WO2014044352A1 - Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne - Google Patents

Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne Download PDF

Info

Publication number
WO2014044352A1
WO2014044352A1 PCT/EP2013/002564 EP2013002564W WO2014044352A1 WO 2014044352 A1 WO2014044352 A1 WO 2014044352A1 EP 2013002564 W EP2013002564 W EP 2013002564W WO 2014044352 A1 WO2014044352 A1 WO 2014044352A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
instant
value
processing unit
pressure
Prior art date
Application number
PCT/EP2013/002564
Other languages
English (en)
Other versions
WO2014044352A8 (fr
Inventor
Laurent LANDREVIE
Fabrice TONON
Original Assignee
Continental Automotive France Intellectual...
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47356109&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014044352(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Continental Automotive France Intellectual..., Continental Automotive Gmbh filed Critical Continental Automotive France Intellectual...
Priority to EP13759440.4A priority Critical patent/EP2898306B1/fr
Priority to JP2015532317A priority patent/JP6207612B2/ja
Priority to CN201380049048.5A priority patent/CN104620090B/zh
Priority to SI201330521A priority patent/SI2898306T1/sl
Priority to US14/427,807 priority patent/US10309854B2/en
Publication of WO2014044352A1 publication Critical patent/WO2014044352A1/fr
Publication of WO2014044352A8 publication Critical patent/WO2014044352A8/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/10Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor
    • G01L23/226Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor using specific filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor
    • G01L23/227Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor using numerical analyses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders

Definitions

  • the invention relates to a method for processing a signal of a pressure measuring device in an internal combustion engine.
  • An internal combustion engine comprises in the conventional manner cylinders in which pistons slide each defining a combustion chamber in which fuel and oxidant are introduced in order to achieve the combustion of the mixture.
  • the engine allows the transformation of the energy released by this combustion into mechanical energy.
  • Such pressure measuring sensors may be piezoelectric sensors which, by means of the variations of the electric charges of the piezoelectric sensitive element under pressure, relatively provide an indication of the pressure prevailing in the cylinder.
  • the pressure measurement sensor then provides a voltage representative of these pressure variations.
  • this voltage signal is subject to noises and drifts due, inter alia, pyroelectricity phenomena and / or vibrations experienced by said pressure sensor.
  • the signal delivered by the pressure measuring sensor is therefore different from the actual curve of the pressure prevailing inside the combustion chamber of the cylinder. Apart from the pressure peaks, it does not have the shape of a line of constant and repeatable value, but on the contrary, it has substantially the shape of a straight line with a slope (that is to say whose values drift in time), creating an offset or drift (called “offset” in English) compared to a reference value. This is illustrated in Figure 1A.
  • the signal S B can therefore be likened to an alternation of so-called "plateau" phases S P1 , S P2 , S P3 , during which the voltage is shifted with respect to a reference value V REF and evolves according to a slope function A. substantially linear as a function of time, and voltage peaks P1, P2, P3 representative of the combustion pressure peaks.
  • the pressure measuring device comprises a filter and an algorithm to remove this drift, also called “offset” correction algorithm that are applied to the voltage signal.
  • the filter makes it possible to eliminate the noise of the signal and the drift correction algorithm makes it possible to refocus the reference value of the pressure, outside the pressure peaks, to a constant and repeatable reference value V RE F.
  • This filter and drift correction algorithm are integrated into a processing unit, part of the pressure measuring device, and located in a dedicated integrated circuit called "ASIC"("Application Specifies Integrated Circuit”) and associated connected to the pressure sensor.
  • the filter and the drift correction make it possible, from the signal thus treated, to accurately determine the value of the pressure inside the combustion chamber of the cylinder and thus to adjust in proportion the operating adjustment parameters. of the internal combustion engine.
  • Such a method is known from the prior art.
  • a Kalman filter based on a recursive error correction method between a signal and its prediction attenuated by a gain. The prediction of the signal is then calculated from the signal filtered and corrected at the previous measurement time.
  • two Kalman filters a so-called “fast” Kalman filter, that is to say having gains in slope and constant of high values for the points belonging to the pressure peaks, and a so-called “slow” Kalman filter, that is to say having slope and constant gains of low values for the determination of the drift of the signal, that is to say -describe offset during the plateau phases.
  • the processed pressure signal S K according to the signal processing method described in FR 2 938 645 A1, has a constant reference value of pressure V RE F, and no longer drifts over time. t.
  • this signal processing method creates, after the pressure peak P K , between the times t0 and t1, an under estimation S u of the value of the pressure prevailing in the cylinder with respect to the real curve S R.
  • the invention therefore proposes to overcome these disadvantages and proposes a signal processing method making it possible to correct the drift of the signal that does not generate deformation in the processed signal, which is easy to implement and to calibrate and requires a reduced memory size. compared to the method of the prior art.
  • the invention provides a method of processing a signal of a pressure measuring device within an internal combustion engine, said device comprising:
  • a pressure measurement sensor outputting a voltage signal, representative of the pressure within the internal combustion engine, the signal comprising so-called “plateau” phases during which the voltage evolves according to a substantially linear function as a function of the time, and voltage peaks, representative of the combustion pressure peaks,
  • a processing unit connected to said pressure measuring sensor.
  • the method comprises the following steps:
  • Dt1 first time between a first moment (t0) corresponding to a first peak of combustion pressure (PO) and a second instant (t1) corresponding to a second peak of combustion pressure (P1),
  • VoFFi signal value at the correction start time (t c i)
  • V REF reference value.
  • the steps I to VI are repeated, and:
  • step III calculation by the processing unit of a second duration between the second instant corresponding to the second peak of combustion pressure and a third instant corresponding to a third peak of combustion pressure, following the second peak; combustion pressure,
  • step IV calculation by the processing unit of a second correction start time defined by:
  • Dt2 second duration between the second instant and the third instant
  • step V Measurement by the processing unit of a second value of the signal at the second start of correction time, and calculation by the processing unit of a slope, defined by:
  • V 0 FF2 signal value at the second correction start time
  • step VI correction of the signal by the processing unit, at a given instant i, located after the second correction start time and obtaining a second processed signal such that:
  • the value of the second constant x2 is equal to the value of the first constant x1.
  • step II consists in deriving the second order of the values of the signal with respect to a unit of time, and obtaining a derivative signal, such that:
  • Stage III consists of:
  • the value of the threshold is determined so that at the first instant and at the second instant the value of the signal is substantially maximum.
  • the signal is a filtered and sampled signal with respect to time.
  • the value of the first constant x1 is determined at a maximum engine speed, for example 5000 revolutions / min.
  • the value of the first constant x1 is between 0.4 and 0.7.
  • FIG. 1a already explained above, represents the signal at the output of the sensor without a signal processing method
  • FIG. 1b represents the signal processed by the signal processing method of the prior art
  • FIG. 2 represents the first signal processed by the signal processing method according to the invention
  • FIG. 3 represents the second signal processed by the signal processing method according to the invention
  • FIG. 4 is a schematic view showing the cylinder pressure measuring device according to the invention.
  • FIG. 5 represents, at the top of the figure, the signal at the output of the sensor without signal processing method and at the bottom of the figure, the signal at step III of the signal processing method according to a preferred embodiment of FIG. 'invention.
  • the pressure measuring device D P comprises a pressure measurement sensor 800 connected to a processing unit 500.
  • the signal S B at the output of the pressure measurement sensor 800 is acquired and processed by the integrated processing unit 500 in an integrated circuit (ASIC, not shown in FIG. 4) in order to deliver a S processed signal.
  • This processing unit 500 generally comprises:
  • an analog / digital converter 201 connected to the charge amplifier 100 and connected on the one hand to:
  • Filtering means 300 making it possible to filter the noises present on the signal S B , connected to a digital / analog converter 202, itself connected to the charge amplifier 100.
  • the filtering means 300 filter the noises present on the signal S B by adding or removing compensation charges to signal S B at the input of charge amplifier 100,
  • Signal processing means 400 generally comprising a drift correction algorithm, connected to a digital / analog converter 203, delivering a processed signal S to an electronic computer (not shown).
  • This processing unit 500 is known to those skilled in the art and will not be further detailed here.
  • the signal S B originating from the pressure sensor 800 can be likened to an alternation of so-called “plateau” phases S P1 , S P2 , S P3 (see FIG. 1A) during which the voltage is shifted with respect to a reference value V RE F and evolves according to a function of slope A substantially linear as a function of time, and voltage peaks P1, P2, P3 representative of the combustion pressure peaks (see Figure 1A).
  • the drift correction algorithm further comprises an algorithm for detecting voltage peaks representative of the combustion pressure peaks.
  • This algorithm for detecting voltage peaks representative of combustion pressure peaks is based, for example, on the evolution of the slope of the signal from one measurement instant t to the next t + 1. Any abnormally and suddenly high slope is then significant of a beginning of peak combustion pressure.
  • Other algorithms for detecting signal voltage peaks are possible and known to those skilled in the art and will not be more detailed here.
  • the invention proposes a method for processing the signal S B of the pressure measuring device D P.
  • This method is in the form of an algorithm that can be integrated, for example, and without limitation in the signal processing means 400 described above.
  • the method of processing the signal S B is intended to correct the drift of the signal with respect to the reference value V RE F-
  • the values of the signal S B are first acquired by the processing unit 500 (step I) and the signal peaks of the signal S B representative of combustion pressure peaks are detected (step II). As explained above, these two steps are known from the prior art.
  • step III consists in calculating a first duration Dt1 between a first instant t0 corresponding to a first combustion pressure peak P0 and a second instant t1 corresponding to a second combustion pressure peak P1, following the first pressure peak P0 combustion.
  • the invention proposes then to calculate (step IV) a start time of correction t c i, of the signal S B defined by:
  • the correction start time t c1 is therefore located after the second peak combustion pressure P1.
  • the correction start time begins during a plateau phase of the signal S B before a third combustion peak P2 (see Figure 2).
  • the first duration Dt1 calculated between two consecutive combustion pressure peaks, a first combustion pressure peak P0 and a second combustion pressure peak P1 is used in order to correct the signal S B after the second peak of combustion pressure P1 and this independently of the evolution of the engine speed.
  • the invention is based on the first hypothesis that the value of the engine speed is supposed to be almost constant between three successive combustion pressure peaks (P0, P1, P2).
  • the basic hypothesis of the invention consists in assuming that the value of the engine speed between the second pressure peak of P1 combustion and the third combustion pressure peak P2, is equal to the value of the engine speed between the first combustion pressure peak PO and the second combustion pressure peak P1. Consequently, the first duration Dt1 calculated between the two first combustion pressure peaks (PO, P1) can therefore be used to estimate the duration between the second peak of combustion pressure P1 and the next peak of combustion pressure, that is, the third peak of combustion pressure P2. In other words, this makes it possible to identify the plateau phase between these two combustion peaks, where a correction is possible. This is explained later.
  • the invention is thus distinguished from signal processing methods of the prior art, in which the instantaneous value of the engine speed was taken into account at each point of the signal during the correction of the signal S B at said point.
  • the invention proposes to set the value of the first constant x1 at a maximum engine speed in order to ensure that the start of correction time t c i thus determined is in a signal plateau phase.
  • S B for any engine speed below the maximum speed and not at the end of the second peak combustion pressure P1, or in the beginning of the third peak combustion pressure P2.
  • the invention proposes to measure the value of the signal VoFFi at the start of correction t c (step V) and to correct the signal S B from the start of correction time t c i with respect to a reference value V REF in order to obtain a first processed signal S such that:
  • the reference value VREF may be equal to zero.
  • the invention is therefore based on a 2nd hypothesis: the drift of the signal S B is largely due to thermal phenomena (pyro) a relatively slow inertia.
  • the correction start time as calculated in step IV is in a plateau phase between two peaks of combustion pressure, so that the value of the signal V 0 FFI measured at the same time is representative of the drift of signal S B and not a peak of combustion pressure.
  • the value of the first constant x1 must be chosen judiciously (as previously explained), so that the start time of such correction is always in a plateau phase and this whatever the value of the engine speed.
  • FIG. 2 represents, according to the time t, the processed signal S.
  • This processed signal S as a whole no longer drifts.
  • the slope of the signal as a whole is zero.
  • the corrected values after the correction start time t c evolve according to a linear function of slope A.
  • this slope A is also corrected (see Figures 3 and 5).
  • steps I to IV are repeated between the second pressure peak P1 and the third pressure peak P2.
  • the processing unit 500 calculates a second duration Dt2 between the second instant t1 corresponding to the second peak of combustion pressure P1 and a third instant t2 corresponding to a third peak of combustion pressure P2, consecutive at the second peak of combustion pressure P1,
  • the processing unit 500 calculates a second correction start time t C 2 defined by:
  • Dt2 second duration between the second instant t1 and the third instant t2,
  • the processing unit 500 measures a second value of the signal V 0 FF2 at the second correction start time t c2 , and calculates a slope A, defined by: ⁇ _ (VQFF2 VQFFI)
  • V 0 FF2 the signal value at the second start time correction tc 2 ,
  • step VI the signal S B is corrected by the processing unit 500, at a given instant / ' , located after the second correction start time t c2 in order to obtain a second processed signal S' such as :
  • the second correction start time tc2 is therefore in the plateau phase after the third peak of combustion pressure P2.
  • the value of the slope A can be calculated only after the third peak of combustion pressure P2, that is to say after two measurements of duration (Dt1, Dt2). Calculation of the slope A is not possible from the second peak of combustion pressure P1.
  • the value of the second constant x2 is equal to the value of the first constant x1.
  • the value of the slope A calculated between the second peak of combustion pressure P1 and the third peak of combustion pressure P2 is identical to that between the third peak of pressure. P2 combustion and the next combustion pressure peak.
  • this slope A is due to relatively slow thermal phenomena, and the hypothesis is emitted that the slope does not evolve between two successive cycles. A cycle being defined by two consecutive combustion pressure peaks separated by a plateau phase.
  • FIG. 3 represents, according to the time t, the second processed signal S '.
  • the values of the signal S B during the plateau phases (after the second correction start time t C 2) have a constant and repeatable value at the reference value V RE F and no longer evolve according to a linear function of slope A.
  • the determination of the slope A over three consecutive cycles thus makes it possible to obtain phases of horizontal plateaux, of constant value.
  • step II the detection of combustion pressure peaks (step II) as well as the calculation of the time between two consecutive pressure peaks (step III) are carried out as follows:
  • step II consists of a second order derivation of the voltage values of the signal S B with respect to a unit of time t, in order to obtain a derivative signal S D , that is to say:
  • Stage III consists of:
  • FIG. 5 represents, according to the time t, the derived signal S D obtained in step II, as well as the times t0, t1 for passing the values of the derived signal S D below the threshold S1.
  • the threshold S1 is judiciously determined so that, at the first moment t0, at the second instant t1 and at the third instant t2, the value of the signal S B is substantially maximum, however, situated after the peak of pressure.
  • the instants t0, t1, t2 thus correspond to instants located immediately after combustion pressure peaks (PO, P1, P2). Indeed, the threshold S1 must be set so as to distinguish points located before a pressure peak points after a peak pressure. As illustrated in FIG. 5, the threshold S1 is of relatively low value and thus makes it possible to detect points situated just after a peak of pressure.
  • the signal processing method according to the invention therefore makes it possible to obtain a processed signal (S or S ') representative of the pressure prevailing in the combustion chamber of a cylinder, not having, after the pressure peak, a sub estimate the value of the pressure prevailing in the cylinder, not requiring complex calculations requiring a large memory size in the ASIC associated with said sensor, as is the case in the prior art, and easy to implement, since it is enough to calibrate once and for all the value of the constants x1 and x2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

La présente invention a pour objet un procédé de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur à combustion interne, au ledit dispositif comprenant : - un capteur de mesure de pression fournissant en sortie un signal (SB) de tension, - une unité de traitement reliée audit capteur de mesure de pression, Selon l'invention, le procédé comprend les étapes suivantes : I. Calcul d'une durée (Dt1 ) entre un premier instant (t0) correspondant à un premier pic de pression de combustion (P0) et un deuxième instant (t1 ) correspondant à un deuxième pic de pression de combustion (P1 ), consécutif au premier pic de pression de combustion (P0), II. Calcul d'un instant de début de correction (tc1) défini en fonction de la durée (Dt1 ) précédemment calculée, I II. Mesure d'une valeur du signal (VOFF1) à l'instant de début correction (tc1), IV. Correction du signal, à partir de l'instant de début de correction (tc1) par rapport à une valeur de référence (VREF) et obtention d'un premier signal traité (S) tel que : S = S B — V OFF1 + V REF

Description

Procédé de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur à combustion interne
L'invention concerne un procédé de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur à combustion interne.
Un moteur à combustion interne comporte de manière classique des cylindres dans lesquels coulissent des pistons définissant chacun une chambre de combustion dans laquelle du carburant et du comburant sont introduits afin de réaliser la combustion du mélange. Le moteur permet la transformation de l'énergie dégagée par cette combustion en énergie mécanique.
Il est connu d'équiper des moteurs à combustion interne de dispositifs de mesure de pression comprenant des capteurs de mesure de pression et de l'électronique associée, mesurant la pression au sein des chambres de combustion des cylindres. La valeur de cette pression permet à un système électronique du type calculateur électronique moteur (ou ECU : « Engine Control Unit » en anglais), embarqué dans un véhicule automobile équipé d'un tel moteur à combustion interne, d'ajuster au mieux les paramètres de réglages dudit moteur tels que les paramètres d'injection de carburant ou de post traitement des émissions polluantes.
De tels capteurs de mesure de pression peuvent être des capteurs piézoélectriques qui, par l'intermédiaire des variations des charges électriques de l'élément sensible piézo-électrique soumis à une pression, fournissent de manière relative une indication de la pression régnant dans le cylindre. Le capteur de mesure de pression fournit alors une tension représentative de ces variations de pression. Généralement, le signal de tension fourni par ce type de capteurs de mesure de pression devrait sensiblement avoir la forme d'une droite de valeur constante (par exemple y = 0 volts) et répétable sur laquelle- viennent s'intercaler périodiquement des pics de tension représentant les pics de pression qui se déroulent à l'intérieur de la chambre de combustion lors des phases de compression et de combustion dans la chambre de combustion du cylindre.
Cependant, ce signal de tension est sujet à des bruits et dérives dus, entre autres, aux phénomènes de pyroélectricité et/ou de vibrations subis par ledit capteur de mesure de pression. Le signal délivré par le capteur de mesure de pression est donc différent de la courbe réelle de la pression régnant à l'intérieur de la chambre de combustion du cylindre. En dehors des pics de pression, il n'a pas la forme d'une droite de valeur constante et répétable mais au contraire, il a sensiblement la forme d'une droite ayant une pente (c'est-à-dire dont les valeurs dérivent dans le temps), créant un décalage ou dérive (appelé « offset » en anglais) par rapport à une valeur de référence. Ceci est illustré à la figure 1A. Le signal SB de pression selon l'unité de temps t, est bruité et il dérive selon une droite de pente A, créant ainsi un décalage ou dérive (offset) par rapport à une valeur de référence VREF qui évolue selon le temps t, de valeur B à t = 0 et de valeur B' à tO (cf. figure 1A). Le signal SB peut donc être assimilé à une alternance de phases dites « de plateau » SP1, SP2, SP3, pendant lesquelles la tension est décalée par rapport à une valeur de référence VREF et évolue selon une fonction de pente A sensiblement linéaire en fonction du temps, et de pics de tension P1 , P2, P3 représentatifs des pics de pression de combustion.
Afin que le signal de pression fourni par de tels capteurs de mesure de pression soit utilisable, un traitement du signal est donc nécessaire. En l'occurrence le dispositif de mesure de pression comprend un filtre et un algorithme visant à supprimer cette dérive, appelé aussi algorithme de correction d'« offset » qui sont appliqués au signal de tension. Le filtre permet d'éliminer les bruits du signal et l'algorithme de correction de dérive permet de recentrer la valeur de référence de la pression, en dehors des pics de pression, à une valeur de référence VREF constante et répétable. Ce filtre et cet algorithme de correction de dérive sont intégrés dans une unité de traitement, faisant partie du dispositif de mesure de pression, et située dans un circuit intégré dédié appelé « ASIC » (« Application Spécifie Integrated Circuit », en anglais) associé et relié au capteur de mesure de pression. Le filtre et la correction de dérive permettent, à partir du signal ainsi traité, de déterminer de manière précise la valeur de la pression à l'intérieur de la chambre de combustion du cylindre et donc d'ajuster en proportion les paramètres de réglage de fonctionnement du moteur à combustion interne.
Un tel procédé est connu de l'art antérieur. Par exemple, il est connu d'utiliser un filtre de Kalman reposant sur une méthode récursive de correction d'erreur entre un signal et sa prédiction atténuée par un gain. La prédiction du signal est alors calculée à partir du signal filtré et corrigé à l'instant de mesure précédent. Plus particulièrement et selon le document FR 2 938 645 A1 , il est connu d'utiliser deux filtres de Kalman : un filtre de Kalman dit « rapide » c'est-à-dire comportant des gains de pente et de constante de valeurs élevées pour les points appartenant aux pics de pression, et un filtre de Kalman dit « lent », c'est-à-dire comportant des gains de pente et de constante de valeurs faibles pour la détermination de la dérive du signal, c'est-à-dire de l'offset pendant les phases de plateaux. Le procédé décrit dans FR 2 938 645 A1 corrige alors chaque point en fonction de leur appartenance ou non aux pics de pression détectés selon le filtre de Kalman rapide et selon la valeur de l'offset déterminé selon le filtre de Kalman lent. Cependant, les inconvénients d'un tel procédé de traitement du signal sont les suivants :
- puisque chaque point du signal est traité par un calcul complexe utilisant un filtre de Kalman, un tel procédé de traitement du signal est lourd et utilise une taille importante de la mémoire de l'ASIC, - ce procédé est difficile à calibrer, puisqu'il comporte quatre variables à paramétrer : un gain de pente et de constante pour le filtre de Kalman rapide et un autre gain de pente et un autre gain de constante pour le filtre de Kalman lent,
- en dessous de 1000 tours/min de régime moteur, le signal traité issu de ce procédé de traitement est déformé de manière non négligeable et donc difficilement exploitable.
Ceci est illustré à la figure 1 B. Le signal de pression traité SK selon le procédé de traitement de signal décrit dans FR 2 938 645 A1 , a une valeur de référence de pression VREF constante, et ne dérive plus dans le temps t. Cependant, ce procédé de traitement de signal crée, après le pic de pression PK, entre les instants tO et t1 , une sous estimation Su de la valeur de la pression régnant dans le cylindre par rapport à la courbe réelle SR.
L'invention propose donc de pallier ces inconvénients et propose un procédé de traitement du signal permettant de corriger la dérive du signal n'engendrant pas de déformation dans le signal traité, facile à mettre en œuvre et à calibrer et nécessitant une taille réduite de mémoire par rapport au procédé de l'art antérieur.
L'invention propose un procédé de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur à combustion interne, ledit dispositif comprenant :
- un capteur de mesure de pression fournissant en sortie un signal de tension, représentatif de la pression au sein du moteur à combustion interne, le signal comprenant des phases dites « de plateau » pendant lesquelles la tension évolue selon une fonction sensiblement linéaire en fonction du temps, et des pics de tension, représentatifs des pics de pression de combustion,
- une unité de traitement reliée audit capteur de mesure de pression.
Selon un premier mode de réalisation, le procédé comprend les étapes suivantes :
I. Acquisition des valeurs du signal de pression par l'unité de traitement, II. Détection par l'unité de traitement des pics de tension du signal, représentatifs des pics de pression de combustion.
Le procédé se caractérise en ce qu'il comprend en outre les étapes suivantes :
III. Calcul par l'unité de traitement d'une première durée entre un premier instant correspondant à un premier pic de pression de combustion et un deuxième instant correspondant à un deuxième pic de pression de combustion, consécutif au premier pic de pression de combustion,
IV. Calcul par l'unité de traitement d'un instant de début de correction définit par :
tcl = tl + xl * Dt1
Avec :
tc1 : instant de début de correction,
t1 : deuxième instant correspondant à un deuxième pic de pression de combustion,
Dt1 : première durée entre un premier instant (tO) correspondant à un premier pic de pression de combustion (PO) et un deuxième instant (t1 ) correspondant à un deuxième pic de pression de combustion (P1 ),
tc2 : instant de fin de correction,
et x1 première constante de valeur variant entre 0, 1 et 0,9.
V. Mesure par l'unité de traitement d'une valeur du signal à l'instant de début de correction,
VI. Correction par l'unité de traitement du signal, à partir de l'instant de début de correction par rapport à une valeur de référence et obtention d'un premier signal traité tel que :
S = SB— V0FF1 + VREF
Avec SB : signal en sortie du capteur de mesure de pression,
VoFFi : valeur du signal à l'instant de début correction (tci),
VREF : valeur de référence.
Selon un deuxième mode de réalisation, les étapes I à VI sont répétées, et :
- lors de l'étape III : calcul par l'unité de traitement d'une deuxième durée entre le deuxième instant correspondant au deuxième pic de pression de combustion et un troisième instant correspondant à un troisième pic de pression de combustion, consécutif au deuxième pic de pression de combustion,
- lors de l'étape IV : Calcul par l'unité de traitement d'un deuxième instant de début de correction définit par :
tc2 = t2 + x2 * Dt2
Avec : tc2 : deuxième instant de début de correction,
t2 : troisième instant correspondant à un troisième pic de pression de combustion,
Dt2: deuxième durée entre le deuxième instant et le troisième instant ,
et x2 une deuxième constante de valeur variant entre 0,1 et 0,9.
- lors de l'étape V : Mesure par l'unité de traitement d'une deuxième valeur du signal au deuxième instant de début de correction, et calcul par l'unité de traitement d'une pente, définie par :
Figure imgf000007_0001
Avec V0FF2 : valeur du signal au deuxième instant de début de correction,
tc2 : deuxième instant de début de correction,
- lors de l'étape VI : correction du signal par l'unité de traitement, à un instant donné i, situé après le deuxième instant de début de correction et obtention d'un deuxième signal traité tel que :
S'(i) = 5(0 - -A * i
Avec S'(i) : deuxième signal traité à l'instant t,
S (i) : premier signal traité à l'instant t.
Dans un autre mode de réalisation la valeur de la deuxième constante x2 est égale à la valeur de la première constante x1.
Dans un mode de réalisation préférentiel du procédé de traitement selon l'invention :
- l'étape II consiste en la dérivation du deuxième ordre des valeurs du signal par rapport à une unité de temps, et obtention d'un signal dérivé, tel que :
_ dsB 2 avec SD : signal dérivé,
- l'étape III consiste en :
• la détection par l'unité de traitement de deux instants consécutifs, un premier instant et un deuxième instant correspondants au passage des valeurs du signal dérivé en dessous d'un seuil,
• le calcul par l'unité de traitement d'une durée entre le premier instant et le deuxième instant. Judicieusement, la valeur du seuil est déterminée de telle sorte qu'au premier instant et au deuxième instant la valeur du signal est sensiblement maximale.
Avantageusement, le signal est un signal filtré et échantillonné par rapport au temps.
Préférentiellement, la valeur de la première constante x1 est déterminée à un régime moteur maximal, par exemple de 5000 tours /min. Alternativement la valeur de la première constante x1 est comprise entre 0,4 et 0,7.
D'autres objets, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre à titre d'exemple non limitatif et à l'examen des dessins annexés dans lesquels :
- la figure 1a, déjà expliquée précédemment, représente le signal en sortie du capteur sans procédé de traitement du signal,
- la figure 1 b, déjà expliquée précédemment, représente le signal traité par le procédé de traitement du signal de l'art antérieur,
- la figure 2 représente le premier signal traité par le procédé de traitement du signal selon l'invention,
- la figure 3 représente le deuxième signal traité par le procédé de traitement du signal selon l'invention,
- la figure 4 est une vue schématique représentant le dispositif de mesure de pression cylindre selon l'invention,
la figure 5 représente en haut de la figure, le signal en sortie du capteur sans procédé de traitement du signal et en bas de la figure, le signal à l'étape III du procédé de traitement du signal selon un mode préférentiel de réalisation de l'invention.
Comme illustré à la figure 4, le dispositif de mesure de pression DP selon l'invention comprend un capteur de mesure de pression 800 relié à une unité de traitement 500.
Comme illustré à la figure 4, le signal SB en sortie du capteur de mesure de pression 800 est acquis et traité par l'unité de traitement 500 intégrée dans un circuit intégré (ASIC, non représenté à la figure 4) afin de délivrer un signal traité S. Cette unité de traitement 500 comprend généralement :
- un amplificateur de charges 100,
- un convertisseur analogique/numérique 201 , relié à l'amplificateur de charges 100 et relié d'une part à :
• des moyens de filtrage 300 permettant de filtrer les bruits présents sur le signal SB, reliés à un convertisseur numérique/analogique 202, lui-même relié à l'amplificateur de charge 100. Les moyens de filtrage 300 filtrent les bruits présents sur le signal SB en ajoutant ou en enlevant des charges de compensation au signal SB en entrée de l'amplificateur de charges 100,
et d'autre part à :
• des moyens de traitement du signal 400, comprenant généralement un algorithme de correction de dérive, relié à un convertisseur numérique/analogique 203, délivrant un signal traité S à un calculateur électronique (non représenté).
Cette unité de traitement 500 est connue de l'homme du métier et ne sera pas plus détaillée ici.
Comme expliqué précédemment, le signal SB provenant du capteur de pression 800 peut être assimilé à une alternance de phases dites « de plateau » SP1, SP2, SP3 (cf. figure 1A) pendant lesquelles la tension est décalée par rapport à une valeur de référence VREF et évolue selon une fonction de pente A sensiblement linéaire en fonction du temps, et de pics de tension P1 , P2, P3 représentatifs des pics de pression de combustion (cf. figure 1A).
Selon l'art antérieur, l'algorithme de correction de dérive comprend en outre un algorithme de détection des pics de tension représentatifs des pics de pression de combustion.
Cette détection est nécessaire afin de distinguer les valeurs de tension appartenant aux phases dites de plateau, des valeurs de tension appartenant aux pics de pression de combustion. En effet, la détermination de la dérive du signal n'est possible que pendant les phases de plateau, les valeurs anormalement élevées des pics de pression de combustion ne permettant pas la détermination de la dérive.
Cet algorithme de détection des pics de tension représentatifs des pics de pression de combustion est basé par exemple, sur l'évolution de la pente du signal d'un instant de mesure t au suivant t+1. Toute pente anormalement et soudainement élevée est alors significative d'un début de pic de pression de combustion. Bien sûr, d'autres algorithmes de détection des pics de tension du signal sont possibles et connus de l'homme du métier et ne seront pas plus détaillés ici.
Afin d'améliorer cette détection, il est connu de filtrer au préalable, le signal
SB, en utilisant un filtre passe bas afin d'ôter des perturbations et bruits potentiels. Il est aussi connu de l'échantillonner à une fréquence moins élevée que la fréquence d'acquisition du signal en sortie du capteur 800 par l'unité de traitement 500. Cet échantillonnage permet de réduire la taille mémoire de l'ASIC dédiée au procédé de traitement du signal SB. Le filtre et l'échantillonnage peuvent être réalisés par les moyens de filtrage 300.
L'invention propose un procédé de traitement du signal SB du dispositif de mesure de pression DP. Ce procédé se présente sous la forme d'un algorithme pouvant être intégré, par exemple, et de manière non limitative dans les moyens de traitement du signal 400 décrits ci-dessus.
Le procédé de traitement du signal SB vise à corriger la dérive du signal par rapport à la valeur de référence VREF-
Selon l'invention, les valeurs du signal SB sont d'abord acquises par l'unité de traitement 500 (étape I) et les pics de tension du signal SB représentatifs de pics de pression de combustion sont détectés (étape II). Comme expliqué précédemment, ces deux étapes sont connues de l'art antérieur.
Selon un premier mode de réalisation de l'invention, l'étape suivante
(étape III) consiste au calcul d'une première durée Dt1 entre un premier instant tO correspondant à un premier pic de pression de combustion P0 et un deuxième instant t1 correspondant à un deuxième pic de pression de combustion P1 , consécutif au premier pic de pression de combustion P0.
L'invention propose alors de calculer (étape IV) un instant de début de correction tci , du signal SB définit par :
tcl = tl + xl * Dtl
Avec x1 une première constante de valeur variant entre 0,1 et 0,9.
L'instant de début de correction tc1 est donc situé après le deuxième pic de pression de combustion P1. En choisissant de façon adéquate la valeur de la première constante x1 , l'instant de début de correction commence pendant une phase de plateau du signal SB avant un troisième pic de combustion P2 (cf. Figure 2).
Ainsi, selon l'invention, la première durée Dt1 calculée entre deux pics de pression de combustion consécutifs, un premier pic de pression de combustion P0 et un deuxième pic de pression de combustion P1 est utilisée afin de corriger le signal SB après le deuxième pic de pression de combustion P1 et ceci indépendamment de l'évolution du régime moteur.
L'invention est basée sur la première hypothèse suivante: la valeur du régime moteur est supposée être quasi constante entre trois pics de pression de combustion successifs (P0, P1 , P2). Ainsi, l'hypothèse fondamentale de l'invention consiste à supposer que la valeur du régime moteur entre le deuxième pic de pression de combustion P1 et le troisième pic de pression de combustion P2, est égale à la valeur du régime moteur entre le premier pic de pression de combustion PO et le deuxième pic de pression de combustion P1 . Par conséquent, la première durée Dt1 calculée entre les deux premiers pics de pression de combustion (PO, P1 ) peut donc être utilisée pour estimer la durée entre le deuxième pic de pression de combustion P1 et le pic de pression de combustion suivant, c'est-à-dire le troisième pic de pression de combustion P2. En d'autres termes, cela permet d'identifier la phase de plateau entre ces deux pics de combustion, là ou une correction est possible. Ceci est expliqué plus loin.
L'invention se distingue donc des procédés de traitement du signal de l'art antérieur, dans lesquels, la valeur instantanée du régime moteur était prise en compte à chaque point du signal lors de la correction du signal SB audit point.
Cependant, en réalité, la première durée Dt1 entre les deux pics de pression (PO, P1 ) varie en fonction du régime moteur. Cette première durée Dt1 est minimale pour un régime moteur maximal. Judicieusement, l'invention propose donc de fixer la valeur de la première constante x1 à un régime maximal du moteur afin de s'assurer que l'instant de début de correction tci ainsi déterminé se situe bien dans une phase de plateau du signal SB pour tout régime moteur inférieur au régime maximal et qu'il ne se situe pas soit dans la fin du deuxième pic de pression de combustion P1 , soit dans le début du troisième pic de pression de combustion P2. Par exemple, l'invention propose selon un mode de réalisation préférentiel, de fixer la valeur de la première constante x1 entre 0,4 et 0,7 ou alternativement de fixer sa valeur à un régime moteur N de valeur maximale N = 5000 tours/min.
Lors de l'étape suivante, l'invention propose de mesurer la valeur du signal VoFFi à l'instant de début de correction tc (étape V) et de corriger le signal SB à partir de l'instant de début de correction tci par rapport à une valeur de référence VREF afin d'obtenir un premier signal traité S tel que :
S = SB— V0FF1 + VREF
La valeur de référence VREF pouvant être égale à zéro.
L'invention repose donc sur une 2ème hypothèse: la dérive du signal SB est en majeure partie due à des phénomènes thermiques (pyroélectricité) d'une inertie relativement lente. Ainsi, il est possible de n'utiliser qu'une seule valeur de signal V0FFI mesurée à l'instant de début de correction tel et de corriger à partir de cette valeur, l'ensemble des points du signal SB se situant après l'instant de début de correction tc1 , qu'ils appartiennent à une phase de plateau ou à un pic de combustion. Il est donc primordial que l'instant de début de correction tel calculé à l'étape IV se situe dans une phase de plateau entre deux pics de pression de combustion, afin que la valeur du signal V0FFI mesurée au même instant soit représentative de la dérive du signal SB et non d'un pic de pression de combustion. C'est pour cette raison, que la valeur de la première constante x1 doit être choisie de manière judicieuse (comme expliqué précédemment), afin que l'instant de début de correction tel se situe toujours dans une phase de plateau et ceci quelque soit la valeur du régime moteur.
La figure 2 représente selon le temps t, le signal traité S. Ce signal traité S dans son ensemble ne dérive plus. La pente du signal dans son ensemble est égale à zéro. Cependant, les valeurs corrigées se situant après l'instant de début de correction tc , évoluent selon une fonction linéaire de pente A.
Dans un deuxième mode de réalisation de l'invention, cette pente A est aussi corrigée (cf. figures 3 et 5).
Dans ce deuxième mode de réalisation de l'invention, les étapes I à IV sont répétées entre le deuxième pic de pression P1 et le troisième pic de pression P2.
Ainsi :
- lors de l'étape III : l'unité de traitement 500 calcule une deuxième durée Dt2 entre le deuxième instant t1 correspondant au deuxième pic de pression de combustion P1 et un troisième instant t2 correspondant à un troisième pic de pression de combustion P2, consécutif au deuxième pic de pression de combustion P1 ,
- lors de l'étape IV : l'unité de traitement 500 calcule un deuxième instant de début de correction tC2 définit par :
tc2 = t2 + x2 * Dt2
Avec :
tc2 : deuxième instant de début de correction,
t2 : troisième instant correspondant au troisième pic de pression de combustion,
Dt2: deuxième durée entre le deuxième instant t1 et le troisième instant t2,
et x2 deuxième constante de valeur variant entre 0,1 et 0,9.
- lors de l'étape V : L'unité de traitement 500 mesure une deuxième valeur du signal V0FF2 au deuxième instant de début correction tc2, et calcule une pente A, définie par : ^ _ (VQFF2 VQFFI)
(tc2 ~ tel)
Avec V0FF2 : la valeur du signal au deuxième instant de début correction tc2,
tC2 : deuxième instant de début de correction,
- lors de l'étape VI : le signal SB est corrigé par l'unité de traitement 500, à un instant donné /', situé après le deuxième instant de début de correction tc2 afin d'obtenir un deuxième signal traité S' tel que :
S'(i) = S(Q - A * i
Avec S'(i) : le deuxième signal traité à l'instant i,
S (i) : le premier signal traité à l'instant i.
Le deuxième instant de début de correction tc2 se situe donc dans la phase de plateau après le troisième pic de pression de combustion P2.
On aura compris que la valeur de la pente A ne peut être calculée qu'après le troisième pic de pression de combustion P2, c'est-à-dire après deux mesures de durée (Dt1 , Dt2). Le calcul de la pente A n'est pas possible dès le deuxième pic de pression de combustion P1.
Dans un mode de réalisation particulier, la valeur de la deuxième constante x2 est égale à la valeur de la première constante x1.
De même, pour ce deuxième mode de réalisation, il est considéré que la valeur de la pente A calculée entre le deuxième pic de pression de combustion P1 et le troisième pic de pression de combustion P2 est identique à celle entre le troisième pic de pression de combustion P2 et le pic de pression de combustion suivant. Comme expliqué précédemment, cette pente A est due à des phénomènes thermiques relativement lents, et l'hypothèse est émise que la pente n'évolue pas entre deux cycles successifs. Un cycle étant définis par deux pics de pression de combustion consécutifs séparés par une phase de plateau.
Ainsi, la valeur de la pente A calculée entre deux pics de pression consécutifs (P1 , P2), plus précisément à partir des données sur trois cycles consécutifs, est utilisée pour corriger le signal SB se situant après le troisième pic de pression, selon l'équation :
S'(i) = S(Q - A * i
La figure 3 représente selon le temps t, le deuxième signal traité S'. Les valeurs du signal SB pendant les phases de plateau (après le deuxième instant de début de correction tC2) ont une valeur constante et répétable à la valeur de référence VREF et n'évoluent plus selon une fonction linéaire de pente A. La détermination de la pente A sur trois cycles consécutifs permet donc d'obtenir des phases de plateaux horizontaux, de valeur constante.
Dans un mode de réalisation préférentiel de l'invention, la détection des pics de pression de combustion (étape II) ainsi que le calcul de la durée entre deux pics de pression consécutifs (étape III) sont réalisés de la façon suivante :
l'étape II consiste en une dérivation du deuxième ordre des valeurs de tension du signal SB par rapport à une unité de temps t, afin d'obtenir un signal dérivé SD, c'est-à-dire :
Figure imgf000014_0001
- l'étape III consiste en :
• la détection de deux instants consécutifs, un premier instant tO, (ou respectivement un deuxième instant t1 ) et un deuxième instant t1 (ou respectivement un troisième instant t2) correspondants au passage des valeurs du signal dérivé SD en dessous d'un seuil S1 ,
• le calcul d'une durée (Dt1 , Dt2) entre le premier instant tO et le deuxième instant t1 (respectivement entre le deuxième instant t1 et le troisième instant t2).
Cette détection des pics de pression de combustion s'applique aussi au calcul de la deuxième durée Dt2 entre le deuxième instant t1 et le troisième instant t2. La figure 5 représente selon le temps t, le signal dérivé SD, obtenu à l'étape II, ainsi que les instants tO, t1 de passage des valeurs du signal dérivé SD en dessous du seuil S1.
Le seuil S1 est déterminé, de manière judicieuse, de telle sorte qu'au premier instant tO, au deuxième instant t1 et au troisième instant t2, la valeur du signal SB est sensiblement maximale, cependant située après le pic de pression. Les instants tO, t1 , t2 correspondent ainsi à des instants situés immédiatement après des pic de pression de combustion (PO, P1 , P2). En effet le seuil S1 doit être fixé de manière à distinguer des points situés avant un pic de pression des points situés après un pic de pression. Comme illustré à la figure 5, le seuil S1 est de valeur relativement basse et permet donc de détecter des points situés juste après un pic de pression.
Le procédé de traitement du signal selon l'invention permet donc d'obtenir un signal traité (S ou S') représentatif de la pression régnant dans la chambre de combustion d'un cylindre, ne présentant pas, après le pic de pression une sous estimation de la valeur de la pression régnant dans le cylindre, ne demandant pas de calculs complexes nécessitant une taille mémoire importante dans l'ASIC associé audit capteur, comme c'est le cas pour l'art antérieur, et facile à mettre en œuvre, puisqu'il suffit de calibrer une fois pour toutes la valeur des constantes x1 et x2.
Bien sûr, l'invention ne se limite pas aux modes de réalisation décrits, donnés uniquement à titre d'exemple non limitatif.

Claims

REVENDICATIONS
1 . Procédé de traitement d'un signal d'un dispositif de mesure de pression (DP) au sein d'un moteur à combustion interne, ledit dispositif comprenant :
- un capteur de mesure de pression (800) fournissant en sortie un signal (SB) de tension représentatif de la pression au sein du moteur à combustion interne, le signal (SB) comprenant des phases dites « de plateau » pendant lesquelles la tension évolue selon une fonction sensiblement linéaire en fonction du temps, et des pics de tension, représentatifs des pics de pression de combustion.
- une unité de traitement (500) reliée audit capteur de mesure de pression (800), le procédé comprenant les étapes suivantes :
I. acquisition des valeurs du signal (SB) par l'unité de traitement (500),
I I. Détection par l'unité de traitement (500) des pics de tension du signal (SB), représentatifs des pics de pression de combustion.
le procédé étant caractérisé en ce qu'il comprend en outre les étapes suivantes :
I I I. Calcul par l'unité de traitement (500) d'une première durée (Dt1 ) entre un premier instant (tO) correspondant à un premier pic de pression de combustion (P0) et un deuxième instant (t1 ) correspondant à un deuxième pic de pression de combustion (P1 ), consécutif au premier pic de pression de combustion (P0),
IV. Calcul par l'unité de traitement (500) d'un instant de début de correction (tc1 ) définit par :
tcl = tl + xl * Dtl
Avec :
td : instant de début de correction,
t1 :deuxième instant correspondant à un deuxième pic de pression de combustion,
Dt1 : première durée entre le premier instant (tO) et le deuxième instant (t1 ), x1 : première constante de valeur variant entre 0,1 et 0,9.
V. Mesure par l'unité de traitement (500) d'une valeur du signal (V0FFI) à l'instant de début correction (tc1), VI. Correction par l'unité de traitement (500) du signal (SB), à partir de l'instant de début de correction (tc1) par rapport à une valeur de référence (VREF) et obtention d'un premier signal traité (S) tel que :
S = SB— V PPI + VREF
Avec SB : signal en sortie du capteur de mesure de pression,
VoFFi : valeur du signal à l'instant de début correction (tc1),
VREF : valeur de référence.
2. Procédé de traitement du signal selon la revendication 1 , caractérisé en ce que :
- lors de l'étape III : Calcul par l'unité de traitement (500) d'une deuxième durée (Dt2) entre le deuxième instant (t1 ) correspondant au deuxième pic de pression de combustion (P1 ) et un troisième instant (t2) correspondant à un troisième pic de pression de combustion (P2), consécutif au deuxième pic de pression de combustion (P1 ),
- lors de l'étape IV : Calcul par l'unité de traitement (500) d'un deuxième instant de début de correction (tc2) définit par :
tc2 = t2 + x2 * Dt2
Avec :
tc2 : deuxième instant de début de correction,
t2 : troisième instant correspondant à un troisième pic de pression de combustion,
Dt2 : deuxième durée entre le deuxième instant (t1 ) et le troisième instant (t2), x2 : deuxième constante de valeur variant entre 0,1 et 0,9,
- lors de l'étape V : Mesure par l'unité de traitement (500) d'une deuxième valeur du signal (V0FF2) au deuxième instant de début correction (tc2), et calcul par l'unité de traitement (500) d'une pente (A), définie par :
^ _ (YoFF2 ~ VpFFl)
(fc2 tel)
Avec V0FF2 : valeur du signal au deuxième instant de début correction (tc2), tc2 : deuxième instant de début de correction,
- lors de l'étape VI : correction du signal (SB) par l'unité de traitement (500), à un instant donné (/), situé après le deuxième instant de début de correction (tc2) et obtention d'un deuxième signal traité (S') tel que : S'(i) = S i) - A * i
Avec S'(i) : deuxième signal traité à l'instant i,
S (i) : premier signal traité à l'instant i.
3. Procédé de traitement selon la revendication 2, caractérisé en ce que la valeur de la deuxième constante x2 est égale à la valeur de la première constante x1.
4. Procédé de traitement selon l'une quelconque des revendications précédentes, caractérisé en ce que :
l'étape II consiste en la dérivation du deuxième ordre des valeurs du signal (SB) par rapport à une unité de temps (t), et obtention d'un signal dérivé (SD), tel que :
dSÏ
Sn =
dt2
avec SD : signal dérivé,
l'étape III consiste en :
la détection par l'unité de traitement (500) de deux instants consécutifs, [(tO, t1 ), (t1 , t2)] correspondants au passage des valeurs du signal dérivé (SD) en dessous d'un seuil (S1 ), le calcul par l'unité de traitement (500) d'une durée (Dt1 , Dt2) entre ces deux instants consécutifs [(tO, t1 ), (t1 , t2)].
5. Procédé de traitement selon la revendication 4, caractérisé en ce que, la valeur du seuil (S1 ) est déterminée de telle sorte qu'aux instants détectés (tO, t1 , t2) la valeur du signal (P0, P1 , P2) est sensiblement maximale.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce le signal (SB) est un signal filtré et échantillonné par rapport au temps.
7. Procédé de traitement selon les revendications 1 à 6, caractérisé en ce que la valeur de la première constante x1 est déterminée à un régime moteur maximal.
8. Procédé de traitement selon la revendication 7, caractérisé en ce que la valeur du régime moteur maximale est de 5000 tours /min.
9. Procédé de traitement selon les revendications 1 à 5, caractérisé en ce que la valeur de la première constante x1 varie entre 0,4 et 0 ,7.
PCT/EP2013/002564 2012-09-20 2013-08-26 Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne WO2014044352A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13759440.4A EP2898306B1 (fr) 2012-09-20 2013-08-26 Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne
JP2015532317A JP6207612B2 (ja) 2012-09-20 2013-08-26 内燃機関のエンジン内の圧力を測定する装置の信号を処理する方法
CN201380049048.5A CN104620090B (zh) 2012-09-20 2013-08-26 处理内燃发动机内压力测量装置的信号的方法
SI201330521A SI2898306T1 (sl) 2012-09-20 2013-08-26 Postopek za obdelavo signala naprave za merjenje tlaka v motorju z notranjim zgorevanjem
US14/427,807 US10309854B2 (en) 2012-09-20 2013-08-26 Method for processing a signal of a pressure measuring device inside an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1258828 2012-09-20
FR1258828A FR2995681B1 (fr) 2012-09-20 2012-09-20 Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
WO2014044352A1 true WO2014044352A1 (fr) 2014-03-27
WO2014044352A8 WO2014044352A8 (fr) 2015-03-12

Family

ID=47356109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002564 WO2014044352A1 (fr) 2012-09-20 2013-08-26 Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne

Country Status (7)

Country Link
US (1) US10309854B2 (fr)
EP (1) EP2898306B1 (fr)
JP (1) JP6207612B2 (fr)
CN (1) CN104620090B (fr)
FR (1) FR2995681B1 (fr)
SI (1) SI2898306T1 (fr)
WO (1) WO2014044352A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002574A1 (fr) * 2014-10-01 2016-04-06 Sensata Technologies, Inc. Capteur avec un procédé pour corriger la dérive de décalage en signaux cycliques

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3028036B1 (fr) * 2014-11-03 2016-12-09 Continental Automotive France Procede de traitement d'un signal de tension relatif a la pression regnant dans une chambre de combustion d'un cylindre d'un moteur a combustion interne
FR3047072B1 (fr) * 2016-01-21 2018-01-26 Continental Automotive France Procede et dispositif de traitement d'un signal fourni par un capteur de mesure de la pression regnant dans un cylindre
FR3068846B1 (fr) * 2017-07-07 2019-11-22 Continental Automotive France Estimation de courant
RU209779U1 (ru) * 2021-07-08 2022-03-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тихоокеанский государственный университет" Устройство для одновременного измерения давления и скорости изменения давления в цилиндре поршневого двигателя внутреннего сгорания

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1574834A1 (fr) * 2004-03-12 2005-09-14 HONDA MOTOR CO., Ltd. Dispositif et méthode de détection d'une pression dans un cylindre
FR2938645A1 (fr) 2008-11-19 2010-05-21 Continental Automotive France Procede de correction de la derive du signal d'un capteur de pression
US20120060595A1 (en) * 2010-09-10 2012-03-15 Hidria Aet Druzba Za Proizvodnjo Vzignih Sistemov In Elektronike D.O.O. Method and circuit for processing a signal supplied by a piezoelectric sensor, and pressure-measuring device for piston engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122939U (fr) * 1980-02-20 1981-09-18
JP4298552B2 (ja) * 2004-03-12 2009-07-22 本田技研工業株式会社 筒内圧検出装置
JP4627150B2 (ja) 2004-05-24 2011-02-09 三菱電機株式会社 信号処理装置
KR100579926B1 (ko) 2004-06-30 2006-05-15 현대자동차주식회사 내연기관의 실화 판정 방법 및 시스템
JP2008275525A (ja) * 2007-05-02 2008-11-13 Ngk Spark Plug Co Ltd リセットタイミング生成装置及びこれを備えた筒内圧検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1574834A1 (fr) * 2004-03-12 2005-09-14 HONDA MOTOR CO., Ltd. Dispositif et méthode de détection d'une pression dans un cylindre
FR2938645A1 (fr) 2008-11-19 2010-05-21 Continental Automotive France Procede de correction de la derive du signal d'un capteur de pression
US20120060595A1 (en) * 2010-09-10 2012-03-15 Hidria Aet Druzba Za Proizvodnjo Vzignih Sistemov In Elektronike D.O.O. Method and circuit for processing a signal supplied by a piezoelectric sensor, and pressure-measuring device for piston engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3002574A1 (fr) * 2014-10-01 2016-04-06 Sensata Technologies, Inc. Capteur avec un procédé pour corriger la dérive de décalage en signaux cycliques
US20160097693A1 (en) * 2014-10-01 2016-04-07 Sensata Technologies, Inc. Algorithm to correct for offset drift in cyclic signals
KR20160039556A (ko) * 2014-10-01 2016-04-11 센사타 테크놀로지스, 인크 주기적 신호에서의 오프셋 드리프트를 수정하기 위한 알고리즘
CN105571778A (zh) * 2014-10-01 2016-05-11 森萨塔科技公司 用于修正循环信号中的偏置漂移的算法
US10054511B2 (en) 2014-10-01 2018-08-21 Sensata Technologies, Inc. Pressure sensor with correction of offset drift in cyclic signal
CN105571778B (zh) * 2014-10-01 2020-08-04 森萨塔科技公司 用于修正循环信号中的偏置漂移的算法
KR102251547B1 (ko) 2014-10-01 2021-05-14 센사타 테크놀로지스, 인크 주기적 신호에서의 오프셋 드리프트를 수정하기 위한 알고리즘

Also Published As

Publication number Publication date
CN104620090A (zh) 2015-05-13
FR2995681A1 (fr) 2014-03-21
FR2995681B1 (fr) 2014-09-05
EP2898306B1 (fr) 2016-11-02
SI2898306T1 (sl) 2017-04-26
CN104620090B (zh) 2016-11-16
JP6207612B2 (ja) 2017-10-04
EP2898306A1 (fr) 2015-07-29
US10309854B2 (en) 2019-06-04
WO2014044352A8 (fr) 2015-03-12
JP2015529337A (ja) 2015-10-05
US20150226626A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
EP2898306B1 (fr) Procede de traitement d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne
WO2010057571A1 (fr) Procede de correction de la derive du signal d'un capteur de pression
FR3011581A1 (fr) Procede de compensation d'un signal d'un dispositif de mesure de pression au sein d'un moteur a combustion interne
EP1548418B1 (fr) Système de calibrage d'une chaîne d'acquisition de la pression dans un cylindre de moteur Diesel de véhicule automobile
FR2524557A1 (fr) Dispositif de controle de cognement pour un moteur a combustion interne
WO2004099750A1 (fr) Procede de determination de l’ energie d’ un signal cliquetis pour moteur a combustion interne
WO2016165829A1 (fr) Procede et dispositif de detection de rotation inverse d'un moteur a combustion interne
EP2619426B1 (fr) Procede d'estimation adaptative d'une charge courante en suie d'un filtre a particules
JP5855104B2 (ja) 圧電センサによって供給される信号を処理するための方法および回路、ならびにピストンエンジン用圧力測定装置
FR2877086A1 (fr) Procede pour determiner une pression de la chambre de combustion
JP2020159284A (ja) 燃焼異常検出装置、燃焼異常検出方法およびプログラム
EP1920144B1 (fr) Dispositif pour la detection en temps reel du commencement de la phase de combustion et procede correspondant
FR2904660A1 (fr) Determination d'un debut de combustion dans un moteur a combustion interne
FR3047072A1 (fr) Procede et dispositif de traitement d'un signal fourni par un capteur de mesure de la pression regnant dans un cylindre
JP2021501849A (ja) ドリフト補償のための電荷増幅器および測定システムならびにドリフト補償方法
FR2922261A1 (fr) Systeme et procede de compensation de la derive d'un signal issu d'un capteur de pression cylindre
FR2834314A1 (fr) Procede d'estimation de la richesse en carburant d'un melange combustible consomme par un moteur a injection, utilisable quel que soit le regime moteur
FR3074526B1 (fr) Procede de synchronisation d'un moteur thermique
FR2982674A1 (fr) Procede et systeme de mesure de courant electrique
FR3028036A1 (fr) Procede de traitement d'un signal de tension relatif a la pression regnant dans une chambre de combustion d'un cylindre d'un moteur a combustion interne
WO2020182808A1 (fr) Correction de la mesure de pression d'un capteur de pression de cylindre
FR3101313A1 (fr) Procédé de calibration de volant capacitif
WO2011003540A2 (fr) Procede de determination de la fraction de la masse des gaz brules pour moteur a combustion interne de vehicule automobile
FR3064357A1 (fr) Procede de correction du signal d'un capteur de pression
EP2011981A2 (fr) Procédé de détermination d'un début de combustion dans un moteur à combustion interne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13759440

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013759440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013759440

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14427807

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015532317

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE