WO2014045761A1 - 蛍光センサ - Google Patents

蛍光センサ Download PDF

Info

Publication number
WO2014045761A1
WO2014045761A1 PCT/JP2013/071792 JP2013071792W WO2014045761A1 WO 2014045761 A1 WO2014045761 A1 WO 2014045761A1 JP 2013071792 W JP2013071792 W JP 2013071792W WO 2014045761 A1 WO2014045761 A1 WO 2014045761A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
fluorescence
light
analyte
frame
Prior art date
Application number
PCT/JP2013/071792
Other languages
English (en)
French (fr)
Inventor
貴平 時本
松本 淳
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2014045761A1 publication Critical patent/WO2014045761A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Definitions

  • the present invention relates to a fluorescent sensor for measuring the concentration of an analyte, and more particularly to a needle-type fluorescent sensor manufactured using semiconductor manufacturing technology and MEMS technology.
  • Fluorescent sensors have been developed that puncture a subject and measure the concentration of analyte in the body.
  • a fluorescent sensor 104 shown in FIGS. 1 and 2 is disclosed in Japanese Patent No. 4910155.
  • the fluorescence sensor 104 includes a needle-like hollow container 140, a carrier cylinder 118, a ruthenium organic complex thin film 117, and an optical fiber 115.
  • a plurality of through holes 140 ⁇ / b> H are provided on the side of the hollow container 140.
  • a ruthenium organic complex thin film 117 is coated as an indicator.
  • the optical fiber 115 irradiates the organic complex thin film 117 with excitation light from a light source (not shown) arranged outside the fluorescence sensor 104.
  • the solution to be measured containing the analyte 9 enters and exits the organic complex thin film 117 through the through hole 140H and the carrier cylinder 118.
  • the organic complex thin film 117 generates a light amount of fluorescence corresponding to the analyte concentration. Fluorescence is received and analyzed by a photodetector (not shown) disposed outside the fluorescence sensor 104 via the optical fiber 115.
  • the sensor unit 110A of the fluorescence sensor 104A includes a bonded substrate unit 130A in which a frame-shaped substrate unit 140A having a through hole 140HA and a detection substrate unit 120A on which a photoelectric conversion element 112A that is a photodetector is formed are bonded. .
  • a light-emitting element 115A that is a light source and an indicator 117A that generates fluorescence with a light amount corresponding to the analyte concentration are disposed, and the analyte passes through the opening of the through-hole 140HA. It is covered with a light shielding layer 118A.
  • the fluorescent sensor 104 having a manufacturing process for inserting the optical fiber 115 into the carrier cylinder 118 has not been easily mass-produced. Furthermore, it is necessary to connect the optical fiber 115 to the light source and the photodetector at the time of use, and it is not easy to downsize the sensor system.
  • the fluorescence sensor 104A is small in size and easy to mass-produce because the light emitting element 115A and the photoelectric conversion element 112A are disposed in the sensor unit 110A.
  • the response speed which is a change in the detection result with respect to the change in the analyte concentration, is fast. In other words, the responsiveness may not be good.
  • the purpose is to provide a compact fluorescent sensor with good responsiveness.
  • the fluorescence sensor of one embodiment of the present invention has a detection substrate portion on which a photoelectric conversion element that converts fluorescence into an electrical signal is formed, a lower surface is bonded to the detection substrate portion, and there are openings on a plurality of surfaces including the upper surface, A frame-like substrate part that is inserted through all the openings and that has a through-hole passing through the upper surface and the lower surface, and is disposed inside the through-hole of the frame-like substrate part.
  • An indicator that receives the excitation light and generates the fluorescence having an intensity according to the concentration of the analyte, a light-emitting element that generates the excitation light, a light-shielding layer through which the analyte covering each opening passes,
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG. 6 of the sensor unit of the fluorescent sensor according to the first embodiment.
  • FIG. 7 is a cross-sectional view taken along line VIII-VIII in FIG.
  • the fluorescence sensor 4 constitutes a sensor system 1 together with the main body 2 and the receiver 3. That is, the sensor system 1 includes a fluorescent sensor 4, a main body 2, and a receiver 3 that receives and stores a signal from the main body 2. Transmission / reception of signals between the main body 2 and the receiver 3 is performed wirelessly or by wire.
  • the needle-type fluorescence sensor 4 is integrally formed with a needle tip portion 5 having a substantially rectangular parallelepiped sensor portion 10 as a main functional portion, a needle portion 7 having an elongated needle body portion 6, and a rear end portion of the needle body portion 6.
  • the connector part 8 which was made into a unit. Needle tip 5, needle body 6 and connector 8 may be integrally formed of the same material.
  • the connector part 8 is detachably fitted to the fitting part 2A of the main body part 2.
  • the plurality of wirings 60 extending from the sensor unit 10 of the fluorescent sensor 4 are electrically connected to the main body unit 2 when the connector unit 8 is mechanically fitted to the fitting unit 2A of the main body unit 2. .
  • the receiver 3 is not necessary when the main body 2 has a memory unit having a necessary capacity.
  • the subject When the fluorescent sensor 4 is fitted to the main body 2, the subject himself punctures the body surface and the needle tip 5 is left in the body. For example, the glucose concentration in the body fluid is continuously measured and stored in the memory of the receiver 3.
  • Fluorescent sensor 4 is a needle-type sensor that measures an analyte in the body, and is a short-term subcutaneous indwelling type with a continuous use period of about one week. However, the collected bodily fluid or the bodily fluid circulating in the body via the flow path outside the body may be brought into contact with the sensor unit 10 outside the body without inserting the fluorescent sensor 4 into the body.
  • the fluorescent sensor 4 has light shielding layers 18A, 18C, and 18D through which the analyte 9 enters and exits on three surfaces of the tip portion 5.
  • the rectangular parallelepiped sensor unit 10 which is a main functional unit of the fluorescence sensor 4 includes a bonding substrate unit 30 which is a main structure, a light emitting element 15, a transparent protective layer 16, and an indicator 17. And a light shielding layer 18 (18A, 18C, 18D).
  • the light emitting element 15 is a light emitting diode or the like that generates excitation light.
  • the transparent protective layer 16 watertightly seals the light emitting element 15.
  • the indicator 17 generates fluorescence corresponding to the excitation light and the amount of analyte.
  • the analyte 9 passes through the light shielding layer 18 and enters and exits the indicator 17 when the light shielding layer 18 comes into contact with blood or body fluid in the living body.
  • the rectangular parallelepiped bonded substrate portion 30 constituting the outer shape of the sensor unit 10 is manufactured by bonding the detection substrate portion 20 and the frame-shaped substrate portion 40 via a bonding layer (not shown).
  • the frame-shaped substrate portion 40 is formed with a through hole 40H through which the upper surface 40SA and the lower surface 40SB are inserted.
  • the through hole 40H of the frame-shaped substrate portion 40 has the opening 41B of the lower surface 40SB as the upper surface of the detection substrate portion 20. It is covered with 30SA to form a recess. On the other hand, the opening 41A of the upper surface 40SA is covered with the light shielding layer 18A.
  • the through-hole 40H of the frame-shaped substrate portion 40 has openings 41C and 41D, which are covered with the light shielding layers 18C and 18D, respectively, on the side surface side.
  • the three openings 41A, 41C, 41D are inserted through the through hole 40H.
  • the analyte 9 can enter / exit through the three openings 41A, 41C, 41D into the inside of the frame-shaped substrate portion 40, that is, inside the through hole 40H (indicator 17).
  • the PD element 12 which is a photoelectric conversion element is formed on the upper surface 20SA of the detection substrate unit 20.
  • a single crystal silicon substrate is suitable as the detection substrate unit 20, but can be selected from various materials such as a glass substrate depending on the manufacturing method. It is.
  • the PD element 12 is a photoelectric conversion element that converts fluorescence into an electrical signal.
  • the photoelectric conversion element is not limited to the PD element 12, but a photoconductor (photoconductor), a phototransistor (Photo Transistor, PT), or the like.
  • the various photoelectric conversion elements can be selected.
  • the photodiode or the phototransistor is particularly preferable because it can realize the fluorescence detection sensitivity having the highest sensitivity and excellent stability, and as a result, the fluorescence sensor 4 having excellent detection sensitivity and detection accuracy can be realized.
  • a filter that blocks the excitation light so as to cover the PD element 12 but allows the fluorescence having a wavelength longer than that of the excitation light to pass therethrough may be provided to improve the S / N ratio of the detection signal.
  • a material for the filter a silicon layer or a silicon carbide layer is suitable.
  • the filter may be arrange
  • the light emitting element 15, the transparent protective layer 16, and the indicator 17 are formed in the through hole 40 ⁇ / b> H of the frame-shaped substrate unit 40, that is, in the concave portion of the bonding substrate unit 30 in order from the bottom surface (upper surface 20 SA of the detection substrate unit 20). It is arranged.
  • the light-emitting element 15 is preferably a substantially rectangular chip-shaped LED from the viewpoints of light generation efficiency, wide wavelength selectivity of excitation light, and generation of light having a wavelength other than ultraviolet light serving as excitation light.
  • the drive electrode of the light emitting element 15 is electrically connected to the wiring 60 disposed on the upper surface 20SA of the detection substrate unit 20.
  • a bonding method using an optically transparent acrylic resin or silicone resin, or various bonding methods such as a flip chip bonding method can be used. is there.
  • the transparent protective layer 16 is made of a material having characteristics such as electrical insulation, moisture barrier properties, and good transmittance for excitation light and fluorescence, such as epoxy resin and silicone resin. Or a transparent amorphous fluororesin. Note that the transparent protective layer 16 may not be provided as long as the electrode of the light emitting element 15 is sealed at the time of disposition.
  • the indicator 17 generates fluorescence with a light amount corresponding to the amount of the analyte 9 due to the interaction with the entering analyte 9 and the excitation light.
  • the indicator 17 generates fluorescence having a longer wavelength, for example, a wavelength of 460 nm with respect to excitation light having a wavelength of 375 nm.
  • the thickness of the indicator 17 is set to about several tens ⁇ m to 200 ⁇ m.
  • the indicator 17 is composed of a base material containing a fluorescent dye that generates fluorescence having an intensity corresponding to the amount of the analyte 9, that is, the concentration of the analyte in the sample.
  • the fluorescent dye is selected according to the type of the analyte 9 and can be used for any fluorescent dye in which the amount of fluorescence generated according to the amount of the analyte 9 changes reversibly. That is, the fluorescent sensor 4 corresponds to various uses such as an oxygen sensor, a glucose sensor, a pH sensor, an immunosensor, or a microorganism sensor, depending on the selection of the fluorescent dye.
  • the indicator 17 includes, for example, a hydrogel that easily contains water as a base material and contains or is bonded to the fluorescent dye in the hydrogel.
  • Hydrogel components are prepared from acrylic hydrogels prepared by polymerizing polysaccharides such as methylcellulose or dextran, monomers such as (meth) acrylamide, methylolacrylamide, or hydroxyethyl acrylate, or from polyethylene glycol and diisocyanate. Urethane hydrogel can be used.
  • the light shielding layers 18A, 18C, and 18D are layers that cover the indicator 17 and have a thickness of several tens of ⁇ m or less.
  • each of the light shielding layers 18A, 18C, and 18D is referred to as a light shielding layer 18.
  • the light shielding layer 18 prevents excitation light and fluorescence from leaking to the outside of the sensor unit, and at the same time, prevents external light from entering the inside of the sensor unit.
  • the light shielding layer 18 is made of a material that does not prevent the analyte 9 from passing through the inside of the indicator 9 and reaches the indicator 17, for example, an inorganic thin film made of a submicron size pore structure such as a metal, ceramic, or the like, or polyimide or polyurethane
  • an inorganic thin film made of a submicron size pore structure such as a metal, ceramic, or the like, or polyimide or polyurethane
  • the light emitting element 15 emits pulsed excitation light having a center wavelength of around 375 nm at an interval of once every 30 seconds, for example.
  • the current of the drive signal to the light emitting element 15 is 1 mA to 100 mA
  • the light emission pulse width is 1 ms to 100 ms.
  • the excitation light generated by the light emitting element 15 is irradiated to the fluorescent dye in the indicator 17.
  • the fluorescence generated by the interaction of the fluorescent dye with the analyte 9 reaches the PD element 12 through the transparent protective layer 16 or the light emitting element 15 and the transparent protective layer 16, and is converted into a detection signal.
  • Fluorescent sensor 4 can be mass-produced in batch by a wafer process. For this reason, the fluorescence sensor 4 can provide stable quality at low cost.
  • the light emitting element 15 emits pulsed excitation light having a center wavelength of around 375 nm at an interval of once every 30 seconds, for example.
  • the pulse current to the light emitting element 15 is 1 mA to 100 mA
  • the pulse width of light emission is 1 ms to 100 ms.
  • the excitation light generated by the light emitting element 15 enters the indicator 17.
  • the indicator 17 emits fluorescence having an intensity corresponding to the amount (concentration) of the analyte 9.
  • the analyte 9 enters and exits the indicator 17 through the light shielding layer 18 (18A, 18C, 18D).
  • Fluorescent sensor 4 has a fast response speed, in other words, good response, because body fluid containing analyte 9 enters and exits from openings 41C and 41D in addition to opening 41A.
  • the shape of the sensor unit 10 is a rectangular shape when viewed from the Z-axis direction (the shape of the upper surface 40SA) and is orthogonal to the long axis (Y-axis).
  • the cross-sectional shape in the direction that is, the shape in plan view of the XZ plane is also a rectangular elongated rectangular parallelepiped.
  • the main surface may be a trapezoid or the like, or a curved surface having a convex central portion, for example.
  • the tip surface of the sensor unit 10 may be hemispherical or pyramidal.
  • the cross section in the direction perpendicular to the major axis may be substantially circular.
  • the fluorescence sensor 4A of the second embodiment will be described. Since the fluorescence sensor 4A is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the integral light shielding layer 18T covers the three openings 41A, 41C, and 41D.
  • the light shielding layer 18T is formed by integrating the three light shielding layers 18A, 18C, and 18D in the fluorescent sensor 4.
  • the light shielding layer 18T may cover the lower surface of the detection substrate unit 20, or may cover the front end surface 40SE of the frame-shaped substrate unit 40.
  • the light shielding layer may be a laminated film of a first light shielding layer and a second light shielding layer.
  • the first light shielding layer may cover only the openings 41C and 41D
  • the second light shielding layer may cover the three openings 41A, 41C and 41D.
  • the fluorescent sensor 4A has the effect of the fluorescent sensor 4, and more easily arranges the light shielding layer than the fluorescent sensor 4.
  • the fluorescence sensor 4B of the third embodiment will be described. Since the fluorescence sensor 4B is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. In the following drawings, only the bonded substrate portion is shown for easy understanding.
  • an opening 41E through which the frame-shaped substrate portion 40B is inserted into the through hole 40H is also provided on the tip surface (40SD).
  • the opening 41E is also covered with a light shielding layer (not shown).
  • the fluorescence sensor 4B has the effect of the fluorescence sensor 4, and in addition to the openings 41A, 41C, and 41D, the body fluid containing the analyte 9 enters and exits from the opening 41E, so that the response speed is faster than that of the fluorescence sensor 4. .
  • the through hole 40H may further have an opening on the rear end surface (40SF).
  • a fluorescence sensor having four openings has a faster response speed.
  • two second through holes 20H1 and 20H2 are formed in the detection substrate portion 20C.
  • the second through-hole 20H is inserted into the through-hole 40H of the joined frame-like substrate part 40, and the opening 21 is covered with a light shielding layer (not shown).
  • the fluorescent sensor 4C has the effect of the fluorescent sensor 4 because the body fluid containing the analyte enters and exits not only from the upper surface of the indicator but also from the lower surface, and has a faster response speed than the fluorescent sensor 4.
  • a PD element is provided on at least one of the four wall surfaces of the through hole 40H of the frame-like substrate unit 40C. It may be formed.
  • the fluorescence sensor 4D of the fifth embodiment will be described. Since the fluorescence sensor 4D is similar to the fluorescence sensor 4 of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.
  • an opening group 41C4 including a plurality of slit-like openings 41CA to 41CD is formed on the side surfaces 40SC and 40SD of the frame-shaped substrate portion 40D. Furthermore, the opening 41E4 of the front end surface 40SE of the frame-shaped substrate portion 40D is elliptical.
  • the shape of the opening through which the analyte enters and exits is not limited to a rectangle or a circle.
  • the shape of the opening is a slit shape, since the beam portion exists, the mechanical strength of the frame-shaped substrate portion 40B can be increased compared to a rectangular opening that is not a slit shape.
  • openings through which the analyte 9 passes and enters / exits the indicator 17 are formed on a plurality of surfaces including the upper surface 40SA of the frame-shaped substrate portion 40, respectively. . For this reason, the response is better than the conventional fluorescent sensor in which the analyte 9 enters and exits the indicator 17 only from the upper surface 40SA.
  • the fluorescence sensor of the structure which combined the structure of the fluorescence sensor of embodiment can also be used preferably.
  • the analyte 9 may be able to enter / exit the indicator 17 through the openings of the four surfaces of the upper surface 40SA, both side surfaces 40SC, 40SD, and the lower surface 20SB, or the upper surface 40SA, both side surfaces 40SC, 40SD, the tip surface 40SE, and the lower surface
  • the analyte 9 may be able to enter and exit the indicator 17 from the openings of the five surfaces of 20SB.
  • the analyte 9 may be able to enter and leave the indicator 17 through the openings of the three surfaces of the upper surface 40SA, the tip surface 40SE, and the lower surface 20SB.
  • the analyte 9 may be able to enter and leave the indicator 17 through the upper surface 40SA and the openings of the two surfaces of one side surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

蛍光センサ4は、蛍光を電気信号に変換するPD素子12が形成された検出基板部20と、下面40SBが検出基板部20と接合され、上面40SAを含む複数の面に開口があり、全ての前記開口と挿通している、上面40SAと下面40SBとを挿通する貫通孔40Hが内部に形成されている枠状基板部40と、枠状基板部40の貫通孔40Hの内部に配設された、励起光を受光してアナライトの濃度に応じた強度の蛍光を発生するインジケータ17と、励起光を発生する発光素子15と、それぞれの開口を覆うアナライト9が通過する遮光層18と、を有する。

Description

蛍光センサ
 本発明は、アナライトの濃度を計測する蛍光センサに関し、特に半導体製造技術およびMEMS技術を用いて作製される針型の蛍光センサに関する。
 被検体に穿刺して体内のアナライトの濃度を測定する蛍光センサが開発されている。例えば、図1および図2に示す蛍光センサ104が日本国特許第4910155号公報に開示されている。蛍光センサ104は、針状の中空容器140と、担体筒118と、ルテニウム有機錯体薄膜117と、光ファイバ115と、からなる。中空容器140の側部には複数個の貫通孔140Hが設けられている。光ファイバ115の端部側には、ルテニウム有機錯体薄膜117がインジケータとして被覆されている。
 光ファイバ115は、蛍光センサ104の外部に配置されている光源(不図示)からの励起光を有機錯体薄膜117に照射する。アナライト9を含む被計測溶液は、貫通孔140Hおよび担体筒118を介して有機錯体薄膜117に出入する。有機錯体薄膜117はアナライト濃度に応じた光量の蛍光を発生する。蛍光は光ファイバ115を介して、蛍光センサ104の外部に配置されている光検出器(不図示)に受光され分析される。
 また、図3に示す半導体製造技術およびマイクロマシン製造技術を用いて作製される蛍光センサ104Aが日本国特開2011-536657号公報に開示されている。蛍光センサ104Aのセンサ部110Aは、貫通孔140HAのある枠状基板部140Aと、光検出器である光電変換素子112Aが形成された検出基板部120Aと、が接合された接合基板部130Aを有する。貫通孔140HAの内部には光源である発光素子115Aと、アナライト濃度に応じた光量の蛍光を発生するインジケータ117Aと、が配設されており、貫通孔140HAの開口部はアナライトが通過する遮光層118Aで覆われている。
 担体筒118に光ファイバ115を挿入する製造工程等がある蛍光センサ104は、大量生産が容易ではなかった。更に、使用時には光ファイバ115を光源および光検出器と接続する必要があり、センサシステムとしての小型化は容易ではなかった。
 一方、蛍光センサ104Aは、センサ部110Aに発光素子115Aおよび光電変換素子112Aが配設されているため、小型であり、かつ大量生産が容易である。しかし、アナライト9がセンサ部110Aの内部(インジケータ117A)に出入りするのは、上面の遮光層118Aを介してだけであるため、アナライト濃度の変化に対する検出結果の変化である応答速度が早くはなく、言い換えれば、応答性が良くはないおそれがあった。
 応答性が良い小型の蛍光センサを提供することを目的とする。
 本発明の一態様の蛍光センサは、蛍光を電気信号に変換する光電変換素子が形成された検出基板部と、下面が前記検出基板部と接合され、上面を含む複数の面に開口があり、全ての前記開口と挿通している、前記上面と前記下面とを挿通する貫通孔が内部に形成されている枠状基板部と、前記枠状基板部の前記貫通孔の内部に配設された、励起光を受光してアナライトの濃度に応じた強度の前記蛍光を発生するインジケータと、前記励起光を発生する発光素子と、それぞれの前記開口を覆う前記アナライトが通過する遮光層と、を有する。
 本発明の実施形態によれば、応答性が良い小型の蛍光センサを提供できる。
従来の蛍光センサの構成を示す側面図である。 従来の蛍光センサの断面構造を示す断面図である。 従来の蛍光センサの構成を示す斜視図である。 実施形態の蛍光センサを含むセンサシステムの構成を示す斜視図である。 第1実施形態の蛍光センサのセンサ部の分解図である。 第1実施形態の蛍光センサのセンサ部の構成を示す斜視図である。 第1実施形態の蛍光センサのセンサ部の図6のVII-VII線に沿った断面図である。 第1実施形態の蛍光センサのセンサ部の図6のVIII-VIII線に沿った断面図である。 第1実施形態の変形例の蛍光センサのセンサ部の断面図である。 第2実施形態の蛍光センサのセンサ部の開口を示す斜視図である。 第3実施形態の蛍光センサのセンサ部の開口を示す分解図である。 第4実施形態の蛍光センサのセンサ部の開口を示す斜視図である。
<第1実施形態>
 以下、本発明の第1実施形態の蛍光センサ4について説明する。
 図4に示すように、蛍光センサ4は、本体部2およびレシーバー3と、ともにセンサシステム1を構成する。すなわち、センサシステム1は、蛍光センサ4と、本体部2と、本体部2からの信号を受信し記憶するレシーバー3と、を有する。本体部2とレシーバー3との間の信号の送受信は無線または有線で行われる。
 針型の蛍光センサ4は、主要機能部である略直方体のセンサ部10を有する針先端部5と、細長い針本体部6とを有する針部7と、針本体部6の後端部と一体化したコネクタ部8と、を具備する。針先端部5、針本体部6、およびコネクタ部8は同一材料により一体形成されていてもよい。
 コネクタ部8は、本体部2の嵌合部2Aと着脱自在に嵌合する。蛍光センサ4のセンサ部10から延設された複数の配線60は、コネクタ部8が本体部2の嵌合部2Aと機械的に嵌合することにより、本体部2と電気的に接続される。なお、本体部2が必要な容量のメモリ部を有する場合にはレシーバー3は不要である。
 蛍光センサ4は本体部2と嵌合した状態で、被検者自身が体表面から穿刺して針先端部5が体内に留置される。そして、例えば体液中のグルコース濃度を連続して測定し、レシーバー3のメモリに記憶する。
 蛍光センサ4は、体内のアナライトを計測する針型センサであり、連続使用期間が一週間程度の短期皮下留置型である。しかし、蛍光センサ4を体内に挿入しないで、採取した体液、または体外の流路を介して体内と循環する体液を、体外においてセンサ部10と接触させてもよい。
 そして、後述するように、蛍光センサ4は先端部5の三面にアナライト9が出入りする遮光層18A、18C、18Dを有している。
 図5~図8に示すように、蛍光センサ4の主機能部である直方体のセンサ部10は、主構造体である接合基板部30と、発光素子15と、透明保護層16と、インジケータ17と、遮光層18(18A、18C、18D)と、を有する。発光素子15は励起光を発生する発光ダイオード等である。透明保護層16は発光素子15を水密封止する。インジケータ17は励起光とアナライト量とに応じた蛍光を発生する。蛍光センサ4では、遮光層18が生体中の血液または体液と接触することにより、アナライト9が遮光層18を通過してインジケータ17に出入する。
 センサ部10の外形を構成する直方体の接合基板部30は、検出基板部20と枠状基板部40とを接合層(不図示)を介して接合することで作製される。枠状基板部40には、上面40SAと下面40SBとを挿通する貫通孔40Hが内部に形成されている。
 検出基板部20の上面20SAと枠状基板部40の下面40SBとが接合された接合基板部30では、枠状基板部40の貫通孔40Hは、下面40SBの開口41Bが検出基板部20の上面30SAに覆われて、凹部となっている。一方、上面40SAの開口41Aは遮光層18Aで覆われている。
 枠状基板部40の貫通孔40Hには、側面側にも、それぞれが遮光層18C、18Dで覆われた、開口41C、41Dがある。言い換えれば、3つの開口41A、41C、41Dは貫通孔40Hと挿通している。このため、アナライト9は3つの開口41A、41C、41Dを介して枠状基板部40の内部、すなわち、貫通孔40Hの内部(インジケータ17)に出入可能である。
 検出基板部20の上面20SAには光電変換素子であるPD素子12が形成されている。光電変換素子として、PD素子12を検出基板部20に直接形成する場合は、検出基板部20としては単結晶シリコン基板が好適であるが、製造方法によっては、ガラス基板など多様な材料から選択可能である。
 PD素子12は蛍光を電気信号に変換する光電変換素子であり、光電変換素子としてはPD素子12に限られるものではなく、フォトコンダクタ(光導電体)、またはフォトトランジスタ(Photo Transistor、PT)などの各種光電変換素子から選択可能である。そしてフォトダイオードまたはフォトトランジスタが、最も高感度でかつ安定性に優れた蛍光検出感度が実現でき、その結果、検出感度および検出精度に優れる蛍光センサ4が実現できるため特に好ましい。
 なお、図示しないが、PD素子12を覆うように励起光を遮断するが励起光よりも長波長の蛍光は通すフィルタが、検出信号のS/N比改善のため、配設されていることが好ましい。フィルタの材料としては、シリコン層または炭化シリコン層が好適である。また、PD素子12を覆う透明保護層、例えば酸化シリコン層を介してフィルタが配設されていてもよいし、更にフィルタを覆う透明保護層が配設されていてもよい。
 枠状基板部40の貫通孔40Hの内部、すなわち、接合基板部30の凹部には、底面(検出基板部20の上面20SA)側から順に、発光素子15と透明保護層16とインジケータ17とが配設されている。
 発光素子15は、光発生効率、励起光の波長選択性の広さ、および励起光となる紫外線以外の波長の光を僅かしか発生しないことなどの観点から、略矩形のチップ形状のLEDが好ましい。なお、図示しないが、発光素子15の駆動電極は、検出基板部20の上面20SAに配設されている配線60と電気的に接続されている。発光素子15の検出基板部20への配設には、光学的に透明なアクリル樹脂もしくはシリコーン樹脂などを使用した接着法、または、フリップチップボンディング法などの各種接合法などの方法が使用可能である。
 透明保護層16は、電気的絶縁性を有すること、水分遮断性を有すること、励起光および蛍光に対して良好な透過率を有すること、などの特性を有する材料、例えば、エポキシ樹脂、シリコーン樹脂、または透明な非晶性フッ素樹脂などから選択される。なお、発光素子15の電極が配設時に封止されていれば、透明保護層16はなくともよい。
 インジケータ17は、進入したアナライト9との相互作用および励起光によりアナライト9の量に応じた光量の蛍光を発生する。例えば、インジケータ17は波長375nmの励起光に対して、より長波長の例えば波長460nmの蛍光を発生する。インジケータ17の厚さは数十μm~200μm程度に設定されている。インジケータ17は、アナライト9の量、すなわち試料中のアナライト濃度に応じた強度の蛍光を発生する蛍光色素が含まれたベース材料から構成されている。
 蛍光色素は、アナライト9の種類に応じて選択され、アナライト9の量に応じて発生する蛍光の光量が可逆的に変化する蛍光色素ならば、どのようなものにも使用できる。すなわち、蛍光センサ4は、蛍光色素の選択によって、酸素センサ、グルコースセンサ、pHセンサ、免疫センサ、または微生物センサなど、多様な用途に対応している。
 インジケータ17は、例えば、含水し易いハイドロゲルをベース材料として、ハイドロゲル内に上記蛍光色素を含有するまたは結合されている。ハイドロゲルの成分としてはメチルセルロースもしくはデキストランなどの多糖類、(メタ)アクリルアミド、メチロールアクリルアミド、もしくはヒドルキシエチルアクリレート等のモノマーを重合して作製するアクリル系ハイドロゲル、またはポリエチレングリコールとジイソシアネートから作製するウレタン系ハイドロゲルなどを用いることができる。
 遮光層18A、18C、18Dは、インジケータ17を覆う、厚さが数十μm以下の層である。以下、遮光層18A、18C、18Dのそれぞれを遮光層18という。遮光層18は、励起光および蛍光がセンサ部の外部へ漏光するのを防止すると同時に、外光がセンサ部の内部に進入するのを防止する。
 遮光層18は、アナライト9が、その内部を通過してインジケータ17に到達するのを妨げない材料、例えば、サブミクロンサイズのポア構造からなる、金属、セラミック等の無機薄膜または、ポリイミドもしくはポリウレタン等の有機ポリマーの基材にカーボンブラックが混入されたハイドロゲル類とのコンポジット構造、または、セルロース類もしくはポリアクリルアミド等のアナライト透過性ポリマーにカーボンブラックを混入した樹脂、または、それらを積層化した樹脂等を用いる。
 発光素子15は、例えば30秒に1回の間隔で中心波長が375nm前後の励起光をパルス発光する。例えば、発光素子15への駆動信号の電流は1mA~100mAであり、発光のパルス幅は1ms~100msである。
 発光素子15が発生した励起光は、インジケータ17中の蛍光色素に照射される。そして、蛍光色素がアナライト9との相互作用により発生した蛍光は、透明保護層16または、発光素子15および透明保護層16を通過してPD素子12に到達し、検出信号に変換される。
 蛍光センサ4は、ウエハプロセスにより一括大量生産が可能である。このため、蛍光センサ4は、安価に安定した品質を提供できる。
 次に、蛍光センサ4の動作の一例を説明する。
 発光素子15は、例えば30秒に1回の間隔で中心波長が375nm前後の励起光をパルス発光する。例えば、発光素子15へのパルス電流は1mA~100mAであり、発光のパルス幅は1ms~100msである。
 発光素子15が発生した励起光はインジケータ17に入射する。インジケータ17は、アナライト9の量(濃度)に対応した強度の蛍光を発する。なお、アナライト9は遮光層18(18A、18C、18D)を介して、インジケータ17に出入する。
 蛍光センサ4は、開口41Aに加えて、更に開口41C、41Dからもアナライト9を含んだ体液が出入りするため、応答速度が速く、言い換えれば、応答性がよい。
 なお、図4~図8に示したように、センサ部10の形状は、Z軸方向から観察したときの平面視形状(上面40SAの形状)が長方形で、長軸(Y軸)に直交する方向の断面形状、すなわち、XZ平面の平面視形状も長方形の細長い略直方体である。しかし、複数の主面に開口が形成可能であれば、例えば主面は台形等でもよいし、中央部が凸の曲面等でもよい。また、センサ部10の先端面は半球状または角錐状でもよい。更に、開口を除く領域が遮光樹脂等で覆われている場合には、長軸直交方向の断面は略円形等でもよい。
<第2実施形態>
 次に、第2実施形態の蛍光センサ4Aについて説明する。蛍光センサ4Aは第1実施形態の蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
 図9に示すように、蛍光センサ4Aでは、一体の遮光層18Tが、3つの開口41A、41C、41Dを覆っている。言い換えれば、蛍光センサ4における3つの遮光層18A、18C、18Dが一体化しているのが、遮光層18Tである。
 なお、遮光層18Tは、検出基板部20の下面も覆っていてもよいし、枠状基板部40の先端面40SEを覆っていてもよい。また、遮光層は、第1の遮光層と第2の遮光層との積層膜であってもよい。そして、例えば、第1の遮光層が開口41C、41Dだけを覆い、第2の遮光層が、3つの開口41A、41C、41Dを覆っていてもよい。
 蛍光センサ4Aは、蛍光センサ4の効果を有し、更に蛍光センサ4よりも遮光層の配設が容易である。
<第3実施形態>
 次に、第3実施形態の蛍光センサ4Bについて説明する。蛍光センサ4Bは第1実施形態の蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。また、以下の図面においては、理解を容易にするため接合基板部だけを示す。
 図10に示すように、蛍光センサ4Bでは、枠状基板部40Bが先端面(40SD)にも、貫通孔40Hと挿通した開口41Eがある。開口41Eも、図示しない遮光層で覆われている。
 蛍光センサ4Bは、蛍光センサ4の効果を有し、開口41A、41C、41Dに加えて、更に開口41Eからもアナライト9を含んだ体液が出入りするため、蛍光センサ4よりも応答速度が速い。
 なお、図10に示す蛍光センサ4Bのように枠状基板部40Bは長さが短い場合には、貫通孔40Hが後端面(40SF)にも、更に開口を有していてもよい。4つの開口がある蛍光センサは、更に応答速度が速い。
<第4実施形態>
 次に、第4実施形態の蛍光センサ4Cについて説明する。蛍光センサ4Cは第1実施形態の蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
 図11に示すように、蛍光センサ4Cでは、検出基板部20Cに、2つの第2の貫通孔20H1、20H2が形成されている。第2の貫通孔20Hは、接合された枠状基板部40の貫通孔40Hと挿通し、開口21は遮光層(不図示)で覆われている。
 蛍光センサ4Cは、インジケータの上面だけでなく、下面からもアナライトを含んだ体液が出入りするため、蛍光センサ4の効果を有し、更に蛍光センサ4よりも応答速度が速い。
 なお、蛍光センサ4Cにおいては、検出基板部20CのPD素子12に加えて、またはPD素子12に替えて、枠状基板部40Cの貫通孔40Hの4つの壁面の少なくともいずれかに、PD素子が形成されていてもよい。
<第5実施形態>
 次に、第5実施形態の蛍光センサ4Dについて説明する。蛍光センサ4Dは第1実施形態の蛍光センサ4と類似しているため同じ構成要素には同じ符号を付し説明は省略する。
 図12に示すように、蛍光センサ4Dでは、枠状基板部40Dの側面40SC、40SDにスリット状の複数の開口41CA~41CDからなる開口群41C4が形成されている。更に、枠状基板部40Dの先端面40SEの開口41E4は楕円形状である。
 すなわち、アナライトが出入りする開口の形状は矩形または円形等に限られるものではない。開口の形状がスリット状の場合は、梁部が存在するため、スリット状でない矩形の開口に比べて、枠状基板部40Bの機械的強度を高くすることができる。
 以上の説明のように、実施形態の蛍光センサ4~4Hは、枠状基板部40の上面40SAを含む複数の面にそれぞれアナライト9が通過しインジケータ17に出入可能な開口が形成されている。このため、上面40SAだけからアナライト9がインジケータ17に出入する、従来の蛍光センサよりも応答性がよい。
 なお、実施形態の蛍光センサの構成を組み合わせた構成の蛍光センサも好ましく用いることができる。例えば、上面40SA、両側面40SC、40SDおよび下面20SBの4つの面の開口からアナライト9がインジケータ17に出入可能であってもよいし、上面40SA、両側面40SC、40SD、先端面40SEおよび下面20SBの5つの面の開口からアナライト9がインジケータ17に出入可能であってもよい。また、上面40SA、先端面40SEおよび下面20SBの3つの面の開口からアナライト9がインジケータ17に出入可能であってもよい。更に上面40SA、および一方の側面の2つの面の開口からアナライト9がインジケータ17に出入可能であってもよい。
 すなわち、本発明は上述した実施形態等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変、組み合わせ等ができる。
 本出願は、2012年9月21日に日本国に出願された特願2012-207770号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (6)

  1.  蛍光を電気信号に変換する光電変換素子が形成された検出基板部と、
     下面が前記検出基板部と接合され、上面を含む複数の面に開口があり、全ての前記開口と挿通している、前記上面と前記下面とを挿通する貫通孔が内部に形成されている枠状基板部と、
     前記枠状基板部の前記貫通孔の内部に配設された、励起光を受光してアナライトの濃度に応じた強度の前記蛍光を発生するインジケータと、
     前記励起光を発生する発光素子と、
     それぞれの前記開口を覆う前記アナライトが通過する遮光層と、を有することを特徴とする蛍光センサ。
  2.  前記枠状基板部の側面に前記開口が形成されていることを特徴とする請求項1に記載の蛍光センサ。
  3.  前記枠状基板部の先端面に前記開口が形成されていることを特徴とする請求項1または請求項2に記載の蛍光センサ。
  4.  接合された前記枠状基板部の前記貫通孔と挿通し、内部に前記インジケータが配設され、その開口が遮光層で覆われた、第2の貫通孔が前記検出基板部に形成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の蛍光センサ。
  5.  複数の遮光層が一体化していることを特徴とする請求項1から請求項4のいずれか1項に記載の蛍光センサ。
  6.  前記枠状基板部の少なくともいずれかの面に、複数の前記開口が形成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の蛍光センサ。
PCT/JP2013/071792 2012-09-21 2013-08-12 蛍光センサ WO2014045761A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012207770 2012-09-21
JP2012-207770 2012-09-21

Publications (1)

Publication Number Publication Date
WO2014045761A1 true WO2014045761A1 (ja) 2014-03-27

Family

ID=50341085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071792 WO2014045761A1 (ja) 2012-09-21 2013-08-12 蛍光センサ

Country Status (1)

Country Link
WO (1) WO2014045761A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997067A (zh) * 2018-12-28 2021-06-18 泰尔茂株式会社 测试条以及成分测定系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513426A (ja) * 2001-12-11 2005-05-12 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 高性能蛍光光センサー
JP2008535623A (ja) * 2005-04-15 2008-09-04 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド 光学的検知装置
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ
JP2012520087A (ja) * 2009-04-13 2012-09-06 オリンパス株式会社 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513426A (ja) * 2001-12-11 2005-05-12 センサーズ・フォー・メディシン・アンド・サイエンス インコーポレーテッド 高性能蛍光光センサー
JP2008535623A (ja) * 2005-04-15 2008-09-04 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド 光学的検知装置
JP2012520087A (ja) * 2009-04-13 2012-09-06 オリンパス株式会社 蛍光センサ、針型蛍光センサ、およびアナライトの計測方法
JP2012093128A (ja) * 2010-10-25 2012-05-17 Olympus Corp 蛍光センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997067A (zh) * 2018-12-28 2021-06-18 泰尔茂株式会社 测试条以及成分测定系统

Similar Documents

Publication Publication Date Title
US8649836B2 (en) Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
JP5638343B2 (ja) 蛍光センサ
CA2605164C (en) Optical-based sensing devices
JPS6398548A (ja) 物質濃度を測定するためのセンサ素子
JPS62261036A (ja) 物質濃度を測定するためのセンサ素子
EP2557415A1 (en) Fluorescence sensor
CN102333478A (zh) 可植入的光学葡萄糖感测
US20220133178A1 (en) Fibrous cover layer for medical devices
JP6087337B2 (ja) 蛍光センサおよびセンサシステム
WO2014045761A1 (ja) 蛍光センサ
WO2013161990A1 (ja) 蛍光センサ
JP2015059869A (ja) 蛍光センサ
WO2014045388A1 (ja) 蛍光センサ
WO2013161991A1 (ja) 蛍光センサ
WO2014045387A1 (ja) 蛍光センサ
WO2013161989A1 (ja) 蛍光センサ
JP2012247260A (ja) 蛍光センサ
JP2016016127A (ja) 生体用センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13839693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13839693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP