WO2014046018A1 - 二酸化炭素回収装置 - Google Patents
二酸化炭素回収装置 Download PDFInfo
- Publication number
- WO2014046018A1 WO2014046018A1 PCT/JP2013/074767 JP2013074767W WO2014046018A1 WO 2014046018 A1 WO2014046018 A1 WO 2014046018A1 JP 2013074767 W JP2013074767 W JP 2013074767W WO 2014046018 A1 WO2014046018 A1 WO 2014046018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorption tower
- tower
- carbon dioxide
- gas
- return pipe
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1418—Recovery of products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
- F23J15/04—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
- B01D2252/20478—Alkanolamines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1412—Controlling the absorption process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/50—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/40—Sorption with wet devices, e.g. scrubbers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
Definitions
- the present invention relates to a carbon dioxide recovery device that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
- a carbon dioxide recovery device that recovers carbon dioxide (CO 2 ) from exhaust gas generated in a facility such as a thermal power plant equipped with a boiler, a gas turbine, and the like.
- CO 2 absorption liquid an amine-based absorption liquid
- Patent Document 1 a method for recovering CO 2 from a CO 2 absorbing solution after absorbing CO 2 from exhaust gas and storing the recovered CO 2 in the ground or the like has been studied (for example, Patent Document 2, Non-Patent Document). Reference 1).
- FIG. 4 shows the configuration of the CO 2 recovery device 1.
- the CO 2 recovery device 1 for example, exhaust gas 10 containing CO 2 discharged from equipment such as a boiler and a gas turbine is supplied to the cooling tower 12 by a blower (not shown).
- the exhaust gas 10 supplied to the cooling tower 12 is cooled by the cooling water 11 in the cooling tower 12.
- the cooled exhaust gas 10 containing CO 2 is supplied from the lower part of the absorption tower 14 via the exhaust gas line 13.
- a CO 2 absorption liquid 15 (amine solution) based on alkanolamine is brought into counterflow contact with the exhaust gas 10.
- the CO 2 in the exhaust gas 10 is absorbed by the CO 2 absorbent 15 and the CO 2 is removed from the exhaust gas 10 discharged from the industrial equipment.
- the purified gas 16 from which CO 2 has been removed is discharged from the tower top 14 a of the absorption tower 14.
- the absorption liquid 15 that has absorbed CO 2 by the absorption tower 14 is stored in the tower bottom 14 b and sent to the regeneration tower 17 by the pump 25.
- CO 2 absorbent 15 that has absorbed CO 2 (rich solution) CO 2 is released by being heated by the steam generated in the reboiler 18 in the regeneration tower 17, CO 2 and can absorb CO 2 absorbent 15 Regenerated as (lean solution).
- the regenerated CO 2 absorbent 15 is supplied again to the absorption tower 14 by the pump 19 via the heat exchanger 20 and the lean solution cooling device 21 and reused.
- the recovered carbon dioxide gas may not be sent to the storage process immediately after activation of the CO 2 recovery apparatus 1 or the CO 2 compression apparatus 23 or due to circumstances on the storage process side. In such a case, the recovered carbon dioxide gas is released from the vent stack 30 to the atmosphere.
- vent stack 30 diffuses CO 2 into the atmosphere, it is necessary to provide the vent stack 30 at a height of several tens of meters in a place that is not popular around the vent stack 30. Therefore, in addition to being very large, a large site is required at a location away from the CO 2 recovery device 1 for the installation, and the recovered carbon dioxide gas from the CO 2 recovery device 1 to the vent stack 30 A duct 31 for sending is also necessary. Therefore, there is a problem that installation cost and operation cost are incurred regardless of whether it is not always used during operation.
- This invention is made
- the carbon dioxide recovery apparatus of the present invention employs the following means. That is, the carbon dioxide recovery apparatus of the present invention, the CO 2 absorbent that absorbs CO 2, is brought into contact with the exhaust gas discharged from facilities that burn fuel, the absorption tower for absorbing CO 2 contained in the exhaust gas When, to release CO 2 from the CO 2 absorbent having absorbed CO 2 absorption tower, a regenerator to regenerate the CO 2 absorbing solution, a delivery tube for delivering the CO 2 released in the regeneration tower to the outside, reproduction A return pipe that feeds CO 2 released from the tower to the absorption tower and mixes it with the purified gas from which the CO 2 has been removed from the exhaust gas, and a switching unit that switches a destination of CO 2 from the regeneration tower.
- the CO 2 absorbed by the CO 2 absorbing solution from the flue gas in the absorption tower it is released from the CO 2 absorbing solution in the regeneration tower.
- CO 2 released from the regeneration tower is sent to the outside through a delivery pipe. Then, for some reason, if it can not sending the CO 2 to the outside, by the switching unit, to deliver CO 2 released in the regeneration tower, the absorption tower via a return pipe. Then, the CO 2 released from the regeneration tower is mixed with the exhaust gas in the absorption tower and released into the atmosphere together with the exhaust gas. This eliminates the need for a vent stack.
- the mixed gas of the CO 2 gas and the exhaust gas has a lower specific gravity and increases the diffusibility.
- the switching unit can switch the CO 2 delivery destination from the regeneration tower from the delivery pipe to the return pipe when the CO 2 pressure in the delivery pipe becomes equal to or higher than a specified level.
- the switching unit grasps the operating status of the destination of the collected CO 2 from information other than the CO 2 pressure, for example, information indicating the operation mode, and displays the grasp result. In response, the CO 2 delivery destination from the regeneration tower can be switched.
- the return pipe may send the CO 2 released in the regeneration tower into the absorption tower at any position downstream of the exhaust gas flow direction with respect to the region where the CO 2 absorption liquid of the absorption tower contacts the exhaust gas. It is preferable to send CO 2 released from the regeneration tower into the absorption tower upstream of the purified gas flow direction in the region where the gas is cleaned and cooled. Accordingly, CO 2 and the contact area (contact time) of the exhaust gas is increased, the mixing is performed well.
- the return pipe can also feed CO 2 released from the regeneration tower into cooling water for cleaning and cooling the purified gas.
- CO 2 released in the regeneration tower into a recovery tank for recovering the cooling water in order to circulate the cooling water in the absorption tower.
- CO 2 absorbing solution, amine solution or the like, if used as alkaline, by carbonated water and CO 2 absorbing liquid obtained by blowing CO 2 gas in the cooling water is in contact, CO 2 The pH of the absorbing solution is lowered. Then, when a part of the CO 2 absorbing liquid is released into the atmosphere together with the exhaust gas, an emission reduction effect can be obtained.
- the cooling water flowing down from the upper part in the absorption tower in order to prevent the cooling water flowing down from the upper part in the absorption tower from flowing into the return pipe from the top in the upper part of the opening of the absorption tower to which the end of the return pipe is connected, it is directed toward the inside of the absorption tower.
- a protruding cover can also be provided.
- a baffle plate that blocks a part of the lower part of the opening is provided at the lower part of the opening of the absorption tower to which the end of the return pipe is connected. You can also.
- the return pipe can be provided with a drain trap for recovering the liquid component contained in CO 2 fed from the regeneration tower and the cooling water flowing into the return pipe from the absorption tower.
- CO 2 recovered from the exhaust gas is sent out from the delivery pipe to the outside. If the CO 2 cannot be sent out for some reason, the CO 2 is returned to the absorption tower and mixed with the exhaust gas. And released into the atmosphere. Accordingly, it is not necessary to provide a vent stack, and the installation cost and operation cost can be suppressed.
- FIG. 1 It is a diagram showing a configuration of a CO 2 recovery apparatus according to a first embodiment of the present invention. It is the perspective view and sectional drawing which show the baffle plate and cover which were provided in the edge part of the return pipe
- the CO 2 recovery apparatus 100 includes a cooling tower 110 that cools the exhaust gas 10, an absorption tower 120 that absorbs and recovers CO 2 from the exhaust gas 10 using the CO 2 absorbent 300, and CO 2 . from the absorbed CO 2 absorbing solution 300 is taken out of the CO 2, it includes a regenerator 130 to regenerate the CO 2 absorbing solution 300, a.
- exhaust gas 10 containing CO 2 discharged from industrial equipment such as a boiler and a gas turbine is supplied to a cooling tower 110 by a blower (not shown).
- the exhaust gas 10 supplied to the cooling tower 110 is cooled by the cooling water 310 injected into the cooling tower 110 from the nozzle 111.
- the cooling water 310 used for cooling the exhaust gas 10 is cooled by the pump 112 through the cooler 113 and supplied again to the nozzle 111 of the cooling tower 110.
- cold water 311 is used as a cooling heat source for the cooling water 310 supplied to the cooling tower 110.
- the exhaust gas 10 containing CO 2 cooled in the cooling tower 110 is sent from the top 110 a of the cooling tower 110 to the tower bottom 120 b of the absorption tower 120 through the exhaust gas line 114.
- the CO 2 absorbent 300 is supplied to a nozzle 121 provided at the upper part of the absorption tower 120, and is injected downward from the nozzle 121 into the absorption tower 120.
- the CO 2 absorbing solution 300 for example, an amine solution based on alkanolamine is used.
- This CO 2 absorbent 300 is in counterflow contact with the exhaust gas 10 rising from the tower bottom 120 b while passing through the packed bed 122 provided in the space below the nozzle 121 in the absorption tower 120.
- the exhaust gas 10 from which CO 2 has been removed is referred to as a purified gas 210.
- the purified gas 210 from which the CO 2 has been removed is discharged from the top 120 a of the absorption tower 120.
- the purified gas 210 may contain water vapor or the like.
- a mist eliminator 123 is provided above the absorption tower 120, and a nozzle 124 is provided below the mist eliminator 123.
- the water vapor in the purified gas 210 condenses on the packed bed 122 above the absorption tower 120 by being cooled in counterflow contact with the cooling water 320 ejected from the nozzle 124.
- the mist eliminator 123 is provided above the packed bed 122 and collects mist in the purified gas 210.
- Outside the absorption tower 120 there are provided a cooler 127 and a pump 126 that collects part of the condensed water 211 in the recovery tank 125 and circulates between the cooler 127 and the absorption tower 120 as cooling water 320. Yes.
- a CO 2 absorbing solution (hereinafter, this may be referred to as a rich solution) 300R that has absorbed CO 2 while passing through the packed bed 122 of the absorption tower 120 from below to above is stored in the tower bottom 120b.
- the stored rich solution 300R is sent to the regeneration tower 130 by a pump 151 through a liquid feed line L 1 that connects the tower bottom 120b of the absorption tower 120 and the upper part of the regeneration tower 130.
- a heat exchanger 152 is provided in the liquid feeding line L 1 .
- the rich solution 300R sent from the absorption tower 120 to the regeneration tower 130 is a CO 2 absorbent (hereinafter referred to as a lean solution) regenerated and cooled in the regeneration tower 130 described later. It is heated by exchanging heat with 300L.
- a nozzle 131 is provided in the upper part of the regeneration tower 130, and the rich solution 300 ⁇ / b> R heated by the heat exchanger 152 is jetted downward from the nozzle 131.
- a packed bed 132 is provided below the nozzle 131, and the rich solution 300 ⁇ / b> R is generated in the regeneration tower 130 by an endothermic reaction caused by a counterflow contact while the rich solution 300 ⁇ / b> R passes through the heated packed bed 132.
- CO 2 is released from the rich solution 300R.
- the rich solution 300R reaches the bottom portion 130b of the regeneration tower 130, most of the CO 2 is removed from the rich solution 300R, and the rich solution 300R is regenerated as a lean solution 300L.
- the bottom portion 130b of the regenerator 130, the circulation passage L 4 for circulating a portion of the lean solution 300L above the column bottom 130b is provided.
- the reboiler 137 is provided with a steam pipe 137a for heating the lean solution 300L.
- Some of the lean solvent 300L of column bottom 130b is supplied to reboiler 137 through the circulation passage L 4, it is returned to the regeneration tower 130 after being heated by heat exchange with high-temperature steam passing through the steam pipe 137a.
- CO 2 gas is further released from the lean solution 300L at the tower bottom 130b.
- the heating of the lean solution 300L also indirectly heats the packed bed 132, and as described above, CO 2 gas is released from the rich solution 300R during the gas-liquid contact in the packed bed 132.
- the lean solution 300L regenerated by releasing CO 2 in the regeneration tower 130 in this way is absorbed by the pump 153 through the liquid feed line L 2 connecting the tower bottom 130b of the regeneration tower 130 and the upper portion of the absorption tower 120. Reflux to column 120.
- the feed line L 2 is, with the heat exchanger 152, is provided with water-cooled condenser 154.
- Lean solution 300L through feed line L 2, in the heat exchanger 152, and heat exchange is cooled between the rich solution 300R supplied to the regenerator 130 from the absorption tower 120, further, a water-cooled condenser 154 By the heat exchange with the cold water 311, it is sufficiently cooled to a temperature suitable for CO 2 absorption.
- a CO 2 delivery line (a delivery pipe) L 3 is connected to the top 130 a of the regeneration tower 130. CO 2 gas released from the rich solution 300R in the regeneration tower 130 is discharged to the outside by the CO 2 delivery line L 3.
- the CO 2 delivery line L 3 is provided with a cooler 140 using cold water 311, a gas-liquid separator 141, and a CO 2 compressor 145.
- the CO 2 gas released from the regeneration tower 130 through the CO 2 delivery line L 3 is sufficiently cooled in the cooler 140 and then sent to the gas-liquid separator 141.
- the condensed water 330 in the CO 2 gas condensed by the cooling in the cooler 140 is separated from the CO 2 gas.
- the condensed water 330 separated in the gas-liquid separator 141 is returned to the upper part of the regeneration tower 130 by the pump 143.
- the refluxed condensed water 330 is ejected from the nozzle 135 provided in the upper portion of the regeneration tower 130 toward the condensing unit 136 below the cooling unit 130, cooling the CO 2 gas and cooling the condensing unit 136 to absorb the absorbent. Suppress the release of etc.
- the CO 2 gas that has passed through the gas-liquid separator 141 is compressed.
- the compressed CO 2 gas is normally sent to the storage process through the CO 2 delivery line L 3 .
- on-off valve (switching portion) 160 , 161 are connected.
- the CO 2 gas return line L 5 can be provided to communicate with the inside of the absorption tower 120 at a position P 1 above the absorption tower 120 and above the nozzle 124 for injecting the cooling water 320.
- the end 200 a of the pipe 200 communicating with the absorption tower 120 is connected to the outer peripheral side of the opening 129 formed in the wall body 128 of the absorption tower 120.
- the opening 129 is provided with a cover 170 and a baffle plate 171.
- the cover 170 has a substantially inverted U-shape and is provided with an upper curved wall 170a provided along the upper half 129a of the circular opening 129 and upper curved walls located on both sides of the maximum width portion 129b of the opening 129.
- the lower side wall portions 170b and 170b extend vertically downward from both ends of the portion 170a.
- the cooling water 320 flows down.
- the baffle plate 171 is provided so as to close the lower portion 129c of the opening 129, and includes a curved portion 171a along the inner peripheral portion of the opening 129 and a linear portion 171b that connects both ends of the curved portion 171a.
- the portion 171a is welded to the inner peripheral surface of the lower portion 129c of the opening 129.
- the CO 2 gas return line L 5 branches in the middle, and the branched drain line (return pipe) L 6 is connected to the tower bottom 120 b of the absorption tower 120.
- the branched drain line (return pipe) L 6 is connected to the tower bottom 120 b of the absorption tower 120.
- it is provided so as to communicate with the inside of the absorption tower 120 at a position P3 above the reservoir of the rich solution 300R.
- a drain trap 165 is provided in the drain line L 6 .
- the drain trap 165 collects the liquid component contained in the CO 2 gas sent from the CO 2 compressor 145 side.
- the on-off valve 160 detects the gas pressure by a pressure sensor (not shown) on the upstream side of the CO 2 compression device 145, and is opened by a control unit (not shown) when the detected gas pressure exceeds a specified reference value. It is designed to be operated.
- the on-off valve 161 detects a gas pressure by a pressure sensor (not shown) on the downstream side of the CO 2 compressor 145, and is opened by a control unit (not shown) when the detected gas pressure exceeds a specified reference value. It is designed to be operated.
- the CO 2 gas passes through the CO 2 gas return line L 5 and the drain line L 6 and the absorption tower 120. And mixed with the exhaust gas 10 in the absorption tower 120.
- the regenerator 130 extracts the CO 2 from the CO 2 absorbing solution 300. Then, in the normal, it sends the retrieved CO 2 into storing step. Further, when starting the CO 2 recovery apparatus 100 and CO 2 compressor 145, some troubles may occur in the storing step side, when unable to accept CO 2, the absorption of CO 2 gas by the CO 2 gas return line L 5 Into tower 120. Thereby, CO 2 gas can be mixed in the exhaust gas 10 (purified gas 210), and can be diffused into the atmosphere together with the purified gas 210.
- CO 2 gas is difficult to diffuse because CO 2 has a larger specific gravity than the atmosphere, and tends to stay below in the diffused place.
- CO 2 gas is mixed in the exhaust gas 10
- the concentration of CO 2 in the mixed gas of the CO 2 gas and the exhaust gas 10 decreases, and the mixed gas diffuses into the atmosphere from the top 120 a of the absorption tower 120.
- the CO 2 diffusivity is improved.
- the CO 2 gas returned from the drain line L 6 to the absorption tower 120 has a long contact time with the exhaust gas 10 in the absorption tower 120, can be mixed well, and the CO 2 gas has a diffusibility. , Improve more reliably.
- CO 2 gas return line L 5 represents, at an upper position P1 of the nozzles 124 provided on the top of the absorption tower 120, is provided so as to communicate with the absorption tower 120, CO 2 gas position where the line L 5 back is not limited to the position P1, CO 2 gas return line and L 5 may be provided at other positions.
- the CO 2 gas return line L 5 can be provided in the absorption tower 120 so as to communicate with the absorption tower 120 above the mist eliminator 123.
- the CO 2 gas return line L 5 includes cooling water 320 injected from a nozzle 124 provided below the mist eliminator 123 and condensed water falling from the mist eliminator 123. It can be provided so as to communicate with the inside of the absorption tower 120 at a position P2 facing the collection tank 125 that collects a part of 211.
- the opening 129 formed at the position P ⁇ b> 2 can also include the cover 170 and the baffle plate 171.
- the CO 2 gas is blown from the CO 2 gas return line L 5 in water (recovered coolant 320 and the condensed water 211) in the collection tank 125, the carbonated water. Then, carbonated water is injected from the nozzle 124 into the absorption tower 120 as the cooling water 320.
- carbonated water is acidic, by contacting the alkaline amine solution is CO 2 absorbing solution 300, pH in the CO 2 absorbing solution 300 decreases.
- a purified gas 210 from which CO 2 has been removed is discharged from the tower top 120 a of the absorption tower 120, and a part of the amine solution is mixed into the purified gas 210. Therefore, by applying the above configuration, the pH of the exhausted purified gas 210 can be lowered, and an emission reduction effect can be obtained.
- FIGS. 1 to 4 may be combined as appropriate. Moreover, about the specific structure of the regeneration tower 130 and the absorption tower 120, and the structure of other incidental facilities, it is not restricted to what was shown above, It can change into another structure suitably. In addition to the above, within the scope of the gist of the present invention, the configuration described in the above embodiment can be appropriately changed or omitted.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
さらに、近年では、排ガスからCO2を吸収した後のCO2吸収液からCO2を回収し、回収したCO2を地中等に貯蔵する方法が研究されている(例えば、特許文献2、非特許文献1参照。)。
CO2回収装置1では、例えばボイラやガスタービン等の設備から排出されたCO2を含有する排ガス10が、図示されないブロワによって冷却塔12へと供給されている。冷却塔12へと供給された排ガス10は、冷却塔12で冷却水11によって冷却される。
CO2を吸収したCO2吸収液15(リッチ溶液)は、再生塔17においてリボイラ18で発生させた蒸気によって加熱されることによってCO2が放出され、CO2を吸収可能なCO2吸収液15(リーン溶液)として再生される。この再生されたCO2吸収液15は、ポンプ19により熱交換器20、リーン溶液冷却装置21を介して再び吸収塔14に供給され、再利用される。
すなわち、本発明の二酸化炭素回収装置は、CO2を吸収するCO2吸収液を、燃料を燃焼させる設備から排出される排ガスに接触させることで、排ガス中に含まれるCO2を吸収する吸収塔と、吸収塔でCO2を吸収したCO2吸収液からCO2を放出させ、CO2吸収液を再生する再生塔と、再生塔で放出されたCO2を外部に送出する送出管と、再生塔で放出されたCO2を前記吸収塔に送給し、前記排ガス中からCO2を除去した浄化ガスに混合させる戻し管と、再生塔からのCO2の送出先を切り替える切替部と、を備えることを特徴とする。
このような二酸化炭素回収装置においては、吸収塔にて排ガス中からCO2吸収液によって吸収したCO2を、再生塔にてCO2吸収液から放出させる。通常時においては、再生塔で放出されたCO2は、送出管により外部に送出する。そして、何らかの要因により、CO2を外部に送出できない場合には、切替部により、再生塔で放出されたCO2を、戻し管を介して吸収塔に送給する。すると、再生塔で放出されたCO2は、吸収塔内で排ガスに混合され、排ガスとともに大気中に放出される。これによって、ベントスタックを設ける必要がなくなる。
このとき、CO2ガスと排ガスを混合させるので、CO2ガスのみを放出する場合に比較すると、CO2ガスと排ガスの混合ガスは比重が軽くなり、拡散性が高まる。
また、切替部は、二酸化炭素回収装置の起動時、回収したCO2の送出先の稼働状況等を、CO2の圧力以外の情報、例えば運転モードを示す情報等により把握し、その把握結果に応じて、再生塔からのCO2の送出先を切り替えることもできる。
これには、吸収塔内で冷却水を循環させるために冷却水を回収する回収槽中に、再生塔で放出されたCO2を送り込むのが好ましい。
これにより、CO2吸収液に、アミン溶液等、アルカリ性のものを用いている場合、冷却水にCO2ガスを吹き込むことによって得られた炭酸水とCO2吸収液が接触することで、CO2吸収液のpHが下がる。すると、排ガスとともにCO2吸収液の一部が大気中に放出された場合に、エミッション低減効果が得られる。
戻し管の端部が接続された吸収塔の開口部の下部に、吸収塔内の冷却水が開口部から戻し管内に流れ込むのを防ぐため、開口部の下部の一部を塞ぐバッフルプレートを設けることもできる。
また、戻し管に、再生塔から送り込まれるCO2に含まれる液分、および吸収塔から戻し管内に流れ込んだ冷却水を回収するドレントラップを設けることもできる。
[第一の実施形態]
図1に示すように、CO2回収装置100は、排ガス10を冷却する冷却塔110と、CO2吸収液300により排ガス10中からCO2を吸収して回収する吸収塔120と、CO2を吸収したCO2吸収液300からCO2を取り出すとともに、CO2吸収液300を再生する再生塔130と、を備えている。
吸収塔120においては、CO2吸収液300が、吸収塔120の上部に設けられたノズル121に供給され、このノズル121から吸収塔120内の下方に向けて噴射されている。CO2吸収液300としては、例えば、アルカノールアミンをベースとするアミン溶液が用いられる。このCO2吸収液300は、吸収塔120においてノズル121の下方空間に設けられた充填層122を通過する間に、塔底部120bから上昇してくる排ガス10と対向流接触される。これにより排ガス10中のCO2はCO2吸収液300に吸収される。これにより、排ガス10からCO2が除去される。ここで、CO2が除去された排ガス10を浄化ガス210と言う。この、CO2が除去された浄化ガス210は、吸収塔120の塔頂部120aから排出される。
ノズル131の下方には、充填層132が設けられており、リッチ溶液300Rは、再生塔130において、リッチ溶液300Rが、加熱された充填層132を通過する間の対向流接触によって生じる吸熱反応によりCO2がリッチ溶液300Rから放出される。リッチ溶液300Rが、再生塔130の塔底部130bに至る頃には、大部分のCO2がリッチ溶液300Rから除去され、リッチ溶液300Rはリーン溶液300Lとして再生される。
塔底部130bのリーン溶液300Lの一部は、循環路L4を通してリボイラ137に供給され、蒸気管137a内を通る高温蒸気との熱交換によって加熱された後に再生塔130内へ還流される。この加熱されたリーン溶液300Lの熱エネルギーによって、塔底部130bのリーン溶液300LからCO2ガスがさらに放出される。また、リーン溶液300Lの加熱により、充填層132も間接的に加熱され、前述したように、この充填層132での気液接触の間にリッチ溶液300RからCO2ガスが放出される。
送液ラインL2には、前記の熱交換器152と、水冷式冷却器154とが設けられている。送液ラインL2を通るリーン溶液300Lは、熱交換器152において、吸収塔120から再生塔130に供給されるリッチ溶液300Rとの間で熱交換して冷却され、更に、水冷式冷却器154によって、冷水311との熱交換により、CO2の吸収に適した温度まで充分に冷却される。
CO2送出ラインL3には、冷水311を用いた冷却器140、気液分離器141、CO2圧縮装置145が設けられている。
気液分離器141において、冷却器140での冷却により凝縮したCO2ガス中の凝縮水330は、CO2ガスから分離される。気液分離器141において分離された凝縮水330は、ポンプ143によって再生塔130上部に還流される。
還流された凝縮水330は、再生塔130の上部に設けられたノズル135から、その下方の凝縮部136に向けて噴出され、CO2ガスを冷却するとともに、凝縮部136を冷却して吸収剤等の放出を抑制する。
開口部129には、カバー170と、バッフルプレート171と、が設けられている。
位置P1においては、冷却水320が流れ落ちてくる。位置P1に形成された開口部129にカバー170を設けることにより、開口部129から配管200内に冷却水320が流れ込むのを抑えることができる。
位置P1に形成された開口部129にバッフルプレート171を設けることにより、下方から跳ね上がった冷却水320が開口部129から配管200内に流れ込むのを抑えることができる。
開閉弁161は、CO2圧縮装置145の下流側において、図示しない圧力センサによってガス圧を検出し、検出されたガス圧が規定の基準値を上回ったときに、図示しない制御部によって、開くよう操作されるようになっている。
これによって、ベントスタックや、ベントスタックまでのダクトを設ける必要がなくなり、設置コスト、運用コストを大幅に低減することができる。
また、CO2ガスは、CO2が大気に比較して大きな比重を有しているため、拡散しにくく、拡散した場所においてそのまま下方に留まりがちである。これに対し、CO2ガスを排ガス10中に混ぜると、CO2ガスと排ガス10の混合ガスのCO2の濃度が下がり、その混合ガスが、吸収塔120の塔頂部120aから大気中に拡散したときに、そのCO2の拡散性が向上する。
例えば、CO2ガス戻しラインL5は、吸収塔120において、ミストエリミネータ123の上方において、吸収塔120内に連通するよう設けることもできる。
以下に、本発明に係る二酸化炭素回収装置の他の実施形態について説明する。
なお、以下に示す第二の実施形態は、上記第一の実施形態に対し、CO2ガス戻しラインL5の吸収塔120への接続位置が異なるのみであるため、上記実施形態と共通する構成についてはその説明を省略する。
図3に示すように、本実施形態においては、CO2ガス戻しラインL5は、ミストエリミネータ123の下方に設けられたノズル124から噴射される冷却水320、およびミストエリミネータ123から落下した凝縮水211の一部を回収する回収槽125に臨む位置P2において、吸収塔120内に連通するよう設けることができる。
図2に示すように、位置P2に形成された開口部129にも、カバー170と、バッフルプレート171と、を備えることができる。
吸収塔120の塔頂部120aからは、CO2が除去された浄化ガス210が排出されるが、この浄化ガス210には、アミン溶液の一部が混入することになる。そこで、上記構成を適用することによって、排出される浄化ガス210のpHを下げ、エミッション低減効果を得ることができる。
また、再生塔130、吸収塔120の具体的な構成や、その他の付帯設備の構成については、上記に示したものに限るものではなく、適宜他の構成に変更することができる。
これ以外にも、本発明の主旨の範囲内であれば、上記実施形態で挙げた構成を適宜変更、省略することが可能である。
100 CO2回収装置
110 冷却塔
111 ノズル
112 ポンプ
113 冷却器
114 排ガスライン
120 吸収塔
120a 塔頂部
120b 塔底部
121 ノズル
122 充填層
123 ミストエリミネータ
124 ノズル
125 回収槽
126 ポンプ
127 冷却器
128 壁体
129 開口部
130 再生塔
131 ノズル
132 充填層
135 ノズル
136 凝縮部
137 リボイラ
140 冷却器
141 気液分離器
143 ポンプ
145 圧縮装置
151 ポンプ
152 熱交換器
153 ポンプ
154 水冷式冷却器
160,161 開閉弁(切替部)
165 ドレントラップ
170 カバー
171 バッフルプレート
200 配管
200a 端部
210 浄化ガス
211 凝縮水
300 CO2吸収液
300R リッチ溶液
300L リーン溶液
310 冷却水
311 冷水
320 冷却水
330 凝縮水
L1 CO2送液ライン
L2 CO2送液ライン
L3 CO2送出ライン(送出管)
L4 循環路
L5 CO2戻しライン(戻し管)
L6 ドレンライン(戻し管)
Claims (8)
- CO2を吸収するCO2吸収液を、燃料を燃焼させる設備から排出される排ガス中に接触させることで、前記排ガス中に含まれる前記CO2を吸収する吸収塔と、
前記吸収塔で前記CO2を吸収した前記CO2吸収液から前記CO2を放出させ、前記CO2吸収液を再生する再生塔と、
前記再生塔で放出された前記CO2を外部に送出する送出管と、
前記再生塔で放出された前記CO2を前記吸収塔に送給し、前記排ガス中からCO2を除去した浄化ガスに混合させる戻し管と、
前記再生塔からの前記CO2の送出先を切り替える切替部と、
を備えることを特徴とする二酸化炭素回収装置。 - 前記切替部は、前記送出管における前記CO2の圧力が規定レベル以上となったときに、前記再生塔からの前記CO2の送出先を前記送出管から前記戻し管に切り替えることを特徴とする請求項1に記載の二酸化炭素回収装置。
- 前記戻し管は、前記吸収塔において、前記CO2吸収液を前記排ガスに接触させる領域に対し、前記排ガスの流れ方向下流側にて、前記再生塔で放出された前記CO2を前記吸収塔内に送り込むことを特徴とする請求項1に記載の二酸化炭素回収装置。
- 前記戻し管は、前記浄化ガスを洗浄および冷却する冷却水中に、前記再生塔で放出された前記CO2を送り込むことを特徴とする請求項1に記載の二酸化炭素回収装置。
- 前記戻し管は、前記吸収塔内で前記冷却水を循環させるために前記冷却水を回収する回収槽中に、前記再生塔で放出された前記CO2を送り込むことを特徴とする請求項4に記載の二酸化炭素回収装置。
- 前記戻し管の端部が接続された前記吸収塔の開口部の上部に、前記吸収塔内で上方から流れ落ちる、前記浄化ガスを洗浄および冷却する冷却水が前記開口部から前記戻し管内に流れ込むのを防ぐため、前記吸収塔の内方に向けて突出するカバーが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
- 前記戻し管の端部が接続された前記吸収塔の開口部の下部に、前記吸収塔内で上方から流れ落ちる、前記浄化ガスを洗浄および冷却する冷却水が前記開口部から前記戻し管内に流れ込むのを防ぐため、前記開口部の下部の一部を塞ぐバッフルプレートが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
- 前記戻し管に、前記再生塔から送り込まれる前記CO2に含まれる液分、および前記吸収塔から該戻し管内に流れ込んだ、前記浄化ガスを洗浄および冷却する冷却水を回収するドレントラップが設けられていることを特徴とする請求項1に記載の二酸化炭素回収装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13838143.9A EP2898940B1 (en) | 2012-09-20 | 2013-09-12 | Carbon dioxide recovery device |
AU2013319191A AU2013319191B2 (en) | 2012-09-20 | 2013-09-12 | Carbon dioxide recovery device |
CA2883832A CA2883832C (en) | 2012-09-20 | 2013-09-12 | Carbon dioxide recovery unit |
JP2014536819A JP5972985B2 (ja) | 2012-09-20 | 2013-09-12 | 二酸化炭素回収装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/623,495 US8961664B2 (en) | 2012-09-20 | 2012-09-20 | Carbon dioxide recovery device |
US13/623495 | 2012-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014046018A1 true WO2014046018A1 (ja) | 2014-03-27 |
Family
ID=50273105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/074767 WO2014046018A1 (ja) | 2012-09-20 | 2013-09-12 | 二酸化炭素回収装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8961664B2 (ja) |
EP (1) | EP2898940B1 (ja) |
JP (1) | JP5972985B2 (ja) |
AU (1) | AU2013319191B2 (ja) |
CA (1) | CA2883832C (ja) |
WO (1) | WO2014046018A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220168707A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168705A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168701A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168702A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9616374B2 (en) * | 2013-12-14 | 2017-04-11 | Millenium Synthfuels Corporation | Multi-stage temperature based separation of gas impurities |
JP2016215105A (ja) * | 2015-05-18 | 2016-12-22 | 株式会社東芝 | 二酸化炭素回収装置および二酸化炭素回収方法 |
US10293304B2 (en) | 2015-07-14 | 2019-05-21 | John E. Stauffer | Carbon dioxide recovery using an absorption column in combination with osmotic filters |
US10040737B2 (en) | 2015-07-14 | 2018-08-07 | John E. Stauffer | Methanol production from methane and carbon dioxide |
US10493397B2 (en) | 2015-07-14 | 2019-12-03 | John E. Stauffer | Carbon dioxide recovery |
CN109453621B (zh) * | 2018-12-21 | 2024-06-25 | 江苏格陵兰传热科技有限公司 | 一种废气回收利用节能装置 |
JP7524086B2 (ja) * | 2021-01-15 | 2024-07-29 | 株式会社東芝 | 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法 |
CN117398833B (zh) * | 2023-12-12 | 2024-04-05 | 成都赢纳环保科技有限公司 | 一种工业废气处理设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05184867A (ja) * | 1992-01-17 | 1993-07-27 | Kansai Electric Power Co Inc:The | 燃焼排ガス中の炭酸ガスの回収方法 |
JPH05184866A (ja) | 1992-01-17 | 1993-07-27 | Kansai Electric Power Co Inc:The | 燃焼排ガス中の脱二酸化炭素装置および方法 |
JP2010207686A (ja) * | 2009-03-09 | 2010-09-24 | Mitsubishi Heavy Ind Ltd | 排ガス処理装置及び排ガス処理方法 |
WO2011080838A1 (ja) * | 2009-12-28 | 2011-07-07 | バブコック日立株式会社 | 二酸化炭素の吸収液および回収方法 |
WO2011084254A1 (en) * | 2009-12-17 | 2011-07-14 | Alstom Technology Ltd | Ammonia removal, following removal of co2, from a gas stream |
JP2011521774A (ja) * | 2008-05-14 | 2011-07-28 | アルストム テクノロジー リミテッド | 洗浄水のco2注入のための設備を有するガス浄化システム |
WO2011120754A2 (de) * | 2010-03-31 | 2011-10-06 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossil befeuerten kraftwerksanlage |
JP2011218287A (ja) | 2010-04-08 | 2011-11-04 | Mitsubishi Heavy Ind Ltd | 排ガス中の二酸化炭素回収装置及び方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3438734A (en) * | 1967-05-15 | 1969-04-15 | North American Rockwell | Sulfur production using carbon oxide regenerant |
DE69318433T2 (de) * | 1992-01-17 | 1998-12-17 | Mitsubishi Jukogyo K.K., Tokio/Tokyo | Verfahren zur Behandlung von Verbrennungsabgasen |
US6689332B1 (en) * | 1992-09-16 | 2004-02-10 | The Kansai Electric Power Co, Inc. | Process for removing carbon dioxide from combustion gases |
PE20071048A1 (es) * | 2005-12-12 | 2007-10-18 | Basf Ag | Proceso para la recuperacion de dioxido de carbono |
US8007570B2 (en) * | 2009-03-11 | 2011-08-30 | General Electric Company | Systems, methods, and apparatus for capturing CO2 using a solvent |
US9133407B2 (en) * | 2011-02-25 | 2015-09-15 | Alstom Technology Ltd | Systems and processes for removing volatile degradation products produced in gas purification |
-
2012
- 2012-09-20 US US13/623,495 patent/US8961664B2/en active Active
-
2013
- 2013-09-12 EP EP13838143.9A patent/EP2898940B1/en active Active
- 2013-09-12 AU AU2013319191A patent/AU2013319191B2/en active Active
- 2013-09-12 CA CA2883832A patent/CA2883832C/en active Active
- 2013-09-12 JP JP2014536819A patent/JP5972985B2/ja active Active
- 2013-09-12 WO PCT/JP2013/074767 patent/WO2014046018A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05184867A (ja) * | 1992-01-17 | 1993-07-27 | Kansai Electric Power Co Inc:The | 燃焼排ガス中の炭酸ガスの回収方法 |
JPH05184866A (ja) | 1992-01-17 | 1993-07-27 | Kansai Electric Power Co Inc:The | 燃焼排ガス中の脱二酸化炭素装置および方法 |
JP2011521774A (ja) * | 2008-05-14 | 2011-07-28 | アルストム テクノロジー リミテッド | 洗浄水のco2注入のための設備を有するガス浄化システム |
JP2010207686A (ja) * | 2009-03-09 | 2010-09-24 | Mitsubishi Heavy Ind Ltd | 排ガス処理装置及び排ガス処理方法 |
WO2011084254A1 (en) * | 2009-12-17 | 2011-07-14 | Alstom Technology Ltd | Ammonia removal, following removal of co2, from a gas stream |
WO2011080838A1 (ja) * | 2009-12-28 | 2011-07-07 | バブコック日立株式会社 | 二酸化炭素の吸収液および回収方法 |
WO2011120754A2 (de) * | 2010-03-31 | 2011-10-06 | Siemens Aktiengesellschaft | Verfahren und vorrichtung zum abtrennen von kohlendioxid aus einem abgas einer fossil befeuerten kraftwerksanlage |
JP2011218287A (ja) | 2010-04-08 | 2011-11-04 | Mitsubishi Heavy Ind Ltd | 排ガス中の二酸化炭素回収装置及び方法 |
Non-Patent Citations (2)
Title |
---|
MASAKI IIJIMA: "Large Scale Demonstration Project for Carbon Capture from Coal-fired Power Plant in U.S.A.", MITSUMISHI HEAVY INDUSTRIES TECHNICAL REVIEW, vol. 49, no. 1, 2012, pages 42 - 47 |
See also references of EP2898940A4 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220168707A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168705A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168701A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR20220168702A (ko) * | 2021-06-17 | 2022-12-26 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR102592261B1 (ko) * | 2021-06-17 | 2023-10-23 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR102592265B1 (ko) * | 2021-06-17 | 2023-10-23 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR102592257B1 (ko) * | 2021-06-17 | 2023-10-23 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
KR102592249B1 (ko) * | 2021-06-17 | 2023-10-23 | 주식회사 파나시아 | 이산화탄소 포집시스템 |
Also Published As
Publication number | Publication date |
---|---|
EP2898940A4 (en) | 2016-05-18 |
JP5972985B2 (ja) | 2016-08-17 |
AU2013319191B2 (en) | 2016-07-07 |
AU2013319191A1 (en) | 2015-03-19 |
JPWO2014046018A1 (ja) | 2016-08-18 |
CA2883832C (en) | 2017-03-28 |
EP2898940A1 (en) | 2015-07-29 |
US20140076166A1 (en) | 2014-03-20 |
US8961664B2 (en) | 2015-02-24 |
EP2898940B1 (en) | 2017-06-21 |
CA2883832A1 (en) | 2014-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5972985B2 (ja) | 二酸化炭素回収装置 | |
JP4690659B2 (ja) | Co2回収装置 | |
JP2005254212A5 (ja) | ||
US20120234177A1 (en) | Co2 recovery apparatus | |
JP2010279897A (ja) | Co2回収装置 | |
JP5639814B2 (ja) | 脱co2設備付き火力発電システム | |
WO2011105120A1 (ja) | Co2回収装置およびco2回収方法 | |
JP4773865B2 (ja) | Co2回収装置及びco2回収方法 | |
JP2008307520A (ja) | Co2又はh2s除去システム、co2又はh2s除去方法 | |
JP2010240629A (ja) | 二酸化炭素回収システム | |
JP2011240321A (ja) | 二酸化炭素除去装置を有する排ガス処理システム | |
KR101751723B1 (ko) | 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법 | |
JP4831834B2 (ja) | Co2回収装置及びco2吸収液回収方法 | |
JP2007137725A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
JP5591083B2 (ja) | Co2回収システム | |
JP2023068025A (ja) | 二酸化炭素回収システム | |
JP6845744B2 (ja) | 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法 | |
JP2006342032A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
CA2885342C (en) | Co2 recovery unit | |
JP2022099372A (ja) | 二酸化炭素の回収システム、移動体 | |
JP2007000841A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
JP2007008732A (ja) | 二酸化炭素回収システムおよび二酸化炭素回収方法 | |
WO2020202804A1 (ja) | 冷却吸収塔及びこれを備えたco2回収装置並びにco2回収方法 | |
CA2884790A1 (en) | Steam providing system and co2 recovery facilities provided with same | |
JP5606469B2 (ja) | 二酸化炭素回収装置及びその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13838143 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2883832 Country of ref document: CA |
|
REEP | Request for entry into the european phase |
Ref document number: 2013838143 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2014536819 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2013319191 Country of ref document: AU Date of ref document: 20130912 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |