WO2014037080A1 - Ensemble échangeur de chaleur pour corps susceptible d'être contourné par le vent - Google Patents

Ensemble échangeur de chaleur pour corps susceptible d'être contourné par le vent Download PDF

Info

Publication number
WO2014037080A1
WO2014037080A1 PCT/EP2013/002479 EP2013002479W WO2014037080A1 WO 2014037080 A1 WO2014037080 A1 WO 2014037080A1 EP 2013002479 W EP2013002479 W EP 2013002479W WO 2014037080 A1 WO2014037080 A1 WO 2014037080A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
wind
flow area
flow
arrangement according
Prior art date
Application number
PCT/EP2013/002479
Other languages
German (de)
English (en)
Inventor
Thomas Wolfanger
Benjamin THEOBALD
Original Assignee
Hydac Cooling Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Cooling Gmbh filed Critical Hydac Cooling Gmbh
Publication of WO2014037080A1 publication Critical patent/WO2014037080A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/14Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/30Arrangement of components
    • F05B2250/35Arrangement of components rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/20Heat transfer, e.g. cooling
    • F05B2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a heat exchanger arrangement for a windungsströmströmbaren body, such as a nacelle of a wind turbine, wherein at least one heat exchanger is connected by means of a holding device to the body and the heat exchanger forms at least a first Naturalström- area for air.
  • a rotatable nacelle is arranged on a tower, to which a rotor is attached via a hub.
  • the energy of the wind is guided by the rotor, if necessary via a gear, to a generator in which rotational energy is converted into electrical energy.
  • Cooling devices are provided in the prior art for this purpose, which lead a cooling medium past the relevant heat sources in a cooling circuit and have one or more heat exchangers to which fans are supplied or added in order to generate a corresponding flow of cooling air.
  • the additional possibility of utilizing the prevailing wind flow, the strength of which correlates with the generation of heat loss, for the flow through of heat exchangers, and thus for improving the efficiency of the cooling system additionally results.
  • the invention has the object to show a heat exchanger assembly for a windungsströmströmbaren body, which is characterized by a further improved energy balance. This object is achieved by a heat exchanger arrangement with the features of claim 1. Advantageous embodiments of the invention will become apparent from the dependent claims.
  • the respective flow-through surfaces lie in a common plane, occupy a predeterminable angle relative to one another, or parts of the first flow-through surface are arranged at a predeterminable angle relative to one another. Due to the special arrangement of the first flow area (s) of the heat exchanger relative to the further flow areas or to the wind direction, the flow through the heat exchanger is additionally improved.
  • the limiting device expediently delimits the respective flow area at least on one side by the respective heat exchanger and on the opposite side or an adjoining side by the holding device and / or by the wind-blowable body.
  • the turbulence in front of and behind the heat exchanger are greatly reduced.
  • the wind can now be passed on two opposite sides of the heat exchanger, so that the dynamic pressure increases on the surface of the heat exchanger for its better flow and the heat exchanger is flowed through more evenly by the wind.
  • flow guide bodies within the respective further flow area or in the area of the same, which preferably ensure a largely laminar flow profile of the air flowing through this further flow area.
  • An example of such a flow guide would be a profile which is arranged on the heat exchanger.
  • the profile may preferably be aerodynamically optimized in order to counteract the wind as little resistance as possible.
  • the profile can have rounded edges or a smooth surface. wise, or cause a constriction of the further flow area.
  • the sum of all first flow areas can be greater than the sum of the further flow areas. This ensures that the at least one heat exchanger undergoes a sufficiently large dimensioning.
  • the holding device expediently consists of frame parts which erect the heat exchanger on at least one side relative to an outer side of the wind-blown body in such a way that the further flow area between this outer side and the heat exchanger, preferably a lower side of the heat exchanger, is at least partly blown.
  • the frame parts which at least tei lweise also a kind of cover bi lden to protect the heat exchanger, can also consist of a simple wall, which is attached to the outside of the windumströmbaren body.
  • the heat exchangers are preferably arranged on the upper side of the wind-blown body, because there the wind speed is highest.
  • the heat exchanger may be a plate, fin plate or fin heat exchanger.
  • wind guide devices are provided upstream and / or downstream of the first flow area.
  • the wind guiding devices effect an alignment or focusing of the wind the first flow area of the heat exchanger.
  • the wind speed at the surface of the heat exchanger is increased by this measure, so that the cooling performance is improved.
  • FIG. 1 shows a heat exchanger assembly according to the invention on a
  • 4 is a graphic representation of the surface-specific cooling capacity through the further flow area with the same flow; 5A, 5B, a heat exchanger assembly with a further flow area and the flow of the wind in the flow of this heat exchanger assembly.
  • FIG. 7 shows the heat exchanger arrangement of FIG. 5A in a side view
  • 1 1 is an illustration of a nacelle of a wind turbine with a arranged in a heat exchanger housing heat exchanger.
  • 12A, 12B show two heat exchanger arrangements with three heat exchangers arranged in formations.
  • FIG. 1 shows a heat exchanger arrangement 1 according to the invention for a body 3 that can flow around the wind.
  • the body 3 has an outer side 5, wherein at least one heat exchanger 7 is arranged laterally on the body 3, which forms a first flow area 8 for wind.
  • the wind umströmbaren body 3 is a nacelle 9 of a wind turbine 1 1, which is rotatably mounted on a tower 13.
  • the tower 1 3 is shown in Fig. 1 only hinted; in reality, the tower diameter in this area is approximately twice the diameter of the rotor blade root diameter.
  • a hub 14 is fixed, which carries a rotor 16.
  • FIGS. 2 to 4 illustrate the effect of the further flow-through areas 1 7.
  • a heat exchanger 7 is fastened directly to an outer side 5 of a body 3 which can flow around the wind.
  • the heat exchanger 7 has a considerably increased wind resistance. Therefore, before the heat exchanger 7, turbulences 1 9 are formed.
  • FIG. 3A the wind flow is shown behind a heat exchanger 7. It can be seen that, in the case of a massive heat exchanger 7, there is a considerable flow separation, so that large separation vortices 27 are located behind the heat exchanger 7. If now between two heat exchangers 7, which can be arranged side by side or one above the other, a further flow area 33 is provided (see Fig. 3B), the Abl Harborwi reduce rbel 27 behind the heat exchanger 7. Consequently, the wind 21 can easily flow through the heat exchanger 7 ,
  • the through-flow surfaces 8, 17 lie in a plane 26.
  • FIGS. 5A and 7 show a heat exchanger 7, which is spaced from a body 3 which can flow around the wind, or whose outside 5 is separated by a further throughflow area 17.
  • the heat exchanger 7 is supported on one side 28 by a holding device 29, so that the further flow-through surface 17 is formed on the underside 25 of the heat exchanger 7.
  • the Begrenzungs- device 30 is formed, which limits this further flow area 17.
  • FIG. 6A a detail of an arrangement 31 is shown in which two heat exchangers 7 arranged next to one another are arranged at a distance from an outer side 5 of a body 3 which can flow around the wind through further flow-through surfaces 17. Between the heat exchangers 7, a further flow area 33 is also provided.
  • the heat exchanger 7, which can be seen entirely in the figure, is held by a holding device 29, formed by a frame part 34 in the form of a lateral wall.
  • the limiting means 30 delimiting the further flow-through surfaces 17, 33 is formed by the outer side 5 of the wind-blown body 3, the two heat exchangers 7 and the holding device 29. It can be seen from the flow pattern (FIG. 5B) that the wind 21 flows onto the heat exchanger 7 with almost no turbulences and flows around it.
  • the wind 21 facing the side 37 of the heat exchanger 7, which forms the first flow area 8, can also with respect to the wind direction 39th or the further flow area 1 7 be inclined by an angle ⁇ , as shown in FIGS. 8A and 8B.
  • the angle ⁇ can be positive or negative.
  • the heat exchanger 7 of FIGS. 9A and 9B has a first flow area 8 with two partial surfaces 41, 43 offset by an angle ⁇ on the windward side 37.
  • the angle ⁇ can be positive or negative.
  • FIG. 10 shows a heat exchanger arrangement 1 in which flow guide bodies 35a-35d are provided in the form of plates or sheets in the flow 44 and outflow 45.
  • the flow guide bodies 35a, 35b in the flow 44 are placed at a distance from the heat exchanger 7, the outer flow guide bodies 35a being oriented in the direction of the sides 23, 25 of the heat exchanger 7 in order to channel the oncoming wind 21 in the direction of the heat exchanger 7.
  • the outer flow guide body 35c are arranged adjacent to the sides 23, 25 and projecting obliquely upwards or downwards. This causes an expansion of the space 46 behind the heat exchanger 7 for the wind 21 flowing through the heat exchanger.
  • Fig. 1 1 shows a gondola 9 of a wind turbine 1 1 in a cutaway view.
  • the nacelle 9 is rotatably mounted on a tower 13.
  • a rotor 51 is rotatably mounted on a tower 13.
  • the rotor 51 has three wings 53.
  • the wind energy is thus converted into rotational energy during operation and the rotation of the hub 49 is translated in a transmission gear 55 into a higher rotational speed of a generator shaft 57.
  • the rotational energy is converted into electrical energy. Should the wind be too strong, the rotor 51 can be braked by a brake 61 on the hub 49.
  • the cooling circuit 63 has a arranged in a heat exchanger housing 67 heat exchanger 7 on the outer side forming an upper side 1 5 of the nacelle 9.
  • the heat exchanger 7 forms a first flow area 8 and is spaced from the upper side 15 of the nacelle by a further flow area 17.
  • wind guide 71 are arranged in the openings 69 of the heat exchanger housing 67 upstream and downstream of the heat exchanger 7 in the openings 69 of the heat exchanger housing 67 upstream and downstream of the heat exchanger 7 arranged.
  • FIG. 12A in a side view
  • FIG. 2B in a plan view
  • the third heat exchanger 81 is placed in the region of the distance A between the heat exchangers 77, 79, but displaced downstream.
  • the length L of the heat exchanger 81 is here in each case the same size as the distance A. The length L may also be greater or smaller than the distance A.
  • the oncoming wind 21 can therefore flow around through the flow area 33 between the front heat exchangers 77, 79 and then through the hi nteren heat exchanger 81 or the outside around the rear heat exchanger 81.
  • a further flow-through area 17 is provided between the upper side 5 of the wind-swept body 3 and the adjacent heat exchanger 79.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un ensemble échangeur de chaleur pour un corps (3) susceptible d'être contourné par le vent, tel qu'une nacelle (9) d'une éolienne (11). Au moins un échangeur de chaleur (7) est relié au corps (3) au moyen d'un dispositif de retenue (29), et l'échangeur de chaleur (7) forme au moins une première surface de passage (8) pour l'air. L'invention est caractérisée en ce qu'au moins une autre surface de passage (17), dont la section libre est limitée par un dispositif de limitation (30), est disposée à côté de ou dans la première surface de passage (8) de l'échangeur de chaleur (7), de telle manière que d'éventuels tourbillonnements (19, 27) ou d'autres obstacles apparaissant dans la zone de la première surface de passage (8), lorsque l'échangeur de chaleur (7) laisse passer l'air, sont évités ou au moins réduits.
PCT/EP2013/002479 2012-09-04 2013-08-16 Ensemble échangeur de chaleur pour corps susceptible d'être contourné par le vent WO2014037080A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012017462.4A DE102012017462A1 (de) 2012-09-04 2012-09-04 Wärmetauscheranordnung für einen windumströmbaren Körper
DE102012017462.4 2012-09-04

Publications (1)

Publication Number Publication Date
WO2014037080A1 true WO2014037080A1 (fr) 2014-03-13

Family

ID=49035523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002479 WO2014037080A1 (fr) 2012-09-04 2013-08-16 Ensemble échangeur de chaleur pour corps susceptible d'être contourné par le vent

Country Status (2)

Country Link
DE (1) DE102012017462A1 (fr)
WO (1) WO2014037080A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK201770222A1 (en) * 2017-03-28 2018-05-07 Vestas Wind Sys As A Wind Turbine with Improved Heat Exchanger
CN108518320A (zh) * 2018-03-30 2018-09-11 北京金风科创风电设备有限公司 变流系统及风力发电机组
CN110439762A (zh) * 2019-08-16 2019-11-12 上海电气风电集团有限公司 风力发电机
EP3663576A1 (fr) * 2018-12-07 2020-06-10 Nissens Cooling Solutions A/S Système de refroidissement de nacelle de turbine éolienne
WO2020115276A1 (fr) * 2018-12-07 2020-06-11 Nissens Cooling Solutions A/S Système de refroidissement monté sur une nacelle d'éolienne
CN111425361A (zh) * 2019-01-10 2020-07-17 西门子歌美飒可再生能源公司 用于风力涡轮机的冷却热交换器
WO2021028001A1 (fr) * 2019-08-14 2021-02-18 Vestas Wind Systems A/S Refroidisseur à panneaux de refroidissement pivotants destiné à une éolienne
US11499532B2 (en) * 2019-07-31 2022-11-15 General Electric Renovables Espana, S.L. Nacelle assembly for a wind turbine
EP4344031A1 (fr) * 2022-09-26 2024-03-27 Wobben Properties GmbH Générateur pour une éolienne pour générer de l'énergie électrique à partir d'énergie cinétique, éolienne et utilisation de plusieurs générateurs vortex destinés à être agencés sur une section de surface périphérique extérieure d'une éolienne
CN113383161B (zh) * 2018-12-07 2024-05-24 尼森冷却解决方案有限公司 风力涡轮机机舱搭载的冷却系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017201889A1 (de) 2017-02-07 2018-08-09 Siemens Aktiengesellschaft Kühleinrichtung zum Kühlen einer energietechnischen Anlage
DE102019000723A1 (de) 2019-01-31 2020-08-06 Hydac Cooling Gmbh Kühler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025537A1 (en) * 2009-01-30 2012-02-02 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
US20120063890A1 (en) * 2009-01-30 2012-03-15 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
US20120086215A1 (en) * 2009-01-30 2012-04-12 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
DE102011107013A1 (de) 2011-07-09 2013-01-10 Hydac Cooling Gmbh Kühleinrichtung für Windenergieanlagen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025537A1 (en) * 2009-01-30 2012-02-02 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
US20120063890A1 (en) * 2009-01-30 2012-03-15 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
US20120086215A1 (en) * 2009-01-30 2012-04-12 Vestas Wind Systems A/S Wind turbine nacelle with cooler top
DE102011107013A1 (de) 2011-07-09 2013-01-10 Hydac Cooling Gmbh Kühleinrichtung für Windenergieanlagen

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK201770222A1 (en) * 2017-03-28 2018-05-07 Vestas Wind Sys As A Wind Turbine with Improved Heat Exchanger
CN108518320B (zh) * 2018-03-30 2020-05-19 北京金风科创风电设备有限公司 变流系统及风力发电机组
CN108518320A (zh) * 2018-03-30 2018-09-11 北京金风科创风电设备有限公司 变流系统及风力发电机组
CN113383161A (zh) * 2018-12-07 2021-09-10 尼森冷却解决方案有限公司 风力涡轮机机舱搭载的冷却系统
EP3663576A1 (fr) * 2018-12-07 2020-06-10 Nissens Cooling Solutions A/S Système de refroidissement de nacelle de turbine éolienne
WO2020115276A1 (fr) * 2018-12-07 2020-06-11 Nissens Cooling Solutions A/S Système de refroidissement monté sur une nacelle d'éolienne
EP4242455A3 (fr) * 2018-12-07 2023-12-06 Nissens Cooling Solutions A/S Système de refroidissement de nacelle de turbine éolienne
CN113383161B (zh) * 2018-12-07 2024-05-24 尼森冷却解决方案有限公司 风力涡轮机机舱搭载的冷却系统
CN111425361A (zh) * 2019-01-10 2020-07-17 西门子歌美飒可再生能源公司 用于风力涡轮机的冷却热交换器
US11499532B2 (en) * 2019-07-31 2022-11-15 General Electric Renovables Espana, S.L. Nacelle assembly for a wind turbine
WO2021028001A1 (fr) * 2019-08-14 2021-02-18 Vestas Wind Systems A/S Refroidisseur à panneaux de refroidissement pivotants destiné à une éolienne
US11788513B2 (en) 2019-08-14 2023-10-17 Vestas Wind Systems A/S Cooler for a wind turbine having pivotable cooling panels
CN110439762B (zh) * 2019-08-16 2020-12-25 上海电气风电集团股份有限公司 风力发电机
CN110439762A (zh) * 2019-08-16 2019-11-12 上海电气风电集团有限公司 风力发电机
EP4344031A1 (fr) * 2022-09-26 2024-03-27 Wobben Properties GmbH Générateur pour une éolienne pour générer de l'énergie électrique à partir d'énergie cinétique, éolienne et utilisation de plusieurs générateurs vortex destinés à être agencés sur une section de surface périphérique extérieure d'une éolienne

Also Published As

Publication number Publication date
DE102012017462A1 (de) 2014-05-15

Similar Documents

Publication Publication Date Title
WO2014037080A1 (fr) Ensemble échangeur de chaleur pour corps susceptible d'être contourné par le vent
DE19957141B4 (de) Windkraftanlage mit Vertikalrotor und Frontalanströmung
EP2567423B1 (fr) Dispositif de refroidissement d'une batterie
DE102012003336A1 (de) Diffusor, Ventilator mit einem solchen Diffusor sowie Gerät mit solchen Ventilatoren
DE202006008289U1 (de) Windrichtungsunabhängige Windkraftanlage mit vertikalen Durchströmrotor
WO2012164045A1 (fr) Rotor d'éolienne comportant une pale courbée
EP1797318A1 (fr) Procede et dispositif de commande de l'angle d'inclinaison des pales du rotor d'eoliennes
WO2013007342A1 (fr) Dispositif de refroidissement pour éoliennes
EP3472462B1 (fr) Eolienne à structure modulaire
EP2821644A1 (fr) Module éolien et installation éolienne destinée à être disposée sur un bâtiment
WO2008028675A2 (fr) Installation d'énergie éolienne
DE3515441C2 (fr)
DE102012107250B4 (de) Rotor einer vertikalachsigen Windkraftanlage
DE102019000723A1 (de) Kühler
EP2520872A1 (fr) Récepteur solaire pour centrale à tour solaire
AT510210B1 (de) Vorrichtung zur umsetzung der energie eines strömenden mediums
WO2006125419A1 (fr) Installation de condensation
CH714302A2 (de) Aerodynamisch optimiertes Rotorblatt.
AT510280B1 (de) Windkraftanlage
DE202010009987U1 (de) Turbine III
DE102013004277A1 (de) Druckerzeugungseinrichtung für eine Anlage zur Erzeugung von Energie aus Solar- und/oder Windenergie
DE102016112876A1 (de) Durchströmwindkraftanlage
EP3280910A1 (fr) Pale de rotor d'éolienne
DE102023003203A1 (de) Anlage zur Energiegewinnung aus Fluiden Strömungen
DE102013217426B3 (de) Horizontalläuferturbine mit verringerter normierter Durchgangsschnelllaufzahl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13753102

Country of ref document: EP

Kind code of ref document: A1