗さRaは、小さければ小さいほど好ましく、その下限は特に限定されない。第1のシート1の背面を構成する部材の製造上の制限などにより、通常、この算術平均粗さRaは0.01μm程度が下限となる。第1のシート1の背面の算術平均粗さRaの調整は公知の方法により行うことができ、たとえば押出し成型により第1のシート1を与えるフィルムを製造する場合に、冷却ロールの表面形状を転写させることにより行うことができ、延伸フィルムである第1のシート1を与えるフィルムの製造において、フィルムの材料に添加する充填材の量やサイズの変更により行うことができ、液状物をキャストし、硬化させてフィルムを得る場合にはキャストに用いる工程フィルムの粗さを調整することにより行うことができる。
 第1のシート1の厚さはレーザーダイシングシート10が前述のダイシング工程やエキスパンド工程において適切に機能できる限り、限定されない。過度に薄い場合には、製造過程や使用時に破断しやすくなることが懸念される。一方、第1のシート1は、ステルスダイシングに用いられる光源の波長1064nmにおける位相差を100nm以下とすることが、ダイシング工程の加工品質および加工精度を高める観点から好ましいところ、第1のシート1が過度に厚い場合には、第1のシート1の材質を調整しても、上記の位相差を100nm以下とすることが困難となることが懸念される。したがって、第1のシート1の厚さは20μm以上150μm以下であることが好ましく、40μm以上100μm以下であることより好ましく、50μm以上90μm以下であることが特に好ましい。
(2)粘着剤層
 粘着剤層3は、従来より公知の種々の粘着剤により形成され得る。このような粘着剤としては、何ら限定されるものではないが、例えば、ゴム系、アクリル系、シリコーン系、ポリビニルエーテル等の粘着剤が用いられる。また、エネルギー線重合型や加熱発泡型、水膨潤型の粘着剤も用いることができる。エネルギー線(紫外線、電子線等)重合型粘着剤としては、特に紫外線重合型粘着剤を用いることが好ましい。
 以下、エネルギー線重合型粘着剤について、アクリル系粘着剤を例として具体的に説明する。
 アクリル系粘着剤は、粘着剤組成物から形成される粘着剤層に十分な粘着性および造膜性(シート加工性)を付与するためにアクリル系重合体(A)を含有し、またエネルギー線重合性化合物(B)を含有する。エネルギー線重合性化合物(B)は、またエネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合し、粘着剤組成物の粘着力を低下させる機能を有する。また、上記成分(A)および(B)の性質を兼ね備えるものとして、これらに代えて主鎖または側鎖に、エネルギー線重合性基が結合されてなるエネルギー線重合型重合体(以下、成分(AB)と記載する場合がある)を用いてもよい。このようなエネルギー線重合型粘着性重合体(AB)は、粘着性・造膜性付与機能とエネルギー線重合性とを兼ね備える性質を有する。
 アクリル系重合体(A)としては、従来公知のアクリル系重合体を用いることができる。アクリル系重合体(A)の重量平均分子量(Mw)は、10万~200万であることが好ましく、30万~150万であることがより好ましい。また、分子量分布(Mw/Mn、Mnは数平均分子量)は1.0~10であることが好ましく、1.0~3.0であることがより好ましい。また、アクリル系重合体(A)のガラス転移温度(Tg)は、好ましくは-70~30℃、さらに好ましくは-60~20℃の範囲にある。
 上記アクリル系重合体(A)を形成するためのモノマーとなる(メタ)アクリル酸エステルの具体例として、(メタ)アクリル酸エステルの具体例として、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;シクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、イミドアクリレート等の環状骨格を有する(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;グリシジルメタクリレート、グリシジルアクリレート等のエポキシ基を有する(メタ)アクリレートなどが挙げられる。このほか、上記アクリル系重合体(A)を形成するためのモノマーとして、アクリル酸、メタクリル酸、イタコン酸、アクリロニトリルなども例示される。また、上記アクリル系重合体(A)は、酢酸ビニル、スチレン、ビニルアセテートなどが共重合されていてもよい。
 エネルギー線重合性化合物(B)は、紫外線、電子線等のエネルギー線の照射を受けると重合する化合物である。このエネルギー線重合性化合物の例としては、エネルギー線重合性基を有する低分子量化合物(単官能、多官能のモノマーおよびオリゴマー)が挙げられ、具体的には、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ジシクロペンタジエンジメトキシジアクリレート、イソボルニルアクリレートなどの環状脂肪族骨格含有アクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレートオリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート、イタコン酸オリゴマーなどのアクリレート系化合物が用いられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、分子量が100~30000、好ましくは300~10000程度である。
 一般的には成分(A)100重量部に対して、成分(B)は10~400重量部、好ましくは30~350重量部程度の割合で用いられる。
 上記成分(A)および(B)の性質を兼ね備えるエネルギー線重合型粘着性重合体(AB)は、主鎖または側鎖に、エネルギー線重合性基が結合されてなる。
 エネルギー線重合型重合体(AB)の主骨格は特に限定はされず、上述のアクリル系重合体(A)と同じものとすることができる。
 エネルギー線重合型重合体(AB)の主鎖または側鎖に結合するエネルギー線重合性基は、たとえばエネルギー線重合性の炭素-炭素二重結合を含む基であり、具体的には(メタ)アクリロイル基等を例示することができる。エネルギー線重合性基は、アルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基を介してエネルギー線重合型粘着性重合体に結合していてもよい。
 エネルギー線重合型重合体(AB)の重量平均分子量(Mw)は、10万~200万であることが好ましく、30万~150万であることがより好ましい。また、分子量分布(Mw/Mn、Mnは数平均分子量)は1.0~10であることが好ましく、1.0~3.0であることがより好ましい。また、エネルギー線重合型重合体(AB)のガラス転移温度(Tg)は、好ましくは-70~30℃、より好ましくは-60~20℃の範囲にある。
 エネルギー線重合型重合体(AB)は、例えば、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を含有するアクリル系重合体と、該官能基と反応する置換基およびエネルギー線重合性炭素-炭素二重結合を1分子毎に1~5個を有する重合性基含有化合物とを反応させて得られる。かかるアクリル系重合体は、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を有する(メタ)アクリル酸エステルモノマーまたはその誘導体と、前述した成分(A)を構成するモノマーとから共重合することで得られる。また、該重合性基含有化合物としては、(メタ)アクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート;(メタ)アクリル酸等が挙げられる。かかる製法により得られたエネルギー線重合型重合体(AB)においては、上述のエネルギー線重合型重合体(AB)の重量平均分子量(Mw)、分子量分布(Mw/Mn)、ガラス転移温度(Tg)は、重合性基含有化合物と反応させる前のアクリル系重合体のものを指す。
 エネルギー線重合性化合物(B)またはエネルギー線重合型重合体(AB)には、光重合開始剤を併用することが好ましい。光重合開始剤としては、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィンオキサイド化合物、チタノセン化合物、チオキサントン化合物、パーオキサイド化合物等の光開始剤、アミンやキノン等の光増感剤などが挙げられ、具体的には、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ジベンジル、ジアセチル、β-クロールアンスラキノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドなどが例示できる。光重合開始剤の併用により、エネルギー線として紫外線を用いる場合に、光重合開始剤を配合することにより照射時間、照射量を少なくすることができる。この光重合開始剤の配合量は特に限定されないが、エネルギー線重合性化合物(B)およびエネルギー線重合型粘着性重合体(AB)の合計100質量部(固形分、以下同じ)に対して、0.5質量部以上10質量部以下とすることが好ましい。
 さらに、粘着剤組成物には、各種物性を改良するため、必要に応じ、その他の成分(架橋剤等)が含まれていてもよい。架橋剤としては、有機多価イソシアナート化合物、有機多価エポキシ化合物、有機多価イミン化合物等があげられる。この架橋剤の配合量は特に限定されないが、アクリル系重合体(A)およびエネルギー線重合型重合体(AB)の合計100質量部に対して、0.2質量部以上10質量部以下とすることが好ましい。
 上記のようなアクリル系重合体(A)およびエネルギー線重合性化合物(B)を含むアクリル系粘着剤または、エネルギー線重合型粘着性重合体(AB)を含むアクリル系粘着剤は、エネルギー線照射により重合する。エネルギー線としては、電離放射線、すなわち、X線、紫外線、電子線などが挙げられる。これらのうちでも、比較的照射設備の導入の容易な紫外線が好ましい。
 電離放射線として紫外線を用いる場合には、取り扱いのしやすさから波長200~380nm程度の紫外線を含む近紫外線を用いればよい。紫外線量としては、エネルギー線重合性化合物(B)の種類や粘着剤層3の厚さに応じて適宜選択すればよく、通常50~500mJ/cm程度であり、100~450mJ/cmが好ましく、200~400mJ/cmがより好ましい。また、紫外線照度は、通常50~500mW/cm程度であり、100~450mW/cmが好ましく、200~400mW/cmがより好ましい。紫外線源としては特に制限はなく、例えば高圧水銀ランプ、メタルハライドランプ、UV-LEDなどが用いられる。
 電離放射線として電子線を用いる場合には、その加速電圧については、エネルギー線重合性化合物(B)の種類や粘着剤層3の厚さに応じて適宜選定すればよく、通常加速電圧10~1000kV程度であることが好ましい。また、照射線量は、エネルギー線重合性化合物(B)が適切に重合する範囲に設定すればよく、通常10~1000kradの範囲で選定される。電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。
 粘着剤層3の厚さは、好ましくは1μm以上15μm以下、さらに好ましくは2μm以上10μm以下、特に好ましくは3μm以上8μmの範囲である。粘着剤層3が過度に厚い場合には、第1のシート1の材質や厚さを制御しても、使用時に第1のシート1と粘着剤層3との積層体を透過して板状部材に到達するレーザーの強度や位相の均一性を所望の範囲とすることが困難となることもある。また、本発明に係るレーザーダイシングシート-剥離シート積層体をステルスダイシング法に用いる場合には、粘着剤層3が厚いとエキスパンド時の基材の変形が半導体ウエハに伝播しがたくなり、半導体ウエハの分割に不具合を生じる懸念がある。粘着剤層3が過度に薄い場合には、粘着剤層が使用時に板状部材を適切に固定できなくなることもある。
(3)剥離シート
 本発明の第1の実施形態に係るDR積層体100は、レーザーダイシングシート10の粘着剤層3の第1のシート1に対向する側と反対側の面(使用時に板状部材が貼付される面)に、その使用時まで粘着剤層を保護するために剥離シート11が積層されている。
 上記の目的を果たすことができる限り、剥離シート11を構成する材料は任意であり、プラスチックフィルムからなる支持フィルムに剥離剤を塗布したものが例示される。プラスチックフィルムの具体例として、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルフィルム、およびポリプロピレンやポリエチレンなどのポリオレフィンフィルムが挙げられる。これらのうちでも、伸縮性が小さく、寸法安定性、平滑性に優れるポリエステルフィルムが好ましい。剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系などを用いることができるが、これらの中で、安価で安定した性能が得られるシリコーン系が好ましい。上記の剥離シート11の支持フィルムをなすプラスチックフィルムが単独で剥離シートとして機能してもよい。すなわち、この支持フィルムの面から剥離面が構成されていてもよい。支持フィルムがポリエステルフィルムである場合には、通常そのままでは粘着剤に対する離型性を有しないため、剥離剤を塗布して剥離面とすることが好ましい。あるいは、上記の剥離シート11のプラスチックフィルムからなる支持フィルムに代えて、グラシン紙、コート紙、上質紙などの紙基材または紙基材にポリエチレンなどの熱可塑性樹脂をラミネートしたラミネート紙を用いてもよい。剥離シート11の厚さについては特に制限はないが、通常20μm以上250μm以下程度である。
 剥離シート11における、レーザーダイシングシート10(具体的には、レーザーダイシングシート10の粘着剤層3)に対向する側と反対側の面(本明細書において「剥離シート11の背面」ともいう。)は、算術平均粗さRaが0.1μm以下であることが好ましい。剥離シート11の背面の全面について算術平均粗さRaが0.1μm以下であってもよいし、複数のDR積層体100が積層されたときにレーザー照射領域に接する領域の算術平均粗さRaが0.1μm以下であってもよい。
 あるDR積層体(本段落の説明において「第1のDR積層体」という。)100に対して、他のDR積層体(本段落の説明において「第2のDR積層体」という。)100(第1のDR積層体100と第2のDR積層体とは連続的に構成されたDR積層体の一部同士であってもよい。)が、第1のDR積層体100の剥離シート11の背面と第2のDR積層体100の第1のシート1の背面のレーザー照射領域とが重なるように積層された場合に、第1のDR積層体100の剥離シート11の背面が過度に粗な面であると、その剥離シート11の背面の凹凸形状が、第2のDR積層体100の第1のシート1の背面のレーザー照射領域に押し当てられることによって、その第1のシート1の背面のレーザー照射領域に、第1のDR積層体100の剥離シート11の背面に由来する凹凸形状が形成され、結果的に、第2のDR積層体100の第1のシート1の背面のレーザー照射領域の算術平均粗さが大きくなるということが生じうる。このように、第2のDR積層体100の第1のシート1の背面のレーザー照射領域の算術平均粗さが大きくなると、その第1のシート1におけるレーザー照射領域を含む部分においてレーザー光の透過性が低下するおそれが高まる。したがって、上記のように、第1のDR積層体100の剥離シート11の背面の算術平均粗さが適切な範囲に制御されている場合には、第1のDR積層体100の剥離シート11の背面の表面の凹凸形状に起因して、第2のDR積層体100の第1のシート1のレーザー照射領域を含む部分のレーザー光の透過性が低下しにくくなるため、好ましい。
 上記の透過性に関する不具合が発生する可能性をより安定的に低減させる観点から、剥離シート11の背面の算術平均粗さRaは0.08μm以下であることが好ましい。剥離シート11の背面の算術平均粗さRaの下限は特に限定されない。剥離シート11の背面を構成する部材の製造を容易にする観点などから、剥離シート11の背面の算術平均粗さRaは、0.01μm以上であることが好ましく、0.02μm以上であることがより好ましい。
 剥離シート11の形状も特に限定されないが、剥離シート11からレーザーダイシングシート10を剥離することが容易となるように、通常、剥離シート11の剥離面には、レーザーダイシングシート10の粘着剤層3側の面が貼付されていない領域が設けられている。
 剥離シート11の具体的形状の一例として、長尺形状が挙げられる。この場合におけるDR積層体100の形態の具体例は、複数のレーザーダイシングシート10が、剥離シート11の長尺方向に互いに離間して、剥離シート11の剥離面に貼付されてなる形態である。このとき、DR積層体100は長尺体のままで保管してもよいが、図2に示すように、DR積層体100の長尺方向の一方の端部を芯材Cに固定して巻き取り、巻取体100Aの形態で保管してもよい。図2は、そのような巻取体100Aの形態にあるDR積層体100が繰り出されている状態を概念的に示す斜視図である。
 剥離シート11の具体的形状の別の一例として、長尺ではない形状が挙げられる。この場合におけるDR積層体100の形態の具体例は、剥離シート11に1枚のレーザーダイシングシート10が貼付されてなる形態である。このとき、DR積層体100は、図3に示すように、その複数枚が、DR積層体100の厚さ方向に積層されたスタック体100Bの形態で保管してもよい。そのようなスタック体100Bの形態にあるDR積層体100を概念的に示す断面図を図3に示す。
(4)第2のシート
 本発明の第1の実施形態に係るDR積層体100が備えるレーザーダイシングシート10の第2のシート2は、第1のシート1の一方の面、具体的には、第1のシート1の粘着剤層3に対向する側と反対側の面(背面)上に積層される。
 第2のシート2は、平面視形状が環状である。第2のシート2の平面視形状が環状であることで、レーザーダイシングシート10の総厚みの厚い部分が平面視において偏って分布しがたくなる。その結果、厚い部分の偏在に起因して、DR積層体100を積み重ねた際に傾きが生じたり、偏在している厚い部分の痕跡がDR積層体100に残ったりするという事態を避けることが容易となる。ここで、環状とは、平面視(視点方向が主面の法線に平行な方向であることを意味する。)で完全な環状でなく、部分的に不連続となった形状(例えばC字形状)であってもよい。平面視で環状の内側の領域、つまり、平面視で第2のシート2に囲まれ第2のシート2が存在しない領域は、第1のシート1の背面が露出している。本明細書において、第1のシート1の背面におけるこの領域を「環内露出領域」ともいう。環内露出領域は、レーザーダイシングシート10の使用時にレーザーが照射される領域(レーザー照射領域)を含む。
 第2のシート2の第1のシート1に対する固定方法は特に限定されない。図1に示されるように、第2のシート2がベースフィルム21と接着剤層22とを備える構造を有し、その接着剤層21によって第2のシート2と第1のシート1とは固定されていてもよい。あるいは、これらのシートは熱融着のような方法で互いに直接接するように固定されていてもよい。
 第2のシート2は平面視形状が環状であるため、上記のように、DR積層体100が巻取体100Aやスタック体100Bの形態をしている場合であっても、その巻取体100Aやスタック体100BからDR積層体100(巻取体100Aの場合にはDR積層体100の一部、スタック体100Bの場合には1枚のDR積層体100)を取り出す作業を行った際に、DR積層体100におけるレーザーダイシングシート10が剥離シート11から剥がれてしまう不具合(DR積層体供給不良)が生じにくい。
 この点について、DR積層体100が巻取体100Aの形態をしている場合を具体例として、詳しく説明する。
 図4は、巻取体100AからDR積層体100が繰り出されて、長尺の剥離シート11に貼付しているレーザーダイシングシート10の1枚を剥離可能な状態にする直前の状態を概念的に示す部分断面図である。なお、図4に示される巻取体100Aは、長尺体の形態をなすDR積層体100が、巻取体100Aの巻芯Cの回転中心により近位な側(内周側)にレーザーダイシングシート10が配置され、巻取体100Aの巻芯Cの回転中心により遠位な側(外周側)に剥離シート11が配置されるように、巻き取りが行われたものである。
 本発明の第1の実施形態に係るDR積層体100では、巻取体100AからDR積層体100の繰り出しが行われると、最外周の剥離シート11aと、最外周の剥離シート11aの剥離面にその粘着剤層3側の面が貼付されるレーザーダイシングシート10と、最外周の剥離シート11aよりも一回り内周側の剥離シート11b(その剥離面と反対側の面(剥離シート裏面)は、レーザーダイシングシート10の第2のシート2側の面(基材背面)に接するように配置されている。)とからなる重積体において、レーザーダイシングシート10と剥離シート11bとの界面で剥離が生じ、適切に、レーザーダイシングシート10を剥離可能な状態とすることができる。
 これは、次に説明するように、レーザーダイシングシート10の第2のシート2における第1のシート1に対向する側と反対側の面(以下、「第2のシート2の背面」ともいう。)の剥離シート11bの剥離シート裏面に対する密着性が適切に制御されているためである。具体的には、第2のシート2の一方の面上に剥離シート11bの剥離面と反対側の面を載置して得られる重積体について、40℃、相対湿度80%の環境下にて剥離シート11bの剥離面側から19.6Nの荷重を1時間印加し、さらに23℃、相対湿度50%の環境下にて無荷重の状態で1時間静置し、静置後の前記重積体の剥離シート11bを180°引き剥がししたときに測定される剥離力が、50mN/50mm以下である。
 上記の剥離力を測定する試験の詳細について説明する。なお、レーザーダイシングシート10の第2のシート2および剥離シート11bは、これに代えて同材質の試験用シートを用いても剥離力に実質的な差異はないため、かかる試験用シートを用いた試験方法を説明する。まず、第2のシート2と同材質の試験用第2のシートおよび剥離シート11と同材質の試験用剥離シートを用意する。次に、図5(a)に示されるように、第2のシート2の第1のシート1に対向する側と反対側の面(第2のシート2の背面)に相当する試験用第2のシート51の一方の面、具体的にはベースフィルム511からなる面51aが露出するように、試験用第2のシート51を固定する。図5(a)では、試験用第2のシート51の接着剤層512によって、SUS製平板50に対して試験用第2のシート51は固定されている。続いて、試験用第2のシート51の一方の面51a上に試験用剥離シート52の剥離面と反対側の面52aを載置して重積体53を得る。
 この重積体53について、図5(b)に示されるように、40℃、相対湿度80%の環境下にて試験用剥離シート52の剥離面側から19.6Nの荷重を印加し、この状態で1時間置く。その後、荷重を除去し、さらに23℃、相対湿度50%の環境下にて無荷重の状態で1時間静置する。そして、この静置後の重積体53の試験用剥離シート52を180°引き剥がしながら剥離力を測定し、測定された剥離力によって密着性を評価する。以下、この剥離力を「剥離力A」ともいう。
 本発明の第1の実施形態に係るDR積層体100が備えるレーザーダイシングシート10の第2のシート2に対応する試験用第2のシート51と本発明の第1の実施形態に係るDR積層体100が備える剥離シート11に対応する試験用剥離シート52とを用いた場合には、この剥離力Aは50mN/50mm以下となる。この剥離力Aが50mN/50mm以下であることにより、巻取体100AからDR積層体100を繰り出した際に、レーザーダイシングシート10と内周側の剥離シート11bとの界面で剥離が生じることが安定的に実現される。
 この剥離力Aが50mN/50mm超の場合には、レーザーダイシングシート10と内周側の剥離シート11bとの界面で剥離よりも、レーザーダイシングシート10と外周側の剥離シート11aとの界面での剥離が生じる可能性が高まる。このような剥離が生じると、DR積層体100は適切に繰り出されず、レーザーダイシングシート10が内周側の剥離シート11bの外周側の面(剥離シート裏面)上に残留してしまう。このDR積層体供給不良が生じると、長尺体のDR積層体100は、その剥離シート11側の面にレーザーダイシングシート10が粘着剤層3を表出させた状態で存在することになり、剥離シート11を巻き取る際に通過するローラ(例えばピンチローラ)など繰り出しのための設備内の部品にこの粘着剤層3が付着するといった重大な不具合が生じる危険性が高まる。
 このようなDR積層体供給不良が生じる可能性をより安定的に低減させる観点から、上記の剥離力Aは、45mN/50mm以下であることが好ましく、40mN/50mm以下であることがより好ましい。上記の剥離力Aの下限は、DR積層体供給不良が生じる可能性を低減させる観点からは設定されない。
 上記の剥離力Aを50mN/50mm以下とするための手法は特に限定されない。具体例を挙げれば次のとおりである。
(第1の例)
 第1の例として、第2のシート2の第1のシート1に対向する側と反対側の面(第2のシート2の背面)の表面粗さを制御することが挙げられる。第2のシート2の背面の表面粗さを大きくする、つまり粗な面とすることによって、第2のシート2の背面と剥離シート11の剥離シート裏面との真実接触面積を小さくすることができ、このとき、剥離力Aは低下する。
 第2のシート2の背面の表面粗さをどの程度に設定すれば、上記の剥離力Aが50mN/50mm以下に制御されるかは、第2のシート2の背面を構成するベースフィルムの材質、剥離シート裏面を構成する剥離シート11の支持フィルムの材質および剥離シート裏面の表面粗さ、保管状態において重なり合うDR積層体100同士の加圧力などによって変動するため、確定的に規定することはできない。ただし、第2のシート2の背面の算術平均粗さRaが0.3μm以上であれば、剥離力Aを50mN/50mm以下とすることがより安定的に実現される。特に、第2のシート2の背面を構成するベースフィルムがポリオレフィンのような比較的剛直さに劣る材料からなる場合であっても、その背面の算術平均粗さRaが0.3μm以上である第2のシート2を用いることにより、剥離力Aを50mN/50mm以下に制御することがより安定的に実現される。第2のシート2の背面の算術平均粗さRaの調整は、第1のシート1の背面の算術平均粗さRaの調整と同様の方法で行うことができ、また、サンドブラスト処理等の粗面化処理により調整してもよい。
 上述の第1のシートの背面の算術表面粗さRaについて見たように、レーザーダイシングシートのレーザー照射領域を構成する材料として、算術表面粗さRaが大きい材料を用いることは困難である。使用時にレーザーが照射される側の面の算術表面粗さRaを、レーザーの透過性とDR積層体供給不良の防止を両立できるような、大きすぎず、小さすぎない程度に調整することも考えられるが、結局いずれの性能も不十分となる結果を生じかねない。しかしながら、本発明の第1の実施形態に係るレーザーダイシングシート10は、第2のシート2を備えることにより、本例のように、レーザー照射領域を構成する材料として使用時にレーザーが照射される側の面の算術表面粗さRaが大きい材料を用いることなく、レーザーダイシングシート10におけるレーザー照射領域を含む面と同じ側の面に、算術表面粗さRaが大きい面を設けることを実現し、その結果としてDR積層体供給不良が生じにくくすることを実現している。
(第2の例)
 第2の例として、第2のシート2の第1のシート1に対向する側と反対側の面(第2のシート2の背面)を構成する材料、具体的には、図1に示される第2のシート2ではベースフィルム21を構成する材料の種類を選択することが挙げられる。一般的な傾向として、当該材料は剛直な材料であることが好ましい。そのような特性を有し、市場からの入手が容易でかつ安価な材料として、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)などのポリエステル系材料が例示され、これらの中でも、ポリエチレンテレフタレート(PET)が特性、入手容易性およびコストのバランスに優れ、好ましい。
 一般的に、樹脂系材料は、これに含有される重合体に芳香族化合物に由来する構成単位を含ませることにより、剛直な特性を有することができる。しかしながら、そのような芳香族化合物含有樹脂系材料は、レーザーの吸収率、特に1064nmにおけるレーザーの吸収率が高い。このため、レーザーダイシングシートのレーザー照射領域を構成する材料として芳香族化合物含有樹脂系材料を用いることは困難である。しかしながら、本発明の第1の実施形態に係るレーザーダイシングシート10は、第2のシート2を備えることにより、本例のように、レーザー照射領域を構成する材料として芳香族化合物含有樹脂系材料を用いることなく、レーザーダイシングシート10におけるレーザー照射領域を含む面と同じ側の面に芳香族化合物含有樹脂系材料からなる材料の面を設けることを実現し、その結果としてDR積層体供給不良が生じにくくすることを実現している。
 第1の例、第2の例のいずれにおいても、剥離シート11を構成する材料を適宜に選択することによって、剥離力Aを50mN/50mm以下に制御することがさらに安定的に実現される。
 第2のシート2の厚さは特に限定されないが、過度に薄い場合にはエキスパンド工程で第2のシート2が破断することが懸念され、過度に厚い場合にはエキスパンド工程でリングフレームの引き落としが適切に行われなくなることが懸念される。したがって、第2のシート2の厚さは、10μm以上100μm以下とすることが好ましく、15μm以上60μm以下とすることがより好ましく、20μm以上40μm以下とすることが特に好ましい。
 第2のシート2の平面視で外周側縁部と第1のシート1の平面視で外周側縁部との位置関係は特に限定されない。第1のシート1の外側面と第2のシート2の外側面とがほぼ連続して一の面を形成していていもよいし、第1のシート1の外側面よりも第2のシート2の外側面の方が、第2のシートの主面内方向外向きに突出していてもよいし、その逆の関係であってもよい。ただし、第2のシート2の外側面よりも第1のシート1の外側面の方が平面視で過度に突出し、その結果、DR積層体100が使用前の保管状態において、第1のシート1の突出部分における粘着剤層3に対向する側と反対側の面(背面)が、別のDR積層体100が備える剥離シート11の剥離シート裏面に接する状態となると、この部分で第1のシート1の背面と剥離シート11の剥離シート裏面とが強く密着して、DR積層体供給不良を引き起こすことが懸念される。したがって、第2のシート2の外側面よりも第1のシート1の外側面の方が平面視で突出する場合には、このような問題が生じないようにするべきである。具体的には、この場合における突出幅は数mm以内とすることが好ましい。
2.レーザーダイシングシート
 本発明の第1の実施形態に係るレーザーダイシングシート10は、上記の本発明の第1の実施形態に係るDR積層体100から、剥離シート11を剥離させることによって得られる。
 本発明の第1の実施形態に係るレーザーダイシングシート10の第1のシート1は、第2のシート2が平面視で環状であることにより、その第2のシート2が積層される側の面は、第2のシート2に囲まれ第2のシートが積層されていない領域である環内露出領域を有する。そして、粘着剤層3の面における第1のシート1の環内露出領域に平面視で重なる領域は、半導体ウエハなどの板状部材が貼付される領域を含む。
 板状部材が貼付される領域が平面視で環内露出領域外に位置する部分を有すると、その部分では、第2のシート2を構成する材料によっては(具体的にはベースフィルム21がPETからなる場合が例示される。)、板状部材にレーザーが照射されない不具合が生じるおそれが生じる。したがって、板状部材が貼付される領域は、平面視でその全体が環内露出領域内に位置することが好ましい。このような関係をより安定的に実現する観点から、環内露出領域の平面視での内接円の直径は、上記の板状部材が貼付される領域の平面視での外接円の直径よりも2mm以上大きいことが好ましい。
3.DR積層体の製造方法
 本発明の第1の実施形態に係るDR積層体100の製造方法は特に限定されない。公知の塗布方法、貼付方法、切断方法(ハーフカットを含む。)、剥離方法などを適宜組み合わせて製造すればよい。以下に、第2のシート2が図1に示されるような構造を有するDR積層体100の製造方法の一例を示す。
 剥離シート11の剥離面上に、粘着剤層3を形成するための粘着剤組成物を塗布し、得られた塗膜を乾燥して、粘着剤層3を得る。塗布方法は任意であり、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、ナイフコーターなどが例示される。乾燥方法も任意であり、例えば80~120℃程度で数分間加熱することによって行ってもよいし、大気中に放置する風乾でもよい。こうして得られた粘着剤層3の剥離シート11に対向する側と反対側の面に第1のシート1を与える樹脂系フィルムを貼付して、剥離シート11、粘着剤層3、および第1のシート1を与える樹脂系フィルムがこの順に積層された第1の積層体を得る。一方、第2のシート2のベースフィルム21を与える樹脂系フィルム(以下「ベース用フィルム」ともいう。)および工程フィルムを用意し、工程フィルム上に接着剤層22を形成するための接着剤組成物を塗布する。なお、この塗布方法は上記の粘着剤組成物を塗布する場合と同様、特に限定されない。得られた塗膜を乾燥する(この乾燥方法も、上記の粘着剤組成物の塗膜を乾燥する場合と同様、特に限定されない。)。次いで、ベース用フィルムにおける第2のシート2の一部となったときに第1のシート1に対向する側の面に、工程フィルム上に形成された、接着剤層22を貼り合わせ、ベース用フィルム、接着剤層22を与える塗膜および工程フィルムが積層された接着シートを得る。この接着シートのベース用フィルム側の面から、第1のシートに形成されるべき環内露出領域と同形状に、ベース用フィルムおよび接着剤層22を与える塗膜をハーフカットによって切断し、環内露出領域と同形状の部分を除去する。そして、接着シートから工程フィルムを除去し、第1の積層体の第1のシート1を与える樹脂系フィルム側の面と、接着シートの接着剤層22側の面とを貼合して、DR積層体100の原反を得る。
 次に、DR積層体100の原反のベース用フィルム側の面から、ベース用フィルム、接着剤層22および第1のシート1を与える樹脂系フィルムをハーフカットによって切断し、不要な部分を除去して、レーザーダイシングシート10の外部形状を切り出す。こうして剥離シート11上に、レーザーダイシングシート10が積層されたDR積層体100が得られる。なお、接着剤層22および必要に応じ粘着剤層3が適切な密着性を有するように、加熱、養生などの処理をさらに行ってもよい。
4.チップ体の製造方法
 以下、本発明の第1の実施形態に係るDR積層体100から剥離シート11を剥離して得られるレーザーダイシングシート10を用いて、チップ体を製造する方法の一例を説明する。
 まず、レーザーダイシングシート10の粘着剤層3における第1のシート1に対向する側と反対側の面の所定の領域に、板状部材を貼付する。この所定の領域とは、前述のように、平面視で環内露出領域と重なる部分である。板状部材としては、半導体ウエハ、ガラス基板、セラミック基板、FPC等の有機材料基板、精密部品等の金属系材料からなる部材などが例示される。また、板状部材が半導体ウエハなどであって回路がすでに形成されている場合には、回路が形成された面が粘着剤層3に対向するように貼付されてもよいし、回路が形成されていない裏面が粘着剤層3に対向するように貼付されてもよい。なお、リングフレームを用いる場合には、この板状部材の貼付に合わせて、レーザーダイシングシート10の粘着剤層3にリングフレームを貼付すればよい。図6は、このようにして、レーザーダイシングシート10の粘着剤層3に板状部材61およびリングフレーム62が貼付された状態を概念的に示す断面図である。
 次に、レーザーダイシングシート10の第1のシート1の環内露出領域を入射面として第1のシート1および粘着剤層3を透過して板状部材61へと至るように、レーザーを照射する。この際、板状部材61の内部にてレーザーが集光されるように照射することが、第1のシート1や粘着剤層3に与えるダメージが少ないため、好ましい。レーザー光源は、波長および位相が揃った光を発生させる装置であり、レーザー光の種類としては、パルスレーザー光を発生するNd-YAGレーザー、Nd-YVOレーザー、Nd-YLFレーザー、チタンサファイアレーザーなど多光子吸収を起こすものを挙げることができる。レーザー光の波長は、800~1100nmが好ましく、1064nmがさらに好ましい。
 板状部材61内部に照射されたレーザー光によって、板状部材61の切断予定ラインに沿ってその内部に改質部が形成され、ダイシングラインとなる。ひとつの切断予定ラインをレーザー光が走査する回数は1回であっても複数回であってもよい。好ましくは、レーザー光の照射位置と、回路間の切断予定ラインの位置をモニターし、レーザー光の位置合わせを行いながら、レーザー光の照射を行う。このときの位置合わせのために別途レーザー光を照射してもよい。
 こうしてレーザー照射が終了したら、レーザー照射後の板状部材が貼付しているレーザーダイシングシート10をエキスパンド装置などを用いてシートの主面内方向外向きに伸長させる。このレーザーダイシングシート10の伸長に合わせて板状部材に引張力が加えられ、この引張力によって板状部材内の改質部が脆性破壊する。その結果、板状部材61はダイシングラインに沿って切断されて個片化し、その分割されてなる個片のそれぞれとしてチップ体が得られる。
 レーザーダイシングシート10の伸長方法は、個片化すべき板状部材61の種類、板状部材61の内部に形成された改質部の構造・組成などに応じて適宜設定すればよいが、通常、5~600mm/分の速度で5~50mm程度伸長される場合が多い。得られたレーザーダイシングシート10上のチップ体71は、ピックアップ工程の実施によって個別に取り出されてもよいし、その前に破砕粉等を除去するための洗浄工程などが実施されてもよい。
II 第2の実施形態
 以下、本発明の第2の実施形態について説明する。
1.レーザーダイシングシート-剥離シート積層体
 図7に示されるように、本発明の第2の実施形態に係るレーザーダイシングシート-剥離シート積層体(DR積層体)200は、基材201および基材201の一方の面に積層された粘着剤層203を備えるレーザーダイシングシート210と、剥離シート211とを備え、剥離シート211は、レーザーダイシングシート210の粘着剤層203側の面にその剥離面が対向するように積層されている。
(1)基材1
 本発明の第2の実施形態に係るレーザーダイシングシート210が備える基材21は、レーザー光を適切に透過させるという機能(以下、「レーザー透過機能」ともいう。)と、剥離シート裏面に対する密着性を低下させるという機能(以下、「密着性低減機能」ともいう。)とを有する。
 本発明の第2の実施形態に係る基材201は、図8に示されるように、上記の二つの機能を併せ持つために、単独の層状体からなる基材背面201A(基材201における粘着剤層203に対向する側と反対側の面、すなわち、レーザーダイシングシートとしての基材側の面)に、第1の領域201aおよび第2の領域201bを備える。
i)第1の領域
 本明細書において、「第1の領域」201aとは、基材背面201Aにおける表面の粗さが、算術平均粗さRaで0.1μm未満である部分をいう。ここで、算術平均粗さRaは、接触式表面粗さ計により測定された、JIS B0601:2001に準拠した特性であり、以下において同様である。第1の領域201a内に、使用時にレーザーが入射されるレーザー入射領域201cが含まれる。図8では、第1の領域201a全面がレーザー入射領域201cとなっている。上記のとおり第1の領域201aは算術平均粗さRaが低い平滑面となっているため、第1の領域201aの面内に設定されるレーザー入射領域201cにおいて入射してきたレーザーが反射したり散乱したりする可能性が低減されている。算術平均粗さRaが小さくなるほど、レーザーの透過性は高まるため、第1の領域201aにおける算術平均粗さRaは、小さければ小さいほど好ましく、その下限は特に限定されない。基材201を構成する部材の製造上の制限などにより、通常、この算術平均粗さRaは0.01μm程度が下限となる。第1の領域201aの算術平均粗さRaを調整は公知の方法により行うことができる。たとえば押出し成型により基材201を与えるフィルムを製造する場合に、冷却ロールの表面形状を転写させることにより行うことができる。また、基材201が延伸フィルムである場合の基材201を与えるフィルムの製造において、フィルムの材料に添加する充填材の量やサイズの変更により行うことができる。また、液状物をキャストし、硬化させてフィルムを得る場合にはキャストに用いる工程フィルムの粗さを調整することにより行うことができる。
ii)第2の領域
 本明細書において、「第2の領域」201bとは、基材背面201Aにおける表面の粗さが、算術平均粗さRaで0.3μm以上である部分をいう。この第2の領域201bは、上記のレーザー入射領域201cよりも平面視(視線の方向が主面の法線に平行であるこという。)でレーザーダイシングシート201の外周側に設けられる。そのような配置関係の一例として、図8には、平面視で円状をなすレーザー入射領域201c(図8において、第1の領域201aとレーザー入射領域201cは一致している。)の外周側(基材背面201Aの面内方向でレーザー入射領域201cの中心から離間する向き)に、平面視で環状をなす第2の領域201bが配置された基材背面201Aが示されている。ここで、図8に示される基材背面201Aでは、レーザー入射領域201c(すなわち第1の領域201a)の外周端と第2の領域201bの内周端とは連続している。なお、「環状」なる用語の概念には、図8に示されるように平面視で完全な環状のみならず、部分的に不連続となった場合(例えばC字形状)や、多数の領域が全体として環状をなす場合(例えば放射環形状)も含まれるものとする。
 以下、図8のように第2の領域201bが平面視で完全な環状であって、その内周側は全体が第1の領域201aである場合を一具体例として、第2の領域201bによりもたらされる基材201の密着性低減機能について説明する。また、図9に示されるように、DR積層体200が、複数のレーザーダイシングシート210が長尺の剥離シート211の剥離面に当該シート211の長尺方向に平行な方向に並んで積層されてなる長尺体の形態で形成され、この長尺体が巻芯200Cを中心として長尺方向に巻き取られて巻取体200Aの形態で保管されている場合を具体例とする。
 図10は、巻取体200AからDR積層体200が繰り出されて、長尺の剥離シート211に貼付しているレーザーダイシングシート210の1枚を剥離可能な状態にする直前の状態を概念的に示す部分断面図である。なお、図10に示される巻取体200Aは、長尺体の形態をなすDR積層体200が、巻取体200Aの巻芯200Cの回転中心により近位な側(内周側)にレーザーダイシングシート210が配置され、巻取体200Aの巻芯200Cの回転中心により遠位な側(外周側)に剥離シート211が配置されるように、巻き取りが行われたものである。
 本発明の第2の実施形態に係るDR積層体200では、巻取体200AからDR積層体200の繰り出しが行われると、最外周の剥離シート211aと、最外周の剥離シート211aの剥離面にその粘着剤層203側の面が貼付されるレーザーダイシングシート210と、レーザーダイシングシート210の基材背面201Aにその剥離面と反対側の面(剥離シート裏面)が接するように配置された、最外周の剥離シート211aよりも一回り内周側の剥離シート211bとからなる重積体において、レーザーダイシングシート210と剥離シート211bとの界面で剥離が生じ、適切に、レーザーダイシングシート210を剥離可能な状態とすることができる。
 本発明の第2の実施形態に係るレーザーダイシングシート210では、上記のように、基材背面201Aは、相対的に粗な面(算術平均粗さRaが0.3μm以上)からなる第2の領域201bが平面視で環状に配置され、その内周側に相対的に平滑な面(算術表面高さRaが0.1μm未満)からなる第1の領域201aが配置されているため、基材背面201Aと剥離シート211bとの剥離が行われる場合には、常に、相対的に粗な面の第2の領域201bと剥離シート211bの裏面との界面から剥離が行われ、相対的に平滑な第1の領域201aと剥離シート211bの裏面との界面が剥離の開始点となることはない。
 これに対し、例えば、基材背面201Aが相対的に平滑な第1の領域201aのみからなる場合には、平滑な第1の領域201aと剥離シート211bの裏面との密着性が粘着剤層203と剥離シート211の剥離面との密着性に勝り、粘着剤層203と剥離シート211の剥離面との界面において剥離して、第1の領域21aからなる基材背面201Aと剥離シート211bの裏面とは密着したままとなってしまい、DR積層体供給不良に至ってしまう。このDR積層体供給不良が生じると、長尺体のDR積層体200は、その剥離シート211側の面にレーザーダイシングシート210が粘着剤層203を表出させた状態で存在することになり、剥離シート211を巻き取る際に通過するローラ(例えばピンチローラ)など繰り出しのための設備内の部品にこの粘着剤層203が付着するといった重大な不具合が生じる危険性が高まる。
 このようなDR積層体供給不良の発生をより安定的に抑制する観点から、第2の領域の面粗さは算術平均粗さRaで0.5μm以上であることが好ましく、0.7μm以上であることがより好ましい。第2の領域の算術平均粗さRaの上限としては、3μm程度である。
iii)基材の材質、物性等
 本具体例に係る基材201は、ダイシング工程にあたりレーザー入射領域201cにおいてレーザー光を透過させる機能を有し、ダイシング工程の後に行われるエキスパンド工程などにおいて破断しない限り、その構成材料は特に限定されない。基材201の材質に関する特徴(樹脂系材料の種類、添加剤の種類等)、光学特性(波長1064nmにおける直線透過率、紫外線に対する透過性等)、機械特性(破断伸度等)などは、前述の第1の実施形態に係るDR積層体100が備えるダイシングシート10の第1のシート1と同様であるから、説明を省略する。
 基材201の23℃におけるヤング率は、30MPa以上600MPa以下であることが好ましく、50MPa以上500MPa以下であることがより好ましく、100MPa以上400MPa以下であることが特に好ましい。23℃におけるヤング率が30MPa以上600MPa以下であるである基材201は、エキスパンド工程の際に均一に伸長されやすいため、かかる工程の適性に優れ、特にステルスダイシング法を採用した場合に、レーザーダイシングシート210上の板状部材が適切に割断されなかったり板状部材が割断されてなるチップ体の整列方向にばらつきが生じたりする不具合が生じにくい。基材201のヤング率が上記のような範囲にあると、基材201の基材背面201Aに粗である領域が設けられていない場合に、DR積層体の基材背面と、当該背面に接する別のDR積層体の剥離シート裏面との密着性が高まる傾向がある。これは、基材201が接触している他の材料表面への凹凸に追従しやすくなることなどが理由と考えられる。しかしながら、基材201がかかるヤング率を有している場合であっても、本発明の第2の実施形態に係るレーザーダイシングシート210では、上述したように基材背面201Aが相対的に粗な面からなる第2の領域201bが設けられているために、DR積層体供給不良を防止することができる。
 基材201の厚さはレーザーダイシングシート210が前述のダイシング工程やエキスパンド工程において適切に機能できる限り、限定されない。過度に薄い場合には、製造過程や使用時に破断しやすくなることが懸念される。一方基材201は、ステルスダイシングに用いられる光源の波長1064nmにおける位相差を100nm以下とすることが、ダイシング工程の加工品質および加工精度を高める観点から好ましいところ、基材201が過度に厚い場合には、基材201の材質を調整しても、上記の位相差を100nm以下とすることが困難となることが懸念される。したがって、基材1の厚さは20μm以上150μm以下であることが好ましく、40μm以上100μm以下であることより好ましく、50μm以上90μm以下であることが特に好ましい。
 図8に示される構成では、基材201の基材背面201Aは、前述のように、平面視で第1の領域201aとレーザー照射領域201cは一致し、レーザーダイシングを行う場合には、通常は板状部材の端部に到るまでレーザーを照射するため、ダイシング加工される板状部材が貼付される粘着剤層203の領域(本明細書において「部材貼付領域」ともいう。)は、平面視でレーザー照射領域201c、すなわち第1の領域201a内に含まれる。
iv)基材201の製造方法
 上記のように、レーザー透過機能を考慮して基材201の材質を設定する場合には、まず、そのままで基材201の背面201Aにおける第1の領域が上述の条件を満たすこととなる基材201の構成材料、つまり、少なくとも一方の面の算術平均粗さRaで0.1μm未満となるような表面粗さの面を有する基材201の構成材料を用意する。その後、基材201の構成材料の上記の一方の面の所定の場所に任意の粗面化処理を施すことによって、密着性低減機能を担う第2の領域となるべき部分を形成すればよい。粗面化処理の詳細は限定されず、サンドブラスト処理、プラズマアッシング処理、エッチング処理(湿式/乾式)、転造など公知の手段を用いればよい。生産コスト、他の製造工程との兼ね合い、設計自由度などを考慮すると、サンドブラストによる処理が好ましい。
 基材201の平面視形状(主面の法線に平行な方向から見た形状)は、被加工物である半導体ウエハなどの板状部材をレーザーダイシングシート210の粘着剤層203側の面の中心を含む領域に貼付したときに、その周囲に、運搬などの際に用いるリングフレームに貼付される領域が十分に確保され、かつ、これらの半導体ウエハに貼付された領域とリングフレームに貼付された領域との間に、適切な領域が確保され、エキスパンド工程においてリングフレームを引き落とす際の支点となる治具を取りつけ、その治具と半導体ウエハを個片化して得られた複数のチップ体との間に伸長後も平面視である程度(数mmから数cm)の間隙が設定されるような形状であれば、特に限定されない。通常は、基材201の平面視形状はリングフレームの内周が作る形状に対応して円に近い形状とされる。 
v)変形例等
 基材201の背面201Aは、上記のとおり、レーザー入射領域201cを含む第1の領域201aと第2の領域201bとを備えていればよく、これらの領域以外の領域を含んでいてもよいし、含んでいなくともよい。すなわち、基材背面201Aは、第1の領域201aと第2の領域201bとから構成されていてもよいし、さらに別の領域(本明細書において「第3の領域」と総称する。)を備えていてもよい。第1の領域201aの特徴および第2の領域201bの特徴から導き出される第3の領域の特徴は、その表面の粗さが算術平均粗さRaで0.1μm以上0.3μm未満であることとなる。上記のようにサンドブラスト処理によって第2の領域を形成する場合には、マスキングなどの手法を用いても、結果的に第1の領域と第2の領域との間に第3の領域に相当する表面粗さを有する領域が形成される場合もある。
 基材背面201Aにおける第1の領域と第2の領域との配置関係は、前述のように、第1の領域201a内に設定されるレーザー入射領域201cよりも平面視でレーザーダイシングシート201の外周側に第2の領域201bが設けられる以外は、特に限定されない。図8に示されるように、第2の領域が平面視で完全な環状であってその平面視で内周側に第1の領域が配置されていてもよいが、他の構成であってもよい。例えば、DR積層体200が巻取体200Aの形態で保管される場合には、繰り出しの際にレーザーダイシングシート210の基材背面201Aにおける長尺方向繰り出し先端側の端部に相当する位置にのみ第2の領域が形成されていてもよい。巻取体200Aの場合には、繰り出しの際に、レーザーダイシングシート210が適切に剥離するか否かは、レーザーダイシングシート210の長尺方向繰り出し先端側端部における、粘着剤層203側の面と最外周の剥離シート211aの剥離面との密着性(以下、「外側密着性」という。)と、基材背面201Aと一層内周側の剥離シート211bの裏面との密着性(以下、「内側密着性」という。)との大小関係に依存するところが大きいため、基材背面201Aの長尺方向繰り出し先端側端部を粗面化するだけで、外側密着性が相対的に低下するようにすることができる。
 DR積層体からレーザーダイシングシート210を取り出すために剥離シート211を引き出す際の方向が必ずしも一定でない場合には、全面が平滑面(つまり第1の領域201aに相当する面)である基材背面201Aに対して、小円状の第2領域201bをそれらの中心を結ぶ線が円を描くように複数形成することが一例として挙げられる。サンドブラスト処理で第2の領域201bを形成する場合には、基材背面201Aから所定の距離の位置にノズルを配置して、所定の時間サンドブラスト処理をして、ノズルの位置を基材背面201Aの面内方向に移動させてまた所定の時間サンドブラスト処理をする、といった作業によって、上記のような構成の基材背面201Aを構成することができる。
(2)粘着剤層
 本発明の第2の実施形態に係るDR積層体200が備えるダイシングシート210の粘着剤層203の特徴(材料的特徴、形状的特徴(厚さ))は、本発明の第1の実施形態に係るDR積層体100が備えるダイシングシート10の粘着剤層3と同様であるから、説明を省略する。
(3)剥離シート
 本発明の第2の実施形態に係るDR積層体200は、レーザーダイシングシート210の粘着剤層203の基材1に対向する側と反対側の面(使用時に板状部材が貼付される面)に、その使用時まで粘着剤層を保護するために剥離シート211が積層されている。かかる剥離シート211の材料的特徴、剥離シート211の厚さについての特徴および剥離シート211の背面の算術平均粗さRaについての特徴は、本発明の第1の実施形態に係るDR積層体100が備える剥離シート11が有する特徴と同様であるから、説明を省略する。
 剥離シート211の形状も特に限定されないが、剥離シート211からレーザーダイシングシート210を剥離することが容易となるように、通常、剥離シート211の剥離面には、レーザーダイシングシート210の粘着剤層203側の面が貼付されていない領域が設けられている。
 剥離シート211の具体的形状の一例として、長尺形状が挙げられる。この場合におけるDR積層体200の形態の具体例は、複数のレーザーダイシングシート210が、剥離シート211の長尺方向に互いに離間して、剥離シート211の剥離面に貼付されてなる形態である。このとき、DR積層体200は長尺体のままで保管してもよいが、図9に示すように、DR積層体200の長尺方向の一方の端部を芯材200Cに固定して巻き取り、巻取体200Aの形態で保管してもよい。図9は、そのような巻取体200Aの形態にあるDR積層体200が繰り出されている状態を概念的に示す斜視図である。
 剥離シート211の具体的形状の別の一例として、長尺ではない形状が挙げられる。この場合におけるDR積層体200の形態の具体例は、剥離シート211に1枚のレーザーダイシングシート210が貼付されてなる形態である。このとき、DR積層体200は、その複数枚が、DR積層体200の厚さ方向に積層されたスタック体200Bの形態で保管してもよい。そのようなスタック体200Bの形態にあるDR積層体200を概念的に示す断面図を図11に示す。
2.レーザーダイシングシート
 本発明の第2の実施形態に係るレーザーダイシングシート210は、上記の本発明の第2の実施形態に係るDR積層体200から、剥離シート211を剥離させることによって得られる。
 本発明の第2の実施形態に係るレーザーダイシングシート210の基材201は、基材背面201Aにレーザー照射領域201cを含む第1の領域201aと、レーザー照射領域201cの平面視でレーザーダイシングシート210の外周側に第2の領域201bとを備える。この第1の領域201aがレーザー透過機能を果たし、第2の領域201bが密着性低減機能を果たす。したがって、本発明の第2の実施形態に係るレーザーダイシングシート210はレーザー光を使用するダイシング工程におけるダイシングシートとして好適に用いることができる上に、このレーザーダイシングシート210と剥離シート211とからなるDR積層体200においてDR積層体供給不良が生じにくい。
3.DR積層体の製造方法
 本発明の第2の実施形態に係るDR積層体200の製造方法は特に限定されない。公知の塗布方法、貼付方法、切断方法(ハーフカットを含む。)、剥離方法、粗面化処理などを適宜組み合わせて製造すればよい。以下に、図7に示されるような構造を有するDR積層体200の製造方法の一例を示す。
 剥離シート211の剥離面上に、粘着剤層203を形成するための粘着剤組成物を塗布し、得られた塗膜を乾燥して、粘着剤層203を得る。塗布方法は任意であり、ダイコーター、カーテンコーター、スプレーコーター、スリットコーター、ナイフコーターなどが例示される。乾燥方法も任意であり、例えば80~120℃程度で数分間加熱することによって行ってもよいし、大気中に放置する風乾でもよい。一方、少なくとも一方の面について、表面粗さが算術平均粗さRaで0.1μm未満の基材201を与える樹脂系フィルムを用意する。この樹脂系フィルムの表面粗さが上記のように調整された面と反対側の面を、前述の粘着剤組成物を用いて得られた粘着剤層203の剥離シート211に対向する側と反対側の面に貼付して、剥離シート211、粘着剤層203、および基材201を与える樹脂系フィルムがこの順に積層されたDR積層体200の原反を得る。
 このDR積層体200の原反の基材201側の面、すなわち前述の表面粗さが調整された面に、サンドブラスト装置を用いて、第2の領域201bの形状対応した領域にサンドブラスト処理を行う。図8に示されるように第2の領域201bの形状が円環上である場合には、これに対応して円環状の領域にサンドブラスト処理を行えばよい(後述するように、円環状の領域の外側に位置する不要部分は除去されるため、同時にサンドブラスト処理がされてもよい。)。また、円環状の領域の内側の部分がサンドブラスト処理されないようにするために、その部分に粘着フィルムを剥離可能に貼付しておくなどしてマスキングを行ってもよい。続いて、切断線により基材201の外形が形成されるように、ブラスト処理後の第1の積層体に対して、基材201側から、基材201および粘着剤層203を切断するハーフカット処理を行う。最後に、切断線の外側に位置する不要部分を除去することにより、剥離シート211の剥離面上に外径が等しい基材201と粘着剤層203とからなるレーザーダイシングシート210が積層されてなるDR積層体200が得られる。なお、基材背面201Aの外周側端部近傍に第2の領域201bが位置することが好ましいため、サンドブラスト処理により形成される粗面化された領域の外径は、円環状の第2の領域201bの外径よりもやや大きめにして、サンドブラスト処理に引き続いて行われるハーフカット処理を行うことにより形成される基材背面201Aの外周側端部が確実に粗面となるようにすることが好ましい。
4.チップ体の製造方法
 以下、本発明の第2の実施形態に係るDR積層体200から剥離シート211を剥離して得られるレーザーダイシングシート210を用いて、チップ体を製造する方法の一例を説明する。
 まず、レーザーダイシングシート210の粘着剤層203における基材201に対向する側と反対側の面の所定の領域に、板状部材を貼付する。この所定の領域とは、前述のように、平面視でレーザー照射領域201cと重なる部分である。板状部材としては、半導体ウエハ、ガラス基板、セラミック基板、FPC等の有機材料基板、精密部品等の金属系材料からなる部材などが例示される。また、板状部材が半導体ウエハなどであって回路がすでに形成されている場合には、回路が形成された面が粘着剤層203に対向するように貼付されてもよいし、回路が形成されていない裏面が粘着剤層203に対向するように貼付されてもよい。なお、リングフレームを用いる場合には、この板状部材の貼付に合わせて、レーザーダイシングシート210の粘着剤層203にリングフレームを貼付すればよい。図12は、このようにして、レーザーダイシングシート210の粘着剤層203に板状部材271およびリングフレーム272が貼付された状態を概念的に示す断面図である。
 次に、レーザーダイシングシート210の基材背面201Aのレーザー照射領域201cから基材201および粘着剤層203を透過して板状部材271へと至るように、レーザー光を照射する。この際、板状部材271の内部にてレーザーが集光されるように照射することが、基材201や粘着剤層203に与えるダメージが少ないため、好ましい。レーザー光源は、波長および位相が揃った光を発生させる装置であり、レーザー光の種類としては、パルスレーザー光を発生するNd-YAGレーザー、Nd-YVOレーザー、Nd-YLFレーザー、チタンサファイアレーザーなど多光子吸収を起こすものを挙げることができる。レーザー光の波長は、800~1100nmが好ましく、1064nmがさらに好ましい。
 板状部材271内部に照射されたレーザー光によって、板状部材271の切断予定ラインに沿ってその内部に改質部が形成され、ダイシングラインとなる。ひとつの切断予定ラインをレーザー光が走査する回数は1回であっても複数回であってもよい。好ましくは、レーザー光の照射位置と、回路間の切断予定ラインの位置をモニターし、レーザー光の位置合わせを行いながら、レーザー光の照射を行う。このときの位置合わせのために別途レーザー光を照射してもよい。
 こうしてレーザー照射が終了したら、レーザー照射後の板状部材271が貼付しているレーザーダイシングシート210をエキスパンド装置などを用いてシートの主面内方向外向きに伸長させる。このレーザーダイシングシート210の伸長に合わせて板状部材に引張力が加えられ、この引張力によって板状部材271内の改質部が脆性破壊する。その結果、板状部材271はダイシングラインに沿って切断されて個片化し、その分割されてなる個片のそれぞれとしてチップ体が得られる。
 レーザーダイシングシート210の伸長方法は、個片化すべき板状部材271の種類、板状部材271の内部に形成された改質部の構造・組成などに応じて適宜設定すればよいが、通常、5~600mm/分の速度で5~50mm程度伸長される場合が多い。得られたレーザーダイシングシート210上のチップ体は、ピックアップ工程の実施によって個別に取り出されてもよいし、その前に破砕粉等を除去するための洗浄工程などが実施されてもよい。
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
〔実施例1-1〕
(1)粘着剤層を形成するための塗工用組成物の調製
 アクリル系共重合体(2-エチルヘキシルアクリレート/酢酸ビニル/アクリル酸/メチルメタクリレート/2-ヒドロキシエチルメタクリレート=23.5/70/1/5/0.5(質量比)、Mw=60万、Mw/Mn=6.0、Tg=3℃)100重量部に対し、エネルギー線重合性化合物として、ポリプロピレングリコール(Mw=700)、イソホロンジイソシアネートおよび2-ヒドロキシプロピルアクリレートの共重合体からなる2官能ウレタンアクリレートオリゴマー(Mw=4000)80重量部、光重合開始剤(BASF社製「イルガキュア184」)3重量部およびイソシアネート系架橋剤(日本ポリウレタン社製「コロネートL」)2重量部を配合(すべて固形分換算による配合比)し、粘着剤層を形成するための塗工用組成物とした。
(2)第1のシートを与える樹脂系フィルムの用意
 厚さ80μmであって長尺のポリ塩化ビニル(PVC)フィルムを、第1のシートを与える樹脂系フィルムとして用意した。この樹脂系フィルムの特性は次のとおりであった。
  表面の算術平均粗さRa:0.03μm
  波長1064nmにおける直線透過率:92%
  波長1064nmにおける位相差:32nm
  ヤング率:280MPa
(3)第1の積層体の作製
 ポリエチレンテレフタレートフィルムを支持フィルムとし、長尺の剥離シート(リンテック社製「SP-PET3811」、厚さ:38μm、剥離面と反対側の面の算術平均粗さRa:0.035μm)の剥離面上に、上記の調製した粘着剤層を形成するための塗工用組成物を、乾燥後の厚さが5μmとなるように塗布した。得られた塗膜を100℃で1分間乾燥して、剥離シートと粘着剤層との積層体を得た。この積層体の粘着剤層側の面に、第1のシートを与える樹脂系フィルムの一方の面(上記の、表面の算術平均粗さRaを有する面と反対側の面)を貼付し、第1の積層体を得た。
(4)接着シートの作製
 アクリル系共重合体(ブチルアクリレート/アクリル酸=90/10(質量比)、Mw=80万)の100質量部およびイソシアネート系架橋剤(日本ポリウレタン社製「コロネートL」)を配合(すべて固形分換算による配合比)し、接着剤層を形成するための塗工用組成物とした。
 長尺のポリエチレンテレフタレートフィルム(厚さ:38μm、表面の算術平均粗さRa:0.02μm)を第2のシートのベースフィルムを与える樹脂系フィルム(ベース用フィルム)として用意した。また、工程フィルムとして、剥離処理されたポリエチレンテレフタレート(PET)フィルム(リンテック社製「SP-PET381031」)を用意し、工程フィルムの剥離面に、上記の接着剤層を形成するための塗工用組成物を、乾燥後の厚さが5μmとなるように塗布し、得られた塗膜を100℃で1分間乾燥して接着剤層とした。こうして得られた工程フィルムと接着剤層とからなる積層体の接着剤層側の面に、ベース用フィルムの一方の面(上記の表面の算術平均粗さを有する面と反対側の面)を貼付して、接着シートを得た。次いで、接着シートに対してベース用フィルム側の面から、ベース用フィルムおよび塗膜が切断されるハーフカット(このハーフカットを「第1のハーフカット」ともいう。)を行い、平面視で直径210mmの円形をなす切断線(閉曲線)を、原反の長尺方向に100本作製した。これらの切断線により形作られる100個の円の中心をつないだ線は原反の長尺方向に平行とされ、最近位に配置される二つの円の中心間距離は278mmとされた。これらの切断線の内部にあるベース用フィルムおよび塗膜を除去して環内露出領域に対応する部分に工程フィルムが表出した接着シートを得た。
(5)DR積層体の作製
 環内露出領域に対応する部分に工程フィルムが表出した接着シートから工程フィルムを除去して接着剤層側の面を表出させ、上記の第1の積層体の第1のシートを与える樹脂系フィルム側の面と、上記の第1のハーフカットおよび不要部分の除去が行われた接着シートの接着剤層側の面とを貼合し、DR積層体の原反を得た。
 次に、DR積層体の原反に対して、ベース用フィルム側の面から、ベース用フィルムおよび接着剤層、ならびに剥離シート以外の第1の積層体(すなわち、第1のシートを与える樹脂系フィルムおよび粘着剤層)が切断されるハーフカットを行い、平面視で直径270mmの円形をなす切断線(閉曲線)を100本作製した。これらの切断線が形作る円の中心は、それぞれ、先に第1のハーフカットにより形作った平面視で直径210mmの円の中心と一致させた。そして、これらの平面視で直径270mmの円形をなす切断線の外側にある、ベース用フィルムおよび接着剤層、ならびに剥離シート以外の第1の積層体を除去した。
 こうして、長尺の剥離シートの剥離面上に次の形状および配置を有するレーザーダイシングシートの100枚が長尺方向に並んで配置されてなるDR積層体を得た。
  環内露出部分の平面視形状:直径210mmの円形
  第2のシートの平面視形状:内径210mm、幅30mmの円環形状
  レーザーダイシングシートの平面視形状:直径270mmの円形
  最近位に配置される2のレーザーダイシングシート同士の長尺方向の間隔:8mm
 このDR積層体を長尺方向に巻き取って、巻取体の形態とした。
〔実施例1-2〕
 実施例1-1における第2のシートのベースフィルムを与える樹脂系フィルムを、ポリブチレンテレフタレート(PBT)フィルム(厚さ:25μm、表面の算術平均粗さRa:0.02μm)に変更するとともに、環内露出部分の平面視形状が直径205mmの円形となり第2のシートの平面視形状が内径205mm、幅37.5mmの円環形状となるように第1のハーフカット方法を変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
〔実施例1-3〕
 実施例1-1における第2のシートのベースフィルムを与える樹脂系フィルムを、低密度ポリエチレン(LPDE)フィルム(厚さ:25μm、表面の算術平均粗さRa:0.7μm)に変更するとともに、環内露出部分の平面視形状が直径202mmの円形となり第2のシートの平面視形状が内径202mm、幅39mmの円環形状となるように第1のハーフカット方法を変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
〔実施例1-4〕
 実施例1-1における第2のシートのベースフィルムを与える樹脂系フィルムを、ポリプロピレン(PP)フィルム(厚さ:25μm、表面の算術平均粗さRa:0.5μm)に変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
〔実施例1-5〕
 実施例1-1における第1のシートを与える樹脂系フィルムを製造するために、まず、材料の一つであるウレタンアクリレートオリゴマーを合成した。ポリプロピレングリコール(PPG、Mw=400)、イソホロンジイソシアネート(IPDI)、ヒドロキシエチルメタクリレート(HEMA)を4:5:2の重量比で準備し、PPGとIPDIを触媒存在下で反応させた。得られたウレタンオリゴマーの残存イソシアネート基にHEMAを結合させて、Mw=8000のウレタンアクリレートオリゴマーを得た。これを用いて次の配合の樹脂組成物を得た。
  ウレタンアクリレートオリゴマー100質量部、
  単官能モノマー(イソボルニルアクリレート)110質量部、および
  光重合開始剤(BASF社製「イルガキュア184」)2.2重量部
 ポリエチレンテレフタレートフィルムを支持フィルムとし、長尺の剥離シート(リンテック社製「SP-PET3811」、厚さ:38μm)の剥離面上に、上記の調製した樹脂組成物を厚さ100μmとなるように塗布した。得られた塗膜に紫外線(1500mJ/cm)を照射してこれを重合させて、剥離シートおよびその剥離面上に積層されたポリウレタンアクリレート(PUA)フィルムからなる積層体を得た。上記の剥離シートと同じ剥離シートをもう1枚用意し、この積層体のポリウレタンアクリレートフィルム側の面に、その剥離シートの剥離面を貼付して、剥離シート、ポリウレタンアクリレートフィルムおよび剥離シートからなる積層体を得た。この積層体を以下、中間積層体ともいう。
 この中間積層体における、一方の剥離シートを剥離しながら、表出したポリウレタンアクリレートフィルムの面を、実施例1-1において作製した剥離シートと粘着剤層との積層体の粘着剤層側の面に貼付した。こうして得られた積層体におけるポリウレタンアクリレートフィルムからなる樹脂系フィルムに貼付している剥離シートを剥離して、第1の積層体を得た。
 以下、環内露出部分の平面視形状が直径205mmの円形となり第2のシートの平面視形状が内径205mm、幅37.5mmの円環形状となるように第1のハーフカット方法を変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を得た。
 なお、上記の中間積層体を別途作製し、この中間積層体における双方の剥離シートを剥離して得られた厚さ100μmのポリウレタンアクリレートフィルムの特性は次のとおりであった。
  表面の算術平均粗さRa:0.09μm
  波長1064nmにおける直線透過率:92.5%
  波長1064nmにおける位相差:0.8nm
  ヤング率:380MPa
〔比較例1-1〕
 実施例1-1における第1のシートを与える樹脂系フィルムを、下記の特性を有する厚さ80μmの低密度ポリエチレン(LDPE)フィルムに変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
  表面の算術平均粗さRa:0.5μm
  波長1064nmにおける直線透過率:87%
  波長1064nmにおける位相差:425nm
  ヤング率:100MPa
〔比較例1-2〕
 実施例1-1における第2のシートのベースフィルムを与える樹脂系フィルムを、ポリ塩化ビニル(PVC)フィルム(厚さ25:μm、表面の算術平均粗さRa:0.05μm)に変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
〔比較例1-3〕
 実施例1-1における第1のシートを与える樹脂系フィルムを、下記の特性を有する厚さ80μmのポリ塩化ビニル(PVC)フィルムに変更した以外は、実施例1-1の製造方法と同様の製造方法を実施して、DR積層体の巻取体を作製した。
  表面の算術平均粗さRa:0.6μm
  波長1064nmにおける直線透過率:35.2%
  波長1064nmにおける位相差:48nm
  ヤング率:260MPa
〔比較例1-4〕
 実施例1-1において、第2の積層体を作製せず、第1の積層体に対して、第1のシートを与える樹脂系フィルム側から、第1のシートを与える樹脂系フィルムおよび粘着剤層を切断するハーフカットを行い、平面視で直径270mmの円形をなす切断線を作製した。この切断線の外側にある第1の積層体を除去した。
 こうして、剥離シートの剥離面上に、平面視形状が270mmの円形であって第2のシートを有さないレーザーダイシングシートがその粘着剤層を剥離シートとの接触面をなすように積層されたDR積層体の巻取体を得た。
〔試験例1-1〕ヤング率の測定
 実施例および比較例において使用した第1のシートを与える樹脂系フィルムについて、万能引張試験機(オリエンテック社製テンシロンRTA-T-2M)を用いて、JIS K7161:1994に準拠して、23℃、相対湿度50%の環境下において引張速度200mm/分の条件で、ヤング率を測定した。その結果は前述のとおりである。
〔試験例1-2〕直線透過率の測定
 実施例および比較例において使用した第1のシートを与える樹脂系フィルムについて、紫外・可視・近赤外分光光度計(島津製作所製「UV-3101PC」)を用い、波長200~1200nmの範囲の直線透過率を測定し、1064nmの値を読み取った。その結果は前述のとおりである。
〔試験例1-3〕位相差の測定
 実施例および比較例において使用した第1のシートを与える樹脂系フィルムについて、位相差フィルム検査装置(大塚電子社製「RETS-100」(検出器「MCPD-7700」))を使用して、800~1100nmの範囲で位相差の測定を行い、波長1064nmの位相差の値を読み取った。その結果は前述のとおりである。
〔試験例1-4〕算術平均粗さRaの測定
 実施例および比較例において使用した、第1のシートを与える樹脂系フィルムにおける第1のシートとした場合に第1のシートの背面となる面、および第2のシートのベースフィルムを与える樹脂系フィルムにおける第2のシートの一部とした場合に第2のシートの背面となる面について、接触式表面粗さ計(Mitsutoyo社製「SURFTEST SV-3000」)を用い、JIS B0601-2001に準拠して、算術平均粗さRaを面内で10点測定し、その平均値を算出した。なお、測定条件は次のとおりであった。
 (Ra≦1.0の場合)
  カットオフ値λc:0.25mm、評価長さLn:1.25mm
 (Ra>1.0の場合)
  カットオフ値λc:0.8mm、評価長さLn:4mm
 測定結果は前述のとおりであり、表1にもまとめて示す。
〔試験例1-5〕剥離力の測定
 実施例1-1から1-4および比較例1-1から1-3において作製した第2の積層体を別途用意して50mm×150mmの寸法に裁断し、試験用の積層体とした。また、比較例1-4におけるDR積層体については、第1のシートを与える樹脂系フィルムにおける、第1のシートとなったときに粘着剤層に対向する側の面に、第2のシートの接着剤層と同組成の接着剤層を積層して、得られた積層体も試験用積層体の一つとし、参考値とした。これらの試験用積層体のそれぞれにおける接着剤層側の面をSUS製平板の一方の面に貼付して、樹脂系フィルム、接着剤層およびSUS製平板がこの順で積層された積層体を得た。
 この積層体を試験台の上に載置し、その樹脂系フィルム側の面に、DR積層体の剥離シートと同材料からなる試験用剥離シート(リンテック社製「SP-PET3811」)の剥離面と反対側の面(剥離シート裏面)を重ね、得られた重積体における剥離シートの剥離面側に2kgの重りを置いた。40℃、相対湿度80%の環境下にて、この状態を1時間維持した。さらに、重りを除去し、23℃、相対湿度50%の環境下にて無荷重の状態で1時間静置した。
 この静置後の重積体の試験用剥離シートを23℃、相対湿度50%の環境下にて万能引張試験機(オリエンテック社製テンシロンRTA-T-2M)により180°の角度で300mm/分の速度で引き剥がし、剥離力とした。測定結果を表1に示す。
〔試験例1-6〕DR積層体供給性の評価
 実施例および比較例のそれぞれに係るDR積層体の巻取体をウエハ貼合装置(リンテック社製「RAD-2500m/12」)にセットし、同装置を用いて、DR積層体における剥離シートからレーザーダイシングシートを剥離するとともに、その剥離したレーザーダイシングシートのそれぞれに、直径200mm、厚さ100μmのシリコンウエハおよび8インチウエハ用リングフレームを貼付した。
 その結果、適切に剥離シートから剥離してシリコンウエハへの貼合が行われなかったレーザーダイシングシートが4枚以下であった場合を「良好」とし、その不適切な貼合となったレーザーダイシングシートが5枚以上であった場合を「不良」とした。評価結果を表2に示す。
〔試験例1-7〕エキスパンド性およびダイシング性の評価
 実施例および比較例におけるDR積層体から剥離シートを剥離し、得られたレーザーダイシングシートを試験例1-6と同じ方法により、試験例1-6と同じシリコンウエハおよびリングフレームに貼付した。実施例1-1から1-4および比較例1-1から1-3に係るレーザーダイシングシートに貼付されたシリコンウエハは、平面視で、第1のシートの環内露出領域内に全体が位置していた。
 レーザー照射装置(DISCO社製「DFL7360」、波長:1064nm)を用いて、シリコンウエハの粘着剤層に対向している面側からレーザーダイシングシート越しに、ウエハ内部で集光するレーザーを、2mm×2mmのチップ体が形成されるように設定された切断予定ラインに沿って走査させながら照射した。全ての切断予定ラインにレーザーを照射した後、エキスパンド装置(DISCO社製「DDS2010」)を用いて、速度300mm/分でレーザーダイシングシートを引き落とし、レーザーダイシングシートの粘着剤層側の面におけるシリコンウエハが貼付された領域を主面内外向き方向に15mm伸長させた。
 その結果、レーザーダイシングシートが問題なく伸長した場合には、エキスパンド性が「良好」であると判定し、シリコンウエハの全ての切断予定ラインにてウエハが分割されてチップ体が形成された場合に得られるチップの数に対する、実際に個々のチップに分割されたチップの数の割合(チップの収率)が90%以上である場合には、ダイシング性が「良好」であると判定した。これに対し、レーザーダイシングシートがリングフレームから脱落したり、レーザーダイシングシートが裂けてしまったりした場合には、エキスパンド性が「不可」であったと判定した。また、シリコンウエハの分割におけるチップの収率が90%未満であった場合にはダイシング性が「不可」と判定した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表1および2から明らかなように、本発明の条件を満たす実施例のDR積層体は、プリカット性に優れ、DR積層体供給不良が生じにくかった。また、ダイシング性やエキスパンド性にも優れていた。
〔実施例2-1〕
(1)粘着剤層を形成するための塗工用組成物の調製
 アクリル系共重合体(2-エチルヘキシルアクリレート/酢酸ビニル/アクリル酸/メチルメタクリレート/2-ヒドロキシエチルメタクリレート=23.5/70/1/5/0.5(質量比)、Mw=60万、Mw/Mn=6.0、Tg=3℃)100重量部に対し、エネルギー線重合性化合物として、ポリプロピレングリコール(Mw=700)、イソホロンジイソシアネートおよび2-ヒドロキシプロピルアクリレートの共重合体からなる2官能ウレタンアクリレートオリゴマー(Mw=4000)80重量部、光重合開始剤(BASF社製「イルガキュア184」)3重量部およびイソシアネート系架橋剤(日本ポリウレタン社製「コロネートL」)2重量部を配合(すべて固形分換算による配合比)し、粘着剤層を形成するための塗工用組成物とした。
(2)基材を与える樹脂系フィルムの用意
 次の特性を有する厚さ80μmであって長尺のポリ塩化ビニルフィルムを、基材を与える樹脂系フィルムとして用意した。
  表面の算術平均粗さRa:0.03μm
  波長1064nmにおける直線透過率:92%
  波長1064nmにおける位相差:32nm
  ヤング率:280MPa
(3)DR積層体の原反の作製
 ポリエチレンテレフタレートフィルムを支持フィルムとし、厚さ38μmであって長尺の剥離シート(リンテック社製「SP-PET3811」)の剥離面上に、上記の調製した粘着剤層を形成するための塗工用組成物を、乾燥後の厚さが5μmとなるように塗布した。得られた塗膜を100℃で1分間乾燥して、剥離シートと粘着剤層との積層体を得た。この積層体の粘着剤層側の面に、基材を与える樹脂系フィルムの一方の面(上記の、表面の算術平均粗さRaを有する面とは逆の面)を貼付し、DR積層体の原反を得た。
(4)第2の領域の作製
 上記のDR積層体の原反における基材を与える樹脂系フィルム側の面に対して、直径210mmである円状の領域に、再剥離性の粘着フィルムを貼付して、マスキングを行った上でサンドブラスト装置(不二製作所社製 PNEUMA BLASTER SFK-2)を用いて、サンドブラスト処理を施した。次いで、再剥離性の粘着フィルムを剥離除去し、表面粗さが算術平均粗さRaで0.7μmとなる粗面化された領域(外径280mm、内径210mmである円環状、その中心は原反の幅方向の中心に一致)を、第2の領域として得た。この第2の領域内の表面粗さは、サンドブラスト処理を行う前と等しく、算術表面高さRaで0.03μmであった。このサンドブラスト処理を、原反の長尺方向に300mmおきに繰り返し、都合100個の円環状の粗面化された領域を形成した。
(5)DR積層体の作製
 上記のサンドブラスト処理後のDR積層体の原反に対して、基材側の面から、基材を与える樹脂系フィルムおよび粘着剤層が切断されるハーフカットを行い、平面視で直径270mmの円形をなす切断線(閉曲線)を100本作製した。これらの切断線が形作る円の中心は、それぞれ、先にサンドブラスト処理により形作った円環状の第2の領域の中心と一致させた。そして、これらの直径270mmの円形をなす切断線の外側にある、樹脂系フィルムおよび粘着剤層を除去した。
 こうして、長尺の剥離シートの剥離面上に次の形状および配置を有するレーザーダイシングシートの100枚が長尺方向に並んで配置されてなるDR積層体を得た。
  レーザーダイシングシートの平面視形状:直径270mmの円形
  第1の領域の平面視形状:直径210mmの円形
  第2の領域の平面視形状:第1の領域を内包する外径270mm、内径210mmの円環
  最近位に配置される2のレーザーダイシングシート同士の長尺方向の間隔:30mm
 このDR積層体を長尺方向に巻き取って、巻取体の形態とした。
〔実施例2-2から2-4および比較例2-2〕
 実施例2-1におけるサンドブラスト処理範囲の内径を表3に示される内径に変更した以外は、実施例2-1と同様の操作を行って、DR積層体の巻取体を得た。
〔比較例2-1〕
 実施例2-1において、サンドブラスト処理を行わなかったこと以外は実施例2-1と同様の操作を行って、基材背面が第1の領域からなるレーザーダイシングシートが100枚剥離シートの剥離面上に積層されてなるDR積層体の巻取体を得た。
〔比較例2-3〕
 実施例2-1において、サンドブラスト処理を基材全面に施したこと以外は実施例2-1と同様の操作を行って、基材背面が第2の領域からなるレーザーダイシングシートが100枚剥離シートの剥離面上に積層されてなるDR積層体の巻取体を得た。
〔試験例2-1〕ヤング率の測定
 実施例および比較例において使用した基材を与える樹脂系フィルムについて、万能引張試験機(オリエンテック社製テンシロンRTA-T-2M)を用いて、JIS K7161:1994に準拠して、23℃、相対湿度50%の環境下において引張速度200mm/分の条件で、ヤング率を測定した。その結果は前述のとおりである。
〔試験例2-2〕直線透過率の測定
 実施例および比較例において使用した基材を与える樹脂系フィルムについて、紫外・可視・近赤外分光光度計(島津製作所製「UV-3101PC」)を用い、波長200~1200nmの範囲の直線透過率を測定し、1064nmの値を読み取った。その結果は前述のとおりである。
〔試験例2-3〕位相差の測定
 実施例および比較例において使用した基材を与える樹脂系フィルムについて、位相差フィルム検査装置(大塚電子社製「RETS-100」(検出器「MCPD-7700」))を使用して、800~1100nmの範囲で位相差の測定を行い、波長1064nmの位相差の値を読み取った。その結果は前述のとおりである。
〔試験例2-4〕算術平均粗さRaの測定
 実施例および比較例において使用した、基材を与える樹脂系フィルムにおけるレーザーダイシングシートをとした場合に基材背面となる面、および実施例2-1から2-4および比較例2-2から2-3において行ったサンドブラスト処理によって形成された基材背面の第2の領域について、接触式表面粗さ計(Mitsutoyo社製「SURFTEST SV-3000」)を用い、JIS B0601-2001に準拠して、算術平均粗さRaを面内で10点測定し、その平均値を算出した。なお、測定条件は次のとおりであった。
 (Ra≦1.0の場合)
  カットオフ値λc:0.25mm、評価長さLn:1.25mm
 (Ra>1.0の場合)
  カットオフ値λc:0.8mm、評価長さLn:4mm
〔試験例2-5〕DR積層体供給性の評価
 実施例および比較例のそれぞれに係るDR積層体の巻取体をウエハ貼合装置(リンテック社製「RAD-2500m/12」)にセットし、同装置を用いて、DR積層体における剥離シートからレーザーダイシングシートを剥離するとともに、その剥離したレーザーダイシングシートのそれぞれを、直径200mm、厚さ100μmのシリコンウエハおよび8インチウエハ用リングフレームに貼付した。
 その結果、適切に剥離シートから剥離してシリコンウエハへの貼合が行われなかったレーザーダイシングシートが4枚以下であった場合を「良好」とし、その不適切な貼合となったレーザーダイシングシートが5枚以上であった場合を「不良」とした。評価結果を表3に示す。
〔試験例2-6〕エキスパンド性およびダイシング性の評価
 実施例および比較例におけるDR積層体から剥離シートを剥離し、得られたレーザーダイシングシートを試験例2-5と同じ方法により、試験例2-5と同じシリコンウエハおよびリングフレームに貼付した。実施例2-1から2-4および比較例2-1から2-3に係るレーザーダイシングシートに貼付されたシリコンウエハは、平面視で、基材背面の第1の領域内部に全体が位置していた。
 レーザー照射装置(DISCO社製「DFL7360」、波長:1064nm)を用いて、シリコンウエハの粘着剤層に対向している面側からレーザーダイシングシート越しに、ウエハ内部で集光するレーザーを、2mm×2mmのチップ体が形成されるように設定された切断予定ラインに沿って走査させながら照射した。この際のレーザー照射領域は、いずれのレーザーダイシングシートにおいても、基材背面の第1の領域に含まれていた。全ての切断予定ラインにレーザーを照射した後、エキスパンド装置(DISCO社製「DDS2010」)を用いて、速度300mm/分でレーザーダイシングシートを引き落とし、レーザーダイシングシートの粘着剤層側の面におけるシリコンウエハが貼付された領域を主面内外向き方向に15mm伸長させた。
 その結果、レーザーダイシングシートが問題なく伸長した場合には、エキスパンド性が「良好」であると判定し、シリコンウエハの全ての切断予定ラインにてウエハが分割されてチップ体が形成された場合には、ダイシング性が「良好」であると判定した。これに対し、レーザーダイシングシートがリングフレームから脱落したり、レーザーダイシングシートが裂けてしまったりした場合には、エキスパンド性が「不可」であったと判定した。また、シリコンウエハの分割が不十分であった場合にはダイシング性が「不可」と判定した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、本発明の条件を満たす実施例のDR積層体は、プリカット性に優れ、DR積層体供給不良が生じにくかった。また、ダイシング性やエキスパンド性にも優れていた。なお、比較例2-2のダイシング性の「一部不可」とは、第1の領域の外径が半導体ウエハの外径(200mm)よりも小さいかったため、半導体ウエハの最外周端近傍ではレーザー照射が不十分であり、この部分ではダイシング予定ラインとは異なるラインで半導体ウエハが切断されたことを意味する。
 本発明に係るレーザーダイシングシート-剥離シート積層体は、ステルスダイシングなど、ダイシングシートを透過させるようにレーザーを照射する作業を含むダイシング工程において使用されるレーザーダイシングシートと剥離シートとの積層体として好適に用いられる。
100…DR積層体
 10…レーザーダイシングシート
  1…第1のシート
  2…第2のシート
  21…ベースフィルム
  22…接着剤層
  3…粘着剤層
 11…剥離シート
100A…巻取体
 11a…最外周の剥離シート
 11b…最外周の剥離シートよりも一層内周側の剥離シート
   C…芯材
100B…スタック体
50…SUS製平板
51…試験用第2のシート
 511…試験用第2のシートのベースフィルム
 512…試験用第2のシートの接着剤層
 51a…試験用第2のシートの一方の面
52…試験用剥離シート
 52a…試験用剥離シートの剥離面と反対側の面
53…重積体
61…板状部材
62…リングフレーム
200…DR積層体
210…レーザーダイシングシート
201…基材
 201A…基材1の背面
  201a…第1の領域
   201c…レーザー照射領域
  201b…第2の領域
203…粘着剤層
211…剥離シート
200A…巻取体
211a…最外周の剥離シート
211b…最外周の剥離シートよりも一層内周側の剥離シート
200C…芯材
200B…スタック体
271…板状部材
272…リングフレーム

Claims (19)

  1.  第1のシート、前記第1のシートの一方の面に積層された第2のシート、および前記第1のシートの他方の面に積層された粘着剤層を備えたレーザーダイシングシートと、前記レーザーダイシングシートの前記粘着剤層側の面にその剥離面が対向するように積層された剥離シートとを備えたレーザーダイシングシート-剥離シート積層体であって、
     前記第2のシートは平面視形状が環状であり、前記第1のシートの一方の面における平面視で前記第2のシートに囲まれ前記第2のシートが積層されていない環内露出領域は、前記レーザーダイシングシートの使用時にレーザーが照射されるレーザー照射領域を含み、
     前記第1のシートは、23℃におけるヤング率が30MPa以上600MPa以下であって、前記第1のシートの一方の面は、少なくとも前記レーザー照射領域の算術平均粗さRaが0.1μm未満であり、
     前記剥離シートの剥離面は、前記レーザーダイシングシートが積層されていない領域を有し、
     前記第2のシートの一方の面上に前記剥離シートの剥離面と反対側の面を載置して得られる重積体について、40℃、相対湿度80%の環境下にて前記試験用剥離シートの剥離面側から19.6Nの荷重を1時間印加し、
     さらに23℃、相対湿度50%の環境下にて無荷重の状態で1時間静置し、静置後の前記重積体の前記試験用剥離シートを180°引き剥がししたときに測定される剥離力が、50mN/50mm以下であること
    を特徴とする、レーザーダイシングシート-剥離シート積層体。
  2.  前記第1のシートは、少なくともレーザーダイシングシートの使用時にレーザーが照射される部分について、前記波長1064nmにおける直線透過率が80%以上であるとともに、波長1064nmにおける位相差が100nm以下である、請求項1に記載のレーザーダイシングシート-剥離シート積層体。
  3.  前記第2のシートにおける前記第1のシートに対向する側と反対側の面は、算術平均粗さRaが0.3μm以上である、請求項1または2に記載のレーザーダイシングシート-剥離シート積層体。
  4.  前記第2のシートにおける前記第1のシートに対向する側と反対側の面は、ポリエステル系フィルムの面からなる、請求項1から3のいずれか一項に記載のレーザーダイシングシート-剥離シート積層体。
  5.  前記剥離シートにおける、前記レーザーダイシングシートに対向する側と反対側の面は、算術平均粗さRaが0.1μm以下である、請求項1から4のいずれか一項に記載のレーザーダイシングシート-剥離シート積層体。
  6.  前記剥離シートは長尺体からなり、前記レーザーダイシングシートはその複数枚が前記剥離シートの長尺方向に互いに離間して配置され、長尺方向に巻き取られた巻取体の形態を有する、請求項1から5のいずれか一項に記載のレーザーダイシングシート-剥離シート積層体。
  7.  請求項1から6のいずれか一項に記載のレーザーダイシングシート-剥離シート積層体から前記剥離シートを剥離して得られるレーザーダイシングシートであって、
     前記粘着剤層の前記第1のシートに対向する側と反対側の面における前記第1のシートの前記環内露出領域と平面視で重複する領域は、前記レーザーダイシングシートの使用時に板状部材が貼付される領域を含むことを特徴とするレーザーダイシングシート。
  8.  前記第1のシートの前記環内露出領域の平面視での内接円の半径は、前記板状部材が貼付される領域の平面視での外接円の半径よりも2mm以上大きい、請求項7に記載のレーザーダイシングシート。
  9.  請求項7または8に記載されるレーザーダイシングシートの前記粘着剤層における前記第1のシートに対向する側と反対側の面の所定の領域に、前記板状部材を貼付し、
     前記レーザーダイシングシートの前記第1のシートの前記環内露出領域を入射面として前記第1のシートおよび前記粘着剤層を透過して前記板状部材へと至るように、レーザーを照射し、
     前記レーザーを照射した後の前記板状部材が貼付している前記レーザーダイシングシートを主面内方向に伸長させることにより、前記板状部材を個片化して、チップ体を得ること
    を特徴とするチップ体の製造方法。
  10.  基材と、前記基材の一方の面に積層された粘着剤層とを備えたレーザーダイシングシートであって、
     前記基材の前記粘着剤層に対向する側と反対側の面である背面は、その表面の粗さが算術平均粗さRaで0.1μm未満である第1の領域および0.3μm以上である第2の領域を備え、
     前記第1の領域は使用時にレーザーが照射されるレーザー入射領域を含み、
     前記第2の領域は、前記レーザー入射領域よりも平面視で前記レーザーダイシングシートの外周側に設けられること
    を特徴とするレーザーダイシングシート。
  11.  前記第2の領域の表面粗さは、算術平均粗さRaで0.5μm以上である、請求項10に記載のレーザーダイシングシート。
  12.  前記第2の領域は平面視で環状であって、前記レーザー入射領域は、環状をなす前記第2の領域の平面視での内周よりも前記第2の領域の面内方向中心側に位置する請求項10または11に記載のレーザーダイシングシート。
  13.  前記基材の背面は、前記第1の領域と前記第2の領域とからなる、請求項10から12のいずれか一項に記載のレーザーダイシングシート。
  14.  前記基材は、23℃におけるヤング率が30MPa以上600MPa以下である、請求項10から13のいずれか一項に記載のレーザーダイシングシート。
  15.  前記第2の領域は、前記基材の背面に対して粗面化処理が施されたことにより形成されたものである、請求項10から14のいずれかに記載のレーザーダイシングシート。
  16.  前記第1の領域は、前記波長1064nmにおける直線透過率が80%以上であるとともに、波長1064nmにおける位相差が100nm以下である、請求項10から15のいずれかに記載のレーザーダイシングシート。
  17.  請求項10から16のいずれか一項に記載されるレーザーダイシングシートと、前記レーザーダイシングシートの前記粘着剤層側の面にその剥離面が対向するように積層された剥離シートとを備え、前記剥離シートの剥離面には、前記レーザーダイシングシートが積層されていない領域を有するレーザーダイシングシート-剥離シート積層体。
  18.  前記剥離シートにおける、前記レーザーダイシングシートに対向する側と反対側の面は、算術平均粗さRaが0.1μm以下である、請求項17に記載のレーザーダイシングシート-剥離シート積層体。
  19.  請求項17または18に記載されるレーザーダイシングシート-剥離シート積層体から前記剥離シートを剥離して前記レーザーダイシングシートの前記粘着剤層側の面を表出させ、
     前記レーザーダイシングシートの前記表出した粘着剤層側の面における平面視で前記第1の領域と重複する領域に板状部材を貼付し、
     前記第1の領域をレーザー入射面として、前記基材および前記粘着剤層を透過して前記板状部材へと至るようにレーザーを照射し、
     前記レーザーを照射した後の前記板状部材が貼付している前記レーザーダイシングシートをその主面内方向に伸長させることにより、前記板状部材を個片化して、チップ体を得ること
    を特徴とするチップ体の製造方法。
PCT/JP2013/075136 2012-09-20 2013-09-18 レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法 WO2014046121A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-206769 2012-09-20
JP2012206769A JP5583724B2 (ja) 2012-09-20 2012-09-20 レーザーダイシングシート−剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
JP2012206770A JP5583725B2 (ja) 2012-09-20 2012-09-20 レーザーダイシングシート−剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
JP2012-206770 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046121A1 true WO2014046121A1 (ja) 2014-03-27

Family

ID=50341431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/075136 WO2014046121A1 (ja) 2012-09-20 2013-09-18 レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法

Country Status (2)

Country Link
TW (1) TWI571346B (ja)
WO (1) WO2014046121A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463375A (zh) * 2014-06-10 2017-02-22 琳得科株式会社 切割片
WO2017149926A1 (ja) * 2016-03-04 2017-09-08 リンテック株式会社 半導体加工用シート
WO2017149925A1 (ja) * 2016-03-04 2017-09-08 リンテック株式会社 半導体加工用シート
CN108541338A (zh) * 2016-03-02 2018-09-14 古河电气工业株式会社 晶片加工用带
TWI640089B (zh) * 2016-05-30 2018-11-01 大陸商蘇州晶方半導體科技股份有限公司 封裝結構及封裝方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6590164B2 (ja) * 2014-12-29 2019-10-16 株式会社ディスコ 半導体サイズのウェーハの処理に使用するための保護シート、保護シート構成、ハンドリングシステムおよび半導体サイズのウェーハの処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123404A (ja) * 2005-10-26 2007-05-17 Furukawa Electric Co Ltd:The ダイシングテープ、および半導体ウェハダイシング方法
JP2009239298A (ja) * 2009-06-11 2009-10-15 Nitto Denko Corp ロール状ウエハ加工用粘着シート
JP2011243613A (ja) * 2010-05-14 2011-12-01 Mitsui Chemicals Inc 半導体ウェハ保護用粘着フィルム及び半導体ウェハ保護用粘着フィルムロール
JP2012015236A (ja) * 2010-06-30 2012-01-19 Furukawa Electric Co Ltd:The ウエハ貼着用粘着シートおよびそれを用いたウエハの加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123404A (ja) * 2005-10-26 2007-05-17 Furukawa Electric Co Ltd:The ダイシングテープ、および半導体ウェハダイシング方法
JP2009239298A (ja) * 2009-06-11 2009-10-15 Nitto Denko Corp ロール状ウエハ加工用粘着シート
JP2011243613A (ja) * 2010-05-14 2011-12-01 Mitsui Chemicals Inc 半導体ウェハ保護用粘着フィルム及び半導体ウェハ保護用粘着フィルムロール
JP2012015236A (ja) * 2010-06-30 2012-01-19 Furukawa Electric Co Ltd:The ウエハ貼着用粘着シートおよびそれを用いたウエハの加工方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106463375A (zh) * 2014-06-10 2017-02-22 琳得科株式会社 切割片
CN108541338A (zh) * 2016-03-02 2018-09-14 古河电气工业株式会社 晶片加工用带
WO2017149926A1 (ja) * 2016-03-04 2017-09-08 リンテック株式会社 半導体加工用シート
WO2017149925A1 (ja) * 2016-03-04 2017-09-08 リンテック株式会社 半導体加工用シート
CN108271381A (zh) * 2016-03-04 2018-07-10 琳得科株式会社 半导体加工用片
JPWO2017149926A1 (ja) * 2016-03-04 2018-12-27 リンテック株式会社 半導体加工用シート
JPWO2017149925A1 (ja) * 2016-03-04 2018-12-27 リンテック株式会社 半導体加工用シート
JP7008620B2 (ja) 2016-03-04 2022-01-25 リンテック株式会社 半導体加工用シート
JP7042211B2 (ja) 2016-03-04 2022-03-25 リンテック株式会社 半導体加工用シート
TWI640089B (zh) * 2016-05-30 2018-11-01 大陸商蘇州晶方半導體科技股份有限公司 封裝結構及封裝方法

Also Published As

Publication number Publication date
TW201424908A (zh) 2014-07-01
TWI571346B (zh) 2017-02-21

Similar Documents

Publication Publication Date Title
JP5583724B2 (ja) レーザーダイシングシート−剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
JP5583725B2 (ja) レーザーダイシングシート−剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
JP5603757B2 (ja) レーザーダイシング用粘着シート及び半導体装置の製造方法
JP4574234B2 (ja) 半導体加工用粘着シートおよび半導体チップの製造方法
WO2014046121A1 (ja) レーザーダイシングシート-剥離シート積層体、レーザーダイシングシートおよびチップ体の製造方法
US8106522B2 (en) Adhesive sheet for a stealth dicing and a production method of a semiconductor wafer device
KR20190021447A (ko) 마스크 일체형 표면 보호 테이프 및 그것을 이용하는 반도체 칩의 제조 방법
JP6319438B2 (ja) ダイシングシート
JP6018730B2 (ja) ダイシングシートおよび半導体チップの製造方法
KR102544301B1 (ko) 수지막 형성용 시트 적층체
JP6731852B2 (ja) 粘着シート、および加工物の製造方法
JP2015151453A (ja) 伸長可能シートおよび積層チップの製造方法
TW201931448A (zh) 電漿切割用遮罩材、遮罩一體型表面保護帶及半導體晶片之製造方法
TW201522563A (zh) 黏著片
WO2018043391A1 (ja) マスク一体型表面保護テープ
TW201446929A (zh) 能量線硬化型自動卷回性黏著帶
JP2013222846A (ja) 基板のダイシング方法
KR102642079B1 (ko) 반도체 가공용 점착 테이프
WO2017150330A1 (ja) ウエハ加工用テープ
WO2019203021A1 (ja) ワーク加工用シート
JP2012015341A (ja) セパレータレス型ダイシングテープ
TWI747985B (zh) 切割片
JP6661438B2 (ja) ガラスダイシング用粘着シートおよびその製造方法
JP2017179026A (ja) ガラスダイシング用粘着シートおよびその製造方法
JP2012015340A (ja) セパレータレス型ダイシングテープ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840051

Country of ref document: EP

Kind code of ref document: A1