WO2014038648A1 - 超音波検査装置と方法 - Google Patents

超音波検査装置と方法 Download PDF

Info

Publication number
WO2014038648A1
WO2014038648A1 PCT/JP2013/074016 JP2013074016W WO2014038648A1 WO 2014038648 A1 WO2014038648 A1 WO 2014038648A1 JP 2013074016 W JP2013074016 W JP 2013074016W WO 2014038648 A1 WO2014038648 A1 WO 2014038648A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
inspected
waveform
wave
defect
Prior art date
Application number
PCT/JP2013/074016
Other languages
English (en)
French (fr)
Inventor
拓 川▲崎▼
達矢 引地
三郎 芝田
中村 英之
敬弘 荒川
Original Assignee
株式会社Ihi検査計測
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi検査計測 filed Critical 株式会社Ihi検査計測
Priority to EP13835241.4A priority Critical patent/EP2894470B1/en
Publication of WO2014038648A1 publication Critical patent/WO2014038648A1/ja
Priority to US14/625,788 priority patent/US10345268B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/069Defect imaging, localisation and sizing using, e.g. time of flight diffraction [TOFD], synthetic aperture focusing technique [SAFT], Amplituden-Laufzeit-Ortskurven [ALOK] technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to an ultrasonic inspection apparatus and method for determining the position of a defect of an inspection object based on the ultrasonic wave propagated inside the inspection object and reflected by a defect in the inspection object.
  • a metal material (steel material) having a welded part is used as an inspection object, and the position of a defect in the welding part of the inspection object is obtained with an ultrasonic wave.
  • the ultrasonic transmitter 33 generates an ultrasonic wave.
  • This ultrasonic wave includes a lateral wave that propagates on the surface of the inspection object 1 and an internal propagation wave that propagates inside the inspection object 1.
  • the internal propagation wave includes a reflection at the upper end of the defect 1a (in this example, a defect in the welded portion) inside the inspection object 1, a reflection at the lower end of the defect 1a, and a bottom surface of the inspection object 1.
  • the one that reflects in is included.
  • the time at which the ultrasonic wave is generated is the time measurement origin, the time when the ultrasonic receiver 35 detects the lateral wave is t1, the time when the ultrasonic wave receiver 35 detects the reflected wave from the upper end of the defect 1a is t2, The time for the ultrasonic receiver 35 to detect the reflected wave from the lower end of the defect 1a is t3, and the time for the ultrasonic receiver 35 to detect the reflected wave from the bottom surface of the inspection object 1 is t4. While keeping the distance between the ultrasonic transmitter 33 and the ultrasonic receiver 35 constant, the mounting positions of the ultrasonic transmitter 33 and the ultrasonic receiver 35 with respect to the inspected object 1 are gradually moved to the right side of FIG. Then, the above-described times t1 to t4 are detected by the ultrasonic transmitter 33 and the ultrasonic receiver 35 at each mounting position.
  • the time data thus obtained is shown in FIG. 2 (the illustration of t4 is omitted).
  • the horizontal axis indicates the position of the ultrasonic transmitter 33
  • the vertical axis indicates the time with the ultrasonic wave generation point as the origin.
  • t1 to t3 are straight lines or curves shown in FIG.
  • t2 and t3 are the smallest, it can be estimated that the distance from the ultrasonic transmitter 33 to the defect 1a is the same as the distance from the ultrasonic receiver 35 to the defect 1a. Therefore, based on the minimum value of t2 and t3 and the known distance between the ultrasonic transmitter 33 and the ultrasonic receiver 35, the position of the defect 1a (the position in the horizontal direction in FIG. Distance).
  • the ultrasonic transmitter generates a frequency-modulated ultrasonic wave, receives the reflected wave of the ultrasonic wave by the ultrasonic receiver, and obtains received data.
  • pulse compression By performing pulse compression on the received data, the position of the defect can be specified with high accuracy.
  • the frequency-modulated ultrasonic waveform has a component of the resonance frequency of the ultrasonic transmitter.
  • FIG. 9B which will be described later, is data of reflected waves of frequency-modulated ultrasonic waves.
  • the ultrasonic waveform is distorted.
  • an object of the present invention is to generate a frequency-modulated ultrasonic wave and eliminate the distortion of the frequency-modulated ultrasonic wave when performing pulse compression on the received data of the reflected wave, thereby detecting a defect position. Is to be obtained with higher accuracy.
  • the present invention is directed to an ultrasonic wave for propagating an ultrasonic wave inside an object to be inspected, and determining the position of the defect of the object to be inspected based on the ultrasonic wave reflected by the defect in the object to be inspected.
  • a sonography apparatus An ultrasonic transmitter that is attached to the object to be inspected and generates an ultrasonic wave that propagates inside the object to be inspected; An ultrasonic receiver that receives a reflected wave of an ultrasonic wave propagated inside the object to be inspected; A data processing device for obtaining position specifying data for specifying the position of the defect in the inspected body based on the received data indicating the waveform of the reflected wave received by the ultrasonic receiver; and The ultrasonic wave generated by the ultrasonic transmitter is frequency-modulated, and the waveform of the ultrasonic wave is composed of each frequency component deviating from the resonance frequency of the ultrasonic transmitter and the ultrasonic receiver.
  • the data processing apparatus includes a pulse compression unit that performs pulse compression on the received data, and obtains position specifying data based on the pulse-compressed received data.
  • the ultrasonic transmitter generates frequency-modulated ultrasonic waves over a set period of time,
  • the amplitude of the ultrasonic wave gradually increases from the start time of the setting period to the first intermediate time point, and the amplitude is kept constant from the first intermediate time point to the second intermediate time point, and the end of the setting period from the second intermediate time point Until that time, the amplitude gradually decreases.
  • the position where the ultrasonic receiver and the ultrasonic transmitter are attached to the object to be inspected is changed, or a plurality of ultrasonic receivers and ultrasonic transmitters are attached to the object to be inspected differently.
  • the ultrasonic transmitter propagates ultrasonic waves into the body to be examined, and the ultrasonic receiver receives the reflected waves of the ultrasonic waves.
  • the ultrasonic inspection apparatus includes a waveform recording unit that records received data obtained for each attachment position
  • the data processing device includes: For each attachment position, the propagation time from the time when the ultrasonic transmitter generates an ultrasonic wave to the time when the ultrasonic receiver receives the reflected wave of the ultrasonic wave is obtained as position specifying data based on the received data. Propagation time identification part, An aperture synthesis unit for obtaining a position of a defect in the inspected object by performing aperture synthesis for a plurality of propagation times respectively obtained for a plurality of attachment positions.
  • the present invention is configured to determine the position of the defect of the inspection object based on the ultrasonic wave propagated inside the inspection object and reflected by the defect in the inspection object.
  • An ultrasonic inspection method (A) Attach an ultrasonic transmitter and an ultrasonic receiver to the object to be inspected, (B) The ultrasonic transmitter generates ultrasonic waves that propagate in the body to be examined.
  • the reflected ultrasonic wave propagated inside the object to be inspected by (B) is received by an ultrasonic receiver
  • (D) Based on the received data indicating the waveform of the reflected wave received by the ultrasonic receiver, obtaining position specifying data for specifying the position of the defect in the inspected body,
  • the ultrasonic wave generated in (B) is frequency-modulated, and the waveform of the ultrasonic wave is composed of each frequency component deviating from the resonance frequency of the ultrasonic transmitter and the ultrasonic receiver,
  • (D) is characterized in that the received data is subjected to pulse compression, and the position specifying data is obtained based on the pulse-compressed received data.
  • the frequency-modulated ultrasonic wave from the ultrasonic transmitter is composed of components of each frequency deviating from the resonance frequency of the ultrasonic transmitter and the ultrasonic receiver, the waveform of the ultrasonic wave Distortion can be prevented. This was confirmed by tests as will be described later.
  • FIG. 6 shows a generated waveform of an ultrasonic wave having a resonance frequency component of a transmission vibrator and a reception vibrator.
  • 2 shows a received waveform of an ultrasonic wave having a resonance frequency component of a transmission vibrator and a reception vibrator.
  • 6 shows a generated waveform of an ultrasonic wave that does not have a resonance frequency component of a transmission vibrator.
  • 6 shows a received waveform of an ultrasonic wave that does not have a component of the resonance frequency of the transmitting vibrator. It is a graph explaining the effect of the amplitude modulation by embodiment of this invention.
  • Fig. 3 shows a waveform that is amplitude modulated according to an embodiment of the present invention.
  • the waveform of the comparative example by which amplitude modulation was carried out is shown.
  • 4 shows a waveform of received data according to an embodiment of the present invention.
  • the waveform of the received data by a comparative example is shown.
  • FIG. 3 shows an ultrasonic inspection apparatus 10 according to an embodiment of the present invention.
  • the ultrasonic inspection apparatus 10 propagates an ultrasonic wave inside the inspection object 1 and obtains the position of the defect 1a of the inspection object 1 based on the ultrasonic wave reflected by the defect 1a in the inspection object 1.
  • the device under test 1 may be a metal material (for example, steel material).
  • the defect 1a may be a thing (for example, space
  • the inspection object 1 and the defect 1a may be other things.
  • the ultrasonic inspection apparatus 10 includes an ultrasonic transmitter 3, an ultrasonic receiver 5, and a data processing device 7.
  • the ultrasonic transmitter 3 is attached to the inspection object 1 and generates an ultrasonic wave that propagates inside the inspection object 1.
  • the ultrasonic wave generated by the ultrasonic transmitter 3 is frequency-modulated, and the waveform of the ultrasonic wave is derived from each frequency component deviated from the resonance frequency of the ultrasonic transmitter 3 and the ultrasonic receiver 5.
  • the ultrasonic transmitter 3 includes a waveform generation unit 9, an amplification unit 11, and a transmission transducer 13.
  • the waveform generator 9 generates a voltage having a waveform that is frequency-modulated and amplitude-modulated as described above.
  • the frequency of this waveform gradually increases or decreases with the elapsed time over the set period due to frequency modulation.
  • the amplitude of this waveform gradually increases from the start time of the set period to the first intermediate time due to amplitude modulation, and is kept constant from the first intermediate time to the second intermediate time.
  • the amplitude gradually decreases from the intermediate point to the end point of the set period (a specific example of this waveform will be described later with reference to FIG. 11A).
  • the time from the first intermediate point to the second intermediate point of the set period is 1/3 or more of the time from the start point to the end point of the set period.
  • the amplitude-modulated waveform Due to the amplitude-modulated waveform in this way, it is possible to prevent the ultrasonic waves from being attenuated during the propagation of the device under test 1. That is, even if the ultrasonic wave from the ultrasonic transmitter 3 (transmission transducer 13) passes through a portion that is easily attenuated or propagates over a long distance, the attenuation can be suppressed to a small value.
  • the portion that is easily attenuated is a welded portion of the metal inspected object 1, a boundary between portions of different materials in the inspected object 1, or a portion formed of a material having a low density (for example, stainless steel). is there.
  • the amplitude modulation described above is preferably performed using the window function shown in the following [Equation 1]. In [Expression 1], k is an arbitrary value, t indicates time, and P tr indicates a pre-trigger rate. [Formula 1] generates a waveform having an amplitude represented
  • the waveform generated by the waveform generator 9 does not have the resonance frequency of the ultrasonic transmitter 3 (transmission transducer 13) and the ultrasonic receiver 5 (reception transducer 15). That is, the waveform generated by the waveform generation unit 9 is composed of components having respective frequencies that deviate from the resonance frequencies of the ultrasonic transmitter 3 (transmission transducer 13) and the ultrasonic receiver 5 (reception transducer 15). Thereby, the distortion of the ultrasonic wave which the ultrasonic transmitter 3 generates can be prevented.
  • the amplifying unit 11 amplifies the waveform voltage generated by the waveform generating unit 9 with a constant gain and applies the amplified voltage to the transmission vibrator 13.
  • the transmission vibrator 13 is attached to the device under test 1.
  • the transmission vibrator 13 When the transmission vibrator 13 is attached to the device under test 1 and is applied with a voltage having a waveform generated by the waveform generator 9, it vibrates and generates ultrasonic waves in the device under test 1.
  • This ultrasonic wave has a waveform (that is, temporal change in frequency and amplitude) according to the waveform generated by the waveform generation unit 9.
  • Such a transmission vibrator 13 may be a piezoelectric element.
  • the ultrasonic receiver 5 receives the reflected wave of the ultrasonic wave propagated inside the object 1 and records received data indicating the waveform of the reflected wave.
  • the ultrasonic receiver 5 includes a receiving transducer 15, an amplification unit 17, and a waveform recording unit 19.
  • the receiving vibrator 15 vibrates by receiving the reflected wave of the ultrasonic wave propagated inside the device under test 1, and generates a voltage having a waveform according to the vibration.
  • a receiving vibrator 15 may be a piezoelectric element.
  • the amplification unit 17 amplifies the voltage generated by the receiving vibrator 15 with a constant gain.
  • the waveform recording unit 19 records received data indicating the waveform of the voltage amplified by the amplification unit 17.
  • the data processing device 7 includes a pulse compression unit 21, a propagation time specifying unit 23, and an aperture synthesis unit 25.
  • the pulse compression unit 21 performs pulse compression on the reception data recorded in the waveform recording unit 19.
  • the data processing device 7 obtains position specifying data for specifying the position of the defect 1a in the inspection object 1 based on the pulse-compressed reception data.
  • the propagation time specifying unit 23 receives the reflected wave of the ultrasonic wave from the time when the transmission vibrator 13 generates the ultrasonic wave. Is determined as the above-mentioned position specifying data.
  • the propagation time is specified by the reception vibrator 15, the amplification unit 17, the pulse compression unit 21, and the propagation time specification unit 23. Specifically, it is assumed that the transmitting vibrator 13 and the receiving vibrator 15 have the same position in the direction perpendicular to the paper surface of FIG. 3, and the distance between the transmitting vibrator 13 and the receiving vibrator 15 is kept constant. 3, the attachment positions of the transmission vibrator 13 and the reception vibrator 15 to the inspected object 1 are moved little by little in the left-right direction in FIG. 3, and the transmission vibration is transmitted at each attachment position of the transmission vibrator 13 and the reception vibrator 15.
  • An ultrasonic wave is generated from the child 13, the reflected wave of the ultrasonic wave is received by the receiving vibrator 15, and propagated by the amplification unit 17, the pulse compression unit 21, and the propagation time specifying unit 23 based on the reception data indicating the reflected wave. Identify time. That is, the ultrasonic transmitter 3 causes the ultrasonic transmitter 3 to generate ultrasonic waves based on the reception data indicating the waveform of the reflected wave received by the reception transducer 15 by the amplification unit 17, the pulse compression unit 21, and the propagation time specification unit 23. The propagation time from the point in time when the reflected wave of the ultrasonic wave is received by the ultrasonic receiver 5 is obtained.
  • the attachment position of the ultrasonic transmitter 3 (transmission transducer 13) and the ultrasonic receiver 5 (reception transducer 15) means the position of the ultrasonic transmitter 3 or the ultrasonic receiver 5. .
  • the aperture synthesis unit 25 obtains the position of the defect 1a in the inspection object 1 by performing aperture synthesis for a plurality of propagation times obtained for each of a plurality of attachment positions.
  • FIG. 4 is a flowchart showing an ultrasonic inspection method according to an embodiment of the present invention.
  • step S1 the ultrasonic transmitter 3 and the ultrasonic receiver 5 are attached to the inspection object 1.
  • step S ⁇ b> 2 the ultrasonic transmitter 3 generates an ultrasonic wave that propagates in the inspection object 1, and the reflected wave of the ultrasonic wave propagated inside the inspection object 1 is received by the ultrasonic receiver 5. receive.
  • step S 3 reception data indicating the waveform of the reflected wave received by the ultrasonic receiver 5 is recorded by the waveform recording unit 19.
  • step S4 it is determined whether step S2 has been performed a set number of times. If this determination is negative, the process proceeds to step S5, and if this determination is affirmative, the process proceeds to step S8.
  • the set number is an integer of 2 or more.
  • step S5 the mounting positions of the transmission vibrator 13 and the reception vibrator 15 on the inspection object 1 are changed while keeping the distance between the transmission vibrator 13 and the reception vibrator 15 constant.
  • the attachment position is changed in the left-right direction of FIG.
  • step S5 When step S5 is completed, the process returns to step S2, and steps S2 and S3 are performed again. For each reception data obtained in steps S2 and S3, steps S6 and S7 are performed on the reception data.
  • step S6 the pulse compression unit 21 performs pulse compression on the reception data recorded in step S3.
  • step S7 the reception transducer 15 receives the reflected wave of the ultrasonic wave from the time when the transmission transducer 13 generates the ultrasonic wave based on the waveform compressed in step S6 by the propagation time specifying unit 23. Find the propagation time to the point.
  • step S8 the aperture synthesis unit 25 performs aperture synthesis for the plurality of propagation times obtained in step S7 for the same number of attachment positions as the set number of times, thereby determining the position of the defect 1a in the inspection object 1. Ask.
  • step S6 The pulse compression in step S6 will be described in more detail.
  • the pulse compression unit 21 includes a decomposition unit 27, a time axis adjustment unit 29, and an addition unit 31, as shown in FIG.
  • the decomposition unit 27 decomposes the input received data into a plurality of different frequency components.
  • the decomposing unit 27 decomposes the received data into waveforms of three frequency components W1, W2, and W3 having frequencies f1, f2, and f3, respectively.
  • the waveforms of the frequency components W1, W2, and W3 are shown in FIG.
  • the time axis adjustment unit 29 matches the reference time points (for example, the start time point or the end time point of the waveform) of the plurality of decomposed frequency components (W1, W2, W3 in the example of FIG. 6) on the time axis. .
  • the waveforms of the frequency components W1, W2, and W3 that match the reference time points are shown in FIGS. 7 (A), (B), and (C).
  • the adder unit 31 superimposes the waveforms of a plurality of frequency components that match the reference time points. That is, the adding unit 31 adds the displacements (values on the vertical axis in FIG. 7) in the waveforms of a plurality of frequency components at each time point. As a result, the pulse-compressed reception data is output from the adder 31.
  • the adder 31 superimposes the waveforms of the frequency components W1, W2, and W3, and outputs the pulse-compressed received data Wc shown in FIG. 7D.
  • step S8 The opening synthesis in step S8 will be described in more detail.
  • the aperture synthesis unit 25 generates position specifying data based on the propagation time for each attachment position of the transmission vibrator 13 and the reception vibrator 15.
  • This position specifying data indicates a range in which the defect 1a may exist. That is, the position specifying data indicates the relationship between the surface position of the inspection object 1 and the distance from the surface position to the defect 1a.
  • FIG. 8 shows the position specifying data A, B, and C.
  • the horizontal axis indicates the surface position of the device under test 1 and corresponds to the position in the left-right direction in FIG.
  • the vertical axis indicates the distance from the surface position of the inspection object 1 to the defect 1a.
  • the position specifying data A drawn by a solid line, the position specifying data B drawn by a broken line, and the position specifying data C drawn by an alternate long and short dash line are generated for different attachment positions. Is.
  • the aperture synthesis unit 25 identifies the position of the defect 1a in the inspection object 1 based on the plurality of position identification data generated as described above.
  • the position of the defect 1a means the surface position of the inspection object 1 (horizontal axis coordinates in FIG. 8) and the distance from the surface position to the defect 1a (vertical axis coordinates in FIG. 8).
  • the aperture synthesis unit 25 identifies the intersection P of the three curves drawn by the position identification data A, B, C as the position of the defect 1a.
  • the ultrasonic wave generated by the ultrasonic transmitter 3 does not have a component of the resonance frequency of the ultrasonic transmitter 3, distortion of the oscillating ultrasonic wave can be prevented.
  • the frequency-modulated ultrasonic wave from the ultrasonic transmitter 3 has a component of the resonance frequency of the ultrasonic transmitter 3 and the ultrasonic receiver 5, the ultrasonic transmitter 3 Alternatively, when free resonance occurs in the ultrasonic receiver 5, only the frequency component vibrates excessively.
  • FIGS. 9A to 9D show a waveform W1a generated by the waveform generation unit 9 in the comparative example and a waveform W1b of received data corresponding to this waveform W1a.
  • W1a has components of the resonance frequency of the transmission vibrator 13 and the reception vibrator 15.
  • FIG. 9C and FIG. 9D show the waveform W2a generated by the waveform generation unit 9 in the embodiment of the present invention and the waveform W2b of the received data corresponding to this waveform W2a.
  • W2a does not have a component of the resonance frequency of the transmission vibrator 13 and the reception vibrator 15. The case of FIG. 9A and FIG. 9B will be described.
  • the transmission vibrator 13 and the reception vibrator 15 have a resonance frequency of 5 MHz.
  • the waveform generator 9 generates a waveform W1a having a frequency component continuous from 1 MHz to 10 MHz including a resonance frequency of 5 MHz, and the waveform W1b of received data corresponding to this waveform W1a is shown in FIG. As shown, the portion surrounded by the broken line A is distorted.
  • FIG. 9C and FIG. 9D it became as follows.
  • the transmission vibrator 13 and the reception vibrator 15 have a resonance frequency of 15 MHz.
  • the waveform generation unit 9 generates a waveform W2a having a frequency component continuous from 1 MHz to 10 MHz not including the resonance frequency of 15 MHz. It is not distorted.
  • the ultrasonic wave generated by the transmission vibrator 13 gradually increases in amplitude from the start time of the set period to the first intermediate time point, and is kept constant from the first intermediate time point to the second intermediate time point.
  • the amplitude gradually decreases from the time point to the end point of the set period. Thereby, attenuation of the ultrasonic wave propagating through the inspected object 1 can be suppressed.
  • FIG. 10 shows a waveform of the example when the propagation time is about 50 ⁇ sec.
  • the solid line indicates the amplitude of the reception data when the waveform generation unit 9 generates the waveform of FIG. 11A
  • the broken line indicates the reception data when the waveform generation unit 9 generates the waveform of FIG. 11B.
  • FIG. 10 shows ultrasonic waves having a waveform whose amplitude is kept constant from the first intermediate time point to the second intermediate time point.
  • the time during which the amplitude of the waveform is kept large is lengthened, so that the transmission energy of the ultrasonic wave is increased particularly in the low frequency region.
  • the attenuation of the ultrasonic wave becomes small.
  • the attenuation of ultrasonic waves can be significantly suppressed as shown by the solid line waveform in FIG. Note that the solid line and the broken line in FIG. 10 are data obtained under the same conditions except that the waveform of the generated ultrasonic wave is different.
  • FIG. 12A shows a waveform of received data obtained by the example of the present invention
  • FIG. 12B shows a waveform of received data obtained by the comparative example.
  • the resonance frequency of the ultrasonic transmitter 3 and the ultrasonic receiver 5 is 15 MHz, and the ultrasonic transmitter 3 has a component of a frequency that is continuous from 1 MHz to 10 MHz not including this resonance frequency. Ultrasound was generated.
  • the resonance frequency of the ultrasonic transmitter and the ultrasonic receiver is 5 MHz, and the ultrasonic transmitter generates ultrasonic waves having a frequency component continuous from 1 MHz to 10 MHz including this resonance frequency. I let you.
  • the wavelength is significantly shorter than in the comparative example.
  • the amplitude of the waveform is close to zero at a time outside the peak of the amplitude of the received data waveform, whereas in the comparative example, the amplitude of the received data waveform is peaked. Even when the time deviates from the point in time, the amplitude of the waveform is relatively large. That is, in the comparative example, ultrasonic side lobes are generated.
  • the position of the defect 1a can be specified with higher accuracy than in the past.
  • the data processing device 7 does not have to include the aperture synthesis unit 25. In this case, in step S8 described above, the data processing device 7 determines the position of the defect 1a in the inspection object 1 by another method (for example, TOFD method) based on the propagation times obtained for each of the plurality of attachment positions. You may ask for.
  • another method for example, TOFD method
  • step S5 the positions of the transmission transducer 13 and the reception transducer 15 are changed in the direction in which the transmission transducer 13 and the reception transducer 15 face each other (the horizontal direction in FIG. 3).
  • the invention is not limited to this. That is, the positions of the transmission transducer 13 and the reception transducer 15 are changed in a direction crossing the direction in which the transmission transducer 13 and the reception transducer 15 face each other (for example, a direction perpendicular to the paper surface of FIG. 3). Also good.
  • step S8 the position of the defect 1a in the direction perpendicular to the paper surface of FIG. 3 and the distance from this position to the defect 1a can be obtained.
  • step S5 the mounting positions of the transmission vibrator 13 and the reception vibrator 15 on the inspection object 1 are changed in step S5.
  • the present invention is not limited to this. That is, you may install the some ultrasonic transmitter 3 and the ultrasonic receiver 5 in the mutually different attachment position in the to-be-inspected object 1.
  • FIG. These attachment positions are arranged on a straight line.
  • step S2 is performed using one set of ultrasonic transmitter 3 (transmitting transducer 13) and ultrasonic receiver 5 (receiving transducer 15), and in step S5, another set of ultrasonic transmitter 3 is used.
  • the (transmission transducer 13) and the ultrasonic receiver 5 (reception transducer 15) are selected, and the next step S2 is performed using the ultrasonic transmitter 3 and the ultrasonic receiver 5 of the other set.
  • the distance between the ultrasonic transmitter 3 (transmitting transducer 13), the ultrasonic receiver 5 and (receiving transducer 15) used in step S2 is the same during step S2 that is performed a plurality of times (set number of times). It is.
  • the waveform generation unit 9 and the amplification unit 11 may be shared by a plurality of ultrasonic transmitters 3 or may be provided for each ultrasonic transmitter 3.
  • the amplification unit 17 and the waveform recording unit 19 may be shared by a plurality of ultrasonic receivers 5 or may be provided for each ultrasonic receiver 5.
  • Modification 4 The position of the defect 1a in the inspection object 1 is known in the direction along the surface of the inspection object 1, and the depth of the defect 1a may be obtained as follows. The above steps S4, S5, and S8 are omitted, and the depth of the defect 1a is obtained based on the propagation time obtained in step S7 and the attachment positions of the ultrasonic transmitter 3 and the ultrasonic receiver 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

被検査体1に取り付けられる超音波送信器3と、超音波送信器3から被検査体1の内部に伝播した超音波の反射波を受ける超音波受信器5と、超音波受信器5により受けた反射波の波形を示す受信データに基づいて、被検査体1内における欠陥1aの位置を特定するための位置特定データを求めるデータ処理装置7と、を設ける。超音波送信器3により発生させられる超音波は、周波数変調されており、かつ、この超音波の波形は、超音波送信器3および超音波受信器5の共振周波数から外れた各周波数の成分からなる。データ処理装置7は、受信データに対してパルス圧縮を行うパルス圧縮部21を有し、パルス圧縮された受信データに基づいて、位置特定データを求める。

Description

超音波検査装置と方法
 本発明は、被検査体の内部に超音波を伝播させ、被検査体内の欠陥で反射した超音波に基づいて、被検査体の欠陥の位置を求めるための超音波検査装置と方法に関する。
 例えば、溶接部を有する金属材(鋼材)を被検査体として、被検査体の溶接部における欠陥の位置を超音波で求めることが行われている。
 この検査方法として、TOFD(Time of Flight Diffraction)法がある。
 このTOFD法は、次のように行われている。図1において、超音波送信器33は、超音波を発生させる。この超音波には、被検査体1の表面を伝わるラテラル波と、被検査体1の内部を伝わる内部伝播波がある。内部伝播波には、被検査体1の内部における欠陥1a(この例では、溶接部内の欠陥)の上端で反射するものと、当該欠陥1aの下端で反射するものと、被検査体1の底面で反射するものが含まれる。超音波の発生時点を時間計測の原点として、超音波受信器35がラテラル波を検出する時間をt1とし、欠陥1aの上端からの反射波を超音波受信器35が検出する時間をt2とし、欠陥1aの下端からの反射波を超音波受信器35が検出する時間をt3とし、被検査体1の底面からの反射波を超音波受信器35が検出する時間をt4とする。超音波送信器33と超音波受信器35の間隔を一定に維持したまま、被検査体1に対する超音波送信器33と超音波受信器35の取り付け位置を、少しずつ、図1の右側に移動させ、各取り付け位置で、超音波送信器33と超音波受信器35により上述の時間t1~t4を検出する。
 このように得られた時間のデータを図2に表わす(t4は図示を省略する)。図2において、横軸は、超音波送信器33の位置を示し、縦軸は、超音波の発生時点を原点とした時間を示す。t1~t3は、図2に示す直線または曲線になる。t2とt3が最も小さくなる時に、超音波送信器33から欠陥1aまでの距離と、超音波受信器35から欠陥1aまでの距離が同じであると推定できる。したがって、t2とt3の最小値と、超音波送信器33と超音波受信器35との既知の距離とに基づいて、欠陥1aの位置(図1の左右方向の位置と、当該位置から欠陥1aまでの距離)を求めることができる。
 このようなTOFD法は、例えば下記の特許文献1に記載されている。また、本発明の実施形態における振幅変調に関して、下記の非特許文献1がある。
特開2004-117137号公報
Resolution Improvement of Underground Images Using Pulse Compression, Japanese Journal of Applied Physics 48 (2009) 07GC08
 被検査体の内部における欠陥の位置を高精度に特定するために、パルス圧縮を用いることが考えられる。この場合、超音波送信器は、周波数変調された超音波を発生させ、この超音波の反射波を超音波受信器で受けて受信データを得る。この受信データに対してパルス圧縮を行うことにより、欠陥の位置を高精度に特定することができる。
 従来において、高い効率で超音波を発生させるために、周波数変調した超音波の波形が、超音波送信器の共振周波数の成分を有するようにしている。
 しかし、周波数変調された超音波は、歪みが生じていることが多い。例えば、後述する図9Bは、周波数変調された超音波の反射波のデータである。図9Bにおいて、破線Aで囲んだ部分において、超音波の波形に歪みが生じている。
 そこで、本発明の目的は、周波数変調させた超音波を発生させ、その反射波の受信データに対してパルス圧縮を行う場合に、周波数変調させた超音波の歪みをなくし、これにより、欠陥位置をさらに高精度に求めることを可能にすることにある。
 上述の目的を達成するため、本発明は、被検査体の内部に超音波を伝播させ、被検査体内の欠陥で反射した超音波に基づいて、被検査体の欠陥の位置を求めるための超音波検査装置であって、
 被検査体に取り付けられ、被検査体の内部に伝播する超音波を発生させる超音波送信器と、
 被検査体の内部に伝播した超音波の反射波を受ける超音波受信器と、
 超音波受信器により受けた反射波の波形を示す受信データに基づいて、被検査体内における欠陥の位置を特定するための位置特定データを求めるデータ処理装置と、を備え、
 超音波送信器により発生させられる超音波は、周波数変調されており、かつ、当該超音波の波形は、超音波送信器および超音波受信器の共振周波数から外れた各周波数の成分からなり、
 データ処理装置は、前記受信データに対してパルス圧縮を行うパルス圧縮部を有し、パルス圧縮された受信データに基づいて、位置特定データを求めることを特徴とする。
 本発明の好ましい実施形態によると、超音波送信器は、設定期間にわたって、周波数変調された超音波を発生させ、
 この超音波は、設定期間の開始時点から第1中間時点まで、振幅が次第に大きくなり、第1中間時点から第2中間時点まで、振幅が一定に保たれ、第2中間時点から設定期間の終了時点まで、振幅が次第に小さくなる。
 本発明の好ましい実施形態によると、超音波受信器と超音波送信器の被検査体への取り付け位置を変え、または、複数の超音波受信器と超音波送信器を被検査体における互いに異なる取り付け位置に設置し、
 各取り付け位置で、超音波送信器は、被検査体内に超音波を伝播させ、超音波受信器は、この超音波の反射波を受け、
 超音波検査装置は、取り付け位置毎に得られた受信データを記録する波形記録部を備え、
 前記データ処理装置は、
 取り付け位置毎に、受信データに基づいて、超音波送信器が超音波を発生させた時点から、この超音波の反射波を超音波受信器が受けた時点までの伝播時間を位置特定データとして求める伝播時間特定部と、
 複数の取り付け位置についてそれぞれ求めた複数の伝播時間に対して開口合成を行うことにより、被検査体内における欠陥の位置を求める開口合成部と、を有する。
 また、上述の目的を達成するため、本発明は、被検査体の内部に超音波を伝播させ、被検査体内の欠陥で反射した超音波に基づいて、被検査体の欠陥の位置を求めるための超音波検査方法であって、
(A)超音波送信器と超音波受信器とを被検査体に取り付け、
(B)超音波送信器により、被検査体内に伝播する超音波を発生させ、
(C)前記(B)により被検査体の内部に伝播した超音波の反射波を、超音波受信器で受け、
(D)超音波受信器により受けた反射波の波形を示す受信データに基づいて、被検査体内における欠陥の位置を特定するための位置特定データを求め、
 前記(B)で発生させられる超音波は、周波数変調されており、かつ、当該超音波の波形は、超音波送信器および超音波受信器の共振周波数から外れた各周波数の成分からなり、
 前記(D)では、前記受信データに対してパルス圧縮を行い、パルス圧縮された受信データに基づいて、位置特定データを求めることを特徴とする。
 上述した本発明では、超音波送信器からの周波数変調された超音波が、超音波送信器および超音波受信器の共振周波数から外れた各周波数の成分からなる場合には、超音波の波形の歪みを防止できる。このことは、後述するように試験で確認された。
TOFD法による超音波検査方法の説明図である。 TOFD法により得られた超音波の伝播時間を示すグラフである。 本発明の実施形態による超音波検査装置を示す。 本発明の実施形態による超音波検査方法を示すフローチャートである。 パルス圧縮部を示す。 パルス圧縮のために分解された各周波数成分の波形を示す。 (A)~(C)は、パルス圧縮のために時間軸上の位置を調整された各周波数成分の波形を示し、(D)は、パルス圧縮された波形を示す。 開口合成の説明図である。 送信振動子および受信振動子の共振周波数の成分を有する超音波の生成波形を示す。 送信振動子および受信振動子の共振周波数の成分を有する超音波の受信波形を示す。 送信振動子の共振周波数の成分を有しない超音波の生成波形を示す。 送信振動子の共振周波数の成分を有しない超音波の受信波形を示す。 本発明の実施形態による振幅変調の効果を説明するグラフである。 本発明の実施形態により振幅変調された波形を示す。 振幅変調された比較例の波形を示す。 本発明の実施例による受信データの波形を示す。 比較例による受信データの波形を示す。
 本発明の好ましい実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 図3は、本発明の実施形態による超音波検査装置10を示す。超音波検査装置10は、被検査体1の内部に超音波を伝播させ、被検査体1内の欠陥1aで反射した超音波に基づいて、被検査体1の欠陥1aの位置を求めるためのものである。被検査体1は、金属材(例えば鋼材)であってよい。この場合、欠陥1aは、金属材の溶接部の内部に存在するもの(例えば空隙)であってよい。ただし、本発明によると、被検査体1と欠陥1aは、他のものであってもよい。
 超音波検査装置10は、超音波送信器3と超音波受信器5とデータ処理装置7とを備える。
 超音波送信器3は、被検査体1に取り付けられ、被検査体1の内部に伝播する超音波を発生させる。超音波送信器3により発生させられる超音波は、周波数変調されており、かつ、当該超音波の波形は、超音波送信器3および超音波受信器5の共振周波数から外れた各周波数の成分からなる。超音波送信器3は、波形生成部9と増幅部11と送信振動子13を有する。
 波形生成部9は、上述のように周波数変調され、かつ、振幅変調された波形の電圧を発生させる。この波形の周波数は、周波数変調により、設定期間にわたって、経過時間に伴い次第に増加または減少している。また、この波形の振幅は、振幅変調により、設定期間の開始時点から第1中間時点まで、振幅が次第に大きくなり、第1中間時点から第2中間時点まで、振幅が一定に保たれ、第2中間時点から設定期間の終了時点まで、振幅が次第に小さくなっている(なお、この波形の具体例は、後で図11Aに基づいて説明する)。好ましくは、設定期間の第1中間時点から第2中間時点までの時間は、設定期間の開始時点から終了時点までの時間の1/3以上である。
 このように振幅変調された波形により、超音波が被検査体1の伝播中に減衰することを抑えられる。すなわち、超音波送信器3(送信振動子13)からの超音波が、減衰しやすい部分を通過しても、あるいは長い距離を伝播しても、その減衰を小さく抑えられる。ここで、減衰しやすい部分とは、金属の被検査体1における溶接部、被検査体1における材質が異なる部分同士の境界、または、密度が低い材料(例えば、ステンレス)で形成された部分である。
 上述の振幅変調は、好ましくは、次の[数1]に示す窓関数を用いて行われる。[数1]において、kは、任意の値であり、tは時間を示し、Ptrは、プリトリガ率を示す。[数1]により、W(t)で表される振幅を有する波形が生成される。
Figure JPOXMLDOC01-appb-M000001
 波形生成部9が生成する波形は、超音波送信器3(送信振動子13)および超音波受信器5(受信振動子15)の共振周波数を有しない。すなわち、波形生成部9が生成する波形は、超音波送信器3(送信振動子13)および超音波受信器5(受信振動子15)の共振周波数から外れた各周波数の成分からなる。これにより、超音波送信器3が発生させる超音波の歪みを防止できる。
 増幅部11は、波形生成部9が生成する波形の電圧を、一定のゲインで増幅して送信振動子13に印加する。
 送信振動子13は、被検査体1に取り付けられる。送信振動子13は、被検査体1に取り付けられた状態で、波形生成部9が生成する波形を有する電圧が印加されることにより、振動して被検査体1に超音波を発生させる。この超音波は、波形生成部9が生成した波形に従った波形(すなわち、周波数と振幅の時間的変化)を有する。このような送信振動子13は、圧電素子であってよい。
 超音波受信器5は、被検査体1の内部に伝播した超音波の反射波を受けて、この反射波の波形を示す受信データを記録する。超音波受信器5は、受信振動子15と増幅部17と波形記録部19を有する。
 受信振動子15は、被検査体1の内部に伝播した超音波の反射波を受けることにより振動し、この振動にしたがった波形の電圧を発生させる。このような受信振動子15は、圧電素子であってよい。
 増幅部17は、受信振動子15が発生させた電圧を、一定のゲインで増幅する。
 波形記録部19は、増幅部17により増幅された電圧の波形を示す受信データを記録する。
 データ処理装置7は、パルス圧縮部21と伝播時間特定部23と開口合成部25を有する。
 パルス圧縮部21は、波形記録部19に記録された受信データに対してパルス圧縮を行う。データ処理装置7は、パルス圧縮された受信データに基づいて、被検査体1内における欠陥1aの位置を特定するための位置特定データを求める。
 伝播時間特定部23は、パルス圧縮部21によりパルス圧縮された波形に基づいて、送信振動子13が超音波を発生させた時点から、この超音波の反射波を受信振動子15が受けた時点までの伝播時間を上述の位置特定データとして求める。
 送信振動子13と受信振動子15の各取り付け位置について、受信振動子15と増幅部17とパルス圧縮部21と伝播時間特定部23により、伝播時間を特定する。具体的には、送信振動子13と受信振動子15は、図3の紙面と垂直な方向の位置が同じであるとして、送信振動子13と受信振動子15との距離を一定に保ったまま、送信振動子13と受信振動子15の被検査体1への取り付け位置を、少しずつ、図3の左右方向に移動させ、送信振動子13と受信振動子15の各取り付け位置で、送信振動子13から超音波を発生させ、この超音波の反射波を受信振動子15で受け、この反射波を示す受信データに基づいて、増幅部17とパルス圧縮部21と伝播時間特定部23により伝播時間を特定する。すなわち、増幅部17とパルス圧縮部21と伝播時間特定部23により、取り付け位置毎に、受信振動子15が受けた反射波の波形を示す受信データに基づいて、超音波送信器3が超音波を発生させた時点から、この超音波の反射波を超音波受信器5が受けた時点までの伝播時間を求める。
 なお、本願において、超音波送信器3(送信振動子13)と超音波受信器5(受信振動子15)の取り付け位置とは、超音波送信器3または超音波受信器5の位置を意味する。
 開口合成部25は、複数の取り付け位置についてそれぞれ求めた複数の伝播時間に対して開口合成を行うことにより、被検査体1内における欠陥1aの位置を求める。
 図4は、本発明の実施形態による超音波検査方法を示すフローチャートである。
 ステップS1において、超音波送信器3と超音波受信器5を被検査体1に取り付ける。
 ステップS2において、超音波送信器3により、被検査体1内に伝播する超音波を発生させるととともに、被検査体1の内部に伝播した当該超音波の反射波を、超音波受信器5で受ける。
 ステップS3において、超音波受信器5により受けた反射波の波形を示す受信データを、波形記録部19により記録する。
 ステップS4において、ステップS2を設定回数だけ行ったかを判断する。この判断が否定である場合には、ステップS5へ進み、この判断が肯定である場合には、ステップS8へ進む。なお、設定回数は、2以上の整数である。
 ステップS5において、送信振動子13と受信振動子15との距離を一定に保ったまま、送信振動子13と受信振動子15の被検査体1への取り付け位置を変える。図3の例では、取り付け位置を図3の左右方向に変える。
 ステップS5を終えたら、ステップS2へ戻り、ステップS2、S3を再び行う。ステップS2、S3により得られた受信データ毎に、当該受信データに対してステップS6、S7を行う。
 ステップS6では、パルス圧縮部21により、ステップS3で記録した受信データに対してパルス圧縮を行う。
 ステップS7では、伝播時間特定部23により、ステップS6によりパルス圧縮された波形に基づいて、送信振動子13が超音波を発生させた時点から、この超音波の反射波を受信振動子15が受けた時点までの伝播時間を求める。
 ステップS8では、開口合成部25により、設定回数と同じ数の取り付け位置についてそれぞれステップS7で求めた複数の伝播時間に対して開口合成を行うことにより、被検査体1内における欠陥1aの位置を求める。
 ステップS6のパルス圧縮について、より詳しく述べる。
 パルス圧縮部21は、図5に示すように、分解部27と時間軸調整部29と加算部31とを有する。分解部27は、入力された受信データを、互いに異なる複数の周波数成分に分解する。図5の例では、分解部27は、受信データを、周波数f1、f2、f3をそれぞれ有する3つの周波数成分W1、W2、W3の波形に分解する。周波数成分W1、W2、W3の波形を図6に示す。時間軸調整部29は、時間軸において、分解された複数の周波数成分(図6の例では、W1、W2、W3)の波形の基準時点(例えば、波形の開始時点または終了時点)を一致させる。基準時点を一致させた周波数成分W1、W2、W3の波形を図7(A)(B)(C)に示す。加算部31は、基準時点を一致させた複数の周波数成分の波形を重ね合わせる。すなわち、加算部31は、各時点において、複数の周波数成分の波形における変位(図7の縦軸の値)を足し合わせる。これにより、パルス圧縮された受信データが加算部31から出力される。図5の例では、加算部31は、周波数成分W1、W2、W3の波形を重ね合わせて、図7(D)に示すパルス圧縮された受信データWcを出力する。
 ステップS8の開口合成について、より詳しく述べる。
 開口合成部25は、送信振動子13と受信振動子15の各取り付け位置について、伝播時間に基づいて位置特定データを生成する。この位置特定データは、欠陥1aが存在する可能性のある範囲を示す。すなわち、位置特定データは、被検査体1の表面位置と、この表面位置から欠陥1aまでの距離との関係を示す。
 図8は、位置特定データA、B、Cを示す。図8において、横軸は、被検査体1の表面位置を示し、図3の左右方向の位置に相当する。図8において、縦軸は、被検査体1の表面位置から欠陥1aまでの距離を示す。また、図8において、実線で描かれた位置特定データAと、破線で描かれた位置特定データBと、一点鎖線で描かれた位置特定データCは、それぞれ、互いに異なる取り付け位置について生成されたものである。
 開口合成部25は、上述のように生成された複数の位置特定データに基づいて、被検査体1における欠陥1aの位置を特定する。ここで、欠陥1aの位置とは、被検査体1の表面位置(図8の横軸座標)と当該表面位置から欠陥1aまでの距離を(図8の縦軸座標)を意味する。図8で説明すると、開口合成部25は、位置特定データA,B、Cが描く3つの曲線の交点Pを、欠陥1aの位置として特定する。
 上述した本発明の実施形態によると、以下の効果が得られる。
 上述した本発明の実施形態では、超音波送信器3により発生させられる超音波は、超音波送信器3の共振周波数の成分を有しないので、発振超音波の歪みを防止できる。
 一方、本発明と違って、超音波送信器3からの周波数変調された超音波が、超音波送信器3および超音波受信器5の共振周波数の成分を有する場合には、超音波送信器3または超音波受信器5に自由共振が起こると、その周波数の成分だけが余分に振動する。この場合、従来において、例えば、チャープ(CHIRP)波の周波数変調により、共振周波数のみの波数が多くなり、共振周波数の成分と他の周波数の成分とが重なって波形の歪みが生じる。これに対し、本発明の実施形態では、このような歪みを防止できる。
 この効果を、図9A~図9Dに基づいて述べる。図9Aと図9Bは、それぞれ、比較例において波形生成部9が生成した波形W1aと、この波形W1aに対応する受信データの波形W1bを示す。W1aは、送信振動子13と受信振動子15の共振周波数の成分を有する。一方、図9Cと図9Dは、本発明の実施例において波形生成部9が生成した波形W2aと、この波形W2aに対応する受信データの波形W2bを示す。W2aは、送信振動子13と受信振動子15の共振周波数の成分を有しない。
 図9Aと図9Bの場合を述べる。送信振動子13と受信振動子15は、5MHzの共振周波数を有している。図9Aと図9Bにおいて、波形生成部9は、共振周波数5MHzを含む1MHzから10MHzまで連続する周波数の成分を有する波形W1aを生成しており、この波形W1aに対する受信データの波形W1bは、図9Bのように、破線Aで囲んだ部分において歪んでいる。
 これに対して、図9Cと図9Dの場合は、次のようになった。送信振動子13と受信振動子15は、15MHzの共振周波数を有している。図9Cにおいて、波形生成部9は、共振周波数15MHzを含まない1MHzから10MHzまで連続する周波数の成分を有する波形W2aを生成しており、この波形W2aに対する受信データの波形W2bは、図9Dのように歪んでいない。
 送信振動子13が発生させる超音波は、設定期間の開始時点から第1中間時点まで、振幅が次第に大きくなり、第1中間時点から第2中間時点まで、振幅が一定に保たれ、第2中間時点から設定期間の終了時点まで、振幅が次第に小さくなっている。これにより、被検査体1内を伝播する超音波の減衰を抑えることができる。
 この効果を、図10に基づいて述べる。図10は、伝播時間が50μ秒程度になった場合における実施例の波形を示す。図10において、実線は、波形生成部9が図11Aの波形を生成した場合における受信データの振幅の大きさを示し、破線は、波形生成部9が図11Bの波形を生成した場合の受信データを示す。図10から分かるように、図11Aのように第1中間時点から第2中間時点まで振幅が一定に保たれた波形の超音波を発生させる。これにより、波形の振幅を大きく保持する時間が長くなるため、特に低周波数領域における超音波の送信エネルギが大きくなる。その結果、被検査体1を伝播した後の超音波には、低周波数成分が残るので、超音波の減衰が小さくなる。その結果、図10における実線の波形のように、超音波の減衰を大幅に抑えることができる。なお、図10の実線と破線は、発生させる超音波の波形が異なる点以外については、同じ条件で得られたデータである。
 図12Aは、本発明の実施例により得られた受信データの波形を示し、図12Bは、比較例により得られた受信データの波形を示す。
 図12Aの場合では、超音波送信器3および超音波受信器5の共振周波数が、15MHzであり、超音波送信器3が、この共振周波数を含まない1MHzから10MHzまで連続する周波数の成分を有する超音波を発生させた。
 図12Bの場合では、超音波送信器および超音波受信器の共振周波数が、5MHzであり、超音波送信器が、この共振周波数を含む1MHzから10MHzまで連続する周波数の成分を有する超音波を発生させた。
 図12Aと図12Bから分かるように、本実施例では、波長が、比較例よりも大幅に短くなっている。また、本実施例では、受信データの波形において振幅がピークとなる時点から外れた時間では、波形の振幅がゼロに近くなっているのに対し、比較例では、受信データの波形において振幅がピークとなる時点から外れた時間でも、波形の振幅は、比較的大きくなっている。すなわち、比較例では、超音波のサイドローブが発生している。
 このように、本実施例により、欠陥1aの位置を、従来よりも一層高精度に特定することが可能となる。
 本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。例えば、以下の変更例1~4のいずれかを採用してもよいし、変更例1~4を任意に組み合わせて採用してもよい。この場合、以下で述べない点は、上述と同じであってよい。
(変更例1)
 データ処理装置7は、開口合成部25を有していなくてもよい。この場合、上述のステップS8において、データ処理装置7は、複数の取り付け位置についてそれぞれ得られた伝播時間に基づいて、他の手法(例えばTOFD法)により、被検査体1内における欠陥1aの位置を求めてよい。
(変更例2)
 上述では、ステップS5で、送信振動子13と受信振動子15が互いに対向している方向(図3の左右方向)に、送信振動子13と受信振動子15の位置を変化させたが、本発明はこれに限定されない。すなわち、送信振動子13と受信振動子15が互いに対向している方向と交差する方向(例えば図3の紙面と垂直な方向)に、送信振動子13と受信振動子15の位置を変化させてもよい。この場合、ステップS8において、図3の紙面と垂直な方向における欠陥1aの位置と、この位置から欠陥1aまでの距離を求めることができる。
(変更例3)
 上述では、ステップS5において、送信振動子13と受信振動子15の被検査体1への取り付け位置を変えたが、本発明は、これに限定されない。すなわち、複数の超音波送信器3と超音波受信器5を被検査体1における互いに異なる取り付け位置に設置してもよい。これらの取り付け位置は、一直線上に配置されている。この場合、1組の超音波送信器3(送信振動子13)と超音波受信器5(受信振動子15)を用いてステップS2を行い、ステップS5では、別の組の超音波送信器3(送信振動子13)と超音波受信器5(受信振動子15)を選択し、当該別の組の超音波送信器3と超音波受信器5を用いて次のステップS2を行う。ただし、ステップS2で用いられる超音波送信器3(送信振動子13)と超音波受信器5と(受信振動子15)との距離は、複数回(設定回数)行われるステップS2の間で同じである。この場合、波形生成部9と増幅部11は、複数の超音波送信器3に共有されてもよいし、超音波送信器3毎に設けられてもよい。同様に、増幅部17と波形記録部19は、複数の超音波受信器5に共有されてもよいし、超音波受信器5毎に設けられてもよい。
(変更例4)
 被検査体1における欠陥1aの位置が、被検査体1の表面に沿った方向に関しては既知であり、この欠陥1aの深さを求める場合には、次のようにしてよい。上述のステップS4、S5、S8を省略し、ステップS7で求めた伝播時間と、超音波送信器3と超音波受信器5の取り付け位置とに基づいて、欠陥1aの深さを求める。
1 被検査体、1a 欠陥、3 超音波送信器、5 超音波受信器、7 データ処理装置、9 波形生成部、10 超音波検査装置、11 増幅部、13 送信振動子、15 受信振動子、17 増幅部、19 波形記録部、21 パルス圧縮部、23 伝播時間特定部、25 開口合成部、27 分解部、29 時間軸調整部、31 加算部、33 超音波送信器、35 超音波受信器

Claims (4)

  1.  被検査体の内部に超音波を伝播させ、被検査体内の欠陥で反射した超音波に基づいて、被検査体の欠陥の位置を求めるための超音波検査装置であって、
     被検査体に取り付けられ、被検査体の内部に伝播する超音波を発生させる超音波送信器と、
     被検査体の内部に伝播した超音波の反射波を受ける超音波受信器と、
     超音波受信器により受けた反射波の波形を示す受信データに基づいて、被検査体内における欠陥の位置を特定するための位置特定データを求めるデータ処理装置と、を備え、
     超音波送信器により発生させられる超音波は、周波数変調されており、かつ、当該超音波の波形は、超音波送信器および超音波受信器の共振周波数から外れた各周波数の成分からなり、
     データ処理装置は、前記受信データに対してパルス圧縮を行うパルス圧縮部を有し、パルス圧縮された受信データに基づいて、位置特定データを求める、ことを特徴とする超音波検査装置。
  2.  超音波送信器は、設定期間にわたって、周波数変調された超音波を発生させ、
     この超音波は、設定期間の開始時点から第1中間時点まで、振幅が次第に大きくなり、第1中間時点から第2中間時点まで、振幅が一定に保たれ、第2中間時点から設定期間の終了時点まで、振幅が次第に小さくなる、ことを特徴とする請求項1に記載の超音波検査装置。
  3.  超音波受信器と超音波送信器の被検査体への取り付け位置を変え、または、複数の超音波受信器と超音波送信器を被検査体における互いに異なる取り付け位置に設置し、
     各取り付け位置で、超音波送信器は、被検査体内に超音波を伝播させ、超音波受信器は、この超音波の反射波を受け、
     超音波検査装置は、取り付け位置毎に得られた受信データを記録する波形記録部を備え、
     前記データ処理装置は、
     取り付け位置毎に、受信データに基づいて、超音波送信器が超音波を発生させた時点から、この超音波の反射波を超音波受信器が受けた時点までの伝播時間を位置特定データとして求める伝播時間特定部と、
     複数の取り付け位置についてそれぞれ求めた複数の伝播時間に対して開口合成を行うことにより、被検査体内における欠陥の位置を求める開口合成部と、を有する、ことを特徴とする請求項1または2に記載の超音波検査装置。
  4.  被検査体の内部に超音波を伝播させ、被検査体内の欠陥で反射した超音波に基づいて、被検査体の欠陥の位置を求めるための超音波検査方法であって、
    (A)超音波送信器と超音波受信器とを被検査体に取り付け、
    (B)超音波送信器により、被検査体内に伝播する超音波を発生させ、
    (C)前記(B)により被検査体の内部に伝播した超音波の反射波を、超音波受信器で受け、
    (D)超音波受信器により受けた反射波の波形を示す受信データに基づいて、被検査体内における欠陥の位置を特定するための位置特定データを求め、
     前記(B)で発生させられる超音波は、周波数変調されており、かつ、当該超音波の波形は、超音波送信器および超音波受信器の共振周波数から外れた各周波数の成分からなり、
     前記(D)では、前記受信データに対してパルス圧縮を行い、パルス圧縮された受信データに基づいて、位置特定データを求める、ことを特徴とする超音波検査方法。
PCT/JP2013/074016 2012-09-10 2013-09-06 超音波検査装置と方法 WO2014038648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13835241.4A EP2894470B1 (en) 2012-09-10 2013-09-06 Ultrasonic inspection device and method
US14/625,788 US10345268B2 (en) 2012-09-10 2015-02-19 Ultrasonic inspection device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012198376A JP6066635B2 (ja) 2012-09-10 2012-09-10 超音波検査装置と方法
JP2012-198376 2012-09-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/625,788 Continuation US10345268B2 (en) 2012-09-10 2015-02-19 Ultrasonic inspection device and method

Publications (1)

Publication Number Publication Date
WO2014038648A1 true WO2014038648A1 (ja) 2014-03-13

Family

ID=50237254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074016 WO2014038648A1 (ja) 2012-09-10 2013-09-06 超音波検査装置と方法

Country Status (4)

Country Link
US (1) US10345268B2 (ja)
EP (1) EP2894470B1 (ja)
JP (1) JP6066635B2 (ja)
WO (1) WO2014038648A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203374A (zh) * 2021-06-01 2021-08-03 哈尔滨工业大学 一种基于脉冲压缩的电磁超声测厚装置及方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180003817A1 (en) * 2016-06-30 2018-01-04 Intel Corporation Ultrasonic location system
US10386336B2 (en) * 2016-08-24 2019-08-20 Imam Abdulrahman Bin Faisal University Ultrasonic pulse velocity tester
US11085885B2 (en) * 2017-01-19 2021-08-10 Aegion Coating Services, Llc Pipe joint inspection
KR101921685B1 (ko) * 2017-03-30 2018-11-23 신동환 결함 검출 장치 및 이를 이용한 결함 검출 방법
JP6893863B2 (ja) * 2017-12-04 2021-06-23 新日本無線株式会社 超音波センサおよび車両制御システム
US10969315B2 (en) 2017-12-12 2021-04-06 Imam Abdulrahman Bin Faisal University Combined ultrasonic pulse velocity and Schmidt Hammer rebound test for non-destructive evaluation
JP7252742B2 (ja) * 2018-11-29 2023-04-05 日清紡マイクロデバイス株式会社 超音波センサ及び車両制御システム
JP7252756B2 (ja) * 2018-12-27 2023-04-05 日清紡マイクロデバイス株式会社 超音波センサ及び車両制御システム

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122308A (ja) * 1994-10-20 1996-05-17 Nkk Corp 超音波探傷方法
JPH09281093A (ja) * 1996-04-12 1997-10-31 Hitachi Medical Corp 超音波探触子及びそれを用いた超音波検査装置
JPH1194808A (ja) * 1997-09-25 1999-04-09 Nkk Corp 鋼板の超音波探傷方法
JP2004117137A (ja) 2002-09-26 2004-04-15 Shoryo Denshi Kk 超音波検査装置
JP2005265747A (ja) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd 配管系統識別方法
JP2005531768A (ja) * 2002-06-28 2005-10-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 超音波干渉法を使用する流動多相流体の非侵襲的な特徴付け
JP2008521547A (ja) * 2004-11-30 2008-06-26 オムニソニックス メディカル テクノロジーズ インコーポレイテッド 可変周波数駆動の超音波医療機器
JP2008151599A (ja) * 2006-12-15 2008-07-03 Hitachi Engineering & Services Co Ltd 超音波探触子
JP2012042449A (ja) * 2010-07-20 2012-03-01 Univ Of Electro-Communications 超音波伝搬時間計測方法及び超音波伝搬時間計測装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306477A (ja) * 2001-04-11 2002-10-22 Ge Medical Systems Global Technology Co Llc 超音波送受信方法、超音波送受信装置、超音波撮影方法および超音波撮影装置
US7028529B2 (en) * 2003-04-28 2006-04-18 Sonora Medical Systems, Inc. Apparatus and methods for testing acoustic probes and systems
EP1901061A1 (en) * 2005-07-06 2008-03-19 Central Research Institute of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
GB0813014D0 (en) * 2008-07-16 2008-08-20 Groveley Detection Ltd Detector and methods of detecting
JP5306024B2 (ja) * 2009-04-02 2013-10-02 株式会社東芝 超音波検査装置及び超音波検査方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122308A (ja) * 1994-10-20 1996-05-17 Nkk Corp 超音波探傷方法
JPH09281093A (ja) * 1996-04-12 1997-10-31 Hitachi Medical Corp 超音波探触子及びそれを用いた超音波検査装置
JPH1194808A (ja) * 1997-09-25 1999-04-09 Nkk Corp 鋼板の超音波探傷方法
JP2005531768A (ja) * 2002-06-28 2005-10-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 超音波干渉法を使用する流動多相流体の非侵襲的な特徴付け
JP2004117137A (ja) 2002-09-26 2004-04-15 Shoryo Denshi Kk 超音波検査装置
JP2005265747A (ja) * 2004-03-22 2005-09-29 Osaka Gas Co Ltd 配管系統識別方法
JP2008521547A (ja) * 2004-11-30 2008-06-26 オムニソニックス メディカル テクノロジーズ インコーポレイテッド 可変周波数駆動の超音波医療機器
JP2008151599A (ja) * 2006-12-15 2008-07-03 Hitachi Engineering & Services Co Ltd 超音波探触子
JP2012042449A (ja) * 2010-07-20 2012-03-01 Univ Of Electro-Communications 超音波伝搬時間計測方法及び超音波伝搬時間計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 48, 2009, pages 07GC08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113203374A (zh) * 2021-06-01 2021-08-03 哈尔滨工业大学 一种基于脉冲压缩的电磁超声测厚装置及方法

Also Published As

Publication number Publication date
US20150160167A1 (en) 2015-06-11
EP2894470A1 (en) 2015-07-15
JP6066635B2 (ja) 2017-01-25
JP2014052333A (ja) 2014-03-20
EP2894470A4 (en) 2015-10-14
US10345268B2 (en) 2019-07-09
EP2894470B1 (en) 2019-02-27

Similar Documents

Publication Publication Date Title
JP6066635B2 (ja) 超音波検査装置と方法
JP3130223B2 (ja) 検出方法及び検出装置
US6458084B2 (en) Ultrasonic diagnosis apparatus
JP5317177B2 (ja) 目標物探知装置及び目標物探知制御プログラム、目標物探知方法
JP2010008295A (ja) 物標探査装置、物標探査プログラム及び物標探査方法
CA3110818A1 (en) Continuous wave ultrasound or acoustic non-destructive testing
JP4795925B2 (ja) 超音波厚さ測定方法および装置
JP4997636B2 (ja) 構造物の非破壊診断方法
JP6479478B2 (ja) 超音波探傷方法
JP5059344B2 (ja) 板厚測定装置および測定方法
JP5317176B2 (ja) 物体探査装置及び物体探査プログラム、物体探査方法
JP2021081189A (ja) 欠陥検知方法
US9518959B2 (en) Structural health monitoring system and method
JP2005221321A (ja) 超音波信号検出方法及び装置
JP5334342B1 (ja) 計量魚群探知機
JP5874703B2 (ja) 超音波探傷方法及び超音波探傷装置
JP6440371B2 (ja) 超音波測定装置及び方法
Nomura et al. Feasibility of low-frequency ultrasound imaging using parametric sound
JP2002350541A (ja) アクティブソーナー装置
Leo-Shin et al. Nondestructive determination of elastic constants of thin plates based on PVDF focusing ultrasound transducers and Lamb wave measurements
KR101142616B1 (ko) 직교 특성의 송신신호를 사용하여 갱신율을 증가시킨 이미징 소나
Nomura et al. 1P2-44 Application of Pulse Compression Technique to Parametric Difference Frequency Sound
KR20150096192A (ko) 탄성파를 이용한 암석의 간극비 측정 방법 및 측정 시스템
Li et al. Cancellation of parametric-effect-induced error in airborne ultrasound Doppler velocimetry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE