WO2014046018A1 - 二酸化炭素回収装置 - Google Patents

二酸化炭素回収装置 Download PDF

Info

Publication number
WO2014046018A1
WO2014046018A1 PCT/JP2013/074767 JP2013074767W WO2014046018A1 WO 2014046018 A1 WO2014046018 A1 WO 2014046018A1 JP 2013074767 W JP2013074767 W JP 2013074767W WO 2014046018 A1 WO2014046018 A1 WO 2014046018A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption tower
tower
carbon dioxide
gas
return pipe
Prior art date
Application number
PCT/JP2013/074767
Other languages
English (en)
French (fr)
Inventor
浩次 中山
隆仁 米川
乾 正幸
達也 辻内
美樹 反町
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP13838143.9A priority Critical patent/EP2898940B1/en
Priority to AU2013319191A priority patent/AU2013319191B2/en
Priority to CA2883832A priority patent/CA2883832C/en
Priority to JP2014536819A priority patent/JP5972985B2/ja
Publication of WO2014046018A1 publication Critical patent/WO2014046018A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a carbon dioxide recovery device that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
  • a carbon dioxide recovery device that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
  • CO 2 absorption liquid an amine-based absorption liquid
  • Patent Document 1 a method for recovering CO 2 from a CO 2 absorbing solution after absorbing CO 2 from exhaust gas and storing the recovered CO 2 in the ground or the like has been studied (for example, Patent Document 2, Non-Patent Document). Reference 1).
  • FIG. 4 shows the configuration of the CO 2 recovery device 1.
  • the CO 2 recovery device 1 for example, exhaust gas 10 containing CO 2 discharged from equipment such as a boiler and a gas turbine is supplied to the cooling tower 12 by a blower (not shown).
  • the exhaust gas 10 supplied to the cooling tower 12 is cooled by the cooling water 11 in the cooling tower 12.
  • the cooled exhaust gas 10 containing CO 2 is supplied from the lower part of the absorption tower 14 via the exhaust gas line 13.
  • a CO 2 absorption liquid 15 (amine solution) based on alkanolamine is brought into counterflow contact with the exhaust gas 10.
  • the CO 2 in the exhaust gas 10 is absorbed by the CO 2 absorbent 15 and the CO 2 is removed from the exhaust gas 10 discharged from the industrial equipment.
  • the purified gas 16 from which CO 2 has been removed is discharged from the tower top 14 a of the absorption tower 14.
  • the absorption liquid 15 that has absorbed CO 2 by the absorption tower 14 is stored in the tower bottom 14 b and sent to the regeneration tower 17 by the pump 25.
  • CO 2 absorbent 15 that has absorbed CO 2 (rich solution) CO 2 is released by being heated by the steam generated in the reboiler 18 in the regeneration tower 17, CO 2 and can absorb CO 2 absorbent 15 Regenerated as (lean solution).
  • the regenerated CO 2 absorbent 15 is supplied again to the absorption tower 14 by the pump 19 via the heat exchanger 20 and the lean solution cooling device 21 and reused.
  • the recovered carbon dioxide gas may not be sent to the storage process immediately after activation of the CO 2 recovery apparatus 1 or the CO 2 compression apparatus 23 or due to circumstances on the storage process side. In such a case, the recovered carbon dioxide gas is released from the vent stack 30 to the atmosphere.
  • vent stack 30 diffuses CO 2 into the atmosphere, it is necessary to provide the vent stack 30 at a height of several tens of meters in a place that is not popular around the vent stack 30. Therefore, in addition to being very large, a large site is required at a location away from the CO 2 recovery device 1 for the installation, and the recovered carbon dioxide gas from the CO 2 recovery device 1 to the vent stack 30 A duct 31 for sending is also necessary. Therefore, there is a problem that installation cost and operation cost are incurred regardless of whether it is not always used during operation.
  • This invention is made
  • the carbon dioxide recovery apparatus of the present invention employs the following means. That is, the carbon dioxide recovery apparatus of the present invention, the CO 2 absorbent that absorbs CO 2, is brought into contact with the exhaust gas discharged from facilities that burn fuel, the absorption tower for absorbing CO 2 contained in the exhaust gas When, to release CO 2 from the CO 2 absorbent having absorbed CO 2 absorption tower, a regenerator to regenerate the CO 2 absorbing solution, a delivery tube for delivering the CO 2 released in the regeneration tower to the outside, reproduction A return pipe that feeds CO 2 released from the tower to the absorption tower and mixes it with the purified gas from which the CO 2 has been removed from the exhaust gas, and a switching unit that switches a destination of CO 2 from the regeneration tower.
  • the CO 2 absorbed by the CO 2 absorbing solution from the flue gas in the absorption tower it is released from the CO 2 absorbing solution in the regeneration tower.
  • CO 2 released from the regeneration tower is sent to the outside through a delivery pipe. Then, for some reason, if it can not sending the CO 2 to the outside, by the switching unit, to deliver CO 2 released in the regeneration tower, the absorption tower via a return pipe. Then, the CO 2 released from the regeneration tower is mixed with the exhaust gas in the absorption tower and released into the atmosphere together with the exhaust gas. This eliminates the need for a vent stack.
  • the mixed gas of the CO 2 gas and the exhaust gas has a lower specific gravity and increases the diffusibility.
  • the switching unit can switch the CO 2 delivery destination from the regeneration tower from the delivery pipe to the return pipe when the CO 2 pressure in the delivery pipe becomes equal to or higher than a specified level.
  • the switching unit grasps the operating status of the destination of the collected CO 2 from information other than the CO 2 pressure, for example, information indicating the operation mode, and displays the grasp result. In response, the CO 2 delivery destination from the regeneration tower can be switched.
  • the return pipe may send the CO 2 released in the regeneration tower into the absorption tower at any position downstream of the exhaust gas flow direction with respect to the region where the CO 2 absorption liquid of the absorption tower contacts the exhaust gas. It is preferable to send CO 2 released from the regeneration tower into the absorption tower upstream of the purified gas flow direction in the region where the gas is cleaned and cooled. Accordingly, CO 2 and the contact area (contact time) of the exhaust gas is increased, the mixing is performed well.
  • the return pipe can also feed CO 2 released from the regeneration tower into cooling water for cleaning and cooling the purified gas.
  • CO 2 released in the regeneration tower into a recovery tank for recovering the cooling water in order to circulate the cooling water in the absorption tower.
  • CO 2 absorbing solution, amine solution or the like, if used as alkaline, by carbonated water and CO 2 absorbing liquid obtained by blowing CO 2 gas in the cooling water is in contact, CO 2 The pH of the absorbing solution is lowered. Then, when a part of the CO 2 absorbing liquid is released into the atmosphere together with the exhaust gas, an emission reduction effect can be obtained.
  • the cooling water flowing down from the upper part in the absorption tower in order to prevent the cooling water flowing down from the upper part in the absorption tower from flowing into the return pipe from the top in the upper part of the opening of the absorption tower to which the end of the return pipe is connected, it is directed toward the inside of the absorption tower.
  • a protruding cover can also be provided.
  • a baffle plate that blocks a part of the lower part of the opening is provided at the lower part of the opening of the absorption tower to which the end of the return pipe is connected. You can also.
  • the return pipe can be provided with a drain trap for recovering the liquid component contained in CO 2 fed from the regeneration tower and the cooling water flowing into the return pipe from the absorption tower.
  • CO 2 recovered from the exhaust gas is sent out from the delivery pipe to the outside. If the CO 2 cannot be sent out for some reason, the CO 2 is returned to the absorption tower and mixed with the exhaust gas. And released into the atmosphere. Accordingly, it is not necessary to provide a vent stack, and the installation cost and operation cost can be suppressed.
  • FIG. 1 It is a diagram showing a configuration of a CO 2 recovery apparatus according to a first embodiment of the present invention. It is the perspective view and sectional drawing which show the baffle plate and cover which were provided in the edge part of the return pipe
  • the CO 2 recovery apparatus 100 includes a cooling tower 110 that cools the exhaust gas 10, an absorption tower 120 that absorbs and recovers CO 2 from the exhaust gas 10 using the CO 2 absorbent 300, and CO 2 . from the absorbed CO 2 absorbing solution 300 is taken out of the CO 2, it includes a regenerator 130 to regenerate the CO 2 absorbing solution 300, a.
  • exhaust gas 10 containing CO 2 discharged from industrial equipment such as a boiler and a gas turbine is supplied to a cooling tower 110 by a blower (not shown).
  • the exhaust gas 10 supplied to the cooling tower 110 is cooled by the cooling water 310 injected into the cooling tower 110 from the nozzle 111.
  • the cooling water 310 used for cooling the exhaust gas 10 is cooled by the pump 112 through the cooler 113 and supplied again to the nozzle 111 of the cooling tower 110.
  • cold water 311 is used as a cooling heat source for the cooling water 310 supplied to the cooling tower 110.
  • the exhaust gas 10 containing CO 2 cooled in the cooling tower 110 is sent from the top 110 a of the cooling tower 110 to the tower bottom 120 b of the absorption tower 120 through the exhaust gas line 114.
  • the CO 2 absorbent 300 is supplied to a nozzle 121 provided at the upper part of the absorption tower 120, and is injected downward from the nozzle 121 into the absorption tower 120.
  • the CO 2 absorbing solution 300 for example, an amine solution based on alkanolamine is used.
  • This CO 2 absorbent 300 is in counterflow contact with the exhaust gas 10 rising from the tower bottom 120 b while passing through the packed bed 122 provided in the space below the nozzle 121 in the absorption tower 120.
  • the exhaust gas 10 from which CO 2 has been removed is referred to as a purified gas 210.
  • the purified gas 210 from which the CO 2 has been removed is discharged from the top 120 a of the absorption tower 120.
  • the purified gas 210 may contain water vapor or the like.
  • a mist eliminator 123 is provided above the absorption tower 120, and a nozzle 124 is provided below the mist eliminator 123.
  • the water vapor in the purified gas 210 condenses on the packed bed 122 above the absorption tower 120 by being cooled in counterflow contact with the cooling water 320 ejected from the nozzle 124.
  • the mist eliminator 123 is provided above the packed bed 122 and collects mist in the purified gas 210.
  • Outside the absorption tower 120 there are provided a cooler 127 and a pump 126 that collects part of the condensed water 211 in the recovery tank 125 and circulates between the cooler 127 and the absorption tower 120 as cooling water 320. Yes.
  • a CO 2 absorbing solution (hereinafter, this may be referred to as a rich solution) 300R that has absorbed CO 2 while passing through the packed bed 122 of the absorption tower 120 from below to above is stored in the tower bottom 120b.
  • the stored rich solution 300R is sent to the regeneration tower 130 by a pump 151 through a liquid feed line L 1 that connects the tower bottom 120b of the absorption tower 120 and the upper part of the regeneration tower 130.
  • a heat exchanger 152 is provided in the liquid feeding line L 1 .
  • the rich solution 300R sent from the absorption tower 120 to the regeneration tower 130 is a CO 2 absorbent (hereinafter referred to as a lean solution) regenerated and cooled in the regeneration tower 130 described later. It is heated by exchanging heat with 300L.
  • a nozzle 131 is provided in the upper part of the regeneration tower 130, and the rich solution 300 ⁇ / b> R heated by the heat exchanger 152 is jetted downward from the nozzle 131.
  • a packed bed 132 is provided below the nozzle 131, and the rich solution 300 ⁇ / b> R is generated in the regeneration tower 130 by an endothermic reaction caused by a counterflow contact while the rich solution 300 ⁇ / b> R passes through the heated packed bed 132.
  • CO 2 is released from the rich solution 300R.
  • the rich solution 300R reaches the bottom portion 130b of the regeneration tower 130, most of the CO 2 is removed from the rich solution 300R, and the rich solution 300R is regenerated as a lean solution 300L.
  • the bottom portion 130b of the regenerator 130, the circulation passage L 4 for circulating a portion of the lean solution 300L above the column bottom 130b is provided.
  • the reboiler 137 is provided with a steam pipe 137a for heating the lean solution 300L.
  • Some of the lean solvent 300L of column bottom 130b is supplied to reboiler 137 through the circulation passage L 4, it is returned to the regeneration tower 130 after being heated by heat exchange with high-temperature steam passing through the steam pipe 137a.
  • CO 2 gas is further released from the lean solution 300L at the tower bottom 130b.
  • the heating of the lean solution 300L also indirectly heats the packed bed 132, and as described above, CO 2 gas is released from the rich solution 300R during the gas-liquid contact in the packed bed 132.
  • the lean solution 300L regenerated by releasing CO 2 in the regeneration tower 130 in this way is absorbed by the pump 153 through the liquid feed line L 2 connecting the tower bottom 130b of the regeneration tower 130 and the upper portion of the absorption tower 120. Reflux to column 120.
  • the feed line L 2 is, with the heat exchanger 152, is provided with water-cooled condenser 154.
  • Lean solution 300L through feed line L 2, in the heat exchanger 152, and heat exchange is cooled between the rich solution 300R supplied to the regenerator 130 from the absorption tower 120, further, a water-cooled condenser 154 By the heat exchange with the cold water 311, it is sufficiently cooled to a temperature suitable for CO 2 absorption.
  • a CO 2 delivery line (a delivery pipe) L 3 is connected to the top 130 a of the regeneration tower 130. CO 2 gas released from the rich solution 300R in the regeneration tower 130 is discharged to the outside by the CO 2 delivery line L 3.
  • the CO 2 delivery line L 3 is provided with a cooler 140 using cold water 311, a gas-liquid separator 141, and a CO 2 compressor 145.
  • the CO 2 gas released from the regeneration tower 130 through the CO 2 delivery line L 3 is sufficiently cooled in the cooler 140 and then sent to the gas-liquid separator 141.
  • the condensed water 330 in the CO 2 gas condensed by the cooling in the cooler 140 is separated from the CO 2 gas.
  • the condensed water 330 separated in the gas-liquid separator 141 is returned to the upper part of the regeneration tower 130 by the pump 143.
  • the refluxed condensed water 330 is ejected from the nozzle 135 provided in the upper portion of the regeneration tower 130 toward the condensing unit 136 below the cooling unit 130, cooling the CO 2 gas and cooling the condensing unit 136 to absorb the absorbent. Suppress the release of etc.
  • the CO 2 gas that has passed through the gas-liquid separator 141 is compressed.
  • the compressed CO 2 gas is normally sent to the storage process through the CO 2 delivery line L 3 .
  • on-off valve (switching portion) 160 , 161 are connected.
  • the CO 2 gas return line L 5 can be provided to communicate with the inside of the absorption tower 120 at a position P 1 above the absorption tower 120 and above the nozzle 124 for injecting the cooling water 320.
  • the end 200 a of the pipe 200 communicating with the absorption tower 120 is connected to the outer peripheral side of the opening 129 formed in the wall body 128 of the absorption tower 120.
  • the opening 129 is provided with a cover 170 and a baffle plate 171.
  • the cover 170 has a substantially inverted U-shape and is provided with an upper curved wall 170a provided along the upper half 129a of the circular opening 129 and upper curved walls located on both sides of the maximum width portion 129b of the opening 129.
  • the lower side wall portions 170b and 170b extend vertically downward from both ends of the portion 170a.
  • the cooling water 320 flows down.
  • the baffle plate 171 is provided so as to close the lower portion 129c of the opening 129, and includes a curved portion 171a along the inner peripheral portion of the opening 129 and a linear portion 171b that connects both ends of the curved portion 171a.
  • the portion 171a is welded to the inner peripheral surface of the lower portion 129c of the opening 129.
  • the CO 2 gas return line L 5 branches in the middle, and the branched drain line (return pipe) L 6 is connected to the tower bottom 120 b of the absorption tower 120.
  • the branched drain line (return pipe) L 6 is connected to the tower bottom 120 b of the absorption tower 120.
  • it is provided so as to communicate with the inside of the absorption tower 120 at a position P3 above the reservoir of the rich solution 300R.
  • a drain trap 165 is provided in the drain line L 6 .
  • the drain trap 165 collects the liquid component contained in the CO 2 gas sent from the CO 2 compressor 145 side.
  • the on-off valve 160 detects the gas pressure by a pressure sensor (not shown) on the upstream side of the CO 2 compression device 145, and is opened by a control unit (not shown) when the detected gas pressure exceeds a specified reference value. It is designed to be operated.
  • the on-off valve 161 detects a gas pressure by a pressure sensor (not shown) on the downstream side of the CO 2 compressor 145, and is opened by a control unit (not shown) when the detected gas pressure exceeds a specified reference value. It is designed to be operated.
  • the CO 2 gas passes through the CO 2 gas return line L 5 and the drain line L 6 and the absorption tower 120. And mixed with the exhaust gas 10 in the absorption tower 120.
  • the regenerator 130 extracts the CO 2 from the CO 2 absorbing solution 300. Then, in the normal, it sends the retrieved CO 2 into storing step. Further, when starting the CO 2 recovery apparatus 100 and CO 2 compressor 145, some troubles may occur in the storing step side, when unable to accept CO 2, the absorption of CO 2 gas by the CO 2 gas return line L 5 Into tower 120. Thereby, CO 2 gas can be mixed in the exhaust gas 10 (purified gas 210), and can be diffused into the atmosphere together with the purified gas 210.
  • CO 2 gas is difficult to diffuse because CO 2 has a larger specific gravity than the atmosphere, and tends to stay below in the diffused place.
  • CO 2 gas is mixed in the exhaust gas 10
  • the concentration of CO 2 in the mixed gas of the CO 2 gas and the exhaust gas 10 decreases, and the mixed gas diffuses into the atmosphere from the top 120 a of the absorption tower 120.
  • the CO 2 diffusivity is improved.
  • the CO 2 gas returned from the drain line L 6 to the absorption tower 120 has a long contact time with the exhaust gas 10 in the absorption tower 120, can be mixed well, and the CO 2 gas has a diffusibility. , Improve more reliably.
  • CO 2 gas return line L 5 represents, at an upper position P1 of the nozzles 124 provided on the top of the absorption tower 120, is provided so as to communicate with the absorption tower 120, CO 2 gas position where the line L 5 back is not limited to the position P1, CO 2 gas return line and L 5 may be provided at other positions.
  • the CO 2 gas return line L 5 can be provided in the absorption tower 120 so as to communicate with the absorption tower 120 above the mist eliminator 123.
  • the CO 2 gas return line L 5 includes cooling water 320 injected from a nozzle 124 provided below the mist eliminator 123 and condensed water falling from the mist eliminator 123. It can be provided so as to communicate with the inside of the absorption tower 120 at a position P2 facing the collection tank 125 that collects a part of 211.
  • the opening 129 formed at the position P ⁇ b> 2 can also include the cover 170 and the baffle plate 171.
  • the CO 2 gas is blown from the CO 2 gas return line L 5 in water (recovered coolant 320 and the condensed water 211) in the collection tank 125, the carbonated water. Then, carbonated water is injected from the nozzle 124 into the absorption tower 120 as the cooling water 320.
  • carbonated water is acidic, by contacting the alkaline amine solution is CO 2 absorbing solution 300, pH in the CO 2 absorbing solution 300 decreases.
  • a purified gas 210 from which CO 2 has been removed is discharged from the tower top 120 a of the absorption tower 120, and a part of the amine solution is mixed into the purified gas 210. Therefore, by applying the above configuration, the pH of the exhausted purified gas 210 can be lowered, and an emission reduction effect can be obtained.
  • FIGS. 1 to 4 may be combined as appropriate. Moreover, about the specific structure of the regeneration tower 130 and the absorption tower 120, and the structure of other incidental facilities, it is not restricted to what was shown above, It can change into another structure suitably. In addition to the above, within the scope of the gist of the present invention, the configuration described in the above embodiment can be appropriately changed or omitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

ベントスタックを用いることなく運用することができ、低コスト化を図ることを目的とする。二酸化炭素回収装置は、CO吸収液300と接触させることで排ガス10中からCOを吸収して回収する吸収塔120と、CO吸収液300からCOを取り出す再生塔130と、取出されたCOを貯留工程へと送り出すCO送出ラインLと、取出されたCOを吸収塔120に戻すCO戻しラインLと、を備え、CO回収装置100やCO圧縮装置145の起動時、貯留工程側において何らかのトラブル等が生じて、COを受け入れることができないときには、再生塔130からのCOの送出先を、CO送出ラインLからCO戻しラインLに切り替え、COガスを吸収塔120内で排ガス10中に混ぜるようにした。

Description

二酸化炭素回収装置
 本発明は、火力発電所等、ボイラやガスタービン等を備えた設備で生じる排ガス中から二酸化炭素(CO)を回収する二酸化炭素回収装置に関するものである。
 地球温暖化の抑制のため、COの発生を抑制することが望まれている。これに伴い、火力発電所等、燃料を燃焼させるボイラやガスタービン等を備えた設備においても、設備の稼動時に発生する排ガスにCOが含まれるため、その排出量抑制が強く要請されている。
 このような設備においてCOの排出量を抑制するため、燃料を燃焼させるボイラやガスタービン等からの排ガスを、アミン系の吸収液(以下、これをCO吸収液と称する)に接触させることによって、排ガス中に含まれるCOを吸収する方法が用いられている(例えば、特許文献1参照。)。
 さらに、近年では、排ガスからCOを吸収した後のCO吸収液からCOを回収し、回収したCOを地中等に貯蔵する方法が研究されている(例えば、特許文献2、非特許文献1参照。)。
 図4は、CO回収装置1の構成を示すものである。
 CO回収装置1では、例えばボイラやガスタービン等の設備から排出されたCOを含有する排ガス10が、図示されないブロワによって冷却塔12へと供給されている。冷却塔12へと供給された排ガス10は、冷却塔12で冷却水11によって冷却される。
 冷却されたCOを含有する排ガス10は、排ガスライン13を介して吸収塔14の下部から供給される。吸収塔14において、例えば、アルカノールアミンをベースとするCO吸収液15(アミン溶液)が、排ガス10と対向流接触される。これにより排ガス10中のCOは、CO吸収液15に吸収され、産業設備から排出された排ガス10からCOが除去される。COが除去された浄化ガス16は、吸収塔14の塔頂部14aから排出されている。
 吸収塔14でCOを吸収した吸収液15は、塔底部14bに貯留され、ポンプ25により再生塔17へと送り込まれる。
 COを吸収したCO吸収液15(リッチ溶液)は、再生塔17においてリボイラ18で発生させた蒸気によって加熱されることによってCOが放出され、COを吸収可能なCO吸収液15(リーン溶液)として再生される。この再生されたCO吸収液15は、ポンプ19により熱交換器20、リーン溶液冷却装置21を介して再び吸収塔14に供給され、再利用される。
 再生塔17においてCO吸収液15から放出されたCOは、気液分離器22を経て、CO圧縮装置23へと送気されて圧縮され、貯留工程へと送出される。
 ところで、CO回収装置1やCO圧縮装置23の起動直後や、貯留工程側の事情により、回収された炭酸ガスを、貯留工程へと送出することができないことがある。このような場合、回収した炭酸ガスは、ベントスタック30から大気中に開放している。
特開平5-184866号公報 特開2011-218287号公報
飯嶋正樹、外4名、"米国における石炭火力からのCO2回収プロジェクト" 三菱重工技報、vol.49、No.1(2012)、p.42-47
 しかしながら、ベントスタック30は、COを大気中に拡散するため、周囲に人気のない場所で、数十mといった高さで設ける必要がある。したがって、非常に大掛かりであり、その設置のためにCO回収装置1から離れた場所に大きな用地が必要であるのに加え、CO回収装置1からベントスタック30まで、回収された炭酸ガスを送るためのダクト31も必要である。したがって、稼働中に常時使用するものではないのにかかわらず、設置コスト、運用コストがかかるという問題がある。
 本発明は、このような事情に鑑みてなされたものであって、ベントスタックを用いることなく運用することができ、低コスト化を図ることのできる二酸化炭素回収装置を提供することを目的とする。
 上記課題を解決するために、本発明の二酸化炭素回収装置は、以下の手段を採用する。
 すなわち、本発明の二酸化炭素回収装置は、COを吸収するCO吸収液を、燃料を燃焼させる設備から排出される排ガスに接触させることで、排ガス中に含まれるCOを吸収する吸収塔と、吸収塔でCOを吸収したCO吸収液からCOを放出させ、CO吸収液を再生する再生塔と、再生塔で放出されたCOを外部に送出する送出管と、再生塔で放出されたCOを前記吸収塔に送給し、前記排ガス中からCOを除去した浄化ガスに混合させる戻し管と、再生塔からのCOの送出先を切り替える切替部と、を備えることを特徴とする。
 このような二酸化炭素回収装置においては、吸収塔にて排ガス中からCO吸収液によって吸収したCOを、再生塔にてCO吸収液から放出させる。通常時においては、再生塔で放出されたCOは、送出管により外部に送出する。そして、何らかの要因により、COを外部に送出できない場合には、切替部により、再生塔で放出されたCOを、戻し管を介して吸収塔に送給する。すると、再生塔で放出されたCOは、吸収塔内で排ガスに混合され、排ガスとともに大気中に放出される。これによって、ベントスタックを設ける必要がなくなる。
 このとき、COガスと排ガスを混合させるので、COガスのみを放出する場合に比較すると、COガスと排ガスの混合ガスは比重が軽くなり、拡散性が高まる。
 ここで、切替部は、送出管におけるCOの圧力が規定レベル以上となったときに、再生塔からのCOの送出先を送出管から戻し管に切り替えるようにすることができる。
 また、切替部は、二酸化炭素回収装置の起動時、回収したCOの送出先の稼働状況等を、COの圧力以外の情報、例えば運転モードを示す情報等により把握し、その把握結果に応じて、再生塔からのCOの送出先を切り替えることもできる。
 戻し管は、再生塔で放出されたCOを、吸収塔のCO吸収液を排ガスに接触させる領域に対し、排ガスの流れ方向下流側のいかなる位置で吸収塔内に送り込んでも良いが、浄化ガスを洗浄および冷却する領域に対し、浄化ガスの流れ方向上流側に再生塔で放出されたCOを吸収塔内に送り込むのが好ましい。これにより、COと排ガスとの接触領域(接触時間)が長くなり、その混合が良好に行われる。
 また、戻し管は、浄化ガスを洗浄および冷却する冷却水中に、再生塔で放出されたCOを送り込むこともできる。
 これには、吸収塔内で冷却水を循環させるために冷却水を回収する回収槽中に、再生塔で放出されたCOを送り込むのが好ましい。
 これにより、CO吸収液に、アミン溶液等、アルカリ性のものを用いている場合、冷却水にCOガスを吹き込むことによって得られた炭酸水とCO吸収液が接触することで、CO吸収液のpHが下がる。すると、排ガスとともにCO吸収液の一部が大気中に放出された場合に、エミッション低減効果が得られる。
 さらに、戻し管の端部が接続された吸収塔の開口部の上部に、吸収塔内で上方から流れ落ちる冷却水が開口部から戻し管内に流れ込むのを防ぐため、吸収塔の内方に向けて突出するカバーを設けることもできる。
 戻し管の端部が接続された吸収塔の開口部の下部に、吸収塔内の冷却水が開口部から戻し管内に流れ込むのを防ぐため、開口部の下部の一部を塞ぐバッフルプレートを設けることもできる。
 また、戻し管に、再生塔から送り込まれるCOに含まれる液分、および吸収塔から戻し管内に流れ込んだ冷却水を回収するドレントラップを設けることもできる。
 本発明によれば、通常時は、排ガスから回収したCOを送出管から外部に送出し、何らかの要因によりCOを外部に送出できない場合には、COを吸収塔に戻して排ガスに混合させて大気中に放出するようにした。これによって、ベントスタックを設ける必要がなくなり、その設置コスト、運用コストを抑えることが可能となる。
本発明の第一の実施形態に係るCO回収装置の構成を示す図である。 戻し管の端部に設けられたバッフルプレートおよびカバーを示す斜視図および断面図である。 本発明の第二の実施形態に係るCO回収装置の構成を示す図である。 従来のCO回収装置の構成を示す図である。
 以下、本発明の二酸化炭素回収装置の複数の実施形態について、図1を用いて説明する。
[第一の実施形態]
 図1に示すように、CO回収装置100は、排ガス10を冷却する冷却塔110と、CO吸収液300により排ガス10中からCOを吸収して回収する吸収塔120と、COを吸収したCO吸収液300からCOを取り出すとともに、CO吸収液300を再生する再生塔130と、を備えている。
 このCO回収装置100においては、例えばボイラやガスタービン等の産業設備から排出されたCOを含有する排ガス10は、図示されないブロワによって冷却塔110へと供給される。
 冷却塔110へと供給された排ガス10は、ノズル111から冷却塔110内に噴射された冷却水310によって冷却される。排ガス10を冷却するのに用いられた冷却水310は、ポンプ112により、冷却器113を経て冷却され、再び冷却塔110のノズル111へと供給される。なお、冷却器113では、冷却塔110へと供給される冷却水310の冷熱源として、冷水311が用いられている。
 冷却塔110において冷却された、COを含有する排ガス10は、冷却塔110の頂部110aから吸収塔120の塔底部120bに、排ガスライン114を介して送り込まれる。
 吸収塔120においては、CO吸収液300が、吸収塔120の上部に設けられたノズル121に供給され、このノズル121から吸収塔120内の下方に向けて噴射されている。CO吸収液300としては、例えば、アルカノールアミンをベースとするアミン溶液が用いられる。このCO吸収液300は、吸収塔120においてノズル121の下方空間に設けられた充填層122を通過する間に、塔底部120bから上昇してくる排ガス10と対向流接触される。これにより排ガス10中のCOはCO吸収液300に吸収される。これにより、排ガス10からCOが除去される。ここで、COが除去された排ガス10を浄化ガス210と言う。この、COが除去された浄化ガス210は、吸収塔120の塔頂部120aから排出される。
 ここで、CO吸収液300は、COが吸収されることによって発熱して液温が上昇するため、浄化ガス210には水蒸気等が含まれ得る。吸収塔120の上部には、ミストエリミネータ123と、ミストエリミネータ123の下方にノズル124が設けられている。浄化ガス210中の水蒸気は、吸収塔120上部の充填層122上で、ノズル124から噴射された冷却水320と対向流接触で冷却されることで凝縮する。ミストエリミネータ123は、充填層122の上方に設けられ、浄化ガス210中のミストを捕集する。吸収塔120外には、冷却器127と、凝縮水211の一部を回収槽125で回収し、冷却水320として冷却器127と吸収塔120との間で循環させるポンプ126とが設けられている。
 吸収塔120の充填層122を上方から下方に向けて通過する間にCOを吸収したCO吸収液(以下、これをリッチ溶液と称することがある)300Rは、塔底部120bに貯留される。貯留されたリッチ溶液300Rは、ポンプ151により、吸収塔120の塔底部120bと再生塔130の上部とを接続する送液ラインL1を通して、再生塔130へと送り込まれる。ここで、送液ラインL1には、熱交換器152が設けられている。この熱交換器152においては、吸収塔120から再生塔130に送り込まれるリッチ溶液300Rは、後述の再生塔130で再生されて冷却されたCO吸収液(以下、これをリーン溶液と称することがある)300Lと熱交換して、加熱される。
 再生塔130内には、その上部にノズル131が設けられ、このノズル131から、熱交換器152で加熱されたリッチ溶液300Rが下方に向けて噴射される。
 ノズル131の下方には、充填層132が設けられており、リッチ溶液300Rは、再生塔130において、リッチ溶液300Rが、加熱された充填層132を通過する間の対向流接触によって生じる吸熱反応によりCOがリッチ溶液300Rから放出される。リッチ溶液300Rが、再生塔130の塔底部130bに至る頃には、大部分のCOがリッチ溶液300Rから除去され、リッチ溶液300Rはリーン溶液300Lとして再生される。
 また、再生塔130の塔底部130bには、リーン溶液300Lの一部を塔底部130bの上方に循環させる循環路Lが設けられている。循環路Lには、リボイラ137が付設されている。このリボイラ137には、リーン溶液300Lを加熱するための蒸気管137aが備えられている。
 塔底部130bのリーン溶液300Lの一部は、循環路Lを通してリボイラ137に供給され、蒸気管137a内を通る高温蒸気との熱交換によって加熱された後に再生塔130内へ還流される。この加熱されたリーン溶液300Lの熱エネルギーによって、塔底部130bのリーン溶液300LからCOガスがさらに放出される。また、リーン溶液300Lの加熱により、充填層132も間接的に加熱され、前述したように、この充填層132での気液接触の間にリッチ溶液300RからCOガスが放出される。
 このようにして、再生塔130でCOを放出して再生されたリーン溶液300Lは、再生塔130の塔底部130bと吸収塔120の上部とを接続する送液ラインLを通じてポンプ153によって吸収塔120に還流される。
 送液ラインLには、前記の熱交換器152と、水冷式冷却器154とが設けられている。送液ラインLを通るリーン溶液300Lは、熱交換器152において、吸収塔120から再生塔130に供給されるリッチ溶液300Rとの間で熱交換して冷却され、更に、水冷式冷却器154によって、冷水311との熱交換により、COの吸収に適した温度まで充分に冷却される。
 再生塔130の塔頂部130aには、CO送出ライン(送出管)Lが接続されている。再生塔130においてリッチ溶液300Rから放出されたCOガスは、CO送出ラインLにより外部に排出される。
 CO送出ラインLには、冷水311を用いた冷却器140、気液分離器141、CO圧縮装置145が設けられている。
 再生塔130からCO送出ラインLを通して放出されたCOガスは、冷却器140において充分に冷却された後、気液分離器141へと送気される。
 気液分離器141において、冷却器140での冷却により凝縮したCOガス中の凝縮水330は、COガスから分離される。気液分離器141において分離された凝縮水330は、ポンプ143によって再生塔130上部に還流される。
 還流された凝縮水330は、再生塔130の上部に設けられたノズル135から、その下方の凝縮部136に向けて噴出され、COガスを冷却するとともに、凝縮部136を冷却して吸収剤等の放出を抑制する。
 CO圧縮装置145では、気液分離器141を経たCOガスが圧縮される。圧縮されたCOガスは、通常時は、CO送出ラインLにより貯留工程へと送出される。
 本実施形態において、CO圧縮装置145の上流側と下流側には、それぞれ、COガスを吸収塔120に送り込むCOガス戻しライン(戻し管)Lが、開閉弁(切替部)160、161を介して接続されている。
 COガス戻しラインLは、吸収塔120の上部の、冷却水320を噴射するノズル124の上方の位置P1にて、吸収塔120内に連通するよう設けることができる。
 図2に示すように、位置P1にて、吸収塔120内に連通する配管200の端部200aは、吸収塔120の壁体128に形成された開口部129の外周側に接続されている。
 開口部129には、カバー170と、バッフルプレート171と、が設けられている。
 カバー170は、略逆U字状で、円形の開口部129の上半部129aに沿うよう設けられた上部湾曲壁部170aと、開口部129の最大幅部129bの両側に位置する上部湾曲壁部170aの両端から、鉛直下方に延びる下部側壁部170b,170bと、から形成されている。
 位置P1においては、冷却水320が流れ落ちてくる。位置P1に形成された開口部129にカバー170を設けることにより、開口部129から配管200内に冷却水320が流れ込むのを抑えることができる。
 バッフルプレート171は、開口部129の下部129cを塞ぐよう設けられ、開口部129の内周部に沿った湾曲部171aと、湾曲部171aの両端部どうしを結ぶ直線状部171bとからなり、湾曲部171aを開口部129の下部129cの内周面に溶接して設けられている。
 位置P1に形成された開口部129にバッフルプレート171を設けることにより、下方から跳ね上がった冷却水320が開口部129から配管200内に流れ込むのを抑えることができる。
 また、図1に示したように、本実施形態においては、COガス戻しラインLは、途中で分岐し、分岐したドレンライン(戻し管)Lが、吸収塔120の塔底部120bの、リッチ溶液300Rの貯留部の上方の位置P3にて、吸収塔120内に連通するよう設けられている。
 ドレンラインLには、ドレントラップ165が設けられている。ドレントラップ165は、CO圧縮装置145側から送られてくるCOガスに含まれる液分を回収する。
 開閉弁160は、CO圧縮装置145の上流側において、図示しない圧力センサによってガス圧を検出し、検出されたガス圧が規定の基準値を上回ったときに、図示しない制御部によって、開くよう操作されるようになっている。
 開閉弁161は、CO圧縮装置145の下流側において、図示しない圧力センサによってガス圧を検出し、検出されたガス圧が規定の基準値を上回ったときに、図示しない制御部によって、開くよう操作されるようになっている。
 これにより、CO圧縮装置145の上流側または下流側において、ガス圧が規定の基準値を上回ったときに、COガスがCOガス戻しラインLおよびドレンラインLを経て吸収塔120に戻され、吸収塔120内の排ガス10に混合される。
 上述したような構成によれば、吸収塔120においてCO吸収液300によって排ガス10中からCOを吸収して回収し、再生塔130において、CO吸収液300からCOを取り出す。そして、通常時においては、取出したCOを貯留工程へと送り出す。また、CO回収装置100やCO圧縮装置145の起動時、貯留工程側において何らかのトラブル等が生じて、COを受け入れることができないときには、COガス戻しラインLによってCOガスを吸収塔120に送り込む。これにより、COガスを排ガス10(浄化ガス210)中に混ぜることができ、浄化ガス210とともに大気中に拡散させることができる。
 これによって、ベントスタックや、ベントスタックまでのダクトを設ける必要がなくなり、設置コスト、運用コストを大幅に低減することができる。
 また、COガスは、COが大気に比較して大きな比重を有しているため、拡散しにくく、拡散した場所においてそのまま下方に留まりがちである。これに対し、COガスを排ガス10中に混ぜると、COガスと排ガス10の混合ガスのCOの濃度が下がり、その混合ガスが、吸収塔120の塔頂部120aから大気中に拡散したときに、そのCOの拡散性が向上する。
また、ドレンラインLから吸収塔120に戻されたCOガスは、吸収塔120内における排ガス10との接触時間が長く、その混合を良好に行うことができ、COガスの拡散性が、より確実に向上する。
 なお、上記実施形態において、COガス戻しラインLは、吸収塔120の上部に設けられたノズル124の上方の位置P1にて、吸収塔120内に連通するよう設けたが、COガス戻しラインLを設ける位置は、位置P1に限らず、COガス戻しラインLは他の位置に設けても良い。
 例えば、COガス戻しラインLは、吸収塔120において、ミストエリミネータ123の上方において、吸収塔120内に連通するよう設けることもできる。
[第二の実施形態]
 以下に、本発明に係る二酸化炭素回収装置の他の実施形態について説明する。
 なお、以下に示す第二の実施形態は、上記第一の実施形態に対し、COガス戻しラインLの吸収塔120への接続位置が異なるのみであるため、上記実施形態と共通する構成についてはその説明を省略する。
 図3に示すように、本実施形態においては、COガス戻しラインLは、ミストエリミネータ123の下方に設けられたノズル124から噴射される冷却水320、およびミストエリミネータ123から落下した凝縮水211の一部を回収する回収槽125に臨む位置P2において、吸収塔120内に連通するよう設けることができる。
 図2に示すように、位置P2に形成された開口部129にも、カバー170と、バッフルプレート171と、を備えることができる。
 このようにすると、COガス戻しラインLから回収槽125内の水(回収された冷却水320および凝縮水211)にCOガスが吹き込まれ、炭酸水となる。すると、ノズル124からは冷却水320として炭酸水が吸収塔120内に噴射されることになる。炭酸水は酸性であるため、CO吸収液300であるアルカリ性のアミン溶液と接触することで、CO吸収液300でのpHが下がる。
 吸収塔120の塔頂部120aからは、COが除去された浄化ガス210が排出されるが、この浄化ガス210には、アミン溶液の一部が混入することになる。そこで、上記構成を適用することによって、排出される浄化ガス210のpHを下げ、エミッション低減効果を得ることができる。
 なお、図1~図4に示した構成は、適宜組み合わせても良い。
 また、再生塔130、吸収塔120の具体的な構成や、その他の付帯設備の構成については、上記に示したものに限るものではなく、適宜他の構成に変更することができる。
 これ以外にも、本発明の主旨の範囲内であれば、上記実施形態で挙げた構成を適宜変更、省略することが可能である。
10  排ガス
100 CO回収装置
110 冷却塔
111 ノズル
112 ポンプ
113 冷却器
114 排ガスライン
120 吸収塔
120a    塔頂部
120b    塔底部
121 ノズル
122 充填層
123 ミストエリミネータ
124 ノズル
125 回収槽
126 ポンプ
127 冷却器
128 壁体
129 開口部
130 再生塔
131 ノズル
132 充填層
135 ノズル
136 凝縮部
137 リボイラ
140 冷却器
141 気液分離器
143 ポンプ
145 圧縮装置
151 ポンプ
152 熱交換器
153 ポンプ
154 水冷式冷却器
160,161     開閉弁(切替部)
165 ドレントラップ
170 カバー
171 バッフルプレート
200 配管
200a    端部
210 浄化ガス
211 凝縮水
300 CO吸収液
300R    リッチ溶液
300L    リーン溶液
310 冷却水
311 冷水
320 冷却水
330 凝縮水
1    CO送液ライン
   CO送液ライン
   CO送出ライン(送出管)
   循環路
   CO戻しライン(戻し管)
   ドレンライン(戻し管)
 

Claims (8)

  1.  COを吸収するCO吸収液を、燃料を燃焼させる設備から排出される排ガス中に接触させることで、前記排ガス中に含まれる前記COを吸収する吸収塔と、
     前記吸収塔で前記COを吸収した前記CO吸収液から前記COを放出させ、前記CO吸収液を再生する再生塔と、
     前記再生塔で放出された前記COを外部に送出する送出管と、
     前記再生塔で放出された前記COを前記吸収塔に送給し、前記排ガス中からCOを除去した浄化ガスに混合させる戻し管と、
     前記再生塔からの前記COの送出先を切り替える切替部と、
    を備えることを特徴とする二酸化炭素回収装置。
  2.  前記切替部は、前記送出管における前記COの圧力が規定レベル以上となったときに、前記再生塔からの前記COの送出先を前記送出管から前記戻し管に切り替えることを特徴とする請求項1に記載の二酸化炭素回収装置。
  3.  前記戻し管は、前記吸収塔において、前記CO吸収液を前記排ガスに接触させる領域に対し、前記排ガスの流れ方向下流側にて、前記再生塔で放出された前記COを前記吸収塔内に送り込むことを特徴とする請求項1に記載の二酸化炭素回収装置。
  4.  前記戻し管は、前記浄化ガスを洗浄および冷却する冷却水中に、前記再生塔で放出された前記COを送り込むことを特徴とする請求項1に記載の二酸化炭素回収装置。
  5.  前記戻し管は、前記吸収塔内で前記冷却水を循環させるために前記冷却水を回収する回収槽中に、前記再生塔で放出された前記COを送り込むことを特徴とする請求項4に記載の二酸化炭素回収装置。
  6.  前記戻し管の端部が接続された前記吸収塔の開口部の上部に、前記吸収塔内で上方から流れ落ちる、前記浄化ガスを洗浄および冷却する冷却水が前記開口部から前記戻し管内に流れ込むのを防ぐため、前記吸収塔の内方に向けて突出するカバーが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
  7.  前記戻し管の端部が接続された前記吸収塔の開口部の下部に、前記吸収塔内で上方から流れ落ちる、前記浄化ガスを洗浄および冷却する冷却水が前記開口部から前記戻し管内に流れ込むのを防ぐため、前記開口部の下部の一部を塞ぐバッフルプレートが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
  8.  前記戻し管に、前記再生塔から送り込まれる前記COに含まれる液分、および前記吸収塔から該戻し管内に流れ込んだ、前記浄化ガスを洗浄および冷却する冷却水を回収するドレントラップが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
PCT/JP2013/074767 2012-09-20 2013-09-12 二酸化炭素回収装置 WO2014046018A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13838143.9A EP2898940B1 (en) 2012-09-20 2013-09-12 Carbon dioxide recovery device
AU2013319191A AU2013319191B2 (en) 2012-09-20 2013-09-12 Carbon dioxide recovery device
CA2883832A CA2883832C (en) 2012-09-20 2013-09-12 Carbon dioxide recovery unit
JP2014536819A JP5972985B2 (ja) 2012-09-20 2013-09-12 二酸化炭素回収装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/623,495 US8961664B2 (en) 2012-09-20 2012-09-20 Carbon dioxide recovery device
US13/623495 2012-09-20

Publications (1)

Publication Number Publication Date
WO2014046018A1 true WO2014046018A1 (ja) 2014-03-27

Family

ID=50273105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074767 WO2014046018A1 (ja) 2012-09-20 2013-09-12 二酸化炭素回収装置

Country Status (6)

Country Link
US (1) US8961664B2 (ja)
EP (1) EP2898940B1 (ja)
JP (1) JP5972985B2 (ja)
AU (1) AU2013319191B2 (ja)
CA (1) CA2883832C (ja)
WO (1) WO2014046018A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168707A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168705A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168701A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168702A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9616374B2 (en) * 2013-12-14 2017-04-11 Millenium Synthfuels Corporation Multi-stage temperature based separation of gas impurities
JP2016215105A (ja) * 2015-05-18 2016-12-22 株式会社東芝 二酸化炭素回収装置および二酸化炭素回収方法
US10293304B2 (en) 2015-07-14 2019-05-21 John E. Stauffer Carbon dioxide recovery using an absorption column in combination with osmotic filters
US10040737B2 (en) 2015-07-14 2018-08-07 John E. Stauffer Methanol production from methane and carbon dioxide
US10493397B2 (en) 2015-07-14 2019-12-03 John E. Stauffer Carbon dioxide recovery
CN109453621B (zh) * 2018-12-21 2024-06-25 江苏格陵兰传热科技有限公司 一种废气回收利用节能装置
JP7524086B2 (ja) * 2021-01-15 2024-07-29 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
CN117398833B (zh) * 2023-12-12 2024-04-05 成都赢纳环保科技有限公司 一种工业废气处理设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184867A (ja) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の炭酸ガスの回収方法
JPH05184866A (ja) 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の脱二酸化炭素装置および方法
JP2010207686A (ja) * 2009-03-09 2010-09-24 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び排ガス処理方法
WO2011080838A1 (ja) * 2009-12-28 2011-07-07 バブコック日立株式会社 二酸化炭素の吸収液および回収方法
WO2011084254A1 (en) * 2009-12-17 2011-07-14 Alstom Technology Ltd Ammonia removal, following removal of co2, from a gas stream
JP2011521774A (ja) * 2008-05-14 2011-07-28 アルストム テクノロジー リミテッド 洗浄水のco2注入のための設備を有するガス浄化システム
WO2011120754A2 (de) * 2010-03-31 2011-10-06 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossil befeuerten kraftwerksanlage
JP2011218287A (ja) 2010-04-08 2011-11-04 Mitsubishi Heavy Ind Ltd 排ガス中の二酸化炭素回収装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438734A (en) * 1967-05-15 1969-04-15 North American Rockwell Sulfur production using carbon oxide regenerant
DE69318433T2 (de) * 1992-01-17 1998-12-17 Mitsubishi Jukogyo K.K., Tokio/Tokyo Verfahren zur Behandlung von Verbrennungsabgasen
US6689332B1 (en) * 1992-09-16 2004-02-10 The Kansai Electric Power Co, Inc. Process for removing carbon dioxide from combustion gases
PE20071048A1 (es) * 2005-12-12 2007-10-18 Basf Ag Proceso para la recuperacion de dioxido de carbono
US8007570B2 (en) * 2009-03-11 2011-08-30 General Electric Company Systems, methods, and apparatus for capturing CO2 using a solvent
US9133407B2 (en) * 2011-02-25 2015-09-15 Alstom Technology Ltd Systems and processes for removing volatile degradation products produced in gas purification

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184867A (ja) * 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の炭酸ガスの回収方法
JPH05184866A (ja) 1992-01-17 1993-07-27 Kansai Electric Power Co Inc:The 燃焼排ガス中の脱二酸化炭素装置および方法
JP2011521774A (ja) * 2008-05-14 2011-07-28 アルストム テクノロジー リミテッド 洗浄水のco2注入のための設備を有するガス浄化システム
JP2010207686A (ja) * 2009-03-09 2010-09-24 Mitsubishi Heavy Ind Ltd 排ガス処理装置及び排ガス処理方法
WO2011084254A1 (en) * 2009-12-17 2011-07-14 Alstom Technology Ltd Ammonia removal, following removal of co2, from a gas stream
WO2011080838A1 (ja) * 2009-12-28 2011-07-07 バブコック日立株式会社 二酸化炭素の吸収液および回収方法
WO2011120754A2 (de) * 2010-03-31 2011-10-06 Siemens Aktiengesellschaft Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossil befeuerten kraftwerksanlage
JP2011218287A (ja) 2010-04-08 2011-11-04 Mitsubishi Heavy Ind Ltd 排ガス中の二酸化炭素回収装置及び方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKI IIJIMA: "Large Scale Demonstration Project for Carbon Capture from Coal-fired Power Plant in U.S.A.", MITSUMISHI HEAVY INDUSTRIES TECHNICAL REVIEW, vol. 49, no. 1, 2012, pages 42 - 47
See also references of EP2898940A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168707A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168705A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168701A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR20220168702A (ko) * 2021-06-17 2022-12-26 주식회사 파나시아 이산화탄소 포집시스템
KR102592261B1 (ko) * 2021-06-17 2023-10-23 주식회사 파나시아 이산화탄소 포집시스템
KR102592265B1 (ko) * 2021-06-17 2023-10-23 주식회사 파나시아 이산화탄소 포집시스템
KR102592257B1 (ko) * 2021-06-17 2023-10-23 주식회사 파나시아 이산화탄소 포집시스템
KR102592249B1 (ko) * 2021-06-17 2023-10-23 주식회사 파나시아 이산화탄소 포집시스템

Also Published As

Publication number Publication date
EP2898940A4 (en) 2016-05-18
JP5972985B2 (ja) 2016-08-17
AU2013319191B2 (en) 2016-07-07
AU2013319191A1 (en) 2015-03-19
JPWO2014046018A1 (ja) 2016-08-18
CA2883832C (en) 2017-03-28
EP2898940A1 (en) 2015-07-29
US20140076166A1 (en) 2014-03-20
US8961664B2 (en) 2015-02-24
EP2898940B1 (en) 2017-06-21
CA2883832A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5972985B2 (ja) 二酸化炭素回収装置
JP4690659B2 (ja) Co2回収装置
JP2005254212A5 (ja)
US20120234177A1 (en) Co2 recovery apparatus
JP2010279897A (ja) Co2回収装置
JP5639814B2 (ja) 脱co2設備付き火力発電システム
WO2011105120A1 (ja) Co2回収装置およびco2回収方法
JP4773865B2 (ja) Co2回収装置及びco2回収方法
JP2008307520A (ja) Co2又はh2s除去システム、co2又はh2s除去方法
JP2010240629A (ja) 二酸化炭素回収システム
JP2011240321A (ja) 二酸化炭素除去装置を有する排ガス処理システム
KR101751723B1 (ko) 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법
JP4831834B2 (ja) Co2回収装置及びco2吸収液回収方法
JP2007137725A (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
JP5591083B2 (ja) Co2回収システム
JP2023068025A (ja) 二酸化炭素回収システム
JP6845744B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP2006342032A (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
CA2885342C (en) Co2 recovery unit
JP2022099372A (ja) 二酸化炭素の回収システム、移動体
JP2007000841A (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
JP2007008732A (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
WO2020202804A1 (ja) 冷却吸収塔及びこれを備えたco2回収装置並びにco2回収方法
CA2884790A1 (en) Steam providing system and co2 recovery facilities provided with same
JP5606469B2 (ja) 二酸化炭素回収装置及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13838143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2883832

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013838143

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014536819

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013319191

Country of ref document: AU

Date of ref document: 20130912

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE