US20050005869A1 - Composite absorbent particles - Google Patents

Composite absorbent particles Download PDF

Info

Publication number
US20050005869A1
US20050005869A1 US10618401 US61840103A US2005005869A1 US 20050005869 A1 US20050005869 A1 US 20050005869A1 US 10618401 US10618401 US 10618401 US 61840103 A US61840103 A US 61840103A US 2005005869 A1 US2005005869 A1 US 2005005869A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
recited
particle
composite particle
particles
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10618401
Inventor
Charles Fritter
Ananth Shenoy
Kevin Wallis
Sarah Blondeau
Ryan Ochylski
Dennis Jenkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clorox Co
Original Assignee
Clorox Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • A01K1/0154Litter comprising inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K1/00Housing animals; Equipment therefor
    • A01K1/015Floor coverings, e.g. bedding-down sheets ; Stable floors
    • A01K1/0152Litter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28095Shape or type of pores, voids, channels, ducts
    • B01J20/28097Shape or type of pores, voids, channels, ducts being coated, filled or plugged with specific compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Abstract

Composite particles and methods for making the same. An absorbent material is formed into a particle. An optional performance-enhancing active is coupled to the absorbent material before, during, or after the particle-forming process, homogeneously and/or in layers. Additionally, the composite absorbent particle may include a core material. Preferred methods for creating the absorbent particles include a pan agglomeration process, a high shear agglomeration process, a low shear agglomeration process, a high pressure agglomeration process, a low pressure agglomeration process, a rotary drum agglomeration process, a mix muller process, a roll press compaction process, a pin mixer process, a batch tumble blending mixer process, an extrusion process, and a fluid bed process.

Description

    FIELD OF THE INVENTION
  • The present invention relates to composite absorbent particles, and more particularly, this invention relates to a composite absorbent particle having improved clumping and odor-inhibiting properties.
  • BACKGROUND OF THE INVENTION
  • Clay has long been used as a liquid absorbent, and has found particular usefulness as an animal litter.
  • Because of the growing number of domestic animals used as house pets, there is a need for litters so that animals may micturate, void or otherwise eliminate liquid or solid waste indoors in a controlled location. Many cat litters use clay as an absorbent. Typically, the clay is mined, dried, and crushed to the desired particle size.
  • Some clay litters have the ability to clump upon wetting. For example, sodium bentonite is a water-swellable clay which, upon contact with moist animal waste, is able to agglomerate with other moistened sodium bentonite clay particles. The moist animal waste is contained by the agglomeration of the moist clay particles into an isolatable clump, which can be removed from the container (e.g., litterbox) housing the litter. However, the clump strength of clay litters described above is typically not strong enough to hold the clump shape upon scooping, and inevitably, pieces of the litter break off of the clump and remain in the litter box, allowing waste therein to create malodors. Further, raw clay typically has a high clump aspect ratio when urinated in. The result is that the wetted portion of clay will often extend to the container containing it and stick to the side or bottom of the container.
  • What is needed is an absorbent material suitable for use as a cat litter/liquid absorbent that has better clumping characteristics, i.e., clump strength and aspect ratio, than absorbent materials heretofore known.
  • Another problem inherent in typical litters is the inability to effectively control malodors. Clay has very poor odor-controlling qualities, and inevitably waste build-up leads to severe malodor production. One attempted solution to the malodor problem has been the introduction of granular activated carbon (GAC) (20-8 mesh) into the litter. However, the GAC is usually dry blended with the litter, making the litter undesirably dusty. Other methods mix GAC and clay and compress the mixture into particles. In either case, the GAC concentration must typically be 1% by weight or higher to be effective. GAC is very expensive, and the need for such high concentrations greatly increases production costs. Further, because the clay and GAC particles are merely mixed, the litter will have GAC agglomerated in some areas, and particles with no GAC.
  • The human objection to odor is not the only reason that it is desirable to reduce odors. Studies have shown that cats prefer litter with little or no smell. One theory is that cats like to mark their territory by urinating. When cats return to the litterbox and don't sense their odor, they will try to mark their territory again. The net effect is that cats return to use the litter box more often if the odor of their markings are reduced.
  • What is needed is an absorbent material with improved odor-controlling properties, and that maintains such properties for longer periods of time.
  • What is further needed is an absorbent material with odor-controlling properties comparable to heretofore known materials, yet requiring much lower concentrations of odor controlling actives.
  • What is still further needed is an absorbent material with a lower bulk density while maintaining a high absorbency rate comparable to heretofore known materials.
  • SUMMARY OF THE INVENTION
  • The present invention provides composite absorbent particles and methods for making the same. An absorbent material is formed into a particle, preferably, by an agglomeration process. An optional performance-enhancing active is coupled to the absorbent material during the agglomeration process, homogeneously and/or in layers. Exemplary actives include antimicrobials, odor absorbers/inhibitors, binders (liquid/solid, silicate, ligninsulfonate, etc.), fragrances, health indicating materials, nonstick release agents, and mixtures thereof. Additionally, the composite absorbent particle may include a core material.
  • Methods disclosed for creating the absorbent particles include a pan agglomeration process, a high shear agglomeration process, a low shear agglomeration process, a high pressure agglomeration process, a low pressure agglomeration process, a rotary drum agglomeration process, a mix muller process, a roll press compaction process, a pin mixer process, a batch tumble blending mixer process, and an extrusion process. Fluid bed process may also represent a technique for forming the inventive particles.
  • The processing technology disclosed herein allows the “engineering” of the individual composite particles so that the characteristics of the final product can be predetermined. The composite particles are particularly useful as an animal litter. Favorable characteristics for a litter product such as odor control, active optimization, low density, low tracking, low dust, strong clumping, etc. can be optimized to give the specific performance required. Another aspect of the invention is the use of encapsulated actives, i.e., formed into the particle itself and accessible via pores or discontinuities in the particles. Encapsulation of actives provides a slow release mechanism such that the actives are in a useful form for a longer period of time. Thus, the present invention's engineered composite particle optimizing the performance enhancing actives is novel in light of the prior art.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a fuller understanding of the nature and advantages of the present invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings.
  • FIG. 1 illustrates several configurations of absorbent composite particles according to various embodiments of the present invention.
  • FIG. 2 is a process diagram illustrating a pan agglomeration process according to a preferred embodiment.
  • FIG. 3 depicts the structure of an illustrative agglomerated composite particle formed by the process of FIG. 2.
  • FIG. 4 is a process diagram illustrating another exemplary pan agglomeration process with a recycle subsystem.
  • FIG. 5 is a process diagram illustrating an exemplary pin mixer process for forming composite absorbent particles.
  • FIG. 6 is a process diagram illustrating an exemplary mix muller process for forming composite absorbent particles.
  • FIG. 7 is a graph depicting malodor ratings.
  • FIG. 8 depicts the clumping action of composite absorbent particles according to a preferred embodiment.
  • FIG. 9 depicts disintegration of a composite absorbent particle according to a preferred embodiment.
  • BEST MODES FOR CARRYING OUT THE INVENTION
  • The following description includes the best embodiments presently contemplated for carrying out the present invention. This description is made for the purpose of illustrating the general principles of the present invention and is not meant to limit the inventive concepts claimed herein.
  • The present invention relates generally to composite absorbent particles with improved physical and chemical properties comprising an absorbent material and optional performance-enhancing actives. By using various processes described herein, such particles can be “engineered” to preferentially exhibit specific characteristics including but not limited to improved odor control, lower density, easier scooping, better particle/active consistency, higher clump strength, etc. One of the many benefits of this technology is that the performance-enhancing actives may be positioned to optimally react with target molecules such as but not limited to odor causing volatile substances, resulting in surprising odor control with very low levels of active ingredient.
  • A preferred use for the absorbent particles is as a cat litter, and therefore much of the discussion herein will refer to cat litter applications. However, it should be kept in mind that the absorbent particles have a multitude of applications, and should not be limited to the context of a cat litter.
  • One preferred method of forming the absorbent particles is by agglomerating granules of an absorbent material in a pan agglomerator. A preferred pan agglomeration process is set forth in more detail below, but is described generally here to aid the reader. Generally, the granules of absorbent material are added to an angled, rotating pan. A fluid or binder is added to the granules in the pan to cause binding of the granules. As the pan rotates, the granules combine or agglomerate to form particles. Depending on pan angle and pan speed among other factors, the particles tumble out of the agglomerator when they reach a certain size. The particles are then dried and collected.
  • One or more performance-enhancing actives are preferably added to the particles in an amount effective to perform the desired functionality or provide the desired benefit. For example, these actives can be added during the agglomeration process so that the actives are incorporated into the particle itself, or can be added during a later processing step.
  • FIG. 1 shows several embodiments of the absorbent particles of the present invention. These particles have actives incorporated:
      • 1. In a layer on the surface of a particle (102)
      • 2. Evenly (homogeneously) throughout a composite litter particle (104)
      • 3. In a concentric layer(s) throughout the particle and/or around a core (106)
      • 4. In pockets or pores in and/or around a particle (108)
      • 5. In a particle with single or multiple cores (110)
      • 6. Utilizing non-absorbent cores (112)
      • 7. No actives (114)
      • 8. No actives, but with single or multiple cores (116)
      • 9. In any combination of the above
  • As previously recited hereinabove, other particle-forming processes may be used to form the inventive particles of the present invention. For example, without limitation, extrusion and fluid bed processes appear appropriate. Extrusion process typically involves introducing a solid and a liquid to form a paste or doughy mass, then forcing through a die plate or other sizing means. Because the forcing of a mass through a die can adiabatically produce heat, a cooling jacket or other means of temperature regulation may be necessary. The chemical engineering literature has many examples of extrusion techniques, equipment and materials, such as “Outline of Particle Technology,” pp. 1-6 (1999), “Know-How in Extrusion of Plastics (Clays) or NonPlastics (Ceramic Oxides) Raw Materials, pp. 1-2, “Putting Crossflow Filtration to the Test,” Chemical Engineering, pp. 1-5 (2002), and Brodbeck et al., U.S. Pat. No. 5,269,962, especially col. 18, lines 30-61 thereof, all of which is incorporated herein by reference thereto. Fluid bed process is depicted in Coyne et al., U.S. Pat. No. 5,093,021, especially col. 8, line 65 to col. 9, line 40, incorporated herein by reference.
  • Materials
  • Many liquid-absorbing materials may be used without departing from the spirit and scope of the present invention. Illustrative absorbent materials include but are not limited to minerals, fly ash, absorbing pelletized materials, perlite, silicas, other absorbent materials and mixtures thereof. Preferred minerals include: bentonites, zeolites, fullers earth, attapulgite, montmorillonite diatomaceous earth, opaline silica, Georgia White clay, sepiolite, calcite, dolomite, slate, pumice, tobermite, marls, attapulgite, kaolinite, halloysite, smectite, vermiculite, hectorite, Fuller's earth, fossilized plant materials, expanded perlites, gypsum and other similar minerals and mixtures thereof. The preferred absorbent material is sodium bentonite having a mean particle diameter of about 5000 microns or less, preferably about 3000 microns or less, and ideally in the range of about 25 to about 150 microns.
  • Because minerals, and particularly clay, are heavy, it is may be desirable to reduce the weight of the composite absorbent particles to reduce shipping costs, reduce the amount of material needed to need to fill the same relative volume of the litter box, and to make the material easier for customers to carry. To lower the weight of each particle, a lightweight core material, or “core,” may be incorporated into each particle. The core can be positioned towards the center of the particle with a layer or layers of absorbent and/or active surrounding the core in the form of a shell. This configuration increases the active concentration towards the outside of the particles, making the active more effective. The shell can be of any desirable thickness. In one embodiment with a thin shell, the shell has an average thickness of less than about ½ that of the average diameter of the particle, and preferably the shell has an average thickness of not less than about {fraction (1/16)} that of the average diameter of the particle. More preferably, the shell has an average thickness of between about {fraction (7/16)} and ⅛ that of the average diameter of the particle, even more preferably less than about ½ that of the average diameter of the particle, and ideally between about ⅜ and ⅛ that of the average diameter of the particle. Note that these ranges are preferred but not limiting.
  • According to another embodiment comprising a core and absorbent material surrounding the core in the form of a shell, an average thickness of the shell is at least about four times an average diameter of the core. In another embodiment, an average thickness of the shell is between about 1 and about 4 times an average diameter of the core. In yet another embodiment, an average thickness of the shell is less than an average diameter of the core. In a further embodiment, an average thickness of the shell is less than about one-half an average diameter of the core.
  • Other ranges can be used, but the thickness of the shell of absorbent material/active surrounding a non-clumping core should be balanced to ensure that good clumping properties are maintained.
  • In another embodiment, the absorbent material “surrounds” a core (e.g., powder, granules, clumps, etc.) that is dispersed homogeneously throughout the particle or in concentric layers. For example, a lightweight or heavyweight core material can be agglomerated homogeneously into the particle in the same way as the active. The core can be solid, hollow, absorbent, nonabsorbent, and combinations of these.
  • Exemplary lightweight core materials include but are not limited to calcium bentonite clay, Attapulgite clay, Perlite, Silica, non-absorbent silicious materials, sand, plant seeds, glass, polymeric materials, and mixtures thereof. A preferred material is a calcium bentonite-containing clay which can weigh about half as much as bentonite clay. Calcium bentonite clay is non-clumping so it doesn't stick together in the presence of water, but rather acts as a seed or core. Granules of absorbent material and active stick to these seed particles during the agglomeration process, forming a shell around the seed.
  • Using the above lightweight materials, a bulk density reduction of ≧10%,≧20%, preferably ≧30%, more preferably ≧40%, and ideally ≧50% can be achieved relative to generally solid particles of the absorbent material (e.g., as mined) and/or particles without the core material(s). For example, in a particle in which sodium bentonite is the absorbent material, using about 50% of lightweight core of calcium bentonite clay results in about a 42% bulk density reduction.
  • Heavyweight cores may be used when it is desirable to have heavier particles. Heavy particles may be useful, for example, when the particles are used in an outdoor application in which high winds could blow the particles away from the target zone. Heavier particles also produce an animal litter that is less likely to be tracked out of a litter box. Illustrative heavyweight core materials include but are not limited to sand, iron filings, etc.
  • Note that the bulk density of the particles can also be adjusted (without use of core material) by manipulating the agglomeration process to increase or decrease pore size within the particle.
  • Note that active may be added to the core material if desired. Further, the core can be selected to make the litter is flushable. One such core material is wood pulp.
  • Illustrative materials for the performance-enhancing active(s) include but are not limited to antimicrobials, odor absorbers/inhibitors, binders, fragrances, health indicating materials, nonstick release agents, superabsorbent materials, and mixtures thereof. One great advantage of the particles of the present invention is that substantially every absorbent particle contains active.
  • Preferred antimicrobial actives are boron containing compounds such as borax pentahydrate, borax decahydrate, boric acid, polyborate, tetraboric acid, sodium metaborate, anhydrous, boron components of polymers, and mixtures thereof.
  • One type of odor absorbing/inhibiting active inhibits the formation of odors. An illustrative material is a water soluble metal salt such as silver, copper, zinc, iron, and aluminum salts and mixtures thereof. Preferred metallic salts are zinc chloride, zinc gluconate, zinc lactate, zinc maleate, zinc salicylate, zinc sulfate, zinc ricinoleate, copper chloride, copper gluconate, and mixtures thereof. Other odor control actives include metal oxide nanoparticles. Additional types of odor absorbing/inhibiting actives include cyclodextrin, zeolites, activated carbon, acidic, salt-forming materials, and mixtures thereof.
  • The preferred odor absorbing/inhibiting active is Powdered Activated Charcoal (PAC), though Granular Activated Carbon (GAC) can also be used. PAC gives much greater surface area than GAC (something larger than powder (e.g., ≧80 mesh U.S. Standard Sieve (U.S.S.S.))), and thus has more sites with which to trap odor-causing materials and is therefore more effective. PAC has only rarely been used in absorbent particles, and particularly animal litter, as it tends to segregate out of the litter during shipping, thereby creating excessive dust (also known as “sifting”). By agglomerating PAC into particles, the present invention overcomes the problems with carbon settling out during shipping. Generally, the preferred mean particle diameter of the carbon particles used is less than about 500 microns, but can be larger. The preferred particle size of the PAC is about 150 microns (˜100 mesh U.S.S.S.) or less, and ideally in the range of about 25 to 150 microns, with a mean diameter of about 50 microns (˜325 mesh U.S.S.S.) or less.
  • The active may be calcium bentonite added to reduce sticking to a litter box.
  • The active may also include a binder such as water, lignin sulfonate (solid), polymeric binders, fibrillated Teflon® (polytetrafluoroethylene or PTFE), and combinations thereof. Useful organic polymerizable binders include, but are not limited to, carboxymethylcellulose (CMC) and its derivatives and its metal salts, guar gum cellulose, xanthan gum, starch, lignin, polyvinyl alcohol, polyacrylic acid, styrene butadiene resins (SBR), and polystyrene acrylic acid resins. Water stable particles can also be made with crosslinked polyester network, including but not limited to those resulting from the reactions of polyacrylic acid or citric acid with different polyols such as glycerin, polyvinyl alcohol, lignin, and hydroxyethylcellulose.
  • Dedusting agents can also be added to the particles in order to reduce the dust ratio. Many of the binders listed above are effective dedusting agents when applied to the outer surface of the composite absorbent particles. Other dedusting agents include but are not limited to gums, resins, water, and other liquid or liquefiable materials.
  • A dye or pigment such as a dye, bleach, lightener, etc. may be added to vary the color of absorbent particles, such as to lighten the color of litter so it is more appealing to an animal, etc.
  • Suitable superabsorbent materials include superabsorbent polymers such as AN905SH, FA920SH, and FO4490SH, all from Floerger. Preferably, the superabsorbent material can absorb at least 5 times its weight of water, and ideally more than 10 times its weight of water.
  • The core mentioned above can also be considered an active, for example including a lightweight material dispersed throughout the particle to reduce the weight of the particle, a core made of pH-altering material, etc. A preferred embodiment is to bind actives directly to the surface of composite absorbent particles. The use of extremely low levels of actives bound only to the surface of absorbent particles leads to the following benefits:
      • 1. the use of extremely small particle size of the active material results in a very high surface area of active while using a very small amount of active,
      • 2. with actives present only on the surface of the substrate, the waste of expensive actives that would be found with ‘homogeneous’ composite particles [where actives are found throughout the substrate particles] is eliminated,
      • 3. segregation of actives from substrates is eliminated; thus, the actives remain dispersed and do not end up on the bottom of the litter container,
      • 4. by using very low levels of expensive actives, the cost of the product is greatly reduced,
      • 5. binding of small particle size actives directly to the substrate surface results in lower dust levels than in bulk added product.
  • Surprisingly, low levels of PAC [0.2-0.3%] have been found to provide excellent odor control in cat litter when they are bound to the surface of a material such as sodium bentonite clay. For example, binding of small amounts of PAC particles to sodium bentonite substrate particles using xanthan gum or fibrillatable PTFE as binder results in litter materials with superior odor adsorbing performance. In this example, the PAC is highly effective at capturing malodorous volatile organic compounds as they escape from solid and liquid wastes due to the high surface area of the PAC, and its preferred location on the surface of the sodium bentonite particles.
  • Another aspect of the invention is the use of Encapsulated Actives, where the actives are positioned inside the particle, homogeneously and/or in layers. Because of the porous structure of the particles, even actives positioned towards the center of the particle are available to provide their particular functionality. Encapsulation of actives provides a slow release mechanism such that the actives are in a useful form for a longer period of time. This is particularly so where the active is used to reduce malodors.
  • Pan Agglomeration and Other Particle Creation Processes
  • The agglomeration process in combination with the unique materials used allows the manufacturer to control the physical properties of particles, such as bulk density, dust, strength, as well as PSD (particle size distribution) without changing the fundamental composition and properties of absorbent particles.
  • One benefit of the pan agglomeration process of the present invention is targeted active delivery, i.e., the position of the active can be “targeted” to specific areas in, on, and/or throughout the particles. Another benefit is that because the way the absorbent particles are formed is controllable, additional benefits can be “engineered” into the absorbent particles, as set forth in more detail below.
  • FIG. 2 is a process diagram illustrating a pan agglomeration process 200 according to a preferred embodiment. In this example, the absorbent granules are bentonite clay and the active is PAC. Cores of a suitable material, here calcium bentonite clay, are also added. The absorbent particles (e.g., bentonite powder) is mixed with the active (e.g., PAC) to form a dry mixture, which is stored in a hopper 202 from which the mixture is fed into the agglomerator 206. Alternatively, the absorbent granules and active(s) may be fed to the agglomerator individually. For example, liquid actives can be added by a sprayer. The cores are preferably stored in another hopper 204, from which they are fed into the agglomerator. A feed curtain can be used to feed the various materials to the agglomerator.
  • In this example, the agglomerator is a pan agglomerator. The pan agglomerator rotates at a set or variable speed about an axis that is angled from the vertical. Water and/or binder is sprayed onto the granules in the agglomerator via sprayers 208 to raise/maintain the moisture content of the particles at a desired level so that they stick together. Bentonite acts as its own binder when wetted, causing it to clump, and so additional binder is not be necessary. The pan agglomeration process gently forms composite particles through a snowballing effect broadly classified by experts as natural or tumble growth agglomeration. FIG. 3 depicts the structure of an illustrative agglomerated composite particle 300 formed during the process of FIG. 2. As shown, the particle includes granules of absorbent material 302 and active 304 with moisture 306 or binder positioned interstitially between the granules.
  • Depending on the pan angle and pan speed, the particles tumble off upon reaching a certain size. Thus, the pan angle and speed controls how big the particles get. The particles are captured as they tumble from the agglomerator. The particles are then dried to a desired moisture level by any suitable mechanism, such as a rotary or fluid bed. In this example, a forced air rotary dryer 210 is used to lower the high moisture content of the particles to less than about 15% by weight and ideally about 8-13% by weight. At the outlet of the rotary dryer, the particles are screened with sieves 212 or other suitable mechanism to separate out the particles of the desired size range. Tests have shown that about 80% or more of the particles produced by pan agglomeration will be in the desired particle size range. Preferably, the yield of particles in the desired size range is 85% or above, and ideally 90% or higher. The selected particle size range can be in the range of about 10 mm to about 100 microns, and preferably about 2.5 mm or less. An illustrative desired particle size range is 12×40 mesh (1650-400 microns).
  • The exhaust from the dryer is sent to a baghouse for dust collection. Additional actives such as borax and fragrance can be added to the particles at any point in the process before, during and/or after agglomeration. Also, additional/different actives can be dry blended with the particles.
  • Illustrative composite absorbent particles after drying have a specific weight of from about 0.15 to about 1.2 kilograms per liter and a liquid absorbing capability of from about 0.6 to about 2.5 liters of water per kilogram of particles. Preferably, the particles absorb about 50% or more of their weight in moisture, more preferably about 75% or more of their weight in moisture, even more preferably greater than approximately 80% and ideally about 90% or more of their weight in moisture.
  • Specific examples of compositions that can be fed to the agglomerator using the process of FIG. 2 include (in addition to effective amounts of active):
      • 100% Bentonite Powder
      • 67% Calcium Bentonite Clay (core) & 33% Bentonite Powder
      • 50% Calcium Bentonite Clay (core) & 50% Bentonite Powder
      • Perlite (core) & Bentonite Powder
      • Sand (core) & Bentonite Powder
  • The following table lists illustrative properties for various compositions of particles created by a 20″ pan agglomerator at pan angles of 40-60 degrees and pan speeds of 20-50 RPM. The total solids flow rates into the pan were 0.2-1.0 kg/min.
    TABLE 1
    Bentonite Bulk
    to Core Final Density Clump
    Core Water Ratio Moisture (kg/l) Strength
    None   15-23% 100:0    1.0-1.4% 0.70-0.78 95-97
    Calcium 15-23 50:50 3.4 0.60-0.66 95-97
    bentonite
    Calcium
    Bentonite
    Calcium
    Bentonite
    Calcium
    Bentonite
    Calcium 15-18 33:67 4.3-4.4 0.57-0.60 93-95
    bentonite
    Calcium
    Bentonite
    Calcium
    Bentonite
    Calcium
    Bentonite
    Sand 10-12 50:50 2.0 0.81-0.85 97-98
    Sand 6-8 33:67 1.6-2.4 0.92 97
    Perlite   15-19% 84:16 0.36-0.39   97%
    Perlite   16-23% 76:24 0.27-0.28 95-97%
  • Clump strength is measured by first generating a clump by pouring 10 ml of pooled cat urine (from several cats so it is not cat specific) onto a 2 inch thick layer of litter. The urine causes the litter to clump. The clump is then placed on a ½” screen after a predetermined amount of time (e.g., 6 hours) has passed since the particles were wetted. The screen is agitated for 5 seconds with the arm up using a Ro-Tap Mechanical Sieve Shaker made by W.S. Tyler, Inc. The percentage of particles retained in the clump is calculated by dividing the weigh of the clump after agitation by the weight of the clump before agitation. Referring again to the table above, note that the clump strength indicates the percentage of particles retained in the clump after 6 hours. As shown, >90%, and more ideally, >95% of the particles are retained in a clump after 6 hours upon addition of an aqueous solution, such as deionized water or animal urine. Note that ≧ about 80% particle retention in the clump is preferred. Also, note the reduction in bulk density when a core of calcium bentonite clay or perlite is used.
  • FIG. 4 is a process diagram illustrating another exemplary pan agglomeration process 400 with a recycle subsystem 402. Save for the recycle subsystem, the system of FIG. 4 functions substantially the same as described above with respect to FIG. 2. As shown in FIG. 4, particles under the desired size are sent back to the agglomerator. Particles over the desired size are crushed in a crusher 404 and returned to the agglomerator.
  • The diverse types of clays and mediums that can be utilized to create absorbent particles should not be limited to those cited above. Further, unit operations used to develop these particles include but should not be limited to: high shear agglomeration processes, low shear agglomeration processes, high pressure agglomeration processes, low pressure agglomeration processes, mix mullers, roll press compacters, pin mixers, batch tumble blending mixers (with or without liquid addition), and rotary drum agglomerators. For simplicity, however, the larger portion of this description shall refer to the pan agglomeration process, it being understood that other processes could potentially be utilized with similar results.
  • FIG. 5 is a process diagram illustrating an exemplary pin mixer process 500 for forming composite absorbent particles. As shown, absorbent particles and active are fed to a pin mixer 502. Water is also sprayed into the mixer. The agglomerated particles are then dried in a dryer 504 and sorted by size in a sieve screen system 506. The following table lists illustrative properties for various compositions of particles created by pin mixing.
    TABLE 2
    Bentonite to Water Bulk Clump Strength-
    Lightweight Clay Ratio Addition Density 6 hours
    Clay (wt %) (wt %) (lb/ft3) (% Retained)
    Zeolite (39 lb/ft3) 50:50 20 59 91
    Bentonite 100:0  20 67 95
    (64 lb/ft3)
  • FIG. 6 is a process diagram illustrating an exemplary mix muller process 600 for forming composite absorbent particles. As shown, the various components and water and/or binder are added to a pellegrini mixer 602. The damp mixture is sent to a muller agglomerator 604 where the mixture is agglomerated. The agglomerated particles are dried in a dryer 606, processed in a flake breaker 608, and then sorted by size in a sieve screen system 610.
  • The following table lists illustrative properties for various compositions of particles created by a muller process. Note that the moisture content of samples after drying is 2-6 weight percent.
    TABLE 3
    Cal- Clump
    culated Actual Strength −
    Bentonite: Water Bulk Bulk 6 hours
    Clay Addition Density Density (% Dust
    Clay (wt %) (wt %) (lb/ft3) (lb/ft3) Retained) (mg)
    GWC 50:50 33 43 45 83 39
    (32 lb/ft3)
    GWC 50:50 47 43 42 56 34
    (32 lb/ft3)
    Taft DE 50:50 29 33 46 86 38
    (22 lb/ft3)
    Taft DE 50:50 41 33 43 76 35
    (22 lb/ft3)
  • The composite absorbent particle can be formed into any desired shape. For example, the particles are substantially spherical in shape when they leave the agglomeration pan. At this point, i.e., prior to drying, the particles have a high enough moisture content that they are malleable. By molding, compaction, or other processes known in the art, the composite absorbent particle can be made into non-spherical shapes such as, for example, ovals, flattened spheres, hexagons, triangles, squares, etc. and combinations thereof.
  • EXAMPLE 1
  • Referring again to FIG. 1, a method for making particles 102 is generally performed using a pan agglomeration process in which clay particles of ≦200 mesh (≦74 microns), preferably ≦325 mesh (≦43 microns) particle size premixed with particles of active, are agglomerated in the presence of an aqueous solution to form particles in the size range of about 12×40 mesh (about 1650-250 microns). Alternatively, the particles are first formed with clay alone, then reintroduced into the pan or tumbler, and the active is added to the pan or tumbler, and a batch run is performed in the presence of water or a binder to adhere the active to the surface of the particles. Alternatively, the active can be sprayed onto the particles.
  • EXAMPLE 2
  • A method for making particles 104 is generally performed using the process described with relation to FIG. 2, except no core material is added.
  • EXAMPLE 3
  • A method for making particles 106 is generally performed using the process described with relation to FIG. 2, except that introduction of the absorbent granules and the active into the agglomerator are alternated to form layers of each.
  • EXAMPLE 4
  • A method for making particles 108 is generally performed using the process described with relation to FIG. 2, except that the active has been pre-clumped using a binder, and the clumps of active are added. Alternatively, particles of absorbent material can be created by agglomeration and spotted with a binder such that upon tumbling with an active, the active sticks to the spots of binder thereby forming concentrated areas. Yet another alternative includes the process of pressing clumps of active into the absorptive material.
  • EXAMPLE 5
  • A method for making particles 110 is generally performed using the process described with relation to FIG. 2.
  • EXAMPLE 6
  • A method for making particles 112 is generally performed using the process described with relation to FIG. 2.
  • EXAMPLE 7 & 8
  • A method for making particles 114 and 116 are generally performed using the process described with relation to FIG. 2, except no active is added.
  • In addition, the performance-enhancing active can be physically dispersed along pores of the particle by suspending an insoluble active in a slurry and spraying the slurry onto the particles. The suspension travels into the pores and discontinuities, depositing the active therein.
  • Control Over Particle Properties
  • Strategically controlling process and formulation variables along with agglomerate particle size distribution allows for the development of various composite particles engineered specifically to “dial in” attribute improvements as needed. Pan agglomeration process variables include but are not limited to raw material and ingredient delivery methods, solid to process water mass ratio, pan speed, pan angle, scraper type and configuration, pan dimensions, throughput, and equipment selection. Formulation variables include but are not limited to raw material specifications, raw material or ingredient selection (actives, binders, clays and other solids media, and liquids), formulation of liquid solution used by the agglomeration process, and levels of these ingredients.
  • The pan agglomeration process intrinsically produces agglomerates with a narrow particle size distribution (PSD). The PSD of the agglomerates can be broadened by utilizing a pan agglomerator that continuously changes angle (pivots back and forth) during the agglomeration process. For instance, during the process, the pan could continuously switch from one angle, to a shallower angle, and back to the initial angle or from one angle, to a steeper angle, and back to the initial angle. This variable angle process would then repeat in a continuous fashion. The angles and rate at which the pan continuously varies can be specified to meet the operator's desired PSD and other desired attributes of the agglomerates.
  • By knowledge of interactions between pan, dryer, and formulation parameters one could further optimize process control or formulation/processing cost. For example, it was noted that by addition of a minor content of a less absorptive clay, we enabled easier process control of particle size. For example, by addition of calcium bentonite clay the process became much less sensitive to process upsets and maintains consistent yields in particle size throughout normal moisture variation. Addition of calcium bentonite clay also helped reduce particle size even when higher moisture levels were used to improve granule strength. This is of clear benefit as one looks at enhancing yields and having greater control over particle size minimizing need for costly control equipment or monitoring tools.
  • For those practicing the invention, pan agglomeration manipulation and scale-up can be achieved through an empirical relationship describing the particle's path in the pan. Process factors that impact the path the particle travels in the pan include but are not limited to pan dimensions, pan speed, pan angle, input feed rate, solids to process liquid mass ratio, spray pattern of process liquid spray, position of scrapers, properties of solids being processed, and equipment selection. Additional factors that may be considered when using pan agglomerators include particle to particle interactions in the pan, gravity effects, and the following properties of the particles in the pan: distance traveled, shape of the path traveled, momentum, rotational spin about axis, shape, surface properties, and heat and mass transfer properties.
  • The composite particles provide meaningful benefits, particularly when used as a cat litter, that include but are not limited to improvements in final product attributes such as odor control, litter box maintenance benefits, reduced dusting or sifting, and consumer convenience. As such, the following paragraphs shall discuss the composite absorbent particles in the context of animal litter, it being understood that the concepts described therein apply to all embodiments of the absorbent particles.
  • Significant odor control improvements over current commercial litter formulas have been identified for, but are not limited to, the following areas:
      • Fecal odor control (malodor source: feline feces)
      • Ammonia odor control (malodor source: feline urine)
      • Non-ammonia odor control (malodor source: feline urine)
        Odor control actives that can be utilized to achieve these benefits include but are not limited to powdered activated carbon, silica powder (Type C), borax pentahydrate, and bentonite powder. The odor control actives are preferably distributed within and throughout the agglomerates by preblending the actives in a batch mixer with clay bases and other media prior to the agglomeration step. The pan agglomeration process, in conjunction with other unit operations described here, allows for the targeted delivery of actives within and throughout the agglomerate, in the outer volume of the agglomerate with a rigid core, on the exterior of the agglomerate, etc. These or any targeted active delivery options could also be performed in the pan agglomeration process exclusively through novel approaches that include, but should not be limited to, strategic feed and water spray locations, time delayed feeders and spray systems, raw material selection and their corresponding levels in the product's formula (actives, binders, clays, and other medium), and critical pan agglomeration process variables described herein.
  • Additionally, the pan agglomeration process allows for the incorporation of actives inside each agglomerate or granule by methods including but not limited to dissolving, dispersing, or suspending the active in the liquid solution used in the agglomeration process. As the pan agglomeration process builds the granules from the inside out, the actives in the process's liquid solution become encapsulated inside each and every granule. This approach delivers benefits that include but should not be limited to reduced or eliminated segregation of actives from base during shipping or handling (versus current processes that simply dry tumble blend solid actives with solid clays and medium), reduced variability in product performance due to less segregation of actives, more uniform active dispersion across final product, improved active performance, and more efficient use of actives. This more effective use of actives reduces the concentration of active required for the active to be effective, which in turn allows addition of costly ingredients that would have been impractical under prior methods. For example, dye or pigment can be added to vary the color of the litter, lighten the color of the litter, etc. Disinfectant can also be added to kill germs. For example, this novel approach can be utilized by dissolving borax pentahydrate in water. This allows the urease inhibitor (boron) to be located within each granule to provide ammonia odor control and other benefits described here. One can strategically select the proper actives and their concentrations in the liquid solution used in the process to control the final amount of active available in each granule of the product or in the product on a bulk basis to deliver the benefits desired.
  • Targeted active delivery methods should not be limited to the targeted active delivery options described here or to odor control actives exclusively. For example, another class of active that could utilize this technology is animal health indicating actives such as a pH indicator that changes color when urinated upon, thereby indicating a health issue with the animal. This technology should not be limited to cat litter applications. Other potential industrial applications of this technology include but should not be limited to laundry, home care, water filtration, fertilizer, iron ore pelletizing, pharmaceutical, agriculture, waste and landfill remediation, and insecticide applications. Such applications can utilize the aforementioned unit operations like pan agglomeration and the novel process technologies described here to deliver smart time-releasing actives or other types of actives and ingredients in a strategic manner. The targeted active delivery approach delivers benefits that include but should not be limited to the cost efficient use of actives, improvements in active performance, timely activation of actives where needed, and improvements in the consumer perceivable color of the active in the final product. One can strategically choose combinations of ingredients and targeted active delivery methods to maximize the performance of actives in final products such as those described here.
  • Litter box maintenance improvements can be attributed to proper control of the product's physical characteristics such as bulk density, clump strength, attrition or durability (granule strength), clump height (reduction in clump height has been found to correlate to reduced sticking of litter to the bottom of litter box), airborne and visual dust, lightweight, absorption (higher absorption correlates to less sticking to litter box—bottom, sides, and corners), adsorption, ease of scooping, ease of carrying and handling product, and similar attributes. Strategically controlling process and formulation variables along with agglomerate particle size distribution allows for the development of various cat litter particles engineered specifically to “dial in” attribute improvements as needed. Pan agglomeration process variables include but are not limited to raw material and ingredient delivery methods, solid to process water mass ratio, pan speed, pan angle, scraper type and configuration, pan dimensions, throughput, and equipment selection.
  • Formulation variables include but are not limited to raw material specifications, raw material or ingredient selection (actives, binders, clays and other solids medium, and liquids), formulation of liquid solution used by the agglomeration process, and levels of these ingredients. For example, calcium bentonite can be added to reduce sticking to the box.
  • Improvements in consumer convenience attributes include but are not limited to those described here and have been linked to physical characteristics of the product such as bulk density or light weight. Because the absorbent particles are made from small granules, the pan agglomeration process creates agglomerated particles having a porous structure that causes the bulk density of the agglomerates to be lower than its initial particulate form. Further, by adjusting the rotation speed of the pan, porosity can be adjusted. In particular, a faster pan rotation speed reduces the porosity by compressing the particles. Since consumers use products like cat litter on a volume basis, the pan agglomeration process allows the manufacturer to deliver bentonite based cat litters at lower package weights but with equivalent volumes to current commercial litters that use heavier clays that are simply mined, dried, and sized. The agglomerates' reduced bulk density also contributes to business improvements previously described such as cost savings, improved logistics, raw material conservation, and other efficiencies. Lightweight benefits can also be enhanced by incorporating cores that are lightweight. A preferred bulk density of a lightweight litter according to the present invention is less than about 1.5 grams per cubic centimeter and more preferably less than about 0.85 g/cc. Even more preferably, the bulk density of a lightweight litter according to the present invention is between about 0.25 and 0.85 g/cc, and ideally for an animal litter 0.35 and 0.50 g/cc.
  • The porous structure of the particles also provides other benefits. The voids and pores in the particle allow access to active positioned towards the center of the particle. This increased availability of active significantly reduces the amount of active required to be effective. For example, in particles in which carbon is incorporated in layers or heterogeneously throughout the particle, the porous structure of the absorbent particles makes the carbon in the center of the particle available to control odors. Many odors are typically in the gas phase, so odorous molecules will travel into the pores, where they are adsorbed onto the carbon. By mixing carbon throughout the particles, the odor-absorbing life of the particles is also increased. This is due to the fact that the agglomeration process allows the manufacturer to control the porosity of particle, making active towards the center of the particle available.
  • Because of the unique processing of the absorbent particles of the present invention, substantially every absorbent particle contains carbon. As discussed above, other methods merely mix GAC with clay, and compress the mixture into particles, resulting in aggregation and some particles without any carbon. Thus, more carbon must be added. Again, because of the way the particles are formed and the materials used (small clay granules and PAC), lower levels of carbon are required to effectively control odors. In general, the carbon is present in the amount of 5% or less based on the weight of the particle. In illustrative embodiments, the carbon is present in the amount of 1.0% or less, 0.5% or less, and 0.3% or less, based on the weight of the particle. This lower amount of carbon significantly lowers the cost for the particles, as carbon is very expensive compared to clay. The amount of carbon required to be effective is further reduced because the agglomeration process incorporates the carbon into each particle, using it more effectively. As shown in the graph 700 of FIG. 7, the composite absorbent particles according to a preferred embodiment have a malodor rating below about 15, whereas the non-agglomerated control has a rating of about 40, as determined by a Malodor Sensory Method.
  • Description of Malodor Sensory Method:
      • 1. Cat boxes are filled with 2,500 cc of test litter.
      • 2. Boxes are dosed each morning for four days with 30 g of pooled feces.
      • 3. On the fourth day the center of each box is dosed with 20 ml pooled urine.
      • 4. The boxes into sensory evaluation booths.
      • 5. The boxes are allowed to equilibrate in the closed booths for 30 -45 minutes before panelist evaluation.
      • 6. The samples are then rated on a 60 point line scale by trained panelists.
  • Preferably, the agglomerated particles exhibit noticeably less odor after four days from contamination with animal waste as compared to a generally solid particle of the absorbent material alone under substantially similar conditions.
  • The composite absorbent particles of the present invention exhibit surprising additional features heretofore unknown. The agglomerated composite particles allow specific engineering of the particle size distribution and density, and thereby the clump aspect ratio. Thus, hydraulic conductivity (K) values of ≦0.25 cm/s as measured by the following method can be predicted using the technology disclosed herein, resulting in a litter that prevents seepage of urine to the bottom of the box when sufficient litter is present in the box.
  • Method for Measuring Hydraulic Conductivity
  • Materials:
      • 1. Water-tight gas drying tube with 7.5 centimeter diameter
      • 2. Manometer
      • 3. Stop watch
      • 4. 250 ml graduated cylinder
  • Procedure:
      • 1. Mix and weigh sample
      • 2. Pour the sample into the Drying tube until the total height of the sample is 14.6 centimeters.
      • 3. Close the cell.
      • 4. Use vacuum to pull air through and dry the sample for at least 3 minutes.
      • 5. When the sample is dry, saturate the sample slowly with water by opening the inlet valve.
      • 6. Allow the water exiting the drying tube to fill the graduated cylinder.
      • 7. Deair the system using vacuum, allowing the system to stabilize for 10 minutes.
      • 8. After 10 minutes, record the differential pressure as displayed by the manometer.
      • 9. Record at least 4 differential pressure measurements, waiting 3 minutes between each measurement.
      • 10. Record the flow rate of the water entering the graduated cylinder.
      • 11. Calculate the Hydraulic Conductivity, K, using Darcy's Law
        Q=−KA(ha−hb)/L
      • Q=Flow Rate
      • K=Hydraulic Conductivity
      • A=Cross Sectional Area
      • L=Bed Length
      • Ha−Hb=Differential Pressure
  • One of the distinguishing characteristics of the optimum K value is a litter clump with a very low height to length ratio (flat). By controlling the particle size of the litter, clump strength and clump profile can be controlled. This is important because the smaller the clumps are, the less likely they are to stick to something like the animal or litterbox. For instance, with prior art compacted litter, if a cat urinates 1 inch from the side of the box, the urine will penetrate to the side of box and the clay will stick to the box. However, the present invention allows the litter particles to be engineered so urine only penetrates about ½ inch into a mass of the particles.
  • Agglomerated composite particles according to the present invention also exhibit interesting clumping action not previously seen in the literature. Particularly, the particles exhibit extraordinary clump strength with less sticking to the box, especially in composite particles containing bentonite and PAC. PAC is believed to act as a release agent to reduce sticking to the box. However, intuitively this should also lead to reduced clump strength, not increased clump strength. The combination of stronger clumps yet exhibiting less sticking to the box is both surprising and counter-intuitive. The result is a litter with multiple consumer benefits including strong clumps, low urine seepage, and little sticking to the box.
  • While not wishing to be bound by any particular theory, the increased clump strength is believed to be due to at least some of the PAC-containing granules “falling apart” and releasing their bentonite particles to reorder themselves, and this ‘reordering’ produces a stronger clump. As shown in FIGS. 8 and 9, this can best be described as a disintegration of more-water-soluble pieces of the agglomerated composite particles 800 when in contact with moisture 802, allowing the pieces 804 of the particles to attach to surrounding particles. This “reordering” produces a stronger clump. In testing, the visual appearance of the cores is a signal that at least some of the granules decompose to smaller particles, and these particles are “suspending” in the urine and are free to occupy interstitial spaces between particles, forming a stronger clump. This creates a network of softened agglomerated particles where broken particle pieces are attaching to others and creating a web of clumped material. Note however that the particles described herein should not be limited to clumping or scoopable particles.
  • As mentioned above, the composite absorbent particles have particular application for use as an animal litter. The litter would then be added to a receptacle (e.g., litterbox) with a closed bottom, a plurality of interconnected generally upright side walls forming an open top and defining an inside surface. However, the particles should not be limited to pet litters, but rather could be applied to a number of other applications such as:
      • Litter Additives—Formulated product can be pre-blended with standard clumping or non-clumping clays to create a less expensive product with some of the benefits described herein. A post-additive product could also be sprinkled over or as an amendment to the litter box.
      • Filters—Air or water filters could be improved by either optimizing the position of actives into areas of likely contact, such as the outer perimeter of a filter particle. Composite particles with each subcomponent adding a benefit could also be used to create multi-functional composites that work to eliminate a wider range of contaminants.
      • Bioremediation/Hazardous/Spill Cleanup—Absorbents with actives specifically chosen to attack a particular waste material could be engineered using the technology described herein. Exemplary waste materials include toxic waste, organic waste, hazardous waste, and non-toxic waste.
      • Pharma/Ag—Medications, skin patches, fertilizers, herbicides, insecticides, all typically use carriers blended with actives. Utilization of the technology described herein reduce the amount of active used (and the cost) while increasing efficacy.
      • Soaps, Detergents, and other Dry Products—Most dry household products could be engineered to be lighter, stronger, longer lasting, or cheaper using the technology as discussed above.
      • Mixtures of Different Particles—The composite particles can be dry mixed with other types of particles, including but not limited to other types of composite particles, extruded particles, particles formed by crushing a source material, etc. Mixing composite particles with other types of particles provides the benefits provided by the composite particles while allowing use of lower cost materials, such as crushed or extruded bentonite. Illustrative ratios of composite particles to other particles can be 75/25, 50/50, 25/75, or any other ratio desired. For example, in an animal litter created by mixing composite particles with extruded bentonite, a ratio of 50/50 will provide enhanced odor control, clumping and reduced sticking, while reducing the weight of the litter and lowering the overall cost of manufacturing the litter.
      • Mixtures of Composite Particles with Actives—The composite particles can be dry mixed with actives, including but not limited to particles of activated carbon.
  • While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.

Claims (83)

  1. 1. A composite particle, comprising:
    an absorbent material formed into a particle; and
    at least one performance-enhancing active added to the absorbent material.
  2. 2. A composite particle as recited in claim 1, wherein the absorbent material is a liquid-absorbing material and is selected from a group consisting of: a mineral, fly ash, absorbing pelletized material, perlite, silica, organic materials, and mixtures thereof.
  3. 3. A composite particle as recited in claim 2, wherein the absorbent material is a mineral selected from a group consisting of: bentonite, zeolite, montmorillonite, diatomaceous earth, opaline silica, Georgia White clay, sepiolite, calcite, dolomite, slate, pumice, tobermite, marls, attapulgite, kaolinite, halloysite, smectite, vermiculite, hectorite, Fuller's earth, fossilized plant materials, expanded perlite, gypsum, and mixtures thereof.
  4. 4. A composite particle as recited in claim 1, wherein the absorbent material comprises sodium bentonite granules having a mean particle diameter of about 5000 microns or less.
  5. 5. A composite particle as recited in claim 4, wherein the absorbent material comprises sodium bentonite granules having a mean particle diameter of about 3000 microns or less.
  6. 6. A composite particle as recited in claim 4, wherein the absorbent material comprises sodium bentonite granules having a mean particle diameter in the range ofabout 25 to about 150 microns.
  7. 7. A composite particle as recited in claim 1, wherein the added performance-enhancing active includes at least one of an antimicrobial, an odor reducing material, a binder, a fragrance, a health indicating material, a color altering agent, a dust reducing agent, a nonstick release agent, a superabsorbent material, cyclodextrin, zeolite, activated carbon, a pH altering agent, a salt forming material, a ricinoleate and mixtures thereof.
  8. 8. A composite particle as recited in claim 1, wherein a performance-enhancing additive is sprayed onto the particles.
  9. 9. A composite particle as recited in claim 1, wherein granules of a performance-enhancing additive are dry-blended with the particles.
  10. 10. A composite particle as recited in claim 1, wherein the performance-enhancing active comprises a boron-containing compound.
  11. 11. A composite particle as recited in claim 10, wherein the boron containing compound is present in an antimicrobially effective amount, wherein the boron containing compound is selected from a group consisting of borax pentahydrate, borax decahydrate, boric acid, polyborate, tetraboric acid, sodium metaborate, anhydrous, boron components of polymers, and mixtures thereof.
  12. 12. A composite particle as recited in claim 1, wherein the performance-enhancing active inhibits the formation of odor, the active comprising a water soluble metal salt selected from a group consisting of: silver, copper, zinc, iron, and aluminum salts and mixtures thereof.
  13. 13. A composite particle as recited in claim 1, wherein the performance-enhancing active is present in an effective amount.
  14. 14. A composite particle as recited in claim 1, wherein the performance-enhancing active is activated carbon.
  15. 15. A composite particle as recited in claim 14, wherein the activated carbon is present in about 5 weight percent or less based on a weight of the composite particle.
  16. 16. A composite particle as recited in claim 14, wherein the activated carbon is present in about 1 weight percent or less based on a weight of the composite particle.
  17. 17. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 5000 microns or less.
  18. 18. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 1500 microns or less.
  19. 19. A composite particle as recited in claim 14, wherein the activated carbon has a mean particle diameter of about 50 microns or less.
  20. 20. A composite particle as recited in claim 1, wherein the at least one performance-enhancing active is substantially homogeneously dispersed throughout at least a portion of the absorbent material.
  21. 21. A composite particle as recited in claim 1, wherein the at least one performance-enhancing active is physically dispersed in at least one layer.
  22. 22. A composite particle as recited in claim 1, wherein the performance-enhancing active is physically dispersed in pockets in the particle.
  23. 23. A composite particle as recited in claim 1, wherein the performance-enhancing active is physically dispersed in at least one position selected from along surfaces of the particle and contained within pores of the particle.
  24. 24. A composite particle as recited in claim 1, further comprising an absorbent core, the absorbent material being coupled to the core.
  25. 25. A composite particle as recited in claim 1, further comprising a non-absorbent core, the absorbent material being coupled to the core.
  26. 26. A composite particle as recited in claim 1, further comprising a hollow core, the absorbent material being coupled to the core.
  27. 27. A composite particle as recited in claim 1, further comprising a core, the absorbent material at least partially surrounding the core in the form of a shell, wherein an average thickness of the shell is at least about four times an average diameter of the core.
  28. 28. A composite particle as recited in claim 1, further comprising a core, the absorbent material at least partially surrounding the core in the form of a shell, wherein an average thickness of the shell is between about 1 and about 4 times an average diameter of the core.
  29. 29. A composite particle as recited in claim 1, further comprising a core, the absorbent material at least partially surrounding the core in the form of a shell, wherein an average thickness of the shell is less than an average diameter of the core.
  30. 30. A composite particle as recited in claim 1, further comprising a core, the absorbent material at least partially surrounding the core in the form of a shell, wherein an average thickness of the shell is less than about one-half an average diameter of the core.
  31. 31. A composite particle as recited in claim 1, further comprising a heavy core comprised of a material having a density higher than a density of the absorbent material, the absorbent material being coupled to the core.
  32. 32. A composite particle as recited in claim 1, further comprising a lightweight core comprised of a material having a density lower than a density of the absorbent material, the absorbent material being coupled to the core.
  33. 33. A composite particle as recited in claim 1, further comprising a core comprised of a pH-altering material, the absorbent material being coupled to the core.
  34. 34. A composite particle as recited in claim 1, wherein the particle has a bulk density of less than about 90% of a bulk density of a generally solid particle containing the absorbent material alone.
  35. 35. A composite particle as recited in claim 1, wherein the particle has a bulk density of less than about 70% of a bulk density of a generally solid particle containing the absorbent material alone.
  36. 36. A composite particle as recited in claim 1, wherein the particle has a bulk density of less than about 50% of a bulk density of a generally solid particle containing the absorbent material alone.
  37. 37. A composite particle as recited in claim 1, further comprising multiple cores, the absorbent material being coupled to the cores.
  38. 38. A composite particle as recited in claim 1, wherein the composite particle has a hydraulic conductivity value of about 0.25 cm/s or less.
  39. 39. A composite particle as recited in claim 1, wherein the composite particle exhibits reduced sticking to a container in which the composite particle rests when the particle is wetted relative to a generally solid particle under substantially similar conditions.
  40. 40. A composite particle as recited in claim 1, wherein the composite particle has a moisture content of less than about 25% by weight based on a weight of the composite particle.
  41. 41. A composite particle as recited in claim 1, wherein the composite particle has a moisture content of less than about 15% by weight based on a weight of the composite particle.
  42. 42. A composite particle as recited in claim 1, wherein the composite particle has a moisture content of less than about 10% by weight based on a weight of the composite particle.
  43. 43. A composite particle as recited in claim 1, wherein the composite particle is capable of absorbing a weight of water equaling at least about 90 percent of a weight of the composite particle.
  44. 44. A composite particle as recited in claim 1, wherein the composite particle is capable of absorbing a weight of water equaling at least about 75 percent of a weight of the composite particle.
  45. 45. A composite particle as recited in claim 1, wherein the composite particle is capable of absorbing a weight of water equaling at least about 50 percent of a weight of the composite particle.
  46. 46. A composite particle as recited in claim 1, wherein the composite particle has a dusting attrition value of at most about 15% as measured by ASTM method E-728 Standard Test Method for Resistance to Attrition of Granular Carriers and Granular Pesticides.
  47. 47. A composite particle as recited in claim 1, wherein the composite particle has a malodor rating below about 15 as determined by a Malodor Sensory Method.
  48. 48. A composite particle as recited in claim 1, wherein the composite particle exhibits noticeably less odor after four days from contamination with animal waste as compared to a generally solid particle of the absorbent material alone under substantially similar conditions.
  49. 49. A composite particle as recited in claim 1, wherein the composite particle has been formed by an agglomeration process.
  50. 50. A composite particle as recited in claim 49, wherein the agglomeration process is a pan agglomeration process.
  51. 51. A composite particle as recited in claim 49, wherein the agglomeration process is at least one of a high shear agglomeration process, a low shear agglomeration process, a high pressure agglomeration process, a low pressure agglomeration process, a rotary drum agglomeration process, a fluid bed agglomeration process, a mix muller process, a roll press compaction process, a pin mixer process, a batch tumble blending mixer process, an extrusion process and a fluid bed process.
  52. 52. A composite particle as recited in claim 1, wherein the composite particle has a bulk density of about 1.5 grams per cubic centimeter or less.
  53. 53. A composite particle as recited in claim 1, wherein the composite particle has a bulk density of 0.85 grams per cubic centimeter or less
  54. 54. A composite particle as recited in claim 53, wherein the composite particle has a bulk density of between about 0.25 and 0.85 grams per cubic centimeter.
  55. 55. A composite particle as recited in claim 1, wherein the particle has a liquid absorbing capability of from about 0.6 to about 2.5 liters of water per kilogram of particles.
  56. 56. A composite particle as recited in claim 1, wherein the particle is used in at least one of an animal litter product, a laundry product, a home care product, a water filtration product, an air filtration product, a fertilizer product, an iron ore pelletizing product, a pharmaceutical product, an agricultural product, a waste and landfill remediation product, a bioremediation product, and an insecticide product.
  57. 57. Multiple composite particles as recited in claim 1, wherein substantially each particle includes the active.
  58. 58. Multiple composite particles as recited in claim 1, wherein substantially each particle includes multiple actives.
  59. 59. Multiple composite particles as recited in claim 1, wherein some of the particles include a first active, and other particles contain a second active, the second active being different than the first active.
  60. 60. Multiple composite particles as recited in claim 1, wherein at least about 80% of the particles are retained in a clump upon addition of an aqueous solution.
  61. 61. Multiple composite particles as recited in claim 1, wherein at least about 90% of the particles are retained in a clump upon addition of an aqueous solution.
  62. 62. Multiple composite particles as recited in claim 1, wherein at least about 95% of the particles are retained in a clump after 6 hours upon addition of 10 ml of cat urine.
  63. 63. Composite particles having improved clumping characteristics, comprising:
    granules of an absorbent material formed into particles, each particle having areas of more-water-soluble absorbent material and less-water-soluble absorbent material relative to each other, the areas of more-water-soluble absorbent material being capable of dislodging from the associated particle when wetted and becoming entrained between adjacent particles, the entrained absorbent material forming a bond between the adjacent particles.
  64. 64. Composite particles as recited in claim 63, wherein the absorbent material is sodium bentonite having a mean particle diameter of about 1000 microns or less.
  65. 65. Composite particles as recited in claim 64, wherein the sodium bentonite has a mean particle diameter in the range of about 25 to about 150 microns.
  66. 66. Composite particles as recited in claim 63, further comprising a performance-enhancing active, wherein the performance-enhancing active includes at least one of an antimicrobial, an odor reducing material, a binder, a fragrance, a health indicating material, a color altering agent, a dust reducing agent, a nonstick release agent, a superabsorbent material, cyclodextrin, zeolite, activated carbon, a pH altering agent, a salt forming material, a ricinoleate and mixtures thereof.
  67. 67. Composite particles as recited in claim 63, wherein a performance-enhancing additive is sprayed onto the particles.
  68. 68. Composite particles as recited in claim 63, wherein granules of a performance-enhancing additive is dry-blended with the particles, with or without addition of a binder.
  69. 69. Composite particles having improved odor reducing characteristics, comprising:
    granules of an absorbent material; and
    granules of an odor reducing active added to the absorbent material;
    wherein pores are formed between the granules of the absorbent material such that at least some of the granules of the odor reducing active positioned towards a center of the particle are in fluid or gaseous communication with an outer atmosphere surrounding the particle.
  70. 70. A composite particle as recited in claim 69, wherein the odor reducing active is activated carbon.
  71. 71. A composite particle as recited in claim 70, wherein the activated carbon is present in about 5 weight percent or less based on a weight of the composite particle.
  72. 72. A composite particle as recited in claim 70, wherein the activated carbon is present in about 1 weight percent or less based on a weight of the composite particle.
  73. 73. A composite particle as recited in claim 70, wherein the activated carbon has a mean particle diameter of about 500 microns or less.
  74. 74. A composite particle as recited in claim 70, wherein the activated carbon has a mean particle diameter in the range of about 25 to 150 microns.
  75. 75. A composite particle as recited in claim 69, wherein the odor reducing active comprising a water soluble metal salt selected from a group consisting of: silver, copper, zinc, iron, and aluminum salts and mixtures thereof.
  76. 76. A method for forming composite particles, comprising:
    adding granules of an absorbent mineral to an agglomerator, the granules of absorbent material having a particle size smaller than about 1000 microns;
    adding granules of a performance-enhancing active to the agglomerator;
    adding water to the agglomerator; and
    agglomerating the mixture for forming particles of absorbent material and performance-enhancing active.
  77. 77. A method as recited in claim 76, further comprising adding granules of a core material to the agglomerator, the absorbent material and at least one performance-enhancing active surrounding the granules of the core material.
  78. 78. A method as recited in claim 76, wherein the performance-enhancing active includes at least one of an antimicrobial, an odor reducing material, a binder, a fragrance, a health indicating material, a color altering agent, a dust reducing agent, a nonstick release agent, a superabsorbent material, cyclodextrin, zeolite, activated carbon, a pH altering agent, a salt forming material, a ricinoleate and mixtures thereof.
  79. 79. A method as recited in claim 76, further comprising drying the particles to a desired state, wherein the particles have a bulk density of from about 0.15 to about 1.5 grams per cubic centimeter and a liquid absorbing capability of from about 0.6 to about 2.5 liters of water per kilogram of particles.
  80. 80. An animal litter, comprising:
    an absorbent material formed into a particle;
    activated carbon added to the absorbent material; and
    optionally at least one other performance-enhancing active added to the absorbent material.
  81. 81. The animal litter as recited in claim 80, wherein the activated carbon is present in about 1 weight percent or less based on a weight of the animal litter.
  82. 82. A method for preparing a litter box for use by animals, comprising:
    selecting a receptacle with a closed bottom, a plurality of interconnected generally upright side walls forming an open top and defining an inside surface; and
    adding a litter material of absorbent composite particle form to the box.
  83. 83. A method as recited in claim 82, wherein the litter material further includes a performance-enhancing active mixed with the particles.
US10618401 2003-07-11 2003-07-11 Composite absorbent particles Abandoned US20050005869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10618401 US20050005869A1 (en) 2003-07-11 2003-07-11 Composite absorbent particles

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US10618401 US20050005869A1 (en) 2003-07-11 2003-07-11 Composite absorbent particles
US10861044 US20050005870A1 (en) 2003-07-11 2004-06-04 Composite absorbent particles
US11870967 US9283540B2 (en) 2003-07-11 2007-10-11 Composite absorbent particles
US11871427 US20080029039A1 (en) 2003-07-11 2007-10-12 Dry Bed Agglomeration Process and Product Formed Thereby
US11871778 US20080022940A1 (en) 2003-07-11 2007-10-12 Composite Absorbent Particles with Superabsorbent Material
US11871814 US20080251027A1 (en) 2003-07-11 2007-10-12 Shaped Absorbent Particles
US11872182 US7964529B2 (en) 2003-07-11 2007-10-15 Method of agglomeration
US11929018 US20090007852A1 (en) 2003-07-11 2007-10-30 Composite Absorbent Particles
US12032450 US20080184939A1 (en) 2003-07-11 2008-02-15 Composite Absorbent Particles
US12467183 US20090217882A1 (en) 2003-07-11 2009-05-15 Dry Bed Agglomeration Process and Product Formed Thereby
US13758030 US9253961B2 (en) 2003-07-11 2013-02-04 Composite absorbent particles
US14985180 US9648845B2 (en) 2003-07-11 2015-12-30 Composite absorbent particles
US15018645 US20160150757A1 (en) 2003-07-11 2016-02-08 Composite absorbent particles
US15281620 US20170013798A1 (en) 2003-07-11 2016-09-30 Composite absorbent particles
US15628489 US9861071B2 (en) 2003-07-11 2017-06-20 Composite absorbent particles
US15634850 US20170339914A1 (en) 2003-07-11 2017-06-27 Composite absorbent particles

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10773585 Continuation-In-Part US20050175577A1 (en) 2004-02-06 2004-02-06 Absorbent composition with improved odor control
US11745163 Continuation-In-Part US20070289543A1 (en) 2006-06-16 2007-05-07 Clumping Animal Litter

Related Child Applications (7)

Application Number Title Priority Date Filing Date
US10861044 Continuation-In-Part US20050005870A1 (en) 2003-07-11 2004-06-04 Composite absorbent particles
US11870967 Continuation US9283540B2 (en) 2003-07-11 2007-10-11 Composite absorbent particles
US11871427 Continuation-In-Part US20080029039A1 (en) 2003-07-11 2007-10-12 Dry Bed Agglomeration Process and Product Formed Thereby
US11871778 Continuation-In-Part US20080022940A1 (en) 2003-07-11 2007-10-12 Composite Absorbent Particles with Superabsorbent Material
US11871814 Continuation-In-Part US20080251027A1 (en) 2003-07-11 2007-10-12 Shaped Absorbent Particles
US11872182 Continuation-In-Part US7964529B2 (en) 2003-07-11 2007-10-15 Method of agglomeration
US11929018 Division US20090007852A1 (en) 2003-07-11 2007-10-30 Composite Absorbent Particles

Publications (1)

Publication Number Publication Date
US20050005869A1 true true US20050005869A1 (en) 2005-01-13

Family

ID=33565123

Family Applications (5)

Application Number Title Priority Date Filing Date
US10618401 Abandoned US20050005869A1 (en) 2003-07-11 2003-07-11 Composite absorbent particles
US11870967 Active 2029-05-17 US9283540B2 (en) 2003-07-11 2007-10-11 Composite absorbent particles
US11929018 Abandoned US20090007852A1 (en) 2003-07-11 2007-10-30 Composite Absorbent Particles
US15018645 Abandoned US20160150757A1 (en) 2003-07-11 2016-02-08 Composite absorbent particles
US15634850 Pending US20170339914A1 (en) 2003-07-11 2017-06-27 Composite absorbent particles

Family Applications After (4)

Application Number Title Priority Date Filing Date
US11870967 Active 2029-05-17 US9283540B2 (en) 2003-07-11 2007-10-11 Composite absorbent particles
US11929018 Abandoned US20090007852A1 (en) 2003-07-11 2007-10-30 Composite Absorbent Particles
US15018645 Abandoned US20160150757A1 (en) 2003-07-11 2016-02-08 Composite absorbent particles
US15634850 Pending US20170339914A1 (en) 2003-07-11 2017-06-27 Composite absorbent particles

Country Status (1)

Country Link
US (5) US20050005869A1 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084475A1 (en) * 2003-10-17 2005-04-21 Richard Weschler Treatment of landfill gas
US20060042514A1 (en) * 2004-08-30 2006-03-02 Bodycomb Frederick M Agglomerated waste expanded perlite
US20060112894A1 (en) * 2004-08-20 2006-06-01 Uni-Charm Petcare Corporation Animal litter
WO2006097325A2 (en) * 2005-03-18 2006-09-21 Süd-Chemie AG Natural layer mineral granulates and method for the production thereof
US20060243212A1 (en) * 2005-04-29 2006-11-02 Jenkins Dennis B Composite particle animal litter and method thereof
US20070017453A1 (en) * 2005-07-25 2007-01-25 Fritter Charles F Animal litter containing activated carbon
US20070208124A1 (en) * 2006-03-02 2007-09-06 Case Western Reserve University Clay aerogel-based polymer composites, materials and methods
US20080022940A1 (en) * 2003-07-11 2008-01-31 Bradley Kirsch Composite Absorbent Particles with Superabsorbent Material
US20080029039A1 (en) * 2003-07-11 2008-02-07 Dennis Jenkins Dry Bed Agglomeration Process and Product Formed Thereby
WO2008058565A1 (en) * 2006-11-17 2008-05-22 Sca Hygiene Products Ab Absorbent articles comprising a peroxy compound and an organic zinc salt
US20080132632A1 (en) * 2006-03-02 2008-06-05 Schiraldi David A Absorbent compositions with clay aerogels and methods for forming absorbent compositions
US20080318762A1 (en) * 2007-06-21 2008-12-25 Privitera Marc P Agglomerated Animal Litter
US20090000562A1 (en) * 2007-06-26 2009-01-01 The Clorox Company Waste encapsulating animal litter
US20090018048A1 (en) * 2007-07-12 2009-01-15 Kimberly-Clark Worldwide, Inc. Foaming hand sponge with color change indicator
US20090018047A1 (en) * 2007-07-12 2009-01-15 Kimberly-Clark Worldwide, Inc. Foaming hand sponge for bodily cleansing with color change indicator
US20090038553A1 (en) * 2007-08-08 2009-02-12 Kevin Lin Thermoformed Litter Scoop
US20090124989A1 (en) * 2005-11-18 2009-05-14 Sca Hygiene Products Ab Absorbent Articles Comprising Acidic Superabsorber and an Organic Zinc Salt
US20090217882A1 (en) * 2003-07-11 2009-09-03 Dennis Jenkins Dry Bed Agglomeration Process and Product Formed Thereby
US20090255478A1 (en) * 2006-11-20 2009-10-15 Wadams Robert C Clump recognition animal litter
US20100047303A1 (en) * 2006-11-17 2010-02-25 Sca Hygiene Products Ab Absorbent articles comprising an organic zinc salt and an anti-bacterial agent or alkali metal chloride or alkaline earth metal chloride
EP2198946A1 (en) * 2008-12-22 2010-06-23 Glatt Systemtechnik Dresden GmhH Composite adsorbent bead, process for its production and gas separation process
US20110015596A1 (en) * 2006-11-17 2011-01-20 Sca Hygiene Products Ab Absorbent articles comprising acidic cellulosic fibers and an organic zinc salt
US20110054430A1 (en) * 2006-11-17 2011-03-03 Sca Hygiene Products Ab Absorbent articles comprising a peroxy compound and an organic zinc salt
US20110185978A1 (en) * 2010-01-29 2011-08-04 Dan Kenneth Dixon Extruded animal litters having an increased absorption rate
US20110185977A1 (en) * 2010-01-29 2011-08-04 Dan Kenneth Dixon Extruded animal litters
WO2012057825A1 (en) 2010-10-27 2012-05-03 Nestec S.A. Malodor control compositions
US20120235086A1 (en) * 2009-10-02 2012-09-20 Torsten Schlicht Mineral, granulated desulfurizing agent on the basis of calcium hydroxide, method for the production thereof and use thereof
US20130316177A1 (en) * 2006-10-05 2013-11-28 Basf Se Method for the production of absorbent polymer particles by polymerizing drops of a monomer solution
US20130319341A1 (en) * 2012-05-30 2013-12-05 Nestec Sa Low-dust animal litters and methods for making same
US8608991B2 (en) 2009-06-11 2013-12-17 Case Western Reserve University Porous material having controlled voids and method of making the same
US8720375B2 (en) 2012-05-17 2014-05-13 Church & Dwight Co., Inc. Clay-based superior animal litter
US8733287B2 (en) 2010-06-11 2014-05-27 Nestec S.A. Litter box assembly having a litter fragmenting device
US8822558B2 (en) 2009-06-11 2014-09-02 Case Western Reserve University Low density hydrophobic material and method of making the same
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
US20150057209A1 (en) * 2013-08-21 2015-02-26 Ricoh Company, Ltd. Abrasive grain, polisher, and production method of abrasive grain
WO2015047279A1 (en) * 2013-09-26 2015-04-02 Halliburton Energy Services, Inc. Absorbent clumping animal litter compositions
CN104528919A (en) * 2015-01-22 2015-04-22 叶澄 Preparation method of composite biological filler for spiral groove
US20150208606A1 (en) * 2012-08-27 2015-07-30 The All Natural Pet Litter Company Pty Ltd Odour controller
WO2015138717A1 (en) * 2014-03-12 2015-09-17 Pioneer Pet Products, Llc Lightweight coated extruded granular absorbent
US20150296740A1 (en) * 2012-10-26 2015-10-22 The Andersons, Inc. Cementitious clumping material
JP2016000018A (en) * 2014-06-12 2016-01-07 株式会社大貴 Excrement treating material, and animal toilet using the former
EP2894637A4 (en) * 2012-09-10 2016-05-04 Jikei University Radioactive cesium decontaminating agent and method for producing same, and method for removing radioactive cesium
US9359253B2 (en) 2014-07-01 2016-06-07 Aquasmart Enterprises, Llc Coated-fine-aggregate, concrete composition and method
CN105813455A (en) * 2013-12-10 2016-07-27 尤妮佳股份有限公司 Aromatic particles, and toilet sand for animals
US9491926B2 (en) 2012-09-11 2016-11-15 Pioneer Pet Products, Llc Method of making extruded self-clumping granular absorbent
US9527781B2 (en) 2013-12-19 2016-12-27 Aquasmart Enterprises, Llc Persistent, targeted, optimized, soil amendment composition and method
CN106582462A (en) * 2016-11-23 2017-04-26 中国科学院金属研究所 Preparation method of intelligent corrosion inhibition microcapsule
US9745224B2 (en) 2011-10-07 2017-08-29 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
WO2017178302A1 (en) 2016-04-14 2017-10-19 Basf Se Coated polymer particles comprising a water-swellable polymer core and a sol-gel coating
US9856415B1 (en) 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US9894877B2 (en) 2011-06-15 2018-02-20 Oil-Dri Corporation Of America Cat litter product
USD814126S1 (en) * 2015-08-26 2018-03-27 7905122 Canada Inc. Particle for animal litter
US10028481B2 (en) 2012-09-11 2018-07-24 Pioneer Pet Products, Llc Granular absorbent and system and method for treating or processing granular absorbent during granular absorbent transport
US10040990B1 (en) 2007-12-11 2018-08-07 Aquasmart Enterprises, Llc Hydraulic fracture composition and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100136128A1 (en) * 2005-02-08 2010-06-03 Marni Markell Hurwitz Odor control fragrance additive
US8950360B2 (en) * 2012-02-20 2015-02-10 Kent Pet Group, Inc. Odor-absorbing materials and processes for their preparation and use
JP6029328B2 (en) * 2012-05-31 2016-11-24 ユニ・チャーム株式会社 Animal litter
CN102742511A (en) * 2012-07-23 2012-10-24 青岛弗兰克精细化工有限公司 Ultralow-density natural compound clumping cat litter and production process thereof
CN104645937A (en) * 2015-01-29 2015-05-27 辛全宏 Preparation method of diatomaceous earth and active carbon composite particles

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029783A (en) * 1958-04-14 1962-04-17 Minerals & Chem Philipp Corp Animal litter composition
US3789797A (en) * 1971-11-12 1974-02-05 Star Kist Foods Cat litter
US3821346A (en) * 1971-08-02 1974-06-28 W Batley Pet litter produced by recycled molasses serum
US3892846A (en) * 1970-06-19 1975-07-01 Allied Chem Animal litter resistant to ammonia odor formation
US4085704A (en) * 1976-11-30 1978-04-25 Rush-Hampton Industries Animal litter
US4187803A (en) * 1971-08-09 1980-02-12 Oil-Dri Corporation Of America Process for pelletizing sorptive mineral fines
US4256728A (en) * 1978-10-11 1981-03-17 Takeda Chemical Industries, Ltd. Deodorization method
US4263873A (en) * 1979-03-19 1981-04-28 George Christianson Animal litter and method of preparation
US4275684A (en) * 1979-01-19 1981-06-30 Effem Gmbh Animal litter
US4437429A (en) * 1981-08-04 1984-03-20 Aquarium Pharmaceuticals, Inc. Animal litter
US4506628A (en) * 1983-07-13 1985-03-26 Stockel Richard F Animal litter
US4517308A (en) * 1981-09-04 1985-05-14 Collo Gmbh Method of producing a sorptive body, particularly for eliminating odors, air freshening, etc. and the resultant product
US4565794A (en) * 1983-12-16 1986-01-21 John Stephens Production of silica gel and an adsorbent, absorbent product from sericitic clay
US4568453A (en) * 1984-09-14 1986-02-04 Lowe Jr Henry E Apparatus and method for removing dust from particulate material
US4591581A (en) * 1983-01-28 1986-05-27 Laporte Industries Limited Method for making absorbent materials
US4638763A (en) * 1985-04-10 1987-01-27 Bernard Greenberg Animal litter formulation
US4641605A (en) * 1985-11-29 1987-02-10 Kal Kan Foods, Inc. Animal litter and method of preparation
US4657881A (en) * 1982-02-19 1987-04-14 Laporte Industries Limited Absorbent materials
US4664843A (en) * 1985-07-05 1987-05-12 The Dow Chemical Company Mixed metal layered hydroxide-clay adducts as thickeners for water and other hydrophylic fluids
US4677086A (en) * 1984-05-18 1987-06-30 Westvaco Corporation Shaped wood-based active carbon
US4721059A (en) * 1985-03-21 1988-01-26 H. Edward Lowe Nonclay catbox filler
US4824810A (en) * 1984-04-19 1989-04-25 Effem Gmbh Highly porous ceramic material for absorption and adsorption purposes, particularly for animal litter/bedding, process for the production thereof and the use thereof
US4837020A (en) * 1986-09-09 1989-06-06 Takeda Chemical Industries, Ltd. Deodorant composition
US4844010A (en) * 1987-10-02 1989-07-04 Personal Pet Products Partnershhip Absorbent composition, method of making and using same
US4914066A (en) * 1989-02-24 1990-04-03 Hoechst Celanese Corporation Pellets of clay and superabsorbent polymer
US4920090A (en) * 1987-05-15 1990-04-24 Henkel Kommanditgesellschaft Auf Aktien Process for the formation of shaped agglomerates from particulate solids
US5005115A (en) * 1989-07-28 1991-04-02 Westinghouse Electric Corp. Forced-commutated current-source converter and AC motor drive using the same
US5005520A (en) * 1989-04-24 1991-04-09 Michael Richard D Animal litter deodorizing additive
US5013335A (en) * 1987-06-30 1991-05-07 Uop Process for sequestering ammonia and the odor associated therewith
US5014650A (en) * 1989-12-28 1991-05-14 Dowbrands Inc. Animal litter
US5018482A (en) * 1988-06-17 1991-05-28 The Clorox Company Combined odor controlling animal litter
US5019254A (en) * 1989-08-16 1991-05-28 Aquarium Pharmaceuticals, Inc. Filter pad with pocket and method of using the same
US5079201A (en) * 1989-09-19 1992-01-07 Mobil Oil Corp. Zeolite-clay composition and uses thereof
US5094190A (en) * 1988-06-17 1992-03-10 The Clorox Company Boron-based odor control animal litter
US5094189A (en) * 1991-03-26 1992-03-10 Western Industrial Clay Products, Ltd. Animal litter capable of agglomerating
US5100600A (en) * 1989-12-09 1992-03-31 Fritz Keller Method of making an absorbent paper-containing granulate
US5101771A (en) * 1991-07-05 1992-04-07 Oil-Dri Corporation Of America Animal litter with biodegradable clumping agent
US5109805A (en) * 1988-12-24 1992-05-05 Laporte Industries Limited Absorbent material
US5176108A (en) * 1988-06-17 1993-01-05 The Clorox Company Boron-based odor control animal litter
US5176879A (en) * 1991-03-22 1993-01-05 Rhone-Poulenc, Inc. Animal litter composition having deodorizing properties
US5176107A (en) * 1989-07-24 1993-01-05 Buschur Jeffrey J Pet litter
US5183010A (en) * 1992-01-28 1993-02-02 Golden Cat Corporation Additive for binding liquid waste
US5183655A (en) * 1988-06-17 1993-02-02 The Clorox Company Combined odor controlling animal litter
US5188064A (en) * 1991-10-07 1993-02-23 Venture Innovations, Inc. Clumping cat litter
US5193489A (en) * 1992-07-01 1993-03-16 Laporte Inc Animal litter
US5196473A (en) * 1989-02-28 1993-03-23 Oil-Dri Corporation Of America Granules exhibiting reduced dusting
US5204310A (en) * 1992-02-21 1993-04-20 Westvaco Corporation High activity, high density activated carbon
US5206207A (en) * 1992-03-18 1993-04-27 Westvaco Corporation Preparation for high activity high density carbon
US5207830A (en) * 1990-03-21 1993-05-04 Venture Innovations, Inc. Lightweight particulate cementitious materials and process for producing same
US5210112A (en) * 1987-10-19 1993-05-11 Nippon Hodo Co., Ltd. Soil-stabilizing agent and a method for soil-stabilizing treatment
US5279259A (en) * 1991-08-07 1994-01-18 Floridin Company Animal litter compositions
US5295456A (en) * 1993-05-03 1994-03-22 Church & Dwight Co., Inc. Deodorizing additives for animal litters
US5304527A (en) * 1992-11-16 1994-04-19 Westvaco Corporation Preparation for high activity, high density carbon
US5303676A (en) * 1993-05-03 1994-04-19 Church & Dwight Co., Inc. Animal litters containing a deodorizing additive
US5318953A (en) * 1990-11-15 1994-06-07 American Colloid Company Method of improving water-swellable clay properties by re-drying, compositions and articles
US5317990A (en) * 1989-01-13 1994-06-07 American Colloid Company Animal dross absorbent and method
US5320066A (en) * 1992-12-08 1994-06-14 Gunter Lori E Pest repellant pet bedding of white cedar shavings treated with white cedar oil
US5386803A (en) * 1989-01-13 1995-02-07 American Colloid Company Animal dross absorbent and method
US5389325A (en) * 1993-09-24 1995-02-14 Corning Incorporated Activated carbon bodies having phenolic resin binder
US5407442A (en) * 1990-02-12 1995-04-18 Karapasha; Nancy Carbon-containing odor controlling compositions
US5421291A (en) * 1994-03-28 1995-06-06 Church & Dwight Co., Inc. Animal litter containing a water-swellable clay, carboxymethylcellulose, and siliceous coated bicarbonate particles
US5480584A (en) * 1987-09-24 1996-01-02 Murakashi Lime Industry Co., Ltd. Method for dust-control treatment
US5529022A (en) * 1994-01-03 1996-06-25 Nelson; Thomas E. Animal litter containing magnesium montmorillonite
US5609123A (en) * 1995-08-17 1997-03-11 Allied Colloids Limited Animal litter compositions and processes for making them
US5634431A (en) * 1994-10-18 1997-06-03 Malireddy S. Reddy Odor inhibiting pet litter
US5638770A (en) * 1994-08-03 1997-06-17 Peletico Limited Pet litter material
US5735232A (en) * 1993-07-20 1998-04-07 Effem Gmbh Animal litter and process for producing it
US5736481A (en) * 1996-03-12 1998-04-07 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5736485A (en) * 1996-03-08 1998-04-07 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5740761A (en) * 1995-07-14 1998-04-21 Lee; Bosco H. Animal litter composition and method of making same
US5743213A (en) * 1991-05-10 1998-04-28 Sanyo Chemical Industries, Ltd. Treating material for animal excretions and method of producing the same
US5762023A (en) * 1996-04-30 1998-06-09 Alterlink, Inc. Sorbent composition with polysaccharide clumping agent and boron-based cross-linking agent
US5860391A (en) * 1996-08-06 1999-01-19 First Brands Corporation Absorbents containing activated carbons
US5863858A (en) * 1996-03-12 1999-01-26 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5901661A (en) * 1993-08-18 1999-05-11 Pattengill; Maurice Glenn Method of forming a clumpable animal litter mixture
US6019063A (en) * 1998-03-18 2000-02-01 Gimborn, Inc. Litter product and process for its manufacture
US6025319A (en) * 1996-09-18 2000-02-15 Procter & Gamble Company Laundry additive particle having multiple surface coatings
US6030565A (en) * 1995-08-21 2000-02-29 Green Top Wood Recycling Ltd. Method for manufacturing an agglomerate
US6039004A (en) * 1998-02-13 2000-03-21 Oil-Dri Corporation Of America Cellulosic animal litter product
US6080908A (en) * 1993-04-23 2000-06-27 Centro Ricerche Fater P & G S.P.A. Odor control material
US6206947B1 (en) * 1995-07-19 2001-03-27 Waste Reduction Products Corp. Process for making an animal litter comprising gypsum, aluminum sulfate and urea
US6216634B1 (en) * 1997-12-12 2001-04-17 Grain Processing Corporation Animal litter, process for preparing animal litter, and method for removal of animal waste
US6220206B1 (en) * 1999-09-29 2001-04-24 Vidal E. Sotillo Method for producing a cat litter from grain milling byproducts
US20020000207A1 (en) * 2000-06-29 2002-01-03 Takeshi Ikegami Granular absorbent article for pet animals
US20020007800A1 (en) * 2000-06-06 2002-01-24 Uni-Heartous Corporation Animal excretions-treating material capable of being disposed of in flush toielets
US20020014209A1 (en) * 2000-06-09 2002-02-07 Bloomer Larry D. Composite clumping cat litter
US6371050B1 (en) * 1999-03-19 2002-04-16 Million Co., Ltd. Pet animal body waste treating material
US20020046710A1 (en) * 2000-06-23 2002-04-25 George Preti Use of odor reducing and cross-adapting agents to reduce animal waste malodors
US20020054919A1 (en) * 2000-09-07 2002-05-09 Hochwalt Mark A. Compositions and methods for reducing odor
US6405677B2 (en) * 1997-12-12 2002-06-18 Grain Processing Corporation Animal litter, process for preparing animal litter, and method for removal of animal waste
US20030051673A1 (en) * 2000-12-07 2003-03-20 Raymond Marvin L. Animal litter composition containing silica gel and methods therefor
US20030072733A1 (en) * 2000-09-25 2003-04-17 Mcgee Thomas Process for maintaining fragrance perception in the presence of an absorbent material
US6740406B2 (en) * 2000-12-15 2004-05-25 Kimberly-Clark Worldwide, Inc. Coated activated carbon

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33983A (en) 1861-12-24 Improvement in making
US29783A (en) 1860-08-28 Improvement in presses
US3059615A (en) 1959-01-19 1962-10-23 C P Hall Company Of Illinois Animal litter
US3993584A (en) 1972-12-20 1976-11-23 The Harshaw Chemical Company Agglomerate containing fibrous polytetrafluoroethylene
US3776188A (en) 1971-06-29 1973-12-04 C Komakine Method for inhibiting the formation of malodors from poultry farms
US3898324A (en) 1971-06-29 1975-08-05 Chukei Komakine Deodorizer composition for use in poultry farming
US3921581A (en) * 1974-08-01 1975-11-25 Star Kist Foods Fragrant animal litter and additives therefor
US4059545A (en) 1975-12-22 1977-11-22 The Dow Chemical Company Crosslinked styrene polymer foam having suppressed ignition properties
US4306516A (en) 1980-05-09 1981-12-22 The Cosmin Corporation Deodorizing litter for poultry farms
US4407231A (en) 1981-09-28 1983-10-04 The Clorox Company Movement activated odor control animal litter
US4560527A (en) 1984-04-24 1985-12-24 Kimberly-Clark Corporation Method of making agglomerated cellulosic particles using a substantially horizontal rotating drum
US4621011A (en) 1984-04-24 1986-11-04 Kimberly-Clark Corporation Agglomerated cellulosic particles
US4704989A (en) 1984-12-11 1987-11-10 John Rosenfeld Cat box litter and process for producing same
US4607594A (en) 1985-01-11 1986-08-26 Raetec Industries, Inc. Animal litter
US5232627A (en) 1985-07-05 1993-08-03 The Dow Chemical Company Adducts of clay and activated mixed metal oxides
JPS62239932A (en) 1986-04-10 1987-10-20 Asada Seifun Kk Excretion treatment material for pet
DE3716286A1 (en) 1987-05-15 1988-11-24 Henkel Kgaa A method for the form-shaping agglomeration of solid particles
US4793837A (en) 1988-01-15 1988-12-27 Columbus Industries, Inc. Gaseous filter construction
US4881490A (en) 1988-02-19 1989-11-21 Ducharme Cyril L Absorbent composition, and method of making same
US4949672A (en) 1988-06-17 1990-08-21 The Clorox Company Boron-based odor control animal litter
US5135743A (en) 1989-06-23 1992-08-04 The Clorox Company Combined odor controlling animal litter
US5129365A (en) 1989-10-18 1992-07-14 American Colloid Company Animal dross absorbent and method
US5000115A (en) * 1989-01-13 1991-03-19 American Colloid Company Animal dross absorbent and method
GB8903004D0 (en) 1989-02-10 1989-03-30 Mars G B Ltd Improvements in animal hygiene
JPH0741202Y2 (en) 1989-05-12 1995-09-20 富士電気化学株式会社 Dielectric Yes-pole filter
JPH0614669Y2 (en) 1989-09-20 1994-04-20 株式会社ヒダン Rod-like product container
US5062383A (en) 1989-10-25 1991-11-05 Nelson Thomas E Animal litter containing an improved clay
US5143023A (en) 1990-10-16 1992-09-01 Kleanheart, Inc. Animal litter with chemically bound chemical indicators
JPH04287626A (en) 1991-03-18 1992-10-13 Hitachi Kako Kk Sand of toilet for pet
RU2122391C1 (en) 1991-04-12 1998-11-27 Дзе Проктер Энд Гэмбл Компани Absorbing structure and absorbing product
US5146877A (en) 1991-04-17 1992-09-15 Oil-Dri Corporation Of America Particulate absorbent material having controlled bulk density
WO1993005859A1 (en) 1991-09-19 1993-04-01 The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Miniature cryosorption vacuum pump
US5152250A (en) 1992-01-21 1992-10-06 Clump & Flush, Inc. Agglomerating biodegradable animal litter and method of manufacture
US5238470A (en) 1992-02-21 1993-08-24 Westavco Corporation Emission control device
US5216980A (en) 1992-03-27 1993-06-08 Kiebke Theodore M Hydrating cat litter and litter additive
EP0573303A1 (en) 1992-06-05 1993-12-08 Peter Barnes Granular fluid stabilizing sorbent
US5538932A (en) 1992-08-11 1996-07-23 Westvaco Corporation Preparation of high activity, high density activated carbon with activatable binder
US5250491A (en) 1992-08-11 1993-10-05 Westvaco Corporation Preparation of high activity, high density activated carbon
US5230305A (en) 1992-11-23 1993-07-27 Venture Innovations, Inc. Scoopable cat litter and method
DE4243389A1 (en) 1992-12-21 1994-06-23 Sued Chemie Ag A process for the production of sorbents for absorbing liquids
US5359961A (en) 1993-02-05 1994-11-01 Oil-Dri Corporation Of America Animal litter with galactomannan gum clumping agent and carrageenan gum extender
ES2138003T3 (en) 1993-02-24 2000-01-01 Sanyo Chemical Ind Ltd Water absorptive composite material.
JP2595447B2 (en) 1993-06-04 1997-04-02 常陸化工株式会社 Pet litter
US5339769A (en) 1993-07-13 1994-08-23 The Dow Chemical Company Process for making an absorbent composition
US5329880A (en) 1993-08-18 1994-07-19 Western Aggregates Inc. Clumpable animal litter
US5458091A (en) 1993-08-18 1995-10-17 Western Aggregates, Inc. Clumpable animal litter mixture
US5325816A (en) 1993-08-18 1994-07-05 Western Aggregates, Inc. Porous animal litter
US5951822A (en) * 1993-09-09 1999-09-14 Marcal Paper Mills, Inc. Apparatus for making granular material
DE4338362A1 (en) 1993-11-10 1995-05-11 Sued Chemie Ag A process for the production of sorbents based on smectite for uptake of liquids
US5452684A (en) 1994-05-24 1995-09-26 American Colloid Company Method of agglomerating a smectite clay litter
JP3461576B2 (en) 1994-06-09 2003-10-27 ユニ・チャームペットケア株式会社 Pet waste for processing material
JPH0819344A (en) 1994-07-06 1996-01-23 Uni Charm Corp Urine-absorbing sheet for pet animal
US5469809A (en) 1994-07-15 1995-11-28 Super Dry Industries, Inc. Non dusting clumping animal litter
GB9414404D0 (en) 1994-07-16 1994-09-07 Davidson Ian R Clay minerals
JP3215271B2 (en) 1994-08-23 2001-10-02 ユニ・ハートス株式会社 Pet animal urine absorbent agent
EP0699384B1 (en) 1994-09-02 1999-10-27 Kunimine Industries Co. Ltd. Excrement treatment for small animals and method of manufacturing the same
US5542374A (en) 1994-11-01 1996-08-06 Mfm Industries, Inc. Animal litter of clay and western red cedar
DE19509747A1 (en) 1994-11-17 1996-09-19 Paul Wueseke Kalksandsteinwerk Highly porous granules for use as animal litter and process for producing the granulate
US5826543A (en) 1995-01-20 1998-10-27 Ralston Purina Company Clumpable animal litter containing a dust reducing agent
US5647300A (en) 1995-10-31 1997-07-15 First Brands Corporation Compacted bentonite-based absorbents
US6260511B1 (en) 1996-01-24 2001-07-17 Kimberly-Clark Worldwide, Inc. Process for the preparation of absorbent materials
US5691270A (en) 1996-03-08 1997-11-25 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5806462A (en) 1996-06-13 1998-09-15 Parr; Michael J. Clumping animal litter
US5655480A (en) 1996-07-11 1997-08-12 Pet Ecology Brands Inc. Animal control litter
US6101978A (en) 1996-07-11 2000-08-15 Pet Ecology Brands Animal litter having the property of detecting urinary infection in cats
US6287550B1 (en) 1996-12-17 2001-09-11 The Procter & Gamble Company Animal care system and litter with reduced malodor impression
WO1998027261A3 (en) 1996-12-17 1998-09-03 Procter & Gamble Animal care system and litter with reduced malodor impression
DE19653152A1 (en) 1996-12-19 1998-06-25 Sued Chemie Ag A process for the production of sorbents based on cellulose-containing material and clay minerals
JP3011899B2 (en) 1997-03-21 2000-02-21 正章 乙黒 Animal waste processing material
US5992351A (en) 1997-04-03 1999-11-30 The Clorox Company Clumpable animal litter with improved odor control
ES2150333B1 (en) 1997-06-20 2001-05-16 Tolsa Sa absorbent and inhibiting formation composition malodor animal bedding, method for their preparation and their use in hygienic cat litter.
US5836263A (en) 1997-08-19 1998-11-17 Oil-Dri Corporation Of America Clumping animal litter
US5975019A (en) 1997-08-19 1999-11-02 Oil-Dri Corporation Of America Clumping animal litter
WO1999033335A2 (en) 1997-12-30 1999-07-08 Addwest Minerals Composition and method for making a cat litter using ionic aluminosilicates
US6089189A (en) 1998-03-09 2000-07-18 Goss; G. Robert Scoopable cellulosic animal litter
US6231721B1 (en) 1998-10-09 2001-05-15 Weyerhaeuser Company Compressible wood pulp product
JP3954309B2 (en) 1998-12-18 2007-08-08 ネステク ソシエテ アノニム Animal waste processing material
US6319342B1 (en) 1998-12-31 2001-11-20 Kimberly-Clark Worldwide, Inc. Method of forming meltblown webs containing particles
EP1143900A1 (en) 1998-12-31 2001-10-17 Kimberly-Clark Worldwide, Inc. Absorbent composites with enhanced intake properties
US5970915A (en) 1999-01-08 1999-10-26 Harvest Ventures, Inc. Method of preparing a litter box for small domestic felines
US6089190A (en) 1999-02-18 2000-07-18 Oil-Dri Corporation Of America Packaging compatible animal litter
WO2001019177A1 (en) 1999-09-10 2001-03-22 Metin Erozlu Process for producing a flushable, clumpable, dustless sepiolite cat litter
GB9921790D0 (en) 1999-09-16 1999-11-17 Scotoil Group Plc Absorbent materials and production thereof
US6499984B1 (en) 2000-05-22 2002-12-31 Warner-Lambert Company Continuous production of pharmaceutical granulation
US6426325B1 (en) 2000-11-21 2002-07-30 Robertet Fragrances Fragrance compositions
US6472343B1 (en) 2001-04-11 2002-10-29 Westvaco Corporation Shaped activated carbon
US20020183201A1 (en) 2001-05-01 2002-12-05 Barnwell James W. Adsorbents for use in regenerable adsorbent fractionators and methods of making the same
US7059273B2 (en) 2001-10-16 2006-06-13 The Iams Company Absorbent composition and extended use pet litter
US6887570B2 (en) 2002-02-05 2005-05-03 Nestec Ltd. Coated clumping litter
JP3723516B2 (en) 2002-03-20 2005-12-07 ペパーレット株式会社 Animal urine disposal material particulate form

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029783A (en) * 1958-04-14 1962-04-17 Minerals & Chem Philipp Corp Animal litter composition
US3892846A (en) * 1970-06-19 1975-07-01 Allied Chem Animal litter resistant to ammonia odor formation
US3821346A (en) * 1971-08-02 1974-06-28 W Batley Pet litter produced by recycled molasses serum
US4187803A (en) * 1971-08-09 1980-02-12 Oil-Dri Corporation Of America Process for pelletizing sorptive mineral fines
US3789797A (en) * 1971-11-12 1974-02-05 Star Kist Foods Cat litter
US4085704A (en) * 1976-11-30 1978-04-25 Rush-Hampton Industries Animal litter
US4256728A (en) * 1978-10-11 1981-03-17 Takeda Chemical Industries, Ltd. Deodorization method
US4275684A (en) * 1979-01-19 1981-06-30 Effem Gmbh Animal litter
US4263873A (en) * 1979-03-19 1981-04-28 George Christianson Animal litter and method of preparation
US4437429A (en) * 1981-08-04 1984-03-20 Aquarium Pharmaceuticals, Inc. Animal litter
US4517308A (en) * 1981-09-04 1985-05-14 Collo Gmbh Method of producing a sorptive body, particularly for eliminating odors, air freshening, etc. and the resultant product
US4657881A (en) * 1982-02-19 1987-04-14 Laporte Industries Limited Absorbent materials
US4591581A (en) * 1983-01-28 1986-05-27 Laporte Industries Limited Method for making absorbent materials
US4506628A (en) * 1983-07-13 1985-03-26 Stockel Richard F Animal litter
US4565794A (en) * 1983-12-16 1986-01-21 John Stephens Production of silica gel and an adsorbent, absorbent product from sericitic clay
US4824810A (en) * 1984-04-19 1989-04-25 Effem Gmbh Highly porous ceramic material for absorption and adsorption purposes, particularly for animal litter/bedding, process for the production thereof and the use thereof
US4677086A (en) * 1984-05-18 1987-06-30 Westvaco Corporation Shaped wood-based active carbon
US4568453A (en) * 1984-09-14 1986-02-04 Lowe Jr Henry E Apparatus and method for removing dust from particulate material
US4721059A (en) * 1985-03-21 1988-01-26 H. Edward Lowe Nonclay catbox filler
US4638763A (en) * 1985-04-10 1987-01-27 Bernard Greenberg Animal litter formulation
US4664843A (en) * 1985-07-05 1987-05-12 The Dow Chemical Company Mixed metal layered hydroxide-clay adducts as thickeners for water and other hydrophylic fluids
US4641605A (en) * 1985-11-29 1987-02-10 Kal Kan Foods, Inc. Animal litter and method of preparation
US4837020A (en) * 1986-09-09 1989-06-06 Takeda Chemical Industries, Ltd. Deodorant composition
US4920090A (en) * 1987-05-15 1990-04-24 Henkel Kommanditgesellschaft Auf Aktien Process for the formation of shaped agglomerates from particulate solids
US5013335A (en) * 1987-06-30 1991-05-07 Uop Process for sequestering ammonia and the odor associated therewith
US5480584A (en) * 1987-09-24 1996-01-02 Murakashi Lime Industry Co., Ltd. Method for dust-control treatment
US4844010A (en) * 1987-10-02 1989-07-04 Personal Pet Products Partnershhip Absorbent composition, method of making and using same
US5210112A (en) * 1987-10-19 1993-05-11 Nippon Hodo Co., Ltd. Soil-stabilizing agent and a method for soil-stabilizing treatment
US5183655A (en) * 1988-06-17 1993-02-02 The Clorox Company Combined odor controlling animal litter
US5176108A (en) * 1988-06-17 1993-01-05 The Clorox Company Boron-based odor control animal litter
US5018482A (en) * 1988-06-17 1991-05-28 The Clorox Company Combined odor controlling animal litter
US5094190A (en) * 1988-06-17 1992-03-10 The Clorox Company Boron-based odor control animal litter
US5109805A (en) * 1988-12-24 1992-05-05 Laporte Industries Limited Absorbent material
US5317990A (en) * 1989-01-13 1994-06-07 American Colloid Company Animal dross absorbent and method
US5386803A (en) * 1989-01-13 1995-02-07 American Colloid Company Animal dross absorbent and method
US5503111A (en) * 1989-01-13 1996-04-02 American Colloid Company Animal dross absorbent and method
US4914066A (en) * 1989-02-24 1990-04-03 Hoechst Celanese Corporation Pellets of clay and superabsorbent polymer
US5196473A (en) * 1989-02-28 1993-03-23 Oil-Dri Corporation Of America Granules exhibiting reduced dusting
US5005520A (en) * 1989-04-24 1991-04-09 Michael Richard D Animal litter deodorizing additive
US5176107A (en) * 1989-07-24 1993-01-05 Buschur Jeffrey J Pet litter
US5005115A (en) * 1989-07-28 1991-04-02 Westinghouse Electric Corp. Forced-commutated current-source converter and AC motor drive using the same
US5019254A (en) * 1989-08-16 1991-05-28 Aquarium Pharmaceuticals, Inc. Filter pad with pocket and method of using the same
US5079201A (en) * 1989-09-19 1992-01-07 Mobil Oil Corp. Zeolite-clay composition and uses thereof
US5100600A (en) * 1989-12-09 1992-03-31 Fritz Keller Method of making an absorbent paper-containing granulate
US5014650A (en) * 1989-12-28 1991-05-14 Dowbrands Inc. Animal litter
US5407442A (en) * 1990-02-12 1995-04-18 Karapasha; Nancy Carbon-containing odor controlling compositions
US5207830A (en) * 1990-03-21 1993-05-04 Venture Innovations, Inc. Lightweight particulate cementitious materials and process for producing same
US5318953A (en) * 1990-11-15 1994-06-07 American Colloid Company Method of improving water-swellable clay properties by re-drying, compositions and articles
US5176879A (en) * 1991-03-22 1993-01-05 Rhone-Poulenc, Inc. Animal litter composition having deodorizing properties
US5094189A (en) * 1991-03-26 1992-03-10 Western Industrial Clay Products, Ltd. Animal litter capable of agglomerating
US5743213A (en) * 1991-05-10 1998-04-28 Sanyo Chemical Industries, Ltd. Treating material for animal excretions and method of producing the same
US5101771A (en) * 1991-07-05 1992-04-07 Oil-Dri Corporation Of America Animal litter with biodegradable clumping agent
US5279259A (en) * 1991-08-07 1994-01-18 Floridin Company Animal litter compositions
US5188064A (en) * 1991-10-07 1993-02-23 Venture Innovations, Inc. Clumping cat litter
US5183010A (en) * 1992-01-28 1993-02-02 Golden Cat Corporation Additive for binding liquid waste
US5204310A (en) * 1992-02-21 1993-04-20 Westvaco Corporation High activity, high density activated carbon
US5206207A (en) * 1992-03-18 1993-04-27 Westvaco Corporation Preparation for high activity high density carbon
US5276000A (en) * 1992-03-18 1994-01-04 Westvaco Corporation Preparation for high activity, high density carbon
US5193489A (en) * 1992-07-01 1993-03-16 Laporte Inc Animal litter
US5304527A (en) * 1992-11-16 1994-04-19 Westvaco Corporation Preparation for high activity, high density carbon
US5320066A (en) * 1992-12-08 1994-06-14 Gunter Lori E Pest repellant pet bedding of white cedar shavings treated with white cedar oil
US6080908A (en) * 1993-04-23 2000-06-27 Centro Ricerche Fater P & G S.P.A. Odor control material
US5303676A (en) * 1993-05-03 1994-04-19 Church & Dwight Co., Inc. Animal litters containing a deodorizing additive
US5295456A (en) * 1993-05-03 1994-03-22 Church & Dwight Co., Inc. Deodorizing additives for animal litters
US5735232A (en) * 1993-07-20 1998-04-07 Effem Gmbh Animal litter and process for producing it
US5901661A (en) * 1993-08-18 1999-05-11 Pattengill; Maurice Glenn Method of forming a clumpable animal litter mixture
US5389325A (en) * 1993-09-24 1995-02-14 Corning Incorporated Activated carbon bodies having phenolic resin binder
US5529022A (en) * 1994-01-03 1996-06-25 Nelson; Thomas E. Animal litter containing magnesium montmorillonite
US5421291A (en) * 1994-03-28 1995-06-06 Church & Dwight Co., Inc. Animal litter containing a water-swellable clay, carboxymethylcellulose, and siliceous coated bicarbonate particles
US5638770A (en) * 1994-08-03 1997-06-17 Peletico Limited Pet litter material
US5634431A (en) * 1994-10-18 1997-06-03 Malireddy S. Reddy Odor inhibiting pet litter
US5740761A (en) * 1995-07-14 1998-04-21 Lee; Bosco H. Animal litter composition and method of making same
US6206947B1 (en) * 1995-07-19 2001-03-27 Waste Reduction Products Corp. Process for making an animal litter comprising gypsum, aluminum sulfate and urea
US5609123A (en) * 1995-08-17 1997-03-11 Allied Colloids Limited Animal litter compositions and processes for making them
US6194065B1 (en) * 1995-08-21 2001-02-27 Green Top Wood Recycling Ltd. Method for manufacturing an agglomerate
US6030565A (en) * 1995-08-21 2000-02-29 Green Top Wood Recycling Ltd. Method for manufacturing an agglomerate
US5736485A (en) * 1996-03-08 1998-04-07 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5863858A (en) * 1996-03-12 1999-01-26 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5736481A (en) * 1996-03-12 1998-04-07 Westvaco Corporation Shaped lignocellulosic-based activated carbon
US5762023A (en) * 1996-04-30 1998-06-09 Alterlink, Inc. Sorbent composition with polysaccharide clumping agent and boron-based cross-linking agent
US5860391A (en) * 1996-08-06 1999-01-19 First Brands Corporation Absorbents containing activated carbons
US6025319A (en) * 1996-09-18 2000-02-15 Procter & Gamble Company Laundry additive particle having multiple surface coatings
US6216634B1 (en) * 1997-12-12 2001-04-17 Grain Processing Corporation Animal litter, process for preparing animal litter, and method for removal of animal waste
US6405677B2 (en) * 1997-12-12 2002-06-18 Grain Processing Corporation Animal litter, process for preparing animal litter, and method for removal of animal waste
US6039004A (en) * 1998-02-13 2000-03-21 Oil-Dri Corporation Of America Cellulosic animal litter product
US6019063A (en) * 1998-03-18 2000-02-01 Gimborn, Inc. Litter product and process for its manufacture
US6371050B1 (en) * 1999-03-19 2002-04-16 Million Co., Ltd. Pet animal body waste treating material
US6220206B1 (en) * 1999-09-29 2001-04-24 Vidal E. Sotillo Method for producing a cat litter from grain milling byproducts
US20020007800A1 (en) * 2000-06-06 2002-01-24 Uni-Heartous Corporation Animal excretions-treating material capable of being disposed of in flush toielets
US20020014209A1 (en) * 2000-06-09 2002-02-07 Bloomer Larry D. Composite clumping cat litter
US20020046710A1 (en) * 2000-06-23 2002-04-25 George Preti Use of odor reducing and cross-adapting agents to reduce animal waste malodors
US20020000207A1 (en) * 2000-06-29 2002-01-03 Takeshi Ikegami Granular absorbent article for pet animals
US6405678B2 (en) * 2000-06-29 2002-06-18 Uni-Heartous Corporation Granular absorbent article for pet animals
US20020054919A1 (en) * 2000-09-07 2002-05-09 Hochwalt Mark A. Compositions and methods for reducing odor
US20030072733A1 (en) * 2000-09-25 2003-04-17 Mcgee Thomas Process for maintaining fragrance perception in the presence of an absorbent material
US20030051673A1 (en) * 2000-12-07 2003-03-20 Raymond Marvin L. Animal litter composition containing silica gel and methods therefor
US6543385B2 (en) * 2000-12-07 2003-04-08 Nestec, Ltd. Animal litter composition containing silica gel and methods therefor
US6578521B2 (en) * 2000-12-07 2003-06-17 Nestec Ltd. Animal litter composition containing silica gel and methods thereof
US6740406B2 (en) * 2000-12-15 2004-05-25 Kimberly-Clark Worldwide, Inc. Coated activated carbon

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080022940A1 (en) * 2003-07-11 2008-01-31 Bradley Kirsch Composite Absorbent Particles with Superabsorbent Material
US20080029039A1 (en) * 2003-07-11 2008-02-07 Dennis Jenkins Dry Bed Agglomeration Process and Product Formed Thereby
US20090217882A1 (en) * 2003-07-11 2009-09-03 Dennis Jenkins Dry Bed Agglomeration Process and Product Formed Thereby
US20050084475A1 (en) * 2003-10-17 2005-04-21 Richard Weschler Treatment of landfill gas
US7056537B2 (en) * 2003-10-17 2006-06-06 Aceto Corporation Treatment of landfill gas
US20060112894A1 (en) * 2004-08-20 2006-06-01 Uni-Charm Petcare Corporation Animal litter
US7467600B2 (en) * 2004-08-20 2008-12-23 Uni-Charm Petcare Corporation Animal litter
US20060042514A1 (en) * 2004-08-30 2006-03-02 Bodycomb Frederick M Agglomerated waste expanded perlite
US20080280001A1 (en) * 2005-03-18 2008-11-13 Sud-Chemie Ag Natural Layer Mineral Granulates and Method For the Production Thereof
WO2006097325A3 (en) * 2005-03-18 2007-04-26 Klaus Schurz Natural layer mineral granulates and method for the production thereof
WO2006097325A2 (en) * 2005-03-18 2006-09-21 Süd-Chemie AG Natural layer mineral granulates and method for the production thereof
US20060243212A1 (en) * 2005-04-29 2006-11-02 Jenkins Dennis B Composite particle animal litter and method thereof
US7603964B2 (en) * 2005-04-29 2009-10-20 The Clorox Company Composite particle animal litter and method thereof
US20070017453A1 (en) * 2005-07-25 2007-01-25 Fritter Charles F Animal litter containing activated carbon
US20090124989A1 (en) * 2005-11-18 2009-05-14 Sca Hygiene Products Ab Absorbent Articles Comprising Acidic Superabsorber and an Organic Zinc Salt
US20080132632A1 (en) * 2006-03-02 2008-06-05 Schiraldi David A Absorbent compositions with clay aerogels and methods for forming absorbent compositions
US20070208124A1 (en) * 2006-03-02 2007-09-06 Case Western Reserve University Clay aerogel-based polymer composites, materials and methods
US8916638B2 (en) 2006-03-02 2014-12-23 Case Western Reserve University Clay aerogel-based polymer composites, materials and methods
US20130316177A1 (en) * 2006-10-05 2013-11-28 Basf Se Method for the production of absorbent polymer particles by polymerizing drops of a monomer solution
US8748690B2 (en) * 2006-11-17 2014-06-10 Sca Hygiene Products Ab Absorbent articles comprising acidic cellulosic fibers and an organic zinc salt
US20110015596A1 (en) * 2006-11-17 2011-01-20 Sca Hygiene Products Ab Absorbent articles comprising acidic cellulosic fibers and an organic zinc salt
US9555150B2 (en) 2006-11-17 2017-01-31 Sca Hygiene Products Ab Absorbent articles comprising an organic zinc salt and an anti-bacterial agent or alkali metal chloride or alkaline earth metal chloride
WO2008058565A1 (en) * 2006-11-17 2008-05-22 Sca Hygiene Products Ab Absorbent articles comprising a peroxy compound and an organic zinc salt
US20100047303A1 (en) * 2006-11-17 2010-02-25 Sca Hygiene Products Ab Absorbent articles comprising an organic zinc salt and an anti-bacterial agent or alkali metal chloride or alkaline earth metal chloride
US20110054430A1 (en) * 2006-11-17 2011-03-03 Sca Hygiene Products Ab Absorbent articles comprising a peroxy compound and an organic zinc salt
US8156896B2 (en) * 2006-11-20 2012-04-17 Church & Dwight Co., Inc. Clump recognition animal litter
US20090255478A1 (en) * 2006-11-20 2009-10-15 Wadams Robert C Clump recognition animal litter
US20080318762A1 (en) * 2007-06-21 2008-12-25 Privitera Marc P Agglomerated Animal Litter
US7776110B2 (en) 2007-06-21 2010-08-17 The Clorox Company Agglomerated animal litter
US8268018B2 (en) 2007-06-21 2012-09-18 The Clorox Company Agglomerated animal litter
US20090000562A1 (en) * 2007-06-26 2009-01-01 The Clorox Company Waste encapsulating animal litter
US20120012064A1 (en) * 2007-06-26 2012-01-19 The Clorox Company Waste Encapsulating Animal Litter
US8356578B2 (en) * 2007-06-26 2013-01-22 Jenkins Dennis B Waste encapsulating animal litter
US8343908B2 (en) * 2007-07-12 2013-01-01 Kimberly-Clark Worldwide, Inc. Foaming hand sponge with color change indicator
US8440606B2 (en) 2007-07-12 2013-05-14 Kimberly-Clark Worldwide, Inc. Foaming hand sponge for bodily cleansing with color change indicator
US20090018048A1 (en) * 2007-07-12 2009-01-15 Kimberly-Clark Worldwide, Inc. Foaming hand sponge with color change indicator
US20090018047A1 (en) * 2007-07-12 2009-01-15 Kimberly-Clark Worldwide, Inc. Foaming hand sponge for bodily cleansing with color change indicator
US7523973B2 (en) 2007-08-08 2009-04-28 The Clorox Company Thermoformed litter scoop
US20090038553A1 (en) * 2007-08-08 2009-02-12 Kevin Lin Thermoformed Litter Scoop
US10040990B1 (en) 2007-12-11 2018-08-07 Aquasmart Enterprises, Llc Hydraulic fracture composition and method
US9856415B1 (en) 2007-12-11 2018-01-02 Superior Silica Sands, LLC Hydraulic fracture composition and method
US8814985B2 (en) 2008-12-22 2014-08-26 Glatt Systemtechnik Gmbh Composite adsorbent bead, process for its production, gas separation process and gas adsorption bed
WO2010072404A3 (en) * 2008-12-22 2010-09-16 Glatt Systemtechnik Gmbh Composite adsorbent bead, process for its production, gas separation process and gas adsorption bed
EP2198946A1 (en) * 2008-12-22 2010-06-23 Glatt Systemtechnik Dresden GmhH Composite adsorbent bead, process for its production and gas separation process
JP2012513295A (en) * 2008-12-22 2012-06-14 エアー プロダクツ エンド ケミカルズ インコーポレーテッド Composite adsorbent beads, their preparation, gas separation methods and gas adsorption beds
US8608991B2 (en) 2009-06-11 2013-12-17 Case Western Reserve University Porous material having controlled voids and method of making the same
US8637582B2 (en) 2009-06-11 2014-01-28 Case Western Reserve University Crosslinked polymer aerogels, polymer aerogel composites and methods for preparing the same
US8822558B2 (en) 2009-06-11 2014-09-02 Case Western Reserve University Low density hydrophobic material and method of making the same
US8845937B2 (en) 2009-06-11 2014-09-30 Case Western Reserve University Porous material having anisotropic structure and method of making the same
US20120235086A1 (en) * 2009-10-02 2012-09-20 Torsten Schlicht Mineral, granulated desulfurizing agent on the basis of calcium hydroxide, method for the production thereof and use thereof
US20110185977A1 (en) * 2010-01-29 2011-08-04 Dan Kenneth Dixon Extruded animal litters
US20110185978A1 (en) * 2010-01-29 2011-08-04 Dan Kenneth Dixon Extruded animal litters having an increased absorption rate
US8904963B2 (en) 2010-01-29 2014-12-09 Nestec S.A. Extruded animal litters having an increased absorption rate
US8733287B2 (en) 2010-06-11 2014-05-27 Nestec S.A. Litter box assembly having a litter fragmenting device
WO2012057825A1 (en) 2010-10-27 2012-05-03 Nestec S.A. Malodor control compositions
US9894877B2 (en) 2011-06-15 2018-02-20 Oil-Dri Corporation Of America Cat litter product
US9745224B2 (en) 2011-10-07 2017-08-29 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
US8720375B2 (en) 2012-05-17 2014-05-13 Church & Dwight Co., Inc. Clay-based superior animal litter
US20130319341A1 (en) * 2012-05-30 2013-12-05 Nestec Sa Low-dust animal litters and methods for making same
US9398754B2 (en) * 2012-05-30 2016-07-26 Nestec Sa Low-dust animal litters and methods for making same
US20150208606A1 (en) * 2012-08-27 2015-07-30 The All Natural Pet Litter Company Pty Ltd Odour controller
EP2894637A4 (en) * 2012-09-10 2016-05-04 Jikei University Radioactive cesium decontaminating agent and method for producing same, and method for removing radioactive cesium
US10028481B2 (en) 2012-09-11 2018-07-24 Pioneer Pet Products, Llc Granular absorbent and system and method for treating or processing granular absorbent during granular absorbent transport
US9491926B2 (en) 2012-09-11 2016-11-15 Pioneer Pet Products, Llc Method of making extruded self-clumping granular absorbent
US20150296740A1 (en) * 2012-10-26 2015-10-22 The Andersons, Inc. Cementitious clumping material
US10051834B2 (en) * 2012-10-26 2018-08-21 The Andersons, Inc. Cementitious clumping material
US20150057209A1 (en) * 2013-08-21 2015-02-26 Ricoh Company, Ltd. Abrasive grain, polisher, and production method of abrasive grain
GB2535876A (en) * 2013-09-26 2016-08-31 Halliburton Energy Services Inc Absorbent clumping animal litter compositions
WO2015047279A1 (en) * 2013-09-26 2015-04-02 Halliburton Energy Services, Inc. Absorbent clumping animal litter compositions
CN105813455A (en) * 2013-12-10 2016-07-27 尤妮佳股份有限公司 Aromatic particles, and toilet sand for animals
US9527781B2 (en) 2013-12-19 2016-12-27 Aquasmart Enterprises, Llc Persistent, targeted, optimized, soil amendment composition and method
US9751814B2 (en) 2013-12-19 2017-09-05 Aquasmart Enterprises, Llc Persistent, targeted, optimized, soil amendment composition and method
WO2015138717A1 (en) * 2014-03-12 2015-09-17 Pioneer Pet Products, Llc Lightweight coated extruded granular absorbent
JP2016000018A (en) * 2014-06-12 2016-01-07 株式会社大貴 Excrement treating material, and animal toilet using the former
US9359253B2 (en) 2014-07-01 2016-06-07 Aquasmart Enterprises, Llc Coated-fine-aggregate, concrete composition and method
US9783457B2 (en) 2014-07-01 2017-10-10 Aquasmart Enterprises, Llc Coated-fine-aggregate, concrete composition and method
CN104528919B (en) * 2015-01-22 2015-11-04 叶澄 A method for preparing a biological complex filler helical groove
CN104528919A (en) * 2015-01-22 2015-04-22 叶澄 Preparation method of composite biological filler for spiral groove
USD814126S1 (en) * 2015-08-26 2018-03-27 7905122 Canada Inc. Particle for animal litter
WO2017178302A1 (en) 2016-04-14 2017-10-19 Basf Se Coated polymer particles comprising a water-swellable polymer core and a sol-gel coating
CN106582462A (en) * 2016-11-23 2017-04-26 中国科学院金属研究所 Preparation method of intelligent corrosion inhibition microcapsule

Also Published As

Publication number Publication date Type
US20090007852A1 (en) 2009-01-08 application
US20170339914A1 (en) 2017-11-30 application
US9283540B2 (en) 2016-03-15 grant
US20160150757A1 (en) 2016-06-02 application
US20080308045A1 (en) 2008-12-18 application

Similar Documents

Publication Publication Date Title
US4343751A (en) Clay agglomeration process
US5542374A (en) Animal litter of clay and western red cedar
US4157696A (en) Animal litter pellets
US6098569A (en) Animal litter, process for preparing animal litter, and method for removal of animal waste
US20080132632A1 (en) Absorbent compositions with clay aerogels and methods for forming absorbent compositions
US5526770A (en) Biodegradable dustless cat litter
US5836263A (en) Clumping animal litter
US5176879A (en) Animal litter composition having deodorizing properties
US5469809A (en) Non dusting clumping animal litter
US6089189A (en) Scoopable cellulosic animal litter
US5183010A (en) Additive for binding liquid waste
US5303676A (en) Animal litters containing a deodorizing additive
US5101771A (en) Animal litter with biodegradable clumping agent
US5129365A (en) Animal dross absorbent and method
US5901661A (en) Method of forming a clumpable animal litter mixture
US5014650A (en) Animal litter
US5458091A (en) Clumpable animal litter mixture
US4622920A (en) Animal litter
US6543385B2 (en) Animal litter composition containing silica gel and methods therefor
US5762023A (en) Sorbent composition with polysaccharide clumping agent and boron-based cross-linking agent
US7343874B2 (en) Silica gel based animal litter
US6019063A (en) Litter product and process for its manufacture
US5062383A (en) Animal litter containing an improved clay
US5860391A (en) Absorbents containing activated carbons
US20030131799A1 (en) Absorbent composition and extended use pet litter

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE CLOROX COMPANY, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRITTER, CHARLES F.;SHENOY, ANANTH N.;BLONDEAU, SARAH P.;AND OTHERS;REEL/FRAME:014759/0562;SIGNING DATES FROM 20031114 TO 20031119

Owner name: CLOROX COMPANY, THE, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WALLIS, KEVIN P.;REEL/FRAME:014759/0397

Effective date: 20031117