WO2014038713A1 - 放射性セシウム除染剤及びその製造方法、並びに放射性セシウムの除去方法 - Google Patents

放射性セシウム除染剤及びその製造方法、並びに放射性セシウムの除去方法 Download PDF

Info

Publication number
WO2014038713A1
WO2014038713A1 PCT/JP2013/074408 JP2013074408W WO2014038713A1 WO 2014038713 A1 WO2014038713 A1 WO 2014038713A1 JP 2013074408 W JP2013074408 W JP 2013074408W WO 2014038713 A1 WO2014038713 A1 WO 2014038713A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive cesium
decontamination
cesium
solvent
particles
Prior art date
Application number
PCT/JP2013/074408
Other languages
English (en)
French (fr)
Inventor
禎尚 並木
上山 俊彦
吉田 貴行
亮栄 渡邊
Original Assignee
学校法人慈恵大学
Dowaホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人慈恵大学, Dowaホールディングス株式会社 filed Critical 学校法人慈恵大学
Priority to US14/427,111 priority Critical patent/US10233099B2/en
Priority to EP13834751.3A priority patent/EP2894637A4/en
Priority to JP2014534442A priority patent/JP5755377B2/ja
Publication of WO2014038713A1 publication Critical patent/WO2014038713A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3206Organic carriers, supports or substrates
    • B01J20/3208Polymeric carriers, supports or substrates
    • B01J20/3212Polymeric carriers, supports or substrates consisting of a polymer obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds

Definitions

  • the present invention relates to an aggregate of radioactive decontaminant particles used for recovery of pollutants such as radioactive cesium from incineration fly ash generated during incineration of municipal waste, a method for producing the same, and removal of the radioactive material.
  • the present invention relates to a method for removing contaminants using an aggregate of dye particles.
  • the radioactive substance is an environmentally regulated substance, and its treatment becomes a problem.
  • radioactive materials 134 Cs and 137 Cs, particularly 137 Cs, have a long half-life of 30.2 years, so that there is a problem that most of them remain after 10 years of generation. For this reason, since there is a concern that the pollutant has an adverse effect on the environment / ecosystem over a long period of time, it is desired to quickly remove the pollutant from the environment.
  • fine incineration fly ash with a particle size of 20-30 ⁇ m which is generated at municipal waste incineration sites, etc., has a significant accumulation of radioactive cesium, and some published materials etc. can reach tens of thousands of Bq / kg. Existing.
  • Patent Document 1 As a radioactive cesium decontamination agent.
  • the decontamination reagent according to Patent Document 1 can efficiently remove radioactive cesium from a liquid containing a radioactive substance.
  • patent document 1 is disclosing the technique which can be isolate
  • Non-patent Document 1 a method in which a liquid containing a radioactive substance is treated with a zeolite-type decontaminating agent, neutralized, and then decontaminated using ferrocyanide (Prussian blue) in two stages ( Non-patent document 1) is disclosed. Also, for example, a method of recovering and removing zeolite and ferrocyanide adsorbed with radioactive cesium after adding zeolite and ferrocyanide to a liquid containing a radioactive substance to make the pH weakly alkaline, respectively (non-patent Document 2) is disclosed.
  • iron ferrocyanide is once formed by mixing ferrocyanide and an iron compound, and then stirred to form iron ferrocyanide on the surface of magnetic particles. It is to coat.
  • the surface of the magnetic powder is coated with iron ferrocyanide only by stirring.
  • the iron ferrocyanide is not coat
  • the magnetic powder powder after coating and the reaction solution are not separated, and the object to be treated in which radioactive cesium is dissolved in a slurry state. It is also conceivable to treat the suspension.
  • the ferric ferrocyanide that did not adhere to the magnetic powder remained in the slurry, it was considered that the cesium adsorption ability by the ferrocyanide was maintained and exhibited high decontamination ability.
  • the decontaminated incineration fly ash and the decontamination component enriched with radioactive cesium are both separated from the decontamination agent. Eventually, the total decontamination result will be worse, and the amount of incinerated fly ash discharged will also increase.
  • Non-Patent Documents 1 and 2 many technologies using Prussian blue and zeolite in combination have been seen recently.
  • a substance having a high concentration of radioactivity must be stored, it is preferable to avoid as much as possible the combined use that increases the volume of the decontamination reagent that needs to be stored.
  • a decontamination agent that can reduce the volume of the decontamination agent after treatment without reducing the decontamination ability and without involving suspended substances is essential.
  • the inventor is contaminated with radioactive cesium, a method for producing a radioactive cesium decontamination agent (sometimes abbreviated as “decontamination agent” in the present invention) that is excellent in the ability to recover cesium in the liquid while maintaining mass productivity.
  • a radioactive cesium decontamination agent suitable for quickly separating and recovering radioactive cesium from a suspended substance, and a method for removing radioactive cesium from a substance contaminated by a radioactive substance using the decontamination agent It was raised as an issue to do.
  • the core part is directly coated with the magnetic particles and the magnetic particles, the coating layer substantially formed between the magnetic particles and the capturing compound, and the surface layer captures radioactive substances as the capturing compound.
  • the material forming the coating layer is a monomer or polymer having a cationic property, and when coating fine particles of ferrocyanide on magnetic particles coated with the material, the pH of the slurry is made weakly acidic to strongly acidic. The coating of iron ferrocyanide fine particles on the magnetic particles coated with a monomer or polymer having a cationic property proceeds more easily.
  • the pH of the slurry is made alkaline so that the monomer or polymer has a cationic property on the magnetic particles. Covering with easy progress.
  • the substance that forms the coating layer is a monomer or polymer having a cationic property, and after subjecting the magnetic particles coated with the monomer or polymer to the coating of fine particles of ferrocyanide, moisture is obtained from the obtained slurry. It is preferable to add an operation in which the coated magnetic particles are aggregated.
  • the decontamination agent which is an aggregate of coated magnetic particles, can be used for decontamination treatment in a suspension containing radioactive cesium, and can easily remove radioactive cesium from the liquid. After absorption, it can be easily separated and recovered.
  • the particle size distribution measurement is measured by laser diffraction type particle size distribution measurement, and the obtained particle size of 90% cumulative particle size (D 90 ), 50% particle size ( When the average particle size (D 50 ) and 10% particle size (D 10 ) were determined, the cumulative particle size distribution (D 90 -D 10 ) / D 50 was less than 6, and the average particle size (D 50 It was found that the decontaminating agent takes in cesium in the liquid with high efficiency when the (diameter) is 2.0 ⁇ m or more and 100 ⁇ m or less.
  • the decontamination agent can reduce the entrainment of fly ash, It was found that it contributes to the improvement of the decontamination rate of radioactive cesium.
  • a decontaminating agent is added to decontaminate the radioactive cesium present in the solvent. Incorporating into the agent, and a method comprising a step of recovering the decontaminant that has taken in radioactive cesium by applying a magnetic field to the treatment liquid from the treatment liquid, so that the suspended matter can be contained in the suspension without coprecipitation. Radioactive cesium can be separated and recovered. Therefore, a remarkable effect can be exhibited in reducing the volume of a substance contaminated with radioactive substances.
  • the object to be treated Before adding the radioactive cesium decontamination agent, the object to be treated is suspended in a solvent in advance and the radioactive cesium is sufficiently eluted in the solvent, and then the object to be treated is not separated from the solvent. It is good also as a structure which adds the process of removing radioactive cesium.
  • a solvent an organic solvent such as water or alcohol can be used. In the present invention, the case where water is used as a solvent will be described as an example.
  • the present invention has been made on the basis of the above knowledge, and the first invention capable of solving the above problems is as follows. Suspending magnetic particles in a solvent and coating the magnetic particles with an organic monomer or polymer to form a precursor; Adding a ferrocyanide aqueous solution and an aqueous solution containing at least one transition metal to the suspension containing the precursor after the coating treatment while applying a strong shearing force to generate a radioactive cesium decontamination agent; , It is a manufacturing method of a radioactive cesium decontamination agent which has a process of removing a water
  • the second invention is The radioactive cesium decontamination reagent according to the first aspect of the present invention, in which, when the organic monomer or polymer is coated, an alkali is added to the slurry in advance to adjust the liquidity to alkaline, and then the coating treatment is performed. It is a manufacturing method.
  • the third invention is A radioactive cesium decontamination agent comprising a coating layer made of an organic substance on the surface of magnetic particles, and primary particles comprising a cesium absorption component made of ferrocyanide on the surface of the coating layer,
  • the cumulative particle size (D 50 ) measured by laser diffraction particle size distribution measurement is 2.0 ⁇ m or more and 50 ⁇ m or less, and the value of cumulative particle size distribution (D 90 -D 10 ) / D 50 is less than 6. It is a radioactive cesium decontamination agent.
  • the fourth invention is: The radioactive cesium decontamination reagent according to the third aspect of the present invention, wherein a cumulative particle diameter (D 90 ) measured by the laser diffraction particle size distribution measurement is 5.0 ⁇ m or more and 150 ⁇ m or less.
  • the fifth invention is: It is a radioactive cesium decontamination agent in any one of the 3rd or 4th invention whose primary particle diameters of the above-mentioned magnetic particles are 1 nm or more and 300 nm or less.
  • the sixth invention is: Specific surface area by BET method of 1 m 2 / g or more, from the third at 150 meters 2 / g or less radioactive cesium decontamination agent according to any one of the fifth invention.
  • the seventh invention An object to be treated containing radioactive cesium;
  • the radioactive cesium decontamination agent manufactured by the manufacturing method of the radiation cesium decontamination agent described in the first or second invention, or the radioactive cesium decontamination agent described in any of the third to sixth inventions Suspending in a solvent and incorporating radioactive cesium present in the solvent into the radioactive cesium decontamination agent;
  • a method for removing radioactive cesium comprising: applying a magnetic field to the solvent, and recovering the radioactive cesium decontaminant in which the radioactive cesium has been incorporated from the solvent.
  • the eighth invention Until the process of incorporating radioactive cesium present in the solvent into the radioactive cesium decontamination agent, Suspending an object to be treated containing radioactive cesium in a solvent in advance and eluting the radioactive cesium in the solvent; It is a removal method of radioactive cesium as described in 7th invention provided with the process of adding a radioactive cesium decontaminant to a solvent, without isolate
  • radioactive cesium decontamination agent according to the present invention, it has become possible to reduce the volume of incinerated fly ash and the like contaminated with radioactive cesium.
  • Example 1 SEM image of decontamination reagent according to the present invention
  • Example 1 XRD of Decontamination Agent According to the Present Invention Example 4
  • SEM image of decontamination reagent according to the present invention Example 5
  • SEM image of decontamination reagent according to the present invention SEM image of decontamination reagent according to the present invention
  • Particle size distribution of decontaminants according to the present invention Examples 4, 5, 6)
  • Particle size distribution of decontaminants according to the present invention Examples 7 and 8, Comparative Example 2
  • the obtained magnetite powder may be reduced to iron fine particles by reducing it in a gas phase (at 300 to 600 ° C. for 30 minutes or more and 12 hours or less).
  • a gas phase at 300 to 600 ° C. for 30 minutes or more and 12 hours or less.
  • the iron fine particles after the reduction treatment are exposed to the atmosphere, they are significantly oxidized and cannot withstand the treatment for forming the decontamination component, so (at 50 to 200 ° C. for 30 minutes or more, 12 hours or less)
  • it is taken out in the atmosphere and used as a raw material powder (magnetic particles).
  • an oxygen-containing gas is added to a heating atmosphere of 200 ° C. or less to form an oxide film on the surface of ⁇ -iron that has been subjected to the reduction treatment, and the obtained iron fine particles are also used as raw material powder (magnetic particles). can do.
  • the obtained raw material powder is added to pure water and stirred to obtain a raw material powder slurry.
  • the stirring here should just be a grade which disperse
  • Ammonia water or sodium hydroxide aqueous solution is added to the obtained slurry to make the slurry alkaline.
  • a cationic monomer or polymer is added to the alkali-adjusted slurry to form a coating layer of cationic monomer or polymer on the particle surface.
  • the stirring at this stage is not necessarily strong stirring as long as the raw material powder (magnetic particles) can be dispersed without settling, but after forming a cationic monomer or polymer, ferrocyanide
  • the reaction may be performed while applying a strong shearing force. Further, depending on the scale to be treated, even normal stirring can be applied by ultrasonic treatment.
  • the addition amount of the monomer or polymer having cationic property to the solution is 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less as a pure polymer or monomer equivalent solid content to the treatment liquid. Since it can avoid that a viscosity will become high by making solid content into 10 mass% or less, the coating
  • any monomer or polymer having a cationic group, or a monomer or polymer having a group that can be ionized to give a cationic group can be applied, and is particularly limited. It is not something.
  • the cationic monomer or polymer applied to the present invention may be one in which a part of the main chain exhibits a cationic property, and a side chain substituent bonded to the main chain exhibits a cationic property. There may be.
  • a vinyl monomer having a primary amino group a vinyl monomer having a secondary amino group, a vinyl monomer having a tertiary amino group, a vinyl monomer having a quaternary ammonium salt, etc. Is mentioned.
  • a cationic polymer when applied to the present invention, it may be one obtained by adding a cationic property to a synthetic polymer, and also a cationized cellulose, a cationized starch, a cationized dextran, a cationized guar gum, a cation It is also possible to add a cationic property to a natural or microbial polymer such as modified chitosan.
  • An operation of washing the powder by separating particles having a coating layer made of a cationic monomer or polymer on the surface from the reaction solution may be performed.
  • excess monomer or polymer or residual ammonia is removed.
  • a method using magnetic separation, decantation, and filtration is employed.
  • washing is preferably performed until the pH of the dispersion becomes 10 or less, preferably 9.5 or less.
  • T.M. K As a disperser having a strong shearing force, T.M. K. Examples include Homomixer (registered trademark), Ultra-Turrax (registered trademark) of IKA, and the like. K. MyColloider (registered trademark), T.C. K. Homomic Line Mill (registered trademark), T. K. Examples include High Line Mill (registered trademark), Static Mixer (registered trademark) of Noritake Company Limited, High Pressure Microreactor (registered trademark), and High Pressure Homogenizer (registered trademark).
  • the strength of the shearing force can be evaluated by the blade peripheral speed of the stirring blade if it is a device having a stirring blade.
  • the “strong shearing force” is a blade peripheral speed of 3.0 (m / m s) or higher, preferably 5.0 (m / s) or higher, more preferably 10.0 (m / s) or higher.
  • the blade peripheral speed is 3.0 (m / s) or more, the shearing force to the solution is sufficient, and the adhesion of the ferrocyanide onto the organic coating layer can be sufficiently performed.
  • the ferrocyanide can be firmly attached onto the organic coating layer. If the ferrocyanide is firmly attached onto the organic coating layer, for example, when performing a stirring operation with the suspension of the object to be processed using the manufactured decontamination agent, from the particle surface of the decontamination agent The possibility that the ferrocyanide containing radioactive cesium peels off can be avoided. If ferrocyanide containing radioactive cesium is peeled off from the particle surface of the decontaminating agent, there is a possibility that the radioactive cesium in the suspension of the object to be treated cannot be recovered by the subsequent magnetic separation. Cyanide compounds also remain in the product suspension, which is not preferable.
  • the blade peripheral speed described above can be calculated by the ratio of the circumference x turbine blade diameter (m) x stirring rotation speed (rotation speed) per second. For example, if the turbine blade diameter is 3.0 cm (0.03 m) and the stirring rotation speed is 8000 rpm, the rotation speed per second is 133.3 (rps), and the blade peripheral speed is 12.57 (m / S).
  • a part of the slurry after the step may be extracted, put in a container, and placed on a magnet. Since the decontaminant attracted to the magnet and the supernatant are separated from each other, it is possible to confirm whether or not the adhesion is properly performed by confirming the coloring in the supernatant. For example, when iron ferrocyanide is adhered, if the adhesion to the decontaminating agent is not properly performed, the iron ferrocyanide that could not be adhered floats or dissolves in the supernatant, and the color of the supernatant is bitumen. Color the color. On the other hand, if it adheres appropriately, the decontaminating agent with a dark blue color is attracted to the magnet and settles, so that the supernatant becomes colorless and transparent.
  • a sample bottle with a capacity of 3 mL is adopted as a bottle for enclosing the slurry, and a magnetic circuit (EP001: surface magnetic flux density of 300 mT) manufactured by Niroku Seisakusho is exemplified.
  • a magnetic circuit EP001: surface magnetic flux density of 300 mT
  • the end point of the reaction may be confirmed after repeating the sampling of the slurry several times using the above confirmation method and confirming the attached state of the ferrocyanide.
  • an aggregate coated with the ferrocyanide is obtained.
  • the method for obtaining the aggregate is not particularly limited, and examples thereof include a method of drying after filtration or decantation and magnetic separation, spray drying, vacuum freeze drying, and vacuum oven.
  • the dried body thus obtained may be processed into a powder through a pulverization step if necessary.
  • particles having a large particle size refers to a powder having a particle size of 200 ⁇ m or more.
  • the “particles having a large particle diameter” are easily attracted to the magnet, but because of the weight of the particles themselves, the decontamination particles themselves may settle if the stirring intensity during the removal operation is weak. In that case, since the dispersion of the decontaminating agent in the liquid becomes insufficient, the utilization efficiency of the decontaminating component in the liquid is lowered, and consequently, the decontamination effect in a short time is lowered, which is not preferable.
  • the decontamination reagent according to the present invention has a structure in which a coating layer made of an organic substance is formed on magnetic particles, and a cesium trapping substance made of a ferrocyanide is supported on the coating layer. And as a cesium decontamination agent, it is preferable to have the following properties.
  • the average primary particle diameter of the magnetic particles serving as the core material is specifically 1 nm to 2 ⁇ m, preferably 10 nm to 1 ⁇ m, and more preferably 10 to 500 nm.
  • the form of the particles does not affect the effect of the invention, but may be any of a spherical shape, a needle shape, a plate shape, a cubic shape, a spindle shape, a rectangular parallelepiped shape and the like.
  • TEM transmission electron microscope
  • the coating layer it is preferable to select a polymer or monomer having a cationic property from the viewpoint of adhesion stability to the magnetic particles.
  • at least a part of the coating layer includes a cesium absorbing component made of ferrocyanide.
  • the cesium adsorption component may be provided not only on the coating layer but also on a part of the multilayer.
  • Suitable ferrocyanides include iron ferrocyanide (Prussian blue), nickel ferrocyanide, copper ferrocyanide, cobalt ferrocyanide, or compounds of these ferrocyanides and alkali metals (for example, nickel ferrocyanide).
  • a substance having cesium adsorption or exchange performance such as potassium).
  • nickel ferrocyanide and its alkali metal compounds for example, nickel potassium ferrocyanide
  • pH adjustment with hydrochloric acid, etc. it is possible to use ferrocyanide under the conditions where the above is acceptable.
  • the decontamination agent according to the present invention is preferably not an individual particle but an aggregate in which several or more particles are aggregated in a lump.
  • the particle size of the dried decontaminant powder is 10% particle size (D 10 ), 90% particle size (D 90 ), and average particle size (according to the cumulative particle size distribution in laser diffraction particle size distribution measurement). if the cumulative particle size distribution (D 90 -D 10) / D value of 50 is less than 6 aggregates calculated from the 50% particle diameter) (D 50), an excellent decontaminant the adsorption capacity of cesium I found out that there was.
  • the value of (D 90 -D 10 ) / D 50 is 6 If it is less than, preferably less than 5.5, and more preferably 2.0 or less, the decontamination ability is favorably affected.
  • the average particle diameter (D 50 ) of the decontamination reagent according to the present invention by a laser diffraction type particle size distribution measuring method is preferably 2.0 ⁇ m or more and 50 ⁇ m or less. If the 50% cumulative particle size (D 50 ) is 2.0 ⁇ m or more, it is easy to separate the decontaminant and suspension in the liquid even when suspended components such as fly ash coexist. This is because it is preferable. On the other hand, when the 50% cumulative particle size (D 50 ) is 50 ⁇ m or less, efficient dispersion in the liquid easily occurs, and the decontamination efficiency can be maintained, which is preferable.
  • the 90% cumulative particle size (D 90 ) is 5.0 ⁇ m or more and 150 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 75 ⁇ m or less. If the 90% cumulative particle size (D 90 ) is 5.0 ⁇ m or more, the decontamination agent in the facial suspension can be used even when suspended components such as fly ash coexist in the suspension. Separation from the suspension is easy and preferable. On the other hand, when the 90% cumulative particle size (D 90 ) is 100 ⁇ m or less, the decontaminant is easily dispersed in the turbid liquid, and the decontamination efficiency can be maintained, which is preferable.
  • the specific surface area value of the obtained decontamination reagent by BET method is 1 m 2 / g or more, preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more.
  • the surface area value of this invention is a value measured without passing through the deaeration operation normally performed. If the specific surface area is smaller than this value, the contact area with the treatment liquid becomes small, so that the decontamination efficiency is lowered, which is not preferable.
  • the BET value is too large, the particle diameter may be small, and coprecipitation with the object to be processed may occur, which is not preferable.
  • it is 400 m 2 / g or less, preferably 150 m 2 / g or less, and more preferably 100 m 2 / g or less.
  • Radiocesium removal method from incineration fly ash A method for removing radioactive substances from substances containing radioactive substances will be described. Here, a method for removing radioactive cesium from incinerated fly ash containing radioactive cesium will be described as an example.
  • radioactive cesium is eluted in water by adding fly ash containing radioactive cesium to water and stirring.
  • the pH of the liquid rises to strong alkalinity (about 12). Therefore, the pH may be adjusted using an acid such as hydrochloric acid in order to improve the stability of ferrocyanide. . If the pH is adjusted to 11 or less, preferably 10 or less, more preferably 9 or less, the release of the cyanide from the ferrocyanide after the addition of the decontaminating agent is suppressed, and the cyanide in the water after the removal. The amount can be suppressed.
  • the stirring after adding fly ash is 2 hours or more, preferably 4 hours or more.
  • the previously prepared decontaminating agent is added at a weight ratio of 0.01% by mass or more with respect to the fly ash weight, and stirring is continued.
  • the addition amount of the decontaminating agent may be increased with respect to the fly ash, but if it is the decontaminating agent of the present invention, the radioactive cesium in the liquid can be sufficiently absorbed even with the addition of about 0.1 mass%. It can be recovered.
  • the treatment time after adding the decontamination agent varies depending on the volume of the liquid to be treated, but if it is a suspension of the object to be treated of about 10 L, it is approximately 15 minutes or more, preferably 30 minutes or more. What is necessary is just to process.
  • a magnetic force is applied to the treated liquid to adsorb the decontaminant that adsorbs cesium. If a method that can control the generation of magnetism from the outside is introduced rather than the one that constantly releases the magnetic force, the decontamination agent that has taken in the radioactive material can be recovered by remote control. Is preferred.
  • the collected decontaminating agent is sealed (stored) as a high-concentration radioactive material by sealing it in a well-known container with a structure that does not allow the radioactive material to leak out.
  • the liquid after collecting the decontaminating agent is subjected to solid-liquid separation by collecting fly ash suspended through a filter or the like. Any known method may be used for solid-liquid separation at this time. Further, the separated and recovered water can be recycled to a dispersion liquid in which fly ash is dispersed again to be reused, so that the treated water can be a closed system. Then, the washed fly ash is subjected to landfill disposal after confirmation of radioactivity.
  • the obtained decontamination reagent was evaluated by the following method.
  • ⁇ Particle morphology> The morphology of the aggregates of the decontaminating agent particles was confirmed by a field emission scanning electron microscope (S-4700, manufactured by Hitachi High-Technologies Corporation) at a magnification of 500 to 60,000 times.
  • ⁇ Average particle size, particle size distribution> The average particle size and particle size distribution of the aggregates of the decontaminant particles were measured using a laser diffraction type particle size distribution measuring device (HELOS & RODOS-KF type manufactured by SYMPATEC Corporation) under the condition of a lens diameter of 200 mm.
  • HELOS & RODOS-KF type manufactured by SYMPATEC Corporation
  • Specific surface area As the specific surface area of the aggregate of the decontaminating agent particles by the BET method, a value measured by a one-point method using a 4 Sorb manufactured by Yourcionics Co., Ltd. was adopted. However, since the cyanide was adhered to this sample and the cyanide may be decomposed by the deaeration operation by heating, the measurement was performed without performing the deaeration operation.
  • Example 1 In a 1000 mL scale container, 20 g of BET: 20 m 2 / g magnetite (primary particle diameter 60 nm) was added to 570 mL of pure water and stirred and dispersed at 8000 rpm for 30 minutes at room temperature to obtain a magnetic powder slurry.
  • PDDA15g solid content 3.0g as PDDA
  • PDDA polydiallyldimethylammonium chloride
  • a molecular weight of 1 to 150,000, a solid content concentration of 20% by mass, and Sigma-Aldrich Corporation were used.
  • the obtained magnetic powder slurry was allowed to stand on a magnet, and the PDDA-coated magnetic powder particles were allowed to settle out of the slurry. Then, the supernatant was removed, and excess PDDA and ammonia components were removed to obtain a sediment. . Pure water was added to the obtained sediment to make a 400 mL slurry, and the slurry was stirred to dissolve impurities in the liquid. The slurry was allowed to stand again on the magnet to allow the PDDA-coated magnetic powder particles to settle from the slurry, and then the supernatant was removed, and excess PDDA and ammonia components were removed again to obtain a sediment.
  • the slurry was stirred for 30 minutes at 8000 rpm (blade peripheral speed: 12.57 m / s) by a disperser (TK homomixer Mark II manufactured by Primix Co., Ltd.) having a strong shearing force at room temperature to disperse the magnetic powder.
  • TK homomixer Mark II manufactured by Primix Co., Ltd.
  • a potassium ferrocyanide aqueous solution (containing 24.45 g as potassium ferrocyanide trihydrate) and an aqueous nickel sulfate solution (containing 19.99 g as nickel sulfate hexahydrate) were added to the magnetic powder slurry subjected to the dispersion treatment, respectively. Then, the mixture was stirred at 8000 rpm for 30 minutes with a disperser (TK homomixer Mark II manufactured by Primix Co., Ltd.) having a shearing force at room temperature. By this operation, a nickel ferrocyanide coating film was formed on the surface of the magnetic powder particles coated with PDDA, and a slurry of the decontamination particles according to Example 1 was obtained. When a part of the obtained slurry was collected and allowed to stand on a magnet, the decontaminant component and the supernatant started to separate immediately, and the separated supernatant was a colorless and transparent clear liquid. .
  • the obtained slurry of decontaminant particles is suction filtered in the air to separate the decontaminant particle cake and the reaction liquid, and the obtained decontaminant particle cake is dried in the air at 100 ° C. for 6 hours.
  • a dried product of the decontaminant particles was obtained.
  • the dried product of the obtained decontamination particle was pulverized in a mortar to obtain a dye powder. When the SEM image of the obtained powder was confirmed, it was as shown in FIG. 1, and the BET value of the obtained powder was 62.6 m 2 / g.
  • the obtained decontamination powder was evaluated using XRD, a sharp diffraction line was confirmed, and it was confirmed that the peak was attributed to nickel ferrocyanide and magnetite when identified by JCPDS card. .
  • the obtained XRD diffraction pattern is shown in FIG. Further, when the obtained decontamination reagent was quantitatively analyzed by fluorescent X-ray, the atomic weight ratio of nickel / iron was 0.30.
  • the obtained particles had a stable cesium adsorption capacity (cesium removal capacity) of 60.6%, and had high adsorptivity.
  • Example 2 A decontamination powder was obtained in the same manner as in Example 1 except that the magnetic powder to be coated was changed to iron fine particles (primary particle diameter 50 nm). The BET value of the obtained powder was 78.3 m 2 / g. The obtained particles had a cesium adsorption capacity of 53.1% and had a high adsorptivity. Moreover, after adding 531 mL of pure water to 53.1 g of fly ash using the obtained decontamination agent, the mixture was stirred for 4 hours to elute cesium contained in the fly ash and add 531 mL of water.
  • the liquid was divided into two, 0.26 g of decontaminant was added and stirred for 20 minutes, and a test for adsorbing radioactive cesium in the liquid was performed. It was confirmed that the radioactivity of 65.9% decreased.
  • Example 3 As components to be added to the dispersed magnetic powder slurry, potassium ferrocyanide aqueous solution (containing 24.45 g as potassium ferrocyanide trihydrate) and iron chloride aqueous solution (iron chloride (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) 29. 23 g) was added, and the mixture was stirred at 8000 rpm for 30 minutes at room temperature to form iron ferrocyanide on the surface of the particles. A decontamination powder was obtained. When a part of the obtained slurry was extracted and poured into a container and placed on a magnet, it was confirmed that the supernatant was colorless and transparent. Thus, it has been found that the ferrous ferricide is sufficiently deposited. The BET value of the obtained decontamination powder was 64.3 m 2 / g. The obtained decontamination powder had a stable cesium adsorption capacity of 53.8%. The results are shown in Table 1.
  • TK homomixer Mark II manufactured by PRIMIX Co., Ltd.
  • the obtained slurry containing the decontaminating agent particles was subjected to an inlet temperature of 240 ° C., a disk rotation speed of 20000 rpm, and a slurry supply speed of 180 g using a disk type spray dryer (L-12 type spray dryer manufactured by Okawara Koki Co., Ltd.) Spraying was performed under the condition of / min to obtain an aggregate of decontaminant particles.
  • a disk type spray dryer L-12 type spray dryer manufactured by Okawara Koki Co., Ltd.
  • Aggregates of the obtained decontaminating agent particles were collected using a cyclone.
  • the aggregate of the decontaminating agent particles collected in the cyclone was used as the decontaminating agent powder according to Example 4.
  • the BET value of the decontamination reagent according to Example 4 was 52.9 m 2 / g.
  • the stability of the particles obtained from the decontamination reagent according to Example 4 was 60.9%, and had high adsorptivity.
  • Example 5 Aggregates of decontaminant particles were obtained by the same production method as in Example 4. Aggregates of the obtained decontaminating agent particles were collected using a cyclone. At this time, the decontaminating agent particles collected under the chamber were used as the decontaminating agent powder according to Example 5.
  • the BET value of the decontamination reagent according to Example 5 was 60.6 m 2 / g.
  • the stability of the particles obtained from the decontamination reagent according to Example 5 was 57.4%, and had a high adsorptivity.
  • the decontamination rate was confirmed by treating in the same manner as in Example 4, it was confirmed that the radioactivity of 71.9% was reduced when the radioactivity of the unreacted fly ash dispersion was assumed to be 100%.
  • Table 3 An SEM image (500 times) of the decontamination reagent according to Example 5 is shown in FIG.
  • Example 6 Aggregates of decontaminant particles were obtained by the same production method as in Example 4. Aggregates of the obtained decontaminating agent particles were collected using a cyclone. At this time, a mixture of the decontamination particles collected in the cyclone and under the chamber was used as the decontamination powder according to Example 6.
  • the BET value of the decontamination reagent according to Example 6 was 54.8 m 2 / g.
  • the stability of the particles obtained from the decontamination reagent according to Example 6 was 44.5%, and had a high adsorptivity.
  • the decontamination rate was confirmed by treating in the same manner as in Example 4, it was confirmed that the radioactivity of 73.8% was reduced when the radioactivity of the unreacted fly ash dispersion was 100%.
  • Table 3 the graph of the cumulative particle diameter which concerns on the decontamination agent which concerns on the said Example 6 and the aggregate of the decontamination agent which concerns on Examples 4 and 5 mentioned above is shown in FIG.
  • Example 7 In the stirring at 8000 rpm for 30 minutes at room temperature in Example 1, the same operation as in Example 1 was performed except that the stirring rotation speed was set to 4000 rpm, and the aggregate of the decontaminant particles according to Example 7 was obtained. Obtained.
  • the BET value of the decontamination reagent according to Example 7 was 54.3 m 2 / g.
  • the graph of the cumulative particle diameter which concerns on the decontamination agent which concerns on the said Example 7, and the aggregate of the decontamination agent which concerns on Example 8 and Comparative Example 2 mentioned later is shown in FIG.
  • the obtained decontamination reagent was quantitatively analyzed by fluorescent X-rays, the atomic weight ratio of nickel / iron was 0.31. Further, the obtained particles had a stable cesium adsorption capacity of 57.9%, and had high adsorbability.
  • Example 8 In the stirring at 8000 rpm for 30 minutes at room temperature in Example 1, the same operation as in Example 1 was performed except that the stirring rotation speed was 2000 rpm, and the aggregate of the decontaminant particles according to Example 8 was obtained. Obtained.
  • the BET value of the decontamination reagent according to Example 8 was 64.0 m 2 / g. Furthermore, when the obtained decontaminating agent was quantitatively analyzed by fluorescent X-rays, the atomic weight ratio of nickel / iron was 0.27. The obtained particles had a stable cesium adsorption capacity of 45.3%, and had high adsorptivity. Furthermore, when a decontamination test from fly ash was attempted under the same conditions as in Example 7, it was confirmed that the radioactivity of 39.5% was lowered. The results are shown in Table 2.
  • Example 9 The slurry obtained in Example 6 was No. After filtering with 5 filter paper, after drying at normal temperature in nitrogen, it grind
  • Example 3 removal operation was performed in the state of the said slurry, without removing a water
  • Example 2 In Example 1, stirring was performed with a propeller-type stirrer, and the same operation as in Example 1 was performed except that the adhesion operation was performed at 630 rpm (blade diameter: 50 mm, blade peripheral speed: 1.65 m / s). Attempts were made to deposit nickel halide and dried to obtain a dry powder. The powder was qualitatively analyzed by XRD. Then, the presence of a nickel ferrocyanide compound was confirmed. However, when the obtained decontamination reagent was quantitatively analyzed by fluorescent X-rays, the atomic weight ratio of nickel / iron was 0.19. The obtained particles had a stable cesium adsorption capacity of 24.1%. Since nickel is contained only in the ferrocyanide that is a decontamination component, a low nickel / iron value suggests that nickel cannot be sufficiently coated. As a result, it is considered that the cesium adsorption capacity of the decontamination agent has been reduced.
  • Example 3 In Example 3, the same procedure was followed except that the agitation was carried out with a propeller-type stirrer at 240 rpm (blade peripheral speed 0.63 m / s), and deposition of ferrocyanide was attempted. And after the iron ferrocyanide adhesion treatment, when a part of the obtained slurry was extracted and poured into a container and placed on a magnet, it was confirmed that the bitumen was colored in the supernatant. It was found that the ferrous ferrocyanide was not sufficiently deposited when the agitation was performed. The results are shown in Table 1.
  • Example 4 An iron ferrocyanide deposition was attempted in the same manner as in Example 3 except that ammonia was not added before the PDDA deposition operation. Then, after the iron ferrocyanide adhesion treatment, a part of the obtained slurry was extracted and poured into a container, and placed on a magnet to settle the decontamination agent. Then, the bitumen coloring was confirmed in the supernatant, and it was found that the iron ferrocyanide was not sufficiently deposited. The results are shown in Table 1.
  • Reference Example 1 Aggregates of decontaminant particles were obtained by the same production method as in Example 4. Of the aggregates of the obtained decontaminating agent particles, finer particles than the particles according to Example 4-6 collected by the cyclone were collected using a bag filter, and the decontaminating agent powder according to Reference Example 1 was collected. It was. The BET value of the decontamination reagent according to Reference Example 1 was 60.6 m 2 / g.
  • the stability of the particles obtained from the decontamination reagent according to Reference Example 1 was 52.3%, and had high adsorptivity.
  • 40.0 mg ⁇ decontamination agent / fly ash: 1/1000 (weight ratio) ⁇ was added, and the reaction was conducted by stirring for 24 hours to adsorb cesium in the liquid. It was confirmed that the decontaminant particles and fly ash were mixed. Then, assuming that the radioactivity of the unreacted fly ash dispersion was 100%, the calculated decontamination rate of radioactive cesium was only 29.7%.
  • Table 3 The results are shown in Table 3.
  • the concentration of cesium in the liquid can be reduced even if there is a suspended component floating in the suspension.
  • the decontamination agent according to the present invention can be applied not only to the incineration fly ash washing water exemplified, but also to decontamination of radioactively contaminated water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)

Abstract

放射性物質類を高効率で除染可能であって、環境耐性が高く大量処理にも好適な放射性物質類除染システム等に用いる除染剤粒子を、高い生産性をもって容易に製造することを可能とする除染剤粒子の製造方法を提供する。溶媒中に磁性粒子を懸濁させ、当該磁性粒子を有機物のモノマーもしくはポリマーで被覆処理して前駆体を形成する工程と、当該被覆処理後の前駆体を含む懸濁液へ、強い剪断力を加えながら、フェロシアン化物水溶液と、少なくとも一種の遷移金属を含む水溶液とを添加し、放射性セシウム除染剤を生成させる工程と、得られた放射性セシウム除染剤を含むスラリーから、水分を除去する工程とを有する、放射性セシウム除染剤の製造方法を提供する。

Description

放射性セシウム除染剤及びその製造方法、並びに放射性セシウムの除去方法
 本発明は、都市ゴミ等の焼却処理時に発生する焼却飛灰からの放射性セシウム等の汚染物質の回収に用いられる、放射性物質の除染剤粒子の凝集体とその製造方法、当該放射性物質の除染剤粒子の凝集体を用いた汚染物質の除去方法に関する。
 一般廃棄物焼却場等で発生する焼却飛灰に、汚染物質として放射性物質が含有されている場合、当該放射性物質は環境規制物質であり、その処理が問題となる。
 前記放射性物質の中でも134Csや137Cs、特に137Csは半減期が30.2年と長いため、発生10年後も大部分は残存するという問題がある。この為、汚染物質は、長期にわたって環境・生態系への悪影響を及ぼすことが懸念されることから、環境からの汚染物質の速やかな除去が望まれる。
 ところが、一般廃棄物焼却場等で発生する、粒子径20~30μmの細かい焼却飛灰には、放射性セシウムの蓄積が著しく多く、公表されている資料等には数万Bq/kgに達するものも存在している。
 このような状況の中で、本発明の発明者の一人は、放射性セシウムの除染剤として特許文献1を開示した。特許文献1に係る除染剤は、放射性物質を含む液体から効率よく放射性セシウムを除去することが出来る。さらに、特許文献1は、放射性セシウムを取り込んだ除染剤に直接触れる必要なしに分離回収することが可能な技術を開示している。
 また、最近ではゼオライト型吸着剤やフェロシアン化物型吸着剤へ磁性粉を担持したものを造粒したものも提案されている。例えば、放射性物質を含む液体をゼオライト型の除染剤で処理した上で中和処理し、次にフェロシアン化鉄(プルシアンブルー)を用いて除染を行う2段階に分けて処理する方法(非特許文献1)が開示されている。また、例えば、放射性物質を含む液体へ、ゼオライトとフェロシアン化鉄とをそれぞれ添加し、pHを弱アルカリ性にした後に、放射性セシウムを吸着したゼオライトとフェロシアン化鉄を回収除去する方法(非特許文献2)が開示されている。
特許第4932054号公報
伊藤ら 第1回環境放射能除染研究発表会要旨集(2012)p.51 西崎ら 第1回環境放射能除染研究発表会要旨集(2012)p.50
 特許文献1に記載の製造方法は、例えば、フェロシアン化物と鉄化合物とを混合することにより、フェロシアン化鉄を一旦形成させた後、攪拌することにより磁性粒子の表面へフェロシアン化鉄を被覆するというものである。しかし、本発明者らの検討によれば、当該製造方法により、多くの磁性粒子を処理しようとした場合、攪拌だけで磁性粉の表面にフェロシアン化鉄を被覆することとなるが、とくに処理(製造)の際のバッチ量を大きくした場合、磁性粉の表面にフェロシアン化鉄が被覆され難くなる事例がみられた。そして、当該事例において、磁性粉の表面にフェロシアン化鉄が被覆されない場合、生成したフェロシアン化鉄が反応液中に残存してしまうこととなる。このため、環境中にフェロシアン化物が放出されてしまうおそれが生じることを知見した。
 さらに、被覆後の磁性粉と反応液とを分離して、被覆後の磁性粉である除染剤のみを回収することで、環境中へのフェロシアン化物放出の可能性を回避した除染剤を用いて除去操作を行った場合、得られた除染剤にフェロシアン化物が十分に被覆出来てないことに起因して、当該被覆後の磁性粉のセシウムの吸着能力が想定値よりも低下している場合があることが知見された。
 上述の被覆後の磁性粉のセシウムの吸着能力の低下を補完するために、前記被覆後の磁性粉の粉末と反応液とを分離せず、スラリーの状態で放射性セシウムが溶解した被処理物の懸濁液を処理することも考えられる。
 この場合、スラリー中には、磁性粉に付着しなかったフェロシアン化鉄も残存した状態であるので、フェロシアン化鉄によるセシウム吸着能力は維持され、高い除染能力を発揮すると考えられた。
 しかしながらこの場合は、除染された焼却飛灰と、放射性セシウムが濃縮された除染成分とが、ともに除染剤から分離されることになる。結局、トータルでみた除染結果が悪くなるばかりか、排出される焼却飛灰の量も増えてしまうことになる。
 さらに、特許文献1に記載の処理方法において、分離される灰について検討した。すると、とりわけ焼却飛灰のような目の細かい粒子が、放射性セシウムが溶解した被処理液中に懸濁している状態で、このような放射性セシウムの除去操作を行うと、当該目の細かい粒子の一部が、除染剤そのものと絡まり合ってしまう現象が知見された。この場合、分離回収される除染剤とともに、本来は分離されるべき焼却飛灰も回収されることになってしまう。この為、分離回収される除染剤の体積が膨張し、100000Bq/kg超の放射性セシウムを含んだ物質の減容化という目的の達成が不十分になることが知見された。
 また、最近の発表技術では非特許文献1、2のように、プルシアンブルーとゼオライトを併用して使用する技術が多く見られている。しかしながら、高濃度放射能を有する物質を保管しなければならないという観点で見れば、保管を必要とする除染剤の体積が大きくなってしまうような併用は、できるだけ避ける方が好ましい。つまり、除染能力を落とすことなく懸濁物質を巻き込まずに処理後の除染剤の体積をできるだけ小さくすることができる除染剤が肝要である。
 発明者は大量生産性を維持しながら、液中のセシウム回収能力に優れる放射性セシウム除染剤(本発明において「除染剤」と略記する場合がある。)の製造方法、放射性セシウムに汚染された物質の懸濁液から放射性セシウムを迅速に分離回収するために適した放射性セシウム除染剤、当該除染剤を用いて行われる放射性物質に汚染された物質からの放射性セシウムの除去方法を提供することを課題として掲げた。
 上述の課題を解決するため、本発明者は研究を進め、以下の知見を得た。
 1.コア部に磁性粒子と、当該磁性粒子を直接被覆し、当該磁性粒子と捕捉性化合物との間に実質的に形成されている被覆層と、表層に当該捕捉性化合物として放射性物質類を捕捉するフェロシアン化物とを、有する除染剤粒子を製造する際、放射性物質類を捕捉するフェロシアン化物を被覆層上に形成する工程において、スラリーへ強い剪断力をかける操作を加えれば、除染剤粒子を大量に製造した場合においても、当該除染剤のセシウム吸着量が悪化することがない。
 2.上記1.の被覆層を形成する物質がカチオン性を有するモノマーもしくはポリマーであり、当該物質により被覆された磁性粒子へフェロシアン化物の微粒子を被覆する際、スラリーのpHを弱酸性~強酸性とすることで、カチオン性を有するモノマーもしくはポリマーにより被覆された磁性粒子へのフェロシアン化鉄微粒子の被覆がより容易に進む。
 3.上記1.の被覆層を形成する物質であるところのカチオン性を有するモノマーもしくはポリマーを、磁性粒子上に被覆させる工程において、スラリーのpHをアルカリ性とすることで、磁性粒子へのカチオン性を有するモノマーもしくはポリマーによる被覆が容易に進む。
 4.上記1.の構成において、被覆層を形成する物質がカチオン性を有するモノマーもしくはポリマーであり、当該モノマーもしくはポリマーにより被覆された磁性粒子へフェロシアン化物の微粒子の被覆操作を経た後に、得られたスラリーから水分をのぞき、被覆された磁性粒子を凝集体とする操作を加えることが好ましい。被覆された磁性粒子の凝集体である除染剤は、放射性セシウムを含む懸濁液における除染処理に使用した際、液中の放射性セシウムの簡便な除去を行えるとともに、放射性セシウムを液中から吸収した後、容易に分離回収することができる。
 5.被覆された磁性粒子の凝集体である除染剤について、レーザー回折型粒度分布測定により粒度分布測定を測定し、得られた累積粒度90%の粒子径(D90)、50%の粒子径(平均粒子径)(D50)、10%の粒子径(D10)を求めたとき、累積粒度分布(D90-D10)/D50の値が6未満であり、平均粒子径(D50径)が2.0μm以上、100μm以下であると、当該除染剤が液中のセシウムを高効率で取り込むことを知見した。
 6.さらに、上述した除染剤の累積粒度90%の粒子径(D90)が2.0μm以上、100μm以下であると、当該除染剤が飛灰を巻き込むことを少なくでき、懸濁液中における放射性セシウムの除染率の向上に寄与することを知見した。
 7.除染剤を用いて放射性セシウムを分離除去する方法としては、放射性セシウムを含む被処理物を溶媒に懸濁させた後に、除染剤を添加して、溶媒中に存在する放射性セシウムを除染剤に取り込ませる工程、処理液に磁場を与え放射性セシウムを取り込ませた除染剤を処理液から回収する工程を備える方法としたことで、懸濁物質を共沈させることなく懸濁液中の放射性セシウムを分離回収できる。そのため、放射性物質に汚染された物質の減容化に著しい効果を発揮できる。なお、放射性セシウムの除染剤を添加するまでに、予め被処理物を溶媒に懸濁させて放射性セシウムを溶媒中に十分に溶出させてから、当該被処理物を溶媒から分離することなく、放射性セシウムを除去する工程を加える構成としても良い。
 なお、上記溶媒としては水やアルコールを初めとする有機溶媒が使用出来る。本発明では、溶媒として水を用いた場合を例として説明する。
 本発明は上述の知見を基になされたものであり、上述の課題を解決しうる第1の発明は、
 溶媒中に磁性粒子を懸濁させ、当該磁性粒子を有機物のモノマーもしくはポリマーで被覆処理して前駆体を形成する工程と、
 当該被覆処理後の前駆体を含む懸濁液へ、強い剪断力を加えながら、フェロシアン化物水溶液と、少なくとも一種の遷移金属を含む水溶液とを添加し、放射性セシウム除染剤を生成させる工程と、
 得られた放射性セシウム除染剤を含むスラリーから、水分を除去する工程とを有する、放射性セシウム除染剤の製造方法である。
 第2の発明は、
 前記有機物のモノマーもしくはポリマーでの被覆処理の際、予め、スラリーへアルカリを添加して、液性をアルカリ性に調整してから被覆処理を行う、第1の発明に記載の放射性セシウム除染剤の製造方法である。
 第3の発明は、
 磁性粒子の表面に有機物からなる被覆層を有し、当該被覆層の表面にフェロシアン化物からなるセシウム吸収成分を備える一次粒子が凝集してなる放射性セシウム除染剤であって、
 レーザー回折型粒度分布測定により測定される累積粒子径(D50)が、2.0μm以上、50μm以下、且つ、累積粒度分布(D90-D10)/D50の値が6未満である、放射性セシウム除染剤である。
 第4の発明は、
 前記レーザー回折型粒度分布測定により測定される累積粒子径(D90)が5.0μm以上、150μm以下である第3の発明に記載の放射性セシウム除染剤である。
 第5の発明は、
 前記磁性粒子の一次粒子径が1nm以上、300nm以下である、第3または第4の発明のいずれかに記載の放射性セシウム除染剤である。
 第6の発明は、
 BET法による比表面積値が1m2/g以上、150m2/g以下である第3から第5の発明のいずれかに記載の放射性セシウム除染剤である。
 第7の発明は、
 放射性セシウムを含む被処理物と、
 第1または第2の発明に記載の放射線セシウム除染剤の製造方法により製造された放射性セシウム除染剤、または、第3から第6の発明のいずれかに記載の放射性セシウム除染剤とを、溶媒に懸濁させ、当該溶媒中に存在する放射性セシウムを放射性セシウム除染剤に取り込ませる工程と、
 当該溶媒に磁場を与え、放射性セシウムを取り込ませた放射性セシウム除染剤を当該溶媒中から回収する工程とを有する、放射性セシウムの除去方法である。
 第8の発明は、
 溶媒中に存在する放射性セシウムを放射性セシウム除染剤に取り込ませる工程に至るまでに、
 予め放射性セシウムを含む被処理物を溶媒に懸濁させて、放射性セシウムを溶媒中に溶出する工程と、
 溶媒から当該被処理物を分離することなく、放射性セシウム除染剤を溶媒に添加する工程を備える、第7の発明に記載の放射性セシウムの除去方法である。
 本発明によれば、放射性物質類を高効率で除染可能であって環境耐性が高い放射性セシウム除染剤を、高い生産性をもって容易に製造することが可能となった。
 さらに、本発明にかかる放射性セシウム除染剤を使用することによって、放射性セシウムで汚染された焼却飛灰等の減容化を図ることができるようになった。
 また、磁力を用いて放射性セシウムを回収した後の除染剤を分離することができ、作業時における放射線被曝が生じる危険性が低減されるため、安全で効率よく放射性物質の減容化が図られるようになった。
本発明に係る(実施例1)除染剤のSEM像 本発明に係る(実施例1)除染剤のXRD 本発明に係る(実施例4)除染剤のSEM像 本発明に係る(実施例5)除染剤のSEM像 本発明に係る(実施例4、5、6)除染剤の粒度分布 本発明に係る(実施例7、8、比較例2)除染剤の粒度分布
<原料粉末(磁性粒子)の調製(その1)>
 硫酸鉄水溶液と水酸化ナトリウム水溶液を混合した後、70~100℃に昇温し、酸化することで、マグネタイト(Fe34)粒子を形成させる。得られたマグネタイトを含有するスラリーをろ過、水洗することでマグネタイトケーキを得た。得られたマグネタイトケーキを80~200℃で6時間以上乾燥し、粉砕することで、マグネタイト(Fe34)乾燥粉として、原料粉末(磁性粒子)とした。
 所望により、得られたマグネタイト粉末を(300~600℃にて30分間以上、12時間以下により)気相で還元処理することで、鉄微粒子に還元しても良い。但し、この場合、還元処理した後の鉄微粒子を大気中に曝すと著しく酸化してしまい、除染成分の形成処理には耐えないので、(50~200℃にて30分間以上、12時間以下)酸素を含む気体中で酸化膜の形成処理を施した後、大気中で取り出して原料粉末(磁性粒子)とするのが好ましい。
<原料粉末(磁性粒子)の調製(その2)>
 純水に、鉄塩の水溶液と、所望によりコバルト塩水溶液とを、それぞれ添加して溶液とする。当該溶液に空気を吹き込みながら、硫酸アルミニウムと、所望により希土類化合物水溶液を添加して、少なくともアルミニウムを含む針状のオキシ水酸化鉄(ゲーサイト:α-FeOOH)を生成させる。
 得られたオキシ水酸化鉄を大気中で加熱して脱水処理し、α-酸化鉄(ヘマタイト:α-Fe23)を生成させた後、当該α-酸化鉄を水素雰囲気中で、例えば300~650℃の範囲で加熱して還元処理する。続いて、200℃以下の加熱雰囲気に酸素を含むガスを添加して、上述の還元処理されたα-鉄の表面に酸化膜を形成させて、得られる鉄微粒子も原料粉末(磁性粒子)とすることができる。
<原料粉末(磁性粒子)上への被覆層の形成>
 得られた原料粉末を純水中に添加し攪拌して原料粉末スラリーを得る。ここでの攪拌は原料粉末が沈降することなく分散する程度であればよい。得られたスラリーに対して、アンモニア水もしくは水酸化ナトリウム水溶液を添加して、スラリーをアルカリ性にする。
 アルカリ性に調整したスラリーにカチオン性を有するモノマーもしくはポリマーを添加して、粒子表面にカチオン性を有するモノマーもしくはポリマーによる被覆層を形成させる。この段階での攪拌も必ずしも強攪拌である必要はなく、原料粉末(磁性粒子)が沈降することなく分散する程度であればよいが、カチオン性のモノマーもしくはポリマーを形成させた後に、フェロシアン化物の形成工程を連続して行う場合には、強い剪断力を加えつつ反応を行わせても差し支えない。また、処理を行うスケールによっては通常の攪拌であっても、超音波処理により被覆することもできる。
 溶液に対するカチオン性を有するモノマーもしくはポリマーの添加量は、処理液に対する純粋なポリマーもしくはモノマー換算の固形分として10質量%以下、好ましくは5質量%以下、一層好ましくは2質量%以下である。固形分を10質量%以下にすることで粘度が高くなってしまうことを回避できるので、粒子への被覆が均一になり好ましい。
 本発明において、カチオン性モノマーもしくはポリマーを適用する際、カチオン性基を有するモノマーもしくはポリマー、あるいはイオン化してカチオン性基を与え得る基を有するモノマーもしくはポリマーであれば適用可能であり、特に制限されるものではない。また、本発明に適用されるカチオン性モノマーもしくはポリマーは、主鎖の一部がカチオン性を示すものであってもよく、また、主鎖に結合した側鎖置換基がカチオン性を示すものであってもよい。
 本発明にカチオン性モノマーを適用する場合には、1級アミノ基を有するビニルモノマー、2級アミノ基を有するビニルモノマー、3級アミノ基を有するビニルモノマー、及び4級アンモニウム塩類を有するビニルモノマー等が挙げられる。
 また、本発明にカチオン性ポリマーを適用する場合には、合成高分子にカチオン性を付加したものであってもよく、また、カチオン化セルロース、カチオン化でんぷん、カチオン化デキストラン、カチオン化グアーガム、カチオン化キトサン等の天然又は微生物由来の高分子にカチオン性を付加したものであっても良い。
 得られた表面にカチオン性を有するモノマーもしくはポリマーによる被覆層を有する粒子を反応溶液から分離して、粉末を洗浄する操作を行ってもよい。この操作によって、余分なモノマーもしくはポリマー、あるいは残存するアンモニアを除去する。分離操作を行う場合には、例えば磁気を利用した分離、デカンテーション、ろ過といった方法が採用される。分離した後、純水を加えて再度懸濁し、数回粒子に付着した余剰成分を除去することが好ましい。洗浄の目安としては、分散液のpHが10以下、好ましくは9.5以下となるまで洗浄するのが良い。
 なお、一連の反応によって粒子表面にポリマーもしくはモノマーが被覆できているか否かは、粒子におけるゼータ電位を測定するか、粒子乾燥体のカーボン含有量を測定することで確認することができる。
<粒子上への放射性物質捕捉層の形成>
 洗浄後の被覆処理された粒子のスラリーを、再度攪拌して粒子を分散させた後に、当該スラリーへ、ナトリウム塩、カリウム塩等の水溶性フェロシアン化物およびNi、Fe、Co、Cu、Znといった遷移金属の少なくとも一種を含む金属化合物を順に添加して、有機物被覆層上もしくは被覆層内に不溶性の除染成分を形成させる。添加を行う際にはフェロシアン化物および金属化合物は、それぞれ水溶性の物質とするのが良い。フェロシアン化物および遷移金属の添加・被覆段階では、粒子と生成物の接触を効率的に行いつつ被覆する必要があるので、高い剪断力を有した分散機を用い、当該スラリーへ強い剪断力を加えながら分散する。
 強い剪断力を有する分散機としては、タービン・ステータ型攪拌機として知られるプライミクス株式会社のT.K.ホモミクサー(登録商標)、IKA社のUltra-Turrax(登録商標)などが例示でき、コロイドミルとしては、プライミクス株式会社のT.K.マイコロイダー(登録商標)、T.K.ホモミックラインミル(登録商標)、T.K.ハイラインミル(登録商標)や、株式会社ノリタケカンパニーリミテドのスタティックミキサー(登録商標)、高圧マイクロリアクター(登録商標)、高圧ホモジナイザー(登録商標)等が例示できる。
 剪断力の強弱は、攪拌翼を有する装置であれば、攪拌翼の翼周速度で評価することができ、本発明において、「強い剪断力」とは、翼周速度が3.0(m/s)以上、好ましくは5.0(m/s)以上、一層好ましくは10.0(m/s)以上のものを指す。翼周速度が3.0(m/s)以上であると、溶液に対する剪断力が十分であり、フェロシアン化物の有機物被覆層上への付着が十分に行える。結果として、製造された除染剤において十分なセシウム吸着量を確保出来るため、被処理物の懸濁液中の放射能除去性能が確保され好ましい。また、当該強い剪断力を以って処理を行うと、詳細な理由については明らかではないが、(D90-D10)/D50の値で表される除染剤の累積粒度分布が、6未満と小さくなった。この結果、この結果、生成した除染剤を乾燥した際の累積粒度分布が、上述した好ましい範囲となることが判明した。
 さらに、十分な剪断力を加えることで、フェロシアン化物を有機物被覆層上へ強固に付着させることが出来る。フェロシアン化物が有機物被覆層上へ強固に付着していれば、例えば、製造された除染剤を用いて被処理物の懸濁液との攪拌操作を行う際、除染剤の粒子表面から放射性セシウムを含んだフェロシアン化物がはがれ落ちたりする可能性を回避できる。除染剤の粒子表面から放射性セシウムを含んだフェロシアン化物がはがれ落ちたりすれば、後の磁気分離で被処理物の懸濁液中の放射性セシウムを回収できない可能性があるばかりか、被処理物の懸濁液中にシアン化合物も残存することになり、好ましくない。
 上述した翼周速度は、円周率×タービン翼の直径(m)×1秒あたりの攪拌回転数(回転数)で算出することができる。例えば、タービン翼の直径が3.0cm(0.03m)で、攪拌回転数が8000rpmであれば、1秒あたりの回転数は133.3(rps)となり、翼周速度は12.57(m/s)となる。
 当該工程において、フェロシアン化物の付着が適切に行われたか否かを確認することが出来る。
 具体的には、当該工程後のスラリーの一部を抜き出して、容器に入れたうえで磁石上に置けばよい。磁石に引き寄せられた除染剤と上澄みとが分離するので、上澄み中の着色を確認することにより、付着が適切に行われたか否かを確認することができる。例えば、フェロシアン化鉄を付着させる場合には、除染剤への付着が適切に行われていない場合、付着できなかったフェロシアン化鉄が上澄み中に浮遊もしくは溶解し、上澄みの色が紺青色に着色する。一方、適切に付着できている場合には、紺青色をした除染剤が磁石に引き寄せられて沈降するので、上澄みは無色透明となる。
 十分に被覆できているかどうかを確認する装置の例としては、スラリーを封入する瓶として容量3mLのサンプル瓶を採用し、株式会社二六製作所の磁気回路(EP001:表面磁束密度300mT)を例示することができる。サンプル瓶にスラリーを添加し、フタをしてから磁気回路の中心にサンプル瓶を設置して、左右に除染剤を吸引してから、中央部の着色状態を確認することで、フェロシアン化物が磁性粉に吸着できているかどうか判断することができる。
 なお、上記確認方法を用い、スラリーのサンプリングを幾度か繰り返して、フェロシアン化物の付着状態を確認した上で、反応の終了点を確認しても良い。
 以上のようにして得られたフェロシアン化物が被覆されたスラリーから水分を除去して、フェロシアン化物が被覆された凝集体を得る。この凝集体を得る方法には特に制限はなく、ろ過もしくはデカンテーション、磁気分離を行った後に乾燥する方法、スプレードライ、真空凍結乾燥、真空オーブンなどが例示できる。こうして得られた乾燥体は必要により、粉砕工程を経て粉末に加工しても構わない。
 得られた粉末に「粒子径の大きい粒子」が含まれて場合は、これを除去する工程を加えることが好ましい。本発明でいう「粒子径の大きい粒子」とは、粒子径が200μm以上の粉末をいう。当該「粒子径の大きい粒子」は、磁石に引き寄せられやすいが、粒子そのものの重量があるため、除去操作時における攪拌強度が弱い場合には、除染剤粒子そのものが沈降する可能性がある。その場合、液中への除染剤の分散が不十分になるため、液中における除染成分の利用効率が低下し、ひいては短時間での除染効果が低下するため好ましくない。
 当該「粒子径の大きい粒子」を、予め除去するには、公知の篩わけや分級操作等により、低減もしくは除去することができる。尤も、例えばスプレードライヤー法を用いれば、細かい粒子が製造できるので、篩わけの必要がない場合もある。
<放射性セシウム除染剤>
 本発明にかかる除染剤は、磁性粒子に有機物からなる被覆層が形成され、当該被覆層上にフェロシアン化物からなるセシウム捕捉物質が担持された構造を有している。そして、セシウム除染剤としては、下記のような性質を持つことが好ましい。
 コア材となる磁性粒子の平均一次粒子径としては、具体的には1nm~2μm、好ましくは10nm~1μm、一層好ましくは10~500nmであることが好ましい。粒子の形態は発明の効果に影響を与えないが、球状、針状、板状、立方体状、紡錘状、直方体状やそれに類した形のいずれであっても良い。なお、磁性粒子の平均一次粒子径については、透過型電子顕微鏡(TEM)写真により測定することができる。
 被覆層は、磁性粒子に対する付着安定性の観点からカチオン性を有するポリマーもしくはモノマーを選択することが好ましい。また、被覆層の少なくとも一部にはフェロシアン化物からなるセシウム吸収成分を備える。被覆層上のならず、複層内の一部にも、当該セシウム吸着成分を備えるようにしても良い。好適なフェロシアン化物としては、フェロシアン化鉄(プルシアンブルー)、フェロシアン化ニッケル、フェロシアン化銅、フェロシアン化コバルト、または、これらフェロシアン化物とアルカリ金属の化合物(例えば、フェロシアン化ニッケルカリウムなど)といったセシウム吸着もしくは交換性能を有する物質が挙げられる。中でも飛灰を処理する際にアルカリ性が高くなるという観点で見れば、フェロシアン化ニッケルや、そのアルカリ金属化合物(例えば、フェロシアン化ニッケルカリウムなど)とするのが良いが、塩酸等によりpH調整が許容される条件下にあってはフェロシアン化鉄であっても良い。
 本発明にかかる除染剤は、単一の粒子ではなく数個以上の粒子が塊状に集合した凝集体になっていることが好ましい。上述したように、乾燥した除染剤粉の粒子径は、レーザー回折型粒度分布測定における累積粒度分布において、10%粒子径(D10)、90%粒子径(D90)、平均粒子径(50%粒子径)(D50)から算出される累積粒度分布(D90-D10)/D50の値が6未満である凝集体であれば、セシウムの吸着能力に優れた除染剤であることを知見した。
 当該凝集体の粒子径分布が、セシウムの吸着能力に与える影響の原因について、詳細は明らかではないが、発明者らの検討によれば、(D90-D10)/D50の値が6未満、好ましくは5.5未満、一層好ましくは2.0以下であれば、除染能力に好ましい影響を与える。
 また、本発明にかかる除染剤のレーザー回折型粒度分布測定法による平均粒子径(D50)は、2.0μm以上、50μm以下であるのがよい。50%累積粒子径(D50)が2.0μm以上あれば、飛灰などの懸濁成分が共存する場合であっても、液中の除染剤と懸濁物との分離が容易であり、好ましいからである。一方、50%累積粒子径(D50)が50μm以下であれば、液中における効率的な分散が容易に起こり、除染の効率を保つことが出来、好ましいからである。
 さらに、90%累積粒子径(D90)が5.0μm以上、150μm以下、好ましくは、100μm以下、一層好ましくは75μm以下であるのがよい。90%累積粒子径(D90)が5.0μm以上であれば、懸濁液中に飛灰などの懸濁成分が共存する場合であっても、当顔懸濁液中の除染剤と懸濁物との分離が容易であり好ましい。一方、90%累積粒子径(D90)が100μm以下の場合には、濁液液中における除染剤の分散が起こり易く、除染の効率を保つことが出来、好ましいからである。
 得られる除染剤のBET法による比表面積値は1m2/g以上、好ましくは5m2/g以上、一層好ましくは10m2/g以上である。なお、本発明の被表面積値は、表面を被覆するフェロシアン化物が分解するおそれがあるため、通常行われる脱気操作を経ないで測定された値である。比表面積がこの値よりも小さいと、処理液との接触面積が小さくなるため、除染効率が低下するため好ましくない。また、BET値があまりにも大きすぎる場合には、粒子径が小さくなっていることが考えられ、被処理物との共沈が生じるおそれがあるので好ましくない。具体的には400m2/g以下、好ましくは150m2/g以下、さらに好ましは100m2/g以下である。
<焼却飛灰からの放射性セシウム除去方法>
 放射性物質を含んだ物質からの、放射性物質除去方法を説明する。
 ここでは放射性セシウムを含む焼却飛灰から放射性セシウムを除去する方法を例示して説明する。
 まず、水に放射性セシウムを含む飛灰を添加して攪拌することで、放射性セシウムを水中に溶出させる。飛灰を水中に懸濁させると、液のpHは強アルカリ性(おおよそ12程度)に上昇するので、フェロシアン化物の安定性を向上させるため塩酸などの酸を用いてpHを調整しても良い。pHの調整は11以下、好ましくは10以下、一層好ましくは9以下とすれば、除染剤を添加した後における、フェロシアン化物からのシアン化合物の遊離が抑制され、除去後の水中におけるシアン化合物量を抑制することができる。飛灰を添加した後の攪拌は2時間以上、好ましくは4時間以上とするのが良い。
 飛灰が懸濁した液中に、先に作成した除染剤を飛灰重量に対して0.01質量%以上の重量割合で添加して攪拌を継続する。除染剤の添加量は飛灰に対して多くしても構わないが、本発明の除染剤であれば、0.1質量%程度の添加であっても十分に液中における放射性セシウムを回収することができる。除染剤を添加してからの処理の時間は、処理すべき液の容量により前後するが、10L程度の被処理物の懸濁液であれば、おおよそ15分間以上、好ましくは30分間以上の処理を行えばよい。
 その後、処理後の液に対して磁力を加え、セシウムを吸着した除染剤を吸着させる。このとき用いる磁力発生は、常に磁力を放出しているものよりは、磁気の発生を外部から制御できる手法を導入すれば、遠隔操作により放射性物質を取り込んだ除染剤を回収することができるので好適である。回収された除染剤は公知の外部に放射性物質が漏れ出ない構造の容器に封印して保管することで高濃度放射性物質として廃棄(保管)処理する。
 除染剤を回収した後の液は、フィルター等を通過させて懸濁した飛灰を回収することで固液分離を行う。このときの固液分離は公知のいずれの方法を用いても良い。また分離回収された水は、再度飛灰を分散させる分散液に循環して再利用することで、処理水に関してはクローズドのシステムとすることもできる。そして、洗浄の完了した飛灰は、放射能の確認を経た後、埋め立て処分される。
<除染剤粒子の評価>
 本発明の方法に従い、得られた除染剤は次の方法により評価した。
<粒子形態>
 除染剤粒子の凝集体の形態は電界放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ製 S-4700形)像により、倍率500~60,000倍にて確認した。
<定性分析>
 除染剤粒子の表面にフェロシアン化物が形成されているか否かの評価は、株式会社リガク製のRINT-2100型において、Co管球を使用し、2θ=10~70°の範囲で測定して、得られた回折線をJCPDSカードチャートと比較することにより、フェロシアン化物が存在している場合にはその形態を含め、定性評価した。
 後述する実施例1、実施例7、実施例8、比較例2において、除染剤に含まれる元素量は、蛍光X線分析装置株式会社リガク製RIX-2000型)を用いて確認した。
<平均粒子径、粒度分布>
 除染剤粒子の凝集体の平均粒子径および粒度分布は、レーザー回折型粒度分布測定装置(SYMPATEC株式会社製 HELOS&RODOS-KF型)を用いて、レンズ径200mmの条件にて測定した。
<比表面積>
 除染剤粒子の凝集体のBET法による比表面積は、ユアサイオニクス株式会社の4ソーブを用いて、一点法で測定した値を採用した。ただし、本試料にはシアン化合物が付着しており、加熱による脱気操作によって、シアン化合物が分解する可能性があるため、脱気操作は行わずに測定を行った。
<除染剤粒子の安定性セシウムの吸着能力>
 除染剤粒子のセシウム吸収能力は、pHを10.7に調整した後に、硫酸セシウムを安定性セシウムとして約100ppmとなるように溶解させた。溶解後の溶液100gを200mLビーカーに注ぎ、実施例等で作成された除染剤粉末0.1gを添加して、常温にて30分間250rpmの条件で攪拌した。処理後の溶液から、除染剤を磁気分離により回収した溶液におけるセシウムの残存量をICP発光分析法(日本ジャーレルアッシュ株式会社製高周波誘導プラズマ発光分析装置(IRIS/AP)を使用)により分析し式(1)にて確認した。
 除去率(%)=(試験前濃度-試験後の濃度)/試験前濃度×100・・式(1)
 フェロシアン化物に対する安定性セシウムと放射性セシウムの吸着(吸収)挙動はおおむね同じであると考えられている。そのため、この評価により一定濃度(約100ppm)のセシウムを、規定時間(30分間)で、どの程度セシウムを吸着する能力があるかの情報を得ることができる。
<飛灰からのセシウム除去能力評価>
 除染剤粒子のセシウム吸収能力は、飛灰に純水を添加した後、規定の時間にわたり攪拌して、飛灰中に含有されるセシウムを溶出させ、さらに水を添加した。その後に、塩酸でpH=10.7に調整して、液を必要に応じて分割し、液の放射能をNaIシンチレーター(Raytest社製 MUCHA)を用いて測定することで、除染前の放射能とした。測定後規定量の除染剤を添加して、1時間~24時間の規定時間で攪拌し、液中のセシウムを吸着させてから、磁気分離により除染剤を除き、液の放射能を操作前と同様にNaIシンチレーターを用いて測定することで、除去された放射能量を算出した。
 後述する実施例、比較例において、飛灰と除染剤の混合割合、撹拌時間等は、それぞれ記載している。
(実施例1)
 1000mLスケールの容器に、BET:20m2/gのマグネタイト(一次粒子径60nm)20gを、純水570mLに添加し、常温にて30分間8000rpmで攪拌して分散させて磁性粉スラリーを得た。
 得られた磁性粉スラリーに、アンモニア水(濃度:21.3質量%)15mLを添加して、pHをアルカリ性とした。そして当該磁性粉スラリーへPDDA15g(PDDAとしての固形分3.0g)を添加し、常温にて30分間240rpmで攪拌し、磁性粉粒子へPDDAを付着させた。尚、当該PDDA(ポリ塩化ジアリルジメチルアンモニウム)としては、分子量10~15万、固形分濃度20質量%、シグマアルドリッチ社製を用いた。
 得られた磁性粉スラリーを磁石の上で静置して、PDDA被覆された磁性粉粒子をスラリーから沈降させた後、上澄みを除き、余分なPDDAやアンモニア成分を除去して沈降物を得た。
 得られた沈降物へ純水を加えて400mLのスラリーとし、当該スラリーを攪拌して、液中に不純物を溶かし出した。当該スラリーを再度磁石の上に静置して、PDDA被覆された磁性粉粒子をスラリーから沈降させた後、上澄みを除き、余分なPDDAやアンモニア成分を再度除去して沈降物を得た。
 上述の洗浄操作を3回繰り返したところ、スラリーのpH値は8.6となり、導電率は8.5mS/mを示した。また、当該スラリーの一部を採取して乾燥し炭素量を確認したところ、0.5質量%の炭素が検出された。
 当該スラリーを、常温にて強い剪断力を有する分散機(プライミクス株式会社製のTKホモミクサーMarkII)により8000rpm(翼周速度12.57m/s)で30分間攪拌し磁性粉を分散させた。
 分散処理を行なった磁性粉スラリーへ、フェロシアン化カリウム水溶液(フェロシアン化カリウム三水和物として24.45g含有)、および、硫酸ニッケル水溶液(硫酸ニッケル六水和物として19.99g含有)を、それぞれ添加して、常温にて剪断力を有する分散機(プライミクス株式会社製のTKホモミクサーMarkII)により8000rpmで30分間攪拌した。当該操作により、PDDAにより被覆された磁性粉粒子の表面に、フェロシアン化ニッケル被覆膜を形成させ、実施例1に係る除染剤粒子のスラリーを得た。得られたスラリーの一部を分取して、磁石上に静置したところ、除染剤成分と上澄みが直ちに分離をしはじめ、分離された後の上澄みは無色透明な清澄な液体であった。
 得られた除染剤粒子のスラリーを大気中で吸引濾過して、除染剤粒子ケーキと反応液とを分離し、得られた除染剤粒子ケーキを大気中、100℃で6時間乾燥して除染剤粒子の乾燥体を得た。得られた除染剤粒子の乾燥体を乳鉢で粉砕し、染剤粉末とした。得られた粉末のSEM像を確認したところ、図1に示すようなものであり、得られた粉末のBET値は62.6m2/gであった。
 得られた除染剤粉末を、XRDを用いて評価したところ、シャープな回折線が確認され、JCPDSカードにて同定すると、ニッケルのフェロシアン化物およびマグネタイトに起因するピークであることが確認された。得られたXRD回折パターンは図2に示した。また、得られた除染剤について、蛍光X線による定量分析を行ったところ、ニッケル/鉄の原子量比は0.30であった。また、得られた粒子の安定性セシウムの吸着能力(セシウム除去能力)は60.6%であり、高い吸着性を持っていた。
 つぎに、飛灰61.5gに615mLの純水を添加した後、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、750mLの水を添加した後に、塩酸でpH=10.7に調整した後、液を三分割して、0.14gの除染剤を添加して20分間攪拌し、液中のセシウムを吸着させる試験を行ったところ、44.9%の放射能が低下することが確認され、高い除染能力を示した。
 さらに、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、1時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、未反応の飛灰分散液の放射能を100%とすると、45.6%の放射能が低下することが確認された。
 当該結果を表2に示す。
(実施例2)
 被覆される磁性粉を鉄微粒子(一次粒子径50nm)に変更した以外は、実施例1と同様に操作して、除染剤粉末を得た。得られた粉末のBET値は78.3m2/gであった。得られた粒子のセシウム吸着能力は53.1%であり、高い吸着性を持っていた。また、得られた除染剤を用いて、飛灰53.1gに531mLの純水を添加した後、4時間攪拌して、飛灰中に含有されるセシウムを溶出させ、531mLの水を添加した後に、塩酸でpH10.7に調整した後、液を2分割して、0.26gの除染剤を添加して20分間拌し、液中の放射性セシウムを吸着させる試験を行ったところ、65.9%の放射能が低下することが確認された。
(実施例3)
 分散処理した磁性粉スラリーに添加する成分として、フェロシアン化カリウム水溶液(フェロシアン化カリウム三水和物として24.45g含有)、および塩化鉄水溶液(塩化鉄(和光純薬工業株式会社製特級試薬)として29.23g含有)をそれぞれ添加して、常温で30分間、8000rpmで攪拌して、粒子の表面にフェロシアン化鉄を形成させた以外は、実施例1と同様に操作して、除染剤スラリーを作製し、さらに除染剤粉末を得た。
 得られたスラリーの一部を抜き出して容器に注いで磁石上に置いたところ、上澄み液は無色透明であることが確認された。そこで、フェロシアン化鉄の被着が十分に行えていることが知見された。
 得られた除染剤粉末のBET値は64.3m2/gであった。
 得られた除染剤粉末の安定性セシウム吸着能力は53.8%であった。
 当該結果を表1に示す。
 得られた除染剤粉末を、XRDを用いて評価したところ、シャープな回折線が確認され、JCPDSカードにて同定すると、フェロシアン化鉄およびマグネタイトに起因するピークであることが確認された。
(実施例4)
 1000mL容量のビーカーへ純水540gを注ぎ、磁性粒子を含む原料粉末としてDOWAエレクトロニクス株式会社製、平均長軸長235nmの針状粒子(コバルト/鉄=3.0at%)30gを添加した。そして、高速乳化・分散機(プライミクス株式会社製TKホモミクサーMarkII)を使用して、8000rpmで30分間乳化分散させ、原料粉末の分散スラリーを得た。
 原料粉末スラリーに、濃度21.3%のアンモニア水2.5gを添加して、pHを塩基性に変えた後、PDDA(固形分39質量%)を0.50g添加し、再度、上述した分散機で8000rpmにて30分間乳化分散させ、PDDAの被覆層を形成した磁性粒子のスラリーを得た。
 得られた被覆層を形成した磁性粒子のスラリーへ、0.5mol/Lのフェロシアン化カリウム水溶液160g、0.49mol/L硫酸ニッケル水溶液220gをそれぞれ添加して、再度、上述した分散機で8000rpmにて30分間乳化を継続し、PDDAの被覆層を形成した磁性粒子上にフェロシアン化ニッケルを付着させて除染剤粒子とし、当該除染剤粒子を含むスラリー(固形分濃度、約10質量%)を得た。
 得られたスラリーの一部を抜き出して容器に注いで磁石上に置いたところ、上澄み液は無色透明であることが確認された。そこで、フェロシアン化ニッケルの被着が十分に行えていることが知見された。
 得られた除染剤粒子を含むスラリーを、ディスク型スプレードライヤー(大川原加工機株式会社製L-12型スプレードライヤー)を用いて、入口温度240℃、ディスク回転数20000rpm、スラリーの供給速度は180g/minとした条件にて噴霧し、除染剤粒子の凝集体を得た。
 得られた除染剤粒子の凝集体を、サイクロンを用いて回収した。そして当該サイクロン内で回収された除染剤粒子の凝集体を実施例4に係る除染剤粉末とした。
 実施例4に係る除染剤のBET値は、52.9m2/gであった。
 実施例4に係る除染剤の得られた粒子の安定性セシウムの吸着能力は60.9%であり、高い吸着性を持っていた。
 実施例4について、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、24時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、未反応の飛灰分散液の放射能を100%とすると、73.4%の放射能が低下することが確認された。
 当該結果を表3に示す。
 当該実施例4に係る除染剤のSEM像(500倍)を図3に示す。
(実施例5)
 実施例4と同様の製造方法で、除染剤粒子の凝集体を得た。
 得られた除染剤粒子の凝集体を、サイクロンを用いて回収した。このときチャンバ下で回収された除染剤粒子を実施例5に係る除染剤粉末とした。
 実施例5に係る除染剤のBET値は、60.6m2/gであった。
 実施例5に係る除染剤の得られた粒子の安定性セシウムの吸着能力は57.4%であり、高い吸着性を持っていた。
 実施例4と同様に処理して除染率を確認したところ、未反応の飛灰分散液の放射能を100%とすると、71.9%の放射能が低下することが確認された。
 当該結果を表3に示す。
 当該実施例5に係る除染剤のSEM像(500倍)を図4に示す。
(実施例6)
 実施例4と同様の製造方法で、除染剤粒子の凝集体を得た。
 得られた除染剤粒子の凝集体を、サイクロンを用いて回収した。このときサイクロン内とチャンバ下とで回収された除染剤粒子を混合したものを実施例6に係る除染剤粉末とした。
 実施例6に係る除染剤のBET値は、54.8m2/gであった。
 実施例6に係る除染剤の得られた粒子の安定性セシウムの吸着能力は44.5%であり、高い吸着性を持っていた。
 実施例4と同様に処理して除染率を確認したところ、未反応の飛灰分散液の放射能を100%とすると、73.8%の放射能が低下することが確認された。
 当該結果を表3に示す。
 また、当該実施例6に係る除染剤、および上述した実施例4、5に係る除染剤の凝集体に係る累積粒径のグラフを図5に示す。
(実施例7)
 実施例1における、常温にての30分間8000rpmの攪拌において、当該攪拌回転数を4000rpmとした以外は実施例1と同様の操作を行って、実施例7に係る除染剤粒子の凝集体を得た。
 実施例7に係る除染剤のBET値は、54.3m2/gであった。
 また、当該実施例7に係る除染剤、および後述する実施例8、比較例2に係る除染剤の凝集体に係る累積粒径のグラフを図6に示す。
 さらに、得られた除染剤について、蛍光X線による定量分析を行ったところ、ニッケル/鉄の原子量比は0.31であった。また、得られた粒子の安定性セシウムの吸着能力は57.9%であり、高い吸着性を持っていた。
 さらに、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、1時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、未反応の飛灰分散液の放射能を100%とすると、42.0%の放射能が低下することが確認された。
 当該結果を表2に示す。
(実施例8)
 実施例1における、常温にての30分間8000rpmの攪拌において、当該攪拌回転数を2000rpmとした以外は実施例1と同様の操作を行って、実施例8に係る除染剤粒子の凝集体を得た。
 実施例8に係る除染剤のBET値は、64.0m2/gであった。
さらに、得られた除染剤について、蛍光X線による定量分析を行ったところ、ニッケル/鉄の原子量比は0.27であった。また、得られた粒子の安定性セシウムの吸着能力は45.3%であり、高い吸着性を持っていた。さらに、実施例7と同様の条件で飛灰からの除染試験を試みたところ、39.5%の放射能が低下することが確認された。
 当該結果を表2に示す。
(実施例9)
 実施例6において得られたスラリーをNo.5濾紙でろ過した後、窒素中にて常温で乾燥した後、メノウ乳鉢で粉砕した。得られた粒子の(D50)値は52.3μmであった。
 実施例9に係る除染剤の得られた粒子の安定性セシウムの吸着能力は41.3%であり、高い吸着性を持っていた。
 また、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、24時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、未反応の飛灰分散液の放射能を100%とすると、47.9%の放射能が低下することが確認された。
 当該結果を表3に示す。
(比較例1)
 実施例3において、得られた除染剤粒子のスラリーから水分を除去せずに、当該スラリーの状態で除去操作を行った。すると、対象物である飛灰を巻き込んでしまい、減容化を図ることができなかった。
 また、得られたスラリーの一部を抜き出して容器に注ぎ、磁石上に置いて除染剤を沈降させた。すると、上澄み中に紺青の着色が確認され、フェロシアン化鉄の被着が十分には行えていないことが知見された。
 当該結果を表1に示す。
(比較例2)
 実施例1において、攪拌をプロペラ形攪拌機で行い、630rpm(翼径:50mm、翼周速度1.65m/s)で付着操作を行った以外は、実施例1と同様に操作して、フェロシアン化ニッケルの被着を試み、乾燥して乾燥粉を得た。XRDにより粉末の定性分析を行った。すると、フェロシアン化ニッケル化合物の存在が確認された。ところが、得られた除染剤について、蛍光X線による定量分析を行ったところ、ニッケル/鉄の原子量比は0.19であった。また、得られた粒子の安定性セシウムの吸着能力は24.1%であった。ニッケルは除染成分であるフェロシアン化物のみに含まれるため、ニッケル/鉄の値が小さくなっていることは、ニッケルが十分に被覆できていないことを示唆する。その結果、除染剤におけるセシウム吸着能力が低下してしまったものと考えられる。
 さらに、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、1時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、未反応の飛灰分散液の放射能を100%とすると、28.2%の放射能の低下にとどまった。このことも、フェロシアン化物による磁性粉の被覆が十分には行えていないと考えられる。
 当該結果を表2に示す。
 これらのことから、剪断力の小さい通常の攪拌であるとフェロシアン化物の被覆が十分に行えず、本来持っている除染能力を発揮できない可能性が示唆された。また、原料が十分に被覆できない場合には、液中にフェロシアン化物イオンが残存することになるので、製造した後のシアン化物を含有する液の処分の問題も残ることが知見された。
(比較例3)
 実施例3において、攪拌をプロペラ形攪拌機で240rpm(翼周速度0.63m/s)にて付着操作を行った以外は同様に操作して、フェロシアン化鉄の被着を試みた。
 そして、フェロシアン化鉄の付着処理の後、得られたスラリーの一部を抜き出して容器に注いで磁石上に置いたところ、上澄み中に紺青の着色を確認されたので、剪断力の小さい通常の攪拌であると、十分にフェロシアン化鉄の被着が行えていないことが知見された。
 当該結果を表1に示す。
(比較例4)
 実施例3において、PDDAの付着操作を行う前にアンモニアの添加を行わなかった以外は、実施例3と同様に操作して、フェロシアン化鉄の被着を試みた。
 そして、フェロシアン化鉄の付着処理の後、得られたスラリーの一部を抜き出して容器に注ぎ、磁石上に置いて除染剤を沈降させた。すると、上澄み中に紺青の着色が確認され、フェロシアン化鉄の被着が十分には行えていないことが知見された。
 当該結果を表1に示す。
(比較例5)
 実施例3において、磁性粉粒子へのPDDA被覆後における洗浄を十分に行わない状態(pH=11.22)で、フェロシアン化鉄の被着を試みた。
 そして、フェロシアン化鉄の付着処理の後、得られたスラリーの一部を抜き出して容器に注いで磁石上に置いたところ、上澄み中に紺青の着色を確認されたので、十分にフェロシアン化鉄の被着が行えていないことが知見された。
 当該結果を表1に示す。
(参考例1)
 実施例4と同様の製造方法で、除染剤粒子の凝集体を得た。
 得られた除染剤粒子の凝集体のうち、サイクロンで回収された実施例4-6に係る粒子よりもさらに微細な粒子を、バグフィルターを用いて回収し参考例1に係る除染剤粉末とした。
 参考例1に係る除染剤のBET値は、60.6m2/gであった。
 参考例1に係る除染剤の得られた粒子の安定性セシウムの吸着能力は52.3%であり、高い吸着性を持っていた。
 しかし、飛灰40.0gを400mLの純水を添加した後に、24時間攪拌して、飛灰中に含有されるセシウムを溶出させ、塩酸でpH=10.7に調整した後、除染剤40.0mg{除染剤/飛灰:1/1000(重量比)}を添加して、24時間攪拌して反応させて、液中のセシウムを吸着させる試験を行ったところ、当該参考例1に係る除染剤粒子と飛灰とが混合されてしまう様子が確認された。そして、未反応の飛灰分散液の放射能を100%とすると、算出された放射性セシウムの除染率は29.7%にとどまった。
 当該結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に係る除染剤を使用することにより、懸濁液中に浮遊する懸濁成分の存在があっても、当該液中のセシウム濃度を低減することができる。この結果、本発明に係る除染剤は、例示した焼却飛灰の洗浄水のみならず、放射能汚染水の除染などにも適用することが可能である。

Claims (8)

  1.  溶媒中に磁性粒子を懸濁させ、当該磁性粒子を有機物のモノマーもしくはポリマーで被覆処理して前駆体を形成する工程と、
     当該被覆処理後の前駆体を含む懸濁液へ、強い剪断力を加えながら、フェロシアン化物水溶液と、少なくとも一種の遷移金属を含む水溶液とを添加し、放射性セシウム除染剤を生成させる工程と、
     得られた放射性セシウム除染剤を含むスラリーから、水分を除去する工程とを有する、放射性セシウム除染剤の製造方法。
  2.  前記有機物のモノマーもしくはポリマーでの被覆処理の際、予め、スラリーへアルカリを添加して、液性をアルカリ性に調整してから被覆処理を行う、請求項1に記載の放射性セシウム除染剤の製造方法。
  3.  磁性粒子の表面に有機物からなる被覆層を有し、当該被覆層の表面にフェロシアン化物からなるセシウム吸収成分を備える一次粒子が凝集してなる放射性セシウム除染剤であって、
     レーザー回折型粒度分布測定により測定される累積粒子径(D50)が、2.0μm以上、50μm以下、且つ、累積粒度分布(D90-D10)/D50の値が6未満である、放射性セシウム除染剤。
  4.  前記レーザー回折型粒度分布測定により測定される累積粒子径(D90)が5.0μm以上、150μm以下である請求項3に記載の放射性セシウム除染剤。
  5.  前記磁性粒子の一次粒子径が1nm以上、300nm以下である、請求項3または4のいずれかに記載の放射性セシウム除染剤。
  6.  BET法による比表面積値が1m2/g以上、150m2/g以下である請求項3から5のいずれかに記載の放射性セシウム除染剤。
  7.  放射性セシウムを含む被処理物と、
     請求項1または2に記載の放射線セシウム除染剤の製造方法により製造された放射性セシウム除染剤、または、請求項3から6のいずれかに記載の放射性セシウム除染剤とを、溶媒に懸濁させ、当該溶媒中に存在する放射性セシウムを放射性セシウム除染剤に取り込ませる工程と、
     当該溶媒に磁場を与え、放射性セシウムを取り込ませた放射性セシウム除染剤を当該溶媒中から回収する工程とを有する、放射性セシウムの除去方法。
  8.  溶媒中に存在する放射性セシウムを放射性セシウム除染剤に取り込ませる工程に至るまでに、
     予め放射性セシウムを含む被処理物を溶媒に懸濁させて、放射性セシウムを溶媒中に溶出する工程と、
     溶媒から被処理物を分離することなく、放射性セシウム除染剤を溶媒に添加する工程を備える、請求項7に記載の放射性セシウムの除去方法。
PCT/JP2013/074408 2012-09-10 2013-09-10 放射性セシウム除染剤及びその製造方法、並びに放射性セシウムの除去方法 WO2014038713A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/427,111 US10233099B2 (en) 2012-09-10 2013-09-10 Radioactive cesium decontaminator and method of producing the same, and method of removing the radioactive cesium
EP13834751.3A EP2894637A4 (en) 2012-09-10 2013-09-10 RADIOACTIVE CÄSIUM DECONTAMINATING AGENT AND METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR REMOVING RADIOACTIVE CÄSIUM
JP2014534442A JP5755377B2 (ja) 2012-09-10 2013-09-10 放射性セシウム除染剤の製造方法及び放射性セシウムの除去方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012199000 2012-09-10
JP2012-199000 2012-09-10
JP2013176096 2013-08-27
JP2013-176096 2013-08-27

Publications (1)

Publication Number Publication Date
WO2014038713A1 true WO2014038713A1 (ja) 2014-03-13

Family

ID=50237316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074408 WO2014038713A1 (ja) 2012-09-10 2013-09-10 放射性セシウム除染剤及びその製造方法、並びに放射性セシウムの除去方法

Country Status (4)

Country Link
US (1) US10233099B2 (ja)
EP (1) EP2894637A4 (ja)
JP (2) JP5755377B2 (ja)
WO (1) WO2014038713A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117981A (ja) * 2013-12-18 2015-06-25 大成建設株式会社 放射性セシウムを含む飛灰の除染方法及び除染装置
JP2016211891A (ja) * 2015-04-30 2016-12-15 国立大学法人名古屋大学 懸濁態セシウムの除去方法
WO2022102448A1 (ja) * 2020-11-10 2022-05-19 国立研究開発法人産業技術総合研究所 造粒吸着材及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160108B1 (ko) * 2017-12-28 2020-09-25 한국원자력연구원 방사성 세슘 흡착제 및 이를 이용한 방사성 세슘의 제거방법
KR102179479B1 (ko) * 2019-04-23 2020-11-16 한국전력기술 주식회사 방사성세슘으로 오염된 폐액에서 세슘을 제거하는 폐액 처리 방법 및 이를 위한 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932054B1 (ja) 2011-04-28 2012-05-16 学校法人慈恵大学 放射性物質類除染システム、及び放射性物質類の除染方法、及び除染用磁性複合粒子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9115018D0 (en) * 1991-07-11 1991-08-28 Bradtec Ltd Purification of solutions
US5855790A (en) * 1994-02-07 1999-01-05 Selective Environmental Technologies, Inc. Magnetic particles, a method for the preparation thereof and their use in the purification of solutions
GB9402334D0 (en) * 1994-02-07 1994-03-30 Bradtecltd Magnetic particles a method for the preparation thereof and their use in the purification of solutions
CN1117030C (zh) * 1996-03-08 2003-08-06 美国3M公司 铯离子吸收剂及其制造和使用方法
US5989434A (en) * 1997-10-31 1999-11-23 3M Innovative Properties Company Method for removing metal ions from solution with titanate sorbents
GB0200259D0 (en) * 2002-01-07 2002-02-20 Univ Reading The Encapsulated radioactive nuclide microparticles and methods for their production
US20050005869A1 (en) * 2003-07-11 2005-01-13 The Clorox Company Composite absorbent particles
FR2927725B1 (fr) * 2008-02-18 2014-09-05 Commissariat Energie Atomique Procede de decontamination d'un effluent liquide en un ou plusieurs elements chimiques par extraction solide-liquide mettant en oeuvre une boucle de recyclage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4932054B1 (ja) 2011-04-28 2012-05-16 学校法人慈恵大学 放射性物質類除染システム、及び放射性物質類の除染方法、及び除染用磁性複合粒子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ITO, 1ST ENVIRONMENTAL RADIOACTIVITY DECONTAMINATION RESEARCH WORKSHOP ABSTRACTS, 2012, pages 51
NISHIZAKI, 1ST ENVIRONMENTAL RADIOACTIVITY DECONTAMINATION RESEARCH WORKSHOP ABSTRACTS, 2012, pages 50
See also references of EP2894637A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117981A (ja) * 2013-12-18 2015-06-25 大成建設株式会社 放射性セシウムを含む飛灰の除染方法及び除染装置
JP2016211891A (ja) * 2015-04-30 2016-12-15 国立大学法人名古屋大学 懸濁態セシウムの除去方法
WO2022102448A1 (ja) * 2020-11-10 2022-05-19 国立研究開発法人産業技術総合研究所 造粒吸着材及びその製造方法
JP2022076717A (ja) * 2020-11-10 2022-05-20 国立研究開発法人産業技術総合研究所 造粒吸着材及びその製造方法

Also Published As

Publication number Publication date
EP2894637A1 (en) 2015-07-15
JP5755377B2 (ja) 2015-07-29
US10233099B2 (en) 2019-03-19
JPWO2014038713A1 (ja) 2016-08-12
EP2894637A4 (en) 2016-05-04
JP5753960B2 (ja) 2015-07-22
JP2015129756A (ja) 2015-07-16
US20150239758A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
Shubair et al. Preparation of new magnetic zeolite nanocomposites for removal of strontium from polluted waters
Husnain et al. Magnetite-based adsorbents for sequestration of radionuclides: a review
Zhou et al. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid
JP5753960B2 (ja) 放射性セシウム除染剤及び放射性セシウムの除去方法
Ngomsik et al. Magnetic solid–liquid extraction of Eu (III), La (III), Ni (II) and Co (II) with maghemite nanoparticles
Wen et al. Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu (II) and Zn (II)
Fan et al. Removal of arsenic from simulation wastewater using nano-iron/oyster shell composites
Shadi et al. Efficient treatment of raw leachate using magnetic ore iron oxide nanoparticles Fe₂O₃ as nanoadsorbents
JP5652559B2 (ja) 磁性粒子を用いた水溶液中のセシウムイオンの除去方法
CN106475066B (zh) 磁性粉末活性炭吸附剂的制备方法、产品及应用
Rahman et al. Iron-incorporated activated carbon synthesis from biomass mixture for enhanced arsenic adsorption
Zhou et al. A comparison of water treatment sludge and red mud as adsorbents of As and Se in aqueous solution and their capacity for desorption and regeneration
JP6020449B2 (ja) 水中のセシウムイオンの除去方法及び除去装置
Elzoghby et al. Synthesis of polyamide-based nanocomposites using green-synthesized chromium and copper oxides nanoparticles for the sorption of uranium from aqueous solution
JP6797593B2 (ja) 汚染物の処理方法
Paswan et al. Spinel ferrite magnetic nanoparticles: an alternative for wastewater treatment
JP2015166080A (ja) 水溶液中の有害物質の除去方法
JP6262449B2 (ja) 放射性セシウム除染粒子の凝集体とその製造方法、並びに、放射性セシウムの除染方法
JP6105363B2 (ja) 汚染物質の除去方法および磁性除染剤の製造方法
Zhang et al. Highly effective lead ion adsorption by manganese-dioxide-supported core-shell structured magnetite
Huang et al. In situ electrosynthesis of magnetic Prussian blue/ferrite composites for removal of cesium in aqueous radioactive waste
KR101579795B1 (ko) 고정화된 견운모를 이용한 세슘 제거방법
Liu et al. Preparation of carboxy methyl cellulose stabilized nano-sized zero-valent iron and its properties for in situ remediation of groundwater in areas after acid in situ leach uranium mining
Han et al. N-enriched covalent organic polymer derived nanoscale zero-valent iron for effective oxidative degradation of tetracycline
JP2003062458A (ja) 重金属の吸着剤及びこれを用いた重金属の除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14427111

Country of ref document: US