WO2014044733A1 - Compositions aqueuses de revêtement présentant une adhérence améliorée - Google Patents

Compositions aqueuses de revêtement présentant une adhérence améliorée Download PDF

Info

Publication number
WO2014044733A1
WO2014044733A1 PCT/EP2013/069424 EP2013069424W WO2014044733A1 WO 2014044733 A1 WO2014044733 A1 WO 2014044733A1 EP 2013069424 W EP2013069424 W EP 2013069424W WO 2014044733 A1 WO2014044733 A1 WO 2014044733A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
oil
succinimide compound
substituted succinimide
composition according
Prior art date
Application number
PCT/EP2013/069424
Other languages
English (en)
Inventor
Gary Pierce Craun
Jude Thomas Rademacher
Patricia GEELEN
Original Assignee
Akzo Nobel Coatings International B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP12188168.4A external-priority patent/EP2719731A1/fr
Application filed by Akzo Nobel Coatings International B.V. filed Critical Akzo Nobel Coatings International B.V.
Publication of WO2014044733A1 publication Critical patent/WO2014044733A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • C08K5/353Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09FNATURAL RESINS; FRENCH POLISH; DRYING-OILS; OIL DRYING AGENTS, i.e. SICCATIVES; TURPENTINE
    • C09F7/00Chemical modification of drying oils

Definitions

  • This invention relates to aqueous coating compositions, especially protective coatings comprising substituted succinimide compounds, methods of preparing the coating compositions and substrates coated with the coating compositions.
  • the coating compositions exhibit improved adhesion and corrosion resistance when applied to metallic substrates, especially aluminium, bare steel and corroded steel.
  • metal primers Special coatings, known as metal primers, have been formulated to be applied direct to the metal in order to prevent such corrosion.
  • the coatings typically contain very high levels of anti- corrosion pigments such as zinc phosphate and are typically grey in colour.
  • Such primers must be further coated with a topcoat layer to provide the desired aesthetic look of a coated article.
  • compositions allow coatings to be made which have excellent adhesion to and corrosion resistance on bare metals. Surprisingly, the compositions also exhibit excellent corrosion resistance over rusted steel, even when the composition is free of anti-corrosion pigments.
  • an aqueous coating composition comprising a. binder polymer
  • an unsaturated oil comprising at least one non-aromatic unsaturated carbon- carbon bond, a polymer derived from the unsaturated oil, or a mixture thereof
  • the substituted succinimide compound comprises from 0.5 to 5wt% of the liquid coating composition. Above 5wt% can cause the adhesion to deteriorate and below 0.5 wt% there is no improvement in corrosion performance.
  • the aqueous coatings of the present invention is especially useful for coating bare metal substrates where they provide improved adhesion of the dried coating to bare steel, rusted steel, galvanised steel, electrocoated tin plate steel and aluminium and can also improve corrosion resistance.
  • R is an alkyl or aryl group.
  • the alkyl or aryl group contains up to 30 carbon atoms.
  • the unsaturated carbon-carbon bond of the unsaturated oil is preferably a double bond.
  • commercially useful compounds contain double bonds and they may be singly- unsaturated - containing only one double bond; or multiply-unsaturated - containing more than one double bond.
  • Multi-unsaturated compounds may contain conjugated or non-conjugated double bonds. Conjugated double bonds are separated by only one single carbon-carbon bond whereas non-conjugated double bonds are separated by more than one single carbon-carbon bond.
  • the reaction of maleic anhydride with such unsaturated bonds is by the Diels-Alder reaction or the Alder-ene reaction.
  • the unsaturated oil and the polymer derived from the oil may be prepared by esterification of one or more polyols, polycarboxylic acids, fatty acids, and mixtures thereof. At least part of the unsaturated oil and the polymer derived from the unsaturated oil may be oxidatively drying as a result of the incorporation of unsaturated aliphatic compounds, such as unsaturated fatty acids.
  • Suitable examples of unsaturated fatty acids include myristoleic acid, palmitoleic acid, oleic acid, gadoleic acid, erucic acid, ricinoleic acid, oleic acid, linoleic acid, linolenic acid, tall oil fatty acid, sunflower fatty acid, safflower fatty acid, soybean oil fatty acid, and the like.
  • Examples of fatty acids containing conjugated double bonds include dehydrated castor oil fatty acid and wood oil fatty acid.
  • Monocarboxylic acids suitable for use include tetrahydrobenzoic acid and hydrogenated or non-hydrogenated abietic acid or its isomer.
  • the monocarboxylic acids may be used wholly or in part as triglyceride, for example as a vegetable oil, in the preparation of the unsaturated oil and the polymer derived from the unsaturated oil. If so desired, mixtures of two or more of such monocarboxylic acids or triglycerides may be employed, optionally in the presence of one or more saturated, (cyclo)aliphatic or aromatic monocarboxylic acids, for example, pivalic acid, 2-ethylhexanoic acid, lauric acid, palmitic acid, stearic acid, 4- tert-butyl-benzoic acid, cyclopentane carboxylic acid, naphthenic acid, cyclohexane carboxylic acid, 2,4-dimethyl benzoic acid, 2-methyl benzoic acid, and benzoic acid.
  • cyclo saturated, (cyclo)aliphatic or aromatic monocarboxylic acids
  • Polycarboxylic acids may also be incorporated into the unsaturated oil and the polymer derived from the unsaturated oil, such as phthalic acid, isophthalic acid, terephthalic acid, 5-tert-butyl isophthalic acid, trimellitic acid, pyromellitic acid, succinic acid, adipic acid, 2,2,4-trimethyl adipic acid, azelaic acid, sebacic acid, dimerized fatty acids, cyclopentane-l ,2-dicarboxylic acid, cyclohexane-l ,2-dicarboxylic acid, 4-methylcyclohexane-l ,2-dicarboxylic acid, tetrahydrophthalic acid, butane-l ,2,3,4-tetracarboxylic acid, endoisopropylidene-cyclohexane- 1 ,2-dicarboxylic acid, cyclohexane- 1 ,2,4,5-tetracarboxylic
  • the carboxylic acids may be used as an anhydride or in the form of an ester, for example, an ester of an alcohol having 1-4 carbon atoms.
  • the unsaturated oil and the polymer derived from the unsaturated oil may further comprise polyol building blocks.
  • suitable polyols include ethylene glycol, 1 ,3- propane diol, 1 ,6-hexane diol, 1 ,12-dodecane diol, 3-methyl-l ,5-pentane diol, 2,2,4-trimethyl- 1 ,6-hexane diol, 2,2-dimethyl-l ,3-propane diol, and 2-methyl-2-cyclohexyl- 1 ,3 -propane diol.
  • suitable triols include glycerol, trimethylol ethane, and trimethylol propane.
  • Suitable polyols having more than three hydroxyl groups include pentaerythritol, sorbitol, and etherification products, such as ditrimethylol propane and di-, tri-, and tetrapentaerythritol.
  • the unsaturated oil and the polymer derived from the unsaturated oil can be obtained by direct esterification of the constituent components, with the option of a portion of these components having been pre-converted into ester diols or polyester diols.
  • the unsaturated oil and the polymer derived from the unsaturated oil can be added in the form of a drying oil, such as linseed oil, fish oil, or dehydrated castor oil.
  • the unsaturated oil and the polymer derived from the unsaturated oil may be produced by transesterification with other acids and polyols at a temperature in the range of about 200 to about 250 C, optionally in the presence of solvents such as toluene and/or xylene.
  • the unsaturated oil comprises or consists of vegetable oil or fish oil or a mixture of the two.
  • Vegetable oils are preferred as they are readily available in many grades and are more cost effective than other oils, such as fish oils.
  • vegetable oil and fish oil is meant oil extracted from vegetable and fish matter respectively.
  • Vegetable oils comprise triglycerides, being tri-esters of glycerol and fatty acids.
  • triglycerides making up unsaturated vegetable oils comprise at least one unsaturated fatty acid.
  • the fatty acids preferably have chain length of from 12 to 24 carbon atoms and the triglyceride can comprise the same or different fatty acids, including saturated fatty acids.
  • Suitable unsaturated vegetable oils include soy bean oil, linseed oil, tall oil; sunflower oil, corn oil, hempseed oil, perilla oil, poppyseed oil and canola oil.
  • soy bean oil is used.
  • Suitable examples of polymers derived from unsaturated oil include alkyd resins. Such resins can be considered as polyesters modified with unsaturated fatty acids directly or by unsaturated oils comprising unsaturated fatty acids.
  • the number average molecular weight of polymers derived from the unsaturated oil should be at least 1000 Daltons, preferably from 1000 to 75000 Daltons and more preferably from 2000 to 50000 Daltons.
  • Primary amines have the general formula RNH 2 where R can be an alkyl or aryl group preferably with from 2 to 30 carbon atoms, more preferably from 3 to 12 carbon atoms.
  • suitable primary amines include the alkylamines such as 2-ethyl hexylamine, hexylamine and benzylamine.
  • R may be substituted with an acid group such as carboxyl, phosphoric. Where the acid group is carboxyl, R is an amino acid.
  • suitable amino acids include glycine, ⁇ -alanine, arginine, asparagine, cysteine, leucine and glutamine.
  • ⁇ -alanine is used.
  • the acid and the amine group of the amino acid are separated by more than one carbon atom as such amino acids are more reactive than when the groups are separated by only one carbon atom.
  • the acid value of the substituted succinimide compound is preferably sufficiently high to enable the substituted succinimide to be dispersible, preferably soluble, in water or aqueous media when neutralized.
  • the solubility of the substituted succinimide compound will depend partly on the hydrophobicity of the substituted succinimide compound itself and also the nature of the aqueous medium in which it is to be dissolved or dispersed.
  • the acid value is from 30 to 300 mg KOH/g substituted succinimide compound, more preferably from 50 to 150mg KOH/g.
  • the acid value of the substituted succinimide compound is provided by carboxyl groups.
  • the number average molecular weight of the substituted succinimide compound is from 400 to 10000 Daltons, more preferably from 1000 to 10000 as measured by gel permeation chro mato graphy .
  • aqueous By aqueous is meant that the continuous phase of the composition comprises at least 50% water, preferably at least 65%, more preferably, 80%, even more preferably, 90% and most preferably, 100% water.
  • the remainder of the continuous phase may comprise organic solvents. These may be water soluble, partly water soluble or water insoluble. Preferably, they are partly water soluble and most preferably they are water soluble. The solubility is assessed at 23°C.
  • Suitable solvents include n-butanol and ethylene glycol monobutyl ether.
  • the acid groups of the substituted succinimide compound may be partially or fully neutralised prior to addition to the coating composition to facilitate dissolution or dispersion in the continuous phase of the aqueous coating composition.
  • an aqueous emulsion of the substituted succinimide compound may be pre-formed by adding a neutralising agent to the substituted succinimide compound and diluting with water whilst stirring. Such emulsions are often more convenient to incorporate into aqueous compositions.
  • Suitable neutralising agents include ammonia, amines, alkali metal bases and mixtures thereof.
  • Suitable amines include dimethyl amino ethanol, triethylamine, amino -2 -methyl propanol, dimethyl amino propanol, dimethyl amino -2 -methyl propanol.
  • Suitable alkali metal bases include, potassium hydroxide, sodium hydroxide.
  • Figure 1 shows the steps in a suggested reaction scheme where the primary amine is an amino acid, ⁇ -alanine.
  • Step 1 is the reaction of an unsaturated oil and/or a polymer derived from an unsaturated oil, in this case having one double bond, with the maleic anhydride to form a substituted succinic anhydride intermediate (I).
  • Step 2 shows the reaction of the substituted succinic anhydride intermediate (I) with the primary amine to form an amic acid (II) which goes on to lose water in step 3 to form the substituted succinimide compound (III).
  • the coating composition has a gloss of at least 80 gloss units when measured at 60 degrees.
  • the composition is preferably free of anti-corrosion pigments as the presence of such pigments can reduce the gloss to unacceptably low levels. It is not clear why anti-corrosive pigments should decrease the gloss.
  • Anti-corrosion pigments are well known and used extensively in the coatings industry to provide paints which prevent metal substrates to which they are applied from corroding. Surprisingly, coatings of the present invention which are free of such anti-corrosion pigments, may be applied directly to bare metal, in particular steel, and yet protect the metal from corrosion.
  • the adhesion of the dried coating to bare steel is also substantially improved.
  • anti-corrosion pigments examples include potassium silicate; hydrogen phosphates such as CaHPC>4, MgHPC>4 and SrHPO ⁇ orthophosphates such as co- precipitated zinc orthophosphate, zinc orthophosphate hydrate, zinc aluminium orthophosphate and organically modified basic; polyphosphates such as strontium aluminium polyphosphate hydrate, zinc aluminium polyphosphate hydrate, magnesium aluminium polyphosphate, zinc aluminium triphosphate and magnesium aluminium triphosphate; phosphosilicates such as calcium strontium phosphosilicates and strontium zinc phospho silicate; other phosphates such as zinc phosphate and strontium borophosphate; hybrid pigments using mixtures of inorganic and organic inhibitors such as zinc phosphate and zinc oxide and zinc (2,5-dimercapto-l ,3,4- thiadazole) 2 also known as (DMTD) 2 ; metal oxides such as oxides of zinc, magnesium, aluminium, lithium, molybdenum, stront
  • Such pigments are insoluble in the paint and thus exist in the paint in particulate form.
  • Anti-corrosion pigments differ from non-pigment corrosion inhibitors.
  • Such non-pigment corrosion inhibitors are materials which are soluble in organic or aqueous media, at least up to about 5wt% based on the liquid coating formulation.
  • corrosion inhibitors include azoles such as imidazoles, thiazoles, tetrazoles and triazoles and 2- mercaptobenzothiazole; amines like N-phenyl- 1 ,4- phenylenediamine and Schiff bases like N,N'-o-phenylen-bis(3methoxysalicylidenimine); amino acids like tryptophan thiol compounds like DMTD or l-phenyl-2, 5-dithiohydrazodicarbonamide; phthalazin derivatives including 2- [(7-anilino-5-[l ,2,4]triazolo [3,4-b][l ,3,4]thiadiazin-3-yl)methyl]phthalazin-l(2H)-one
  • non-pigment corrosion inhibitors may be used in the present invention at levels from 0 to 5.0wt%, preferably from 0.5 to 3.0wt%, more preferably from 0.5 to 2.0wt%, yet more preferably from 0.5 to 1.0wt%. However, most preferably the coating is free of any such non- pigment corrosion inhibitors.
  • the compositions of the present inventions preferably contain flash rust inhibitors to prevent corrosion occurring during or soon after the application process.
  • the rust appears as a stain immediately after or within hours of the coating being applied to the metal substrate.
  • flash rust inhibitors are used in very small amounts, preferably at least 0.1 to 0.6 % by weight based on the 100% liquid formulation, more preferably from 0.1 to 0.5, even more preferably from 0.15 to 0.45, yet more preferably from 0.2 to 0.4 and most preferably from 0.25 to 0.35%.
  • Flash rust inhibitors fall into two groups namely, nitrite containing and nitrite-free. Suitable nitrite containing inhibitors include sodium nitrite.
  • Suitable nitrite-free inhibitors include alkanolamine borate; amino carboxylates such as Halox 510; phosphate salts such as neutralised form of phosphate co-ester of aliphatic alcohols; specially formulated film forming inhibitor based on an organic zinc complex and a nitrogen compound (such as Nalzin FA 379); high ratio copolymerised calcium sulphonate (such as Termarust TR2010R1).
  • Suitable flash rusting inhibitors include the nitrite-free range available from Halox, such as Halox 510, 515 and 570; Flash-X 330, 350D; Wayneflash 115; Nubirox FR20; WorleeADD 358; Nalzin 3358, 379, 579; Raybo 90 NoRust NF; Termarust TR2010R; Rodine Flash Rust Inhibitor; Heucorin FR; Vancor 081 ; Nacorr 1352, 1652, 1754, 4426, XR; Synthro Cor C 08B, C660B, CA50B; Strodex MOK-70 potassium salt.
  • Flash X 150 Wayneflash 110, 1 11 ; Nubirox FR10; Nalzin 179; Cortec M-l 1 1 , M-240, M-435, 380; Synthro cor EV B; Vancor 073; Worlee Add 357; Drew2gard 794 SA, 795 A; Additive EDA, ETE, IDA, TA-40, TA-41.
  • Nitrite free flash rust inhibitors are preferred.
  • the coating composition of the invention may further contain pigments which are not anti- corrosion pigments such as coloured pigments.
  • non-anti-corrosion pigments may be organic or inorganic, including carbon black titanium dioxide, phthalocyanine blue, iron oxide; metal flake pigments such as iron, aluminium and bronze.
  • Suitable binder polymers for use in the invention include acrylic polymers, styrene-acrylic polymers, polyurethane polymers, alkyd polymers, epoxy ester polymers and mixtures and/or hybrids thereof.
  • acrylic polymers or styrene-acrylic polymers are used and most preferably acrylic polymers are used.
  • acrylic polymer is meant that the polymer is derived only from monomers selected from the esters of acrylic acid and methacrylic acid and the acids themselves.
  • a styrene-acrylic polymer further comprises styrene or a derivative of styrene such as a-methyl styrene or vinyl toluene.
  • the binder polymer preferably forms a coherent film at ambient temperatures of from 0 to 40°C, preferably from 5 to 30°C and most preferably from 5 to 25°C.
  • the binder can comprise an aqueous dispersion of particles formed directly using known emulsion polymerization processes. Such dispersions are often referred to as latex.
  • an emulsion of a polymer can be made by emulsifying the polymer itself or the polymer dissolved in solvent, in aqueous medium using high shear mixing and optionally in the presence of surfactants.
  • Suitable monomers to prepare the binder polymer includestyrene, alpha-methyl styrene, alkyl esters of acrylic or methacrylic acid such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, n-octyl acrylate, lauryl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, nonyl acrylate,decyl acrylate, benzyl methacrylate, isobutyl methacrylate, isobomyl methacrylate the
  • a method of protecting a metal substrate including the steps of applying a coating composition of the invention and causing it to form a solid coating.
  • a method of providing corrosion resistance to a metal substrate including the steps of applying a coating composition of the invention to the metal substrate and causing it to form a solid coating.
  • a method of preparing the aqueous composition of the invention comprising the steps i. reacting an unsaturated oil comprising at least one non-aromatic unsaturated carbon- carbon bond or a polymer derived from the oil or a mixture thereof, with maleic anhydride to form a substituted succinic anhydride intermediate
  • soybean oil can be heated in the presence of maleic anhydride to about 225 °C to attach the anhydride to the soybean oil by an Alder-Ene reaction to form a substituted succinic anhydride soybean oil intermediate, ⁇ -alanine can be added to the mixture at about 140 °C to form an amic acid intermediate.
  • a neutralizing base such as a tertiary amine or ammonia can be added with water to form an aqueous dispersion of the soybean oil substituted succinimide compound.
  • a tertiary amine or ammonia can be added with water to form an aqueous dispersion of the soybean oil substituted succinimide compound.
  • the aqueous dispersion of the soy bean oil substituted succinimide compound is mixed with a binder polymer to form a coating composition of the invention.
  • the coating composition of the invention may further contain conventional additives for coating: Suitable such additives include thickeners, defoamers, anti-foam agent, flow aids, anti-crater agents, wetting agents and cure agents.
  • the coating compositions may be applied to a substrate using known methods including brush, roller, blade, pad, spray and dip
  • Texanol is an ester alcohol solvent available from Eastman.
  • Nalzin FA179 is flash rust inhibitor available from Elementis Specialties
  • Setal 276 XX-98 is an alkyd resin available from Nuplex Resins BV
  • the acid value was measured using the following procedure.
  • Example la About 0.1 g of sample is dissolved in a 1 :1 mixture of xylene and isopropanol and one drop of phenolphthalein in ethanol is added to the resulting mixture. The mixture is then titrated to a light pink end point using 0.1 normal potassium hydroxide solution.
  • the reflux condenser was removed from the flask and replaced with a Dean and Stark condenser allowing vapors to be removed and collected from the flask.
  • the ⁇ -alanine was added and the temperature increased to 170°C over 1 hour. Care is required to control the resulting exotherm and foaming from the reaction of the anhydride and the amine. As foaming subsides at 170°C a vacuum is applied to drive the reaction forward. About 7g water was collected over about 2 hours at 170°C as the substituted succinimide compound was formed.
  • the refiux condenser was removed from the flask and replaced with a Dean and Stark condenser allowing vapors to be removed and collected from the flask.
  • the ⁇ -alanine was added and the temperature increased to 150°C over 1 hour. Care is required to control the resulting exotherm and foaming from the reaction of the anhydride and the amine.
  • Example lb was omitted from the paint.
  • Example 4 and Comparative Example A were applied to steel panels using the method described below.
  • the panels were allowed to dry at room temperature (20-25°C) for 24 hours. They were then cross-hatched with a sharp knife using a template, the distance between the lines being 1mm, following which adhesive tape (Scotch filament tape 8981) was firmly applied over the cross-hatched area. The tape was then removed in one swift, sharp action and the percentage of the cross-hatched area removed assessed.
  • adhesive tape Scotch filament tape 8981
  • the paint was applied to the cleaned bare steel panels as described above to give a 50 ⁇ dry paint layer and then allowed to dry for 24 hours.
  • the panels were scribed with a cross using a knife (Erichsen type 463).
  • the scribed panels were then exposed to an accelerated cyclical salt spray corrosion test in accordance with ASTM G85-A5.
  • Blister size 8 is the smallest blister size with 6, 4 and 2 representing progressively larger blister.
  • the density is self-explanatory.
  • Example 5 (Paint) using a different binder polymer Preparation of a paint containing the aqueous succinimide emulsion of example lb.
  • Comparative Example B (Paint) Comparative Paint B was prepared using the same ingredients and process as used to make
  • Example 5 other than that the substituted succinimide emulsion, Example lb, was omitted from the paint.
  • Clean steel panels were prepared using the same method as described for panels I and II.
  • Two rusted 10 x 20 cm cold rolled steel panels were prepared using the following method; the panels were cleaned of the protective oil layer by wiping with a solvent mixture (xylene and acetone at a ratio of 35:65) and allowed to dry. When dry, the panel was dry sanded using sandpaper. The panels were then wiped with absorbent paper. These were then exposed to outside weathering conditions to create corroded steel panels. The panels were wiped with wire wool to remove loose rust on the panel. A 135 micron wet layer of paint was drawn down using a roll bar to give a dry paint film thickness of about 55 microns.
  • a solvent mixture xylene and acetone at a ratio of 35:65
  • the panels were allowed to dry at room temperature (20-25°C) for 7 days. They were then cross-hatched with a sharp knife using a template, the distance between the lines being 1mm, following which adhesive tape (Scotch filament tape 8981) was firmly applied over the cross- hatched area. The tape was then removed in one swift, sharp action and the percentage of the cross-hatched area removed assessed.
  • adhesive tape Scotch filament tape 8981
  • the paint was applied to the cleaned bare steel panels as described above to give a 50 ⁇ dry paint layer and then allowed to dry for 24 hours.
  • the panels were scribed with a cross using a knife (Erichsen type 463).
  • the scribed panels were then exposed to an accelerated cyclical salt spray corrosion test in accordance with ASTM G85-A5.
  • Any blisters are evaluated according the ASTM D714-02 where the size and density are estimated.
  • Blister size 8 is the smallest blister size with 6, 4 and 2 representing progressively larger blister.
  • the density is self-explanatory.
  • Rusting was evaluated according to ASTM D610-01 , where the percentage of rust is estimated, and 3 types of rust are distinguished: spot rusting, general rusting or pinpoint rusting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Paints Or Removers (AREA)

Abstract

La présente invention concerne une composition aqueuse de revêtement comprenant a) un liant polymère ; b) un composé de succinimide substitué possédant suffisamment de groupes acides pour que l'indice d'acidité du composé de succinimide substitué soit au moins de 30 mg KOH/g du composé de succinimide substitué, lequel est le produit de réaction i) d'une huile insaturée comprenant au moins une liaison carbone-carbone insaturée non aromatique, d'un polymère dérivé de l'huile insaturée ou d'un mélange de ceux-ci, ii) d'un anhydride maléique et iii) d'une amine primaire.
PCT/EP2013/069424 2012-09-19 2013-09-19 Compositions aqueuses de revêtement présentant une adhérence améliorée WO2014044733A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201261702781P 2012-09-19 2012-09-19
US61/702,781 2012-09-19
EP12188168.4 2012-10-11
EP12188168.4A EP2719731A1 (fr) 2012-10-11 2012-10-11 Compositions de revêtement aqueuses comprenant un produit de la réaction de l'anhydride maléique avec un composé insaturé et une amine
US201361815768P 2013-04-25 2013-04-25
US61/815,768 2013-04-25
EP13167787.4 2013-05-15
EP13167787 2013-05-15

Publications (1)

Publication Number Publication Date
WO2014044733A1 true WO2014044733A1 (fr) 2014-03-27

Family

ID=50340599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/069424 WO2014044733A1 (fr) 2012-09-19 2013-09-19 Compositions aqueuses de revêtement présentant une adhérence améliorée

Country Status (1)

Country Link
WO (1) WO2014044733A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216858A1 (de) * 2014-08-25 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Emulsionsbasiertes Konservierungsmittel für Metallbauteile, Verfahren zu seiner Herstellung, Verwendung desselben und Verfahren zum Konservieren von Metallbauteilen
CN105566971A (zh) * 2016-01-25 2016-05-11 龙笑琼 一种电瓶头保护剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293201A (en) * 1962-03-07 1966-12-20 Pittsburgh Plate Glass Co Emulsions of curable resinous compositions and a salt of an adduct of an unsaturateddicarboxylic acid and a fatty oil
WO2009006527A1 (fr) * 2007-07-03 2009-01-08 Georgia-Pacific Chemicals Llc Modification chimique d'acides gras maléiques
US20090029155A1 (en) * 2005-01-28 2009-01-29 Basf Aktiengesellschaft Preparation For And Method Of Applying Corrosion Control Coats

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3293201A (en) * 1962-03-07 1966-12-20 Pittsburgh Plate Glass Co Emulsions of curable resinous compositions and a salt of an adduct of an unsaturateddicarboxylic acid and a fatty oil
US20090029155A1 (en) * 2005-01-28 2009-01-29 Basf Aktiengesellschaft Preparation For And Method Of Applying Corrosion Control Coats
WO2009006527A1 (fr) * 2007-07-03 2009-01-08 Georgia-Pacific Chemicals Llc Modification chimique d'acides gras maléiques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216858A1 (de) * 2014-08-25 2016-02-25 Bayerische Motoren Werke Aktiengesellschaft Emulsionsbasiertes Konservierungsmittel für Metallbauteile, Verfahren zu seiner Herstellung, Verwendung desselben und Verfahren zum Konservieren von Metallbauteilen
DE102014216858B4 (de) 2014-08-25 2024-05-29 Bayerische Motoren Werke Aktiengesellschaft Emulsionsbasiertes Konservierungsmittel für Metallbauteile, Verfahren zu seiner Herstellung und Verfahren zum Konservieren von Metallbauteilen
CN105566971A (zh) * 2016-01-25 2016-05-11 龙笑琼 一种电瓶头保护剂及其制备方法

Similar Documents

Publication Publication Date Title
US8420219B2 (en) Method for the application of corrosion-resistant layers to metallic surfaces
US8563128B2 (en) Preparation for and method of applying corrosion control coats
US8268404B2 (en) Method for applying corrosion protection coatings to metal surfaces
AU2012357981B2 (en) Drier for auto-oxidisable coating compositions
KR20090122342A (ko) 저 휘발성 화합물 유기 페인트용 아민 중화제
EP2898025B1 (fr) Compositions de revêtement aqueuses incluant un produit de la réaction de l'anhydride maléique avec un composé insaturé et une amine
KR101605249B1 (ko) 핀 튜브용 수용성 방청유
CA2368333C (fr) Compositions filmogenes hydrosolubles
JP6023774B2 (ja) 亜鉛めっき鋼材用塗料組成物及びそれを用いた塗装方法
WO2014044733A1 (fr) Compositions aqueuses de revêtement présentant une adhérence améliorée
EP3867314A1 (fr) Dispersion aqueuse de particules polymères
EP3575337B1 (fr) Composition de revêtement à deux composants durcissable par un solvant et ne contenant pas d'isocyanate
JP6485873B2 (ja) 水性クリヤー塗料組成物
JPS585377A (ja) アニオン型電着塗料
JP2013209447A (ja) 水性樹脂組成物及び常乾型水性防錆塗料組成物並びに防錆性塗膜
EP0669383B1 (fr) Compositions durcissables à adhérence améliorée et leur utilisation pour le revêtement de substrats
JP2001508491A (ja) 金属性かつ酸化された下地への接着を促進する安定化非高分子アセトアセテートエステル
WO2021193082A1 (fr) Composition de revêtement aqueuse à un composant
EP2719731A1 (fr) Compositions de revêtement aqueuses comprenant un produit de la réaction de l'anhydride maléique avec un composé insaturé et une amine
JP7461465B2 (ja) ポリマー粒子の水性分散液
KR102304804B1 (ko) 고내식성 수용성 방청 코팅액
WO2006127335A1 (fr) Esters de carbonate en tant qu'agents de coalescence dans des revêtements
JP2007099895A (ja) エアゾール塗料用原液組成物及びエアゾール塗料組成物
JP2001019904A (ja) 防錆塗料組成物、塗膜形成方法および塗装物
JP2005097395A (ja) 顔料組成物及びこれを含む水性塗料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13763085

Country of ref document: EP

Kind code of ref document: A1