WO2014036930A1 - 一种干扰信号的处理方法、装置和系统 - Google Patents

一种干扰信号的处理方法、装置和系统 Download PDF

Info

Publication number
WO2014036930A1
WO2014036930A1 PCT/CN2013/082859 CN2013082859W WO2014036930A1 WO 2014036930 A1 WO2014036930 A1 WO 2014036930A1 CN 2013082859 W CN2013082859 W CN 2013082859W WO 2014036930 A1 WO2014036930 A1 WO 2014036930A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
interference
self
sub
cancellation processing
Prior art date
Application number
PCT/CN2013/082859
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13835969.0A priority Critical patent/EP2884669B1/en
Priority to BR112015004904-4A priority patent/BR112015004904B1/pt
Priority to EP18202317.6A priority patent/EP3496283A1/en
Priority to RU2015112618/07A priority patent/RU2605455C2/ru
Publication of WO2014036930A1 publication Critical patent/WO2014036930A1/zh
Priority to US14/639,731 priority patent/US9712314B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1081Reduction of multipath noise

Definitions

  • the invention relates to a method, device and system for processing an interference signal.
  • the application is filed on September 7, 2012, the Chinese Patent Office, the application number is 201210329936.X, and the invention name is "a method, device and system for processing interference signals".
  • Priority of Chinese Patent Application the entire contents of which is incorporated herein by reference.
  • the present invention relates to the field of communications, and in particular, to a method, device and system for processing an interference signal. Background technique
  • wireless full-duplex technology simultaneously performs receiving and transmitting operations on the same wireless channel.
  • the spectrum efficiency is twice that of the existing frequency division duplex or time division duplex technology, and it has gradually become the next-generation communication hotspot technology that everyone pays attention to.
  • the premise of implementing wireless full-duplex is to avoid, reduce and eliminate the strong interference of the transmitted signal of the same transceiver to the received signal as much as possible so as not to affect the correct reception of the useful signal.
  • the propagation environment is far more complex than point-to-point wireless communication.
  • Wireless signals are mainly spread over non-line-of-sight, and the distance between the two ends of the communication may be as long as several hundred meters or more, and MIMO has been used in these systems. widely used.
  • the base station is configured with at least two transmit and receive antennas, and the power difference between the transmit and receive signals is usually 80 dB to 140 dB or more.
  • an embodiment of the present invention provides an interference signal processing method, where the method includes: receiving a wireless signal, where the signal includes a self-interference signal of a transmitting antenna, where the self-interference signal includes a first self-interference signal, and a second self-interference signal, the power of the first self-interference signal is greater than a first power threshold, the delay of the first self-interference signal is less than a first delay threshold, and the power of the second self-interference signal is less than the The first power threshold is greater than the second power threshold, and the delay of the second self-interference signal is greater than the first delay threshold and less than the second delay threshold; and the received signal is used by using the first reference signal.
  • Level interference cancellation processing to eliminate the first self-interference signal the first reference signal is obtained by coupling a local transmission signal; using the second reference signal to perform the signal after the first-order interference cancellation processing Level interference cancellation processing to eliminate the second self-interference signal, the second reference signal being obtained by coupling a local transmit signal.
  • the self-interference signal further includes a third self-interference signal, where a power of the third self-interference signal is less than the second power threshold, and the third self-interference The delay of the signal is greater than the second delay threshold; after the performing the second-level interference cancellation processing, the method further includes: using the third reference signal pair to pass the first-order interference cancellation processing, the second-level interference And canceling the processed signal to perform a three-stage interference cancellation process to eliminate the third self-interference signal; the third reference signal comprises: a digital baseband signal at the transmitting end, a signal for compensating the digital baseband signal at the transmitting end, or A signal obtained by down-converting and analog-to-digital conversion of the first reference signal.
  • the first self-interference signal includes a main path self-interference signal, and if the transmitting and receiving uses different antennas, the main path is The interference signal is generated by the local transmission signal entering the local receiving end through the direct view path.
  • the main path self-interference signal is generated by the local transmitting signal leaking to the local receiving end through the transceiver isolator, and the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal of a local transmitting antenna; performing the first-level interference canceling processing to cancel the first self-interference signal: the performing the first-level interference canceling processing to eliminate the main-path self-interference signal.
  • the second self-interference signal includes a near-region reflection self-interference signal
  • the near-region reflection self-interference signal is The ground transmitting signal is generated by the non-direct view path reflected by the near-region scatterer entering the local receiving end, where the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal including a local transmitting antenna;
  • Secondary interference ⁇ ! Eliminating the second self-interference signal includes: performing a two-level interference cancellation process to cancel the near-field reflected self-interference signal.
  • the third self-interference signal includes a far-field reflection self-interference signal, and the far-field reflection self-interference signal is locally transmitted by the signal
  • the non-direct view path reflected by the scatterer in the far area is generated by entering a local receiving end, where the local transmit signal includes a transmit signal of each local transmit antenna or a transmit signal including a local transmit antenna;
  • Eliminating the third self-interference signal includes: performing a three-level interference cancellation process to cancel the far-field reflected self-interference signal.
  • the method further includes: Eliminating the signal of the first self-interference signal for low noise amplification processing; performing the second level interference cancellation processing on the signal after the first level interference cancellation processing by using the second reference signal, including: using the second reference signal
  • the second-order interference cancellation processing is performed on the signal number subjected to the first-order interference cancellation processing and the low-noise amplification processing.
  • the method further includes: after canceling the second self-interference signal The signal is subjected to a down-conversion process; the third-level interference cancellation processing is performed on the signal after the first-order interference cancellation processing and the second-order interference cancellation processing by using the third reference signal, including: The third reference signal performs a three-stage interference cancellation process on the signal after the first-order interference cancellation processing, the second-level interference cancellation processing, and the down-conversion processing.
  • the third reference signal is used after the first-level interference cancellation processing and the second-level interference cancellation processing
  • the third-level interference cancellation processing of the signal includes: performing analog-to-digital conversion on the signal after the first-order interference cancellation processing and the second-level interference cancellation processing, and performing the analog-to-digital conversion of the signal
  • the signal of the third reference signal after digital filtering is subtracted.
  • the third reference signal is used after the first-level interference cancellation processing and the second-level interference cancellation processing
  • the third-level interference cancellation processing of the signal further includes: subtracting the signal after the first-order interference cancellation processing and the second-level interference cancellation processing from the signal after the fourth reference signal is filtered; the fourth reference signal is utilized.
  • the signal after the interference cancellation processing and the second-order interference cancellation processing is subjected to analog digital conversion, and the signal subjected to the analog filtering is subtracted from the third reference signal and subjected to digital filtering, and the signal includes: The signal after the cancellation processing, the second-order interference cancellation processing, and the fourth reference signal after filtering processing Subtracting the subtracted signal analog-digital conversion, the analog signal through digital conversion of said third reference signal is subtracted after filtering the digital signal.
  • the local end includes multiple local transmit antennas
  • the first reference signal includes multiple first sub-reference signals
  • first The self-interference signal includes a plurality of first sub-self-interference signals, each of the first sub-self-interference signals corresponding to each of the plurality of local transmit antennas, where the first sub-reference signal is passed Coupling the transmit signal of the local transmit antenna corresponding to the first sub-interference signal to obtain the first-order interference cancellation process on the received signal by using the first reference signal, comprising: using the first sub-reference signal pair to receive the signal Performing a plurality of first-level sub-processes; performing the first-level sub-processing: subtracting, by the first-level sub-process, the signal to be processed, the signal of the first sub-reference signal after delay and amplitude phase adjustment, to eliminate The first sub-interference signal corresponding to the local transmitting antenna corresponding to the first sub-reference signal
  • the second reference signal includes multiple second sub-reference signals
  • second The self-interference signal includes a plurality of second sub-self-interference signals, each of the second sub-self-interference signals Corresponding to each of the plurality of local transmit antennas, the second sub-reference signal is obtained by coupling a transmit signal of a local transmit antenna corresponding to the second sub-interference signal; using the second reference signal
  • Performing the second-level interference cancellation processing on the received signal includes: performing a plurality of second-level sub-processing on the received signal by using the second reference signal; performing the second-level sub-processing includes: And processing the signal to be processed by subtracting the filtered signal from the second sub-reference signal to eliminate the second sub-interference signal corresponding to the local transmit antenna corresponding to the second sub-reference signal.
  • an embodiment of the present invention provides an apparatus for processing an interference signal, where the apparatus includes one or more local transmitting antennas; the apparatus includes: a receiving unit, a first-order interference cancellation processing unit, and a second-level interference cancellation processing.
  • the receiving unit is configured to receive a wireless signal, where the signal includes a self-interference signal of the local transmitting antenna, where the self-interference signal includes a first self-interference signal, and a second self-interference signal, the first self The power of the interference signal is greater than the first power threshold, the delay of the first self-interference signal is less than the first delay threshold, and the power of the second self-interference signal is less than the first power threshold and greater than the second power threshold.
  • the delay of the second self-interference signal is greater than the first delay threshold and less than the second delay threshold;
  • the first-level interference cancellation processing unit is configured to perform, by using the first reference signal, the received signal to perform one level. Interference cancellation processing to eliminate the first self-interference signal, the first reference signal being obtained by coupling a local transmit signal;
  • the interference cancellation processing unit is configured to perform second-level interference cancellation processing on the signal after the first-level interference cancellation processing by using the second reference signal to cancel the second self-interference signal, where the second reference signal passes Local transmit signal coupling is obtained.
  • the self-interference signal further includes a third self-interference signal, where a power of the third self-interference signal is less than the second power threshold, and the third self-interference signal The delay is greater than the second delay threshold;
  • the apparatus further includes a three-stage interference cancellation processing unit, configured to use the third reference signal pair to pass the first-order interference cancellation processing and the second-level interference cancellation processing The signal performs a three-stage interference cancellation process to eliminate the third self-interference signal;
  • the third reference signal includes: a digital baseband signal at the transmitting end, a signal for compensating the digital baseband signal at the transmitting end, or a first reference The signal is subjected to down-conversion and analog-to-digital conversion.
  • the first self-interference signal includes a main path self-interference signal, and if the transmitting and receiving uses different antennas, the main path self-interference signal is locally The transmitting signal is generated by entering the local receiving end through the direct view path. If the common antenna is sent and received, the main path self-interference signal is generated by the local transmitting signal leaking to the local receiving end through the transceiver isolator, and the local transmitting signal includes local transmitting antennas.
  • the transmit signal or the transmit signal of a local transmit antenna; the first-order interference cancellation processing unit is configured to cancel the main path self-interference signal.
  • the second self-interference signal includes a near-region reflection self-interference signal, and the near-region reflection self-interference signal is locally transmitted.
  • the non-direct view path reflected by the near-region scatterer is generated by entering a local receiving end, where the local transmit signal includes a transmit signal of each local transmit antenna or a transmit signal including a local transmit antenna;
  • the cancellation processing unit is configured to cancel the near-field reflection self-interference signal.
  • the third self-interference signal includes a far-field reflection self-interference signal, and the far-field reflection self-interference signal is locally transmitted.
  • the non-direct view path reflected by the scatterer in the far area is generated by entering a local receiving end, where the local transmit signal includes a transmit signal of each local transmit antenna or a transmit signal including a local transmit antenna;
  • the cancellation processing unit is configured to eliminate the far-field reflection self-interference signal.
  • the device further includes a low noise amplification processing unit, after the canceling the first self-interference signal, And eliminating the signal of the first self-interference signal to perform low noise amplification processing;
  • the second-level interference cancellation processing unit is configured to process, by using the second reference signal, the first-order interference cancellation processing unit and the low-noise amplification processing unit The signal number is subjected to secondary interference cancellation processing.
  • the apparatus further includes a down-converting unit, configured to remove the second self-interference signal
  • the signal after the second self-interference signal is subjected to down-conversion processing;
  • the third-level interference cancellation processing unit uses the third reference signal to be processed by the first-order interference cancellation processing unit, the second-order interference cancellation processing unit, and the down-conversion unit.
  • the signal is subjected to a three-stage interference cancellation process.
  • the three-stage interference cancellation processing is used after the first-order interference cancellation processing and the second-order interference cancellation processing
  • the signal is subjected to analog-to-digital conversion, and the digitally-processed signal of the third reference signal is subtracted from the analog-digital converted signal.
  • the three-stage interference cancellation processing unit is configured to perform the first-order interference cancellation processing and the second-order interference cancellation processing.
  • the signal is subtracted from the filtered signal of the fourth reference signal, and the signal after the first-order interference cancellation processing and the second-order interference cancellation processing is subtracted from the signal after the fourth reference signal is filtered.
  • the fourth reference signal is obtained by using the following signal: The signal, the analog baseband signal of the transmit antenna, the signal that compensates for the analog baseband signal of the transmit antenna, or the signal that is downconverted to the first reference signal.
  • the device includes multiple local transmit antennas
  • the first reference signal includes multiple first sub-reference signals
  • a self-interference signal includes a plurality of first sub-self-interference signals, each of the first sub-self-interference signals corresponding to each of the plurality of local transmit antennas, and the first sub-reference signal is passed Obtaining a transmission signal coupling of a local transmitting antenna corresponding to the first sub-interference signal
  • the first-stage interference cancellation processing unit is configured to perform, by using the plurality of first sub-reference signals, the first-level sub-segment of the received signal Processing, in each level of sub-processing, subtracting the signal of the corresponding first sub-reference signal from the phase of the delay amplitude phase by the signal processed by the first-level sub-process to cancel the first sub-reference signal Corresponding local transmit antenna corresponding to the first sub-interference signal.
  • the first-level interference cancellation processing unit includes at least one first-level interference cancellation processing sub-unit, and the first-level interference cancellation processing unit
  • the unit includes an error control signal extraction unit, a delay amplitude phase tracking unit, and an interference signal cancellation unit;
  • the error control signal extraction unit is configured to generate an error control signal according to an output of the interference signal cancellation unit in the primary interference cancellation processing subunit
  • the tracking unit is configured to perform delay amplitude phase tracking on the first sub-reference signal according to the error control signal to obtain a reconstructed first sub-self-interference signal;
  • the interference signal cancellation unit is configured to use the first-order interference
  • the reconstructed first sub-interference signal is subtracted from the signal input by the processing sub-unit to cancel the first sub-interference signal.
  • the first-stage interference cancellation processing unit includes an error control signal extraction unit and at least one primary interference cancellation processing sub-unit
  • the primary interference cancellation processing subunit includes a delay amplitude phase tracking unit and an interference signal cancellation unit
  • the error control signal extraction unit is configured to output an interference signal cancellation unit according to the at least one primary interference cancellation processing subunit Generating an error control signal
  • the delay amplitude phase tracking unit in each of the interference cancellation processing sub-units is configured to perform delay amplitude phase tracking on the first sub-reference signal according to the error control signal to obtain a reconstructed first a sub-interference signal
  • the interference signal cancellation unit is configured to subtract the reconstructed first sub-interference signal from the signal input by the first-order interference cancellation processing sub-unit to eliminate the first sub-interference signal .
  • the second-level interference cancellation processing unit includes at least one second-level interference cancellation processing sub-unit, and the second-level interference cancellation processing
  • the subunit includes an error control signal extracting unit, a filter unit, and an interference signal canceling unit;
  • the error control signal extracting unit is configured to generate an error control signal according to an output of the interference signal canceling unit in the second level interference canceling processing subunit
  • the filter unit is configured to perform filtering processing on the second sub-reference signal according to the error control signal to obtain a reconstructed second sub-interference signal;
  • the interference signal cancellation unit is configured to The reconstructed second sub-interference signal is subtracted from the signal input by the level interference cancellation processing sub-unit to cancel the second sub-interference signal.
  • the second-level interference cancellation processing unit includes an error control signal extraction unit and at least one second-level interference cancellation processing sub-unit
  • the secondary interference cancellation processing subunit includes a filter unit and an interference signal cancellation unit
  • the error control signal extraction unit is configured to generate an error according to an output of the interference signal cancellation unit in the at least one level interference cancellation processing subunit Control signal And performing filtering processing on the second sub-reference signal according to the error control signal to obtain a reconstructed second sub-self-interference signal
  • the interference signal cancellation unit is configured to use the second-order interference cancellation processing sub-unit The reconstructed second sub-interference signal is subtracted from the input signal to cancel the second sub-interference signal.
  • an embodiment of the present invention provides a system with an interference signal cancellation function, where the system includes a transmitting device, the interference cancellation device as described above, and the sending device is configured to send the wireless received by the interference cancellation device. signal.
  • the embodiment of the present invention divides the self-interference signal in full-duplex communication into a plurality of self-interference signals which are largely different in power and multipath delay according to power and delay characteristics.
  • the characteristics of the self-interference signal, the interference of each component is suppressed, and the efficiency of interference suppression is improved.
  • FIG. 1 is a structural diagram of a transmitting branch and a receiving branch according to an embodiment of the present invention
  • FIG. 2 is a flow chart showing an embodiment of an interference signal processing method of the present invention
  • FIG. 3 is a flow chart showing an embodiment of an interference signal processing method of the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of an apparatus for processing an interference signal according to the present invention
  • FIG. 6 is a schematic structural diagram of another embodiment of an apparatus for processing an interference signal according to the present invention
  • FIG. 8 is a schematic structural diagram of an embodiment of a primary interference cancellation processing unit of the present invention
  • FIG. 9 is a structural diagram of still another embodiment of the primary interference cancellation processing unit of the present invention
  • a schematic structural diagram of an embodiment of a second-stage interference cancellation processing unit
  • Figure 11 is a block diagram showing still another embodiment of the secondary interference cancellation processing unit of the present invention
  • Figure 12 is a block diagram showing the structure of the secondary interference cancellation processing unit filter of the embodiment of the present invention
  • Figure 13 provides the interference signal of the present invention.
  • Figure 14 provides a block diagram of another embodiment of an interference signal cancellation system in accordance with an embodiment of the present invention. detailed description
  • the transmitting and receiving system consisting of a transmitting antenna and a receiving antenna includes: a digital to analog converter (DAC) of the transmitting channel, an upconverter and a power amplifier (a power amplifier), and a low noise amplifier of the receiving channel (Low Noise Amplifier) , LNA ), downconverter and analog digital converter (ADC).
  • DAC digital to analog converter
  • LNA low noise amplifier of the receiving channel
  • ADC analog digital converter
  • the transmitting and receiving channels usually also include auxiliary function units such as filters and amplifiers, which are not shown in FIG.
  • Figure 1 shows the case of transmitting and receiving a shared antenna, using a circulator to isolate the transceiver.
  • the self-interference cancellation processing method and system structure are also applicable to the case where different antennas are used for transmitting and receiving. Only a self-interference cancellation structure of the receiving branch is shown in the simplified diagram, and the actual system may include multiple receiving branches. The structure of each receiving branch is still as shown in Figure 1.
  • the transmitting end is configured with two transmitting antennas ANT#1 and ANT#2 (corresponding to the transmitting branches #1 and #2 respectively), taking the transmitting branch #1 as an example, the digital baseband signal to be transmitted generated by the digital baseband signal processing unit Txl_BB is first converted into an analog signal by a digital-to-analog converter (DAC), and then generates a radio frequency signal to be transmitted via a medium-frequency unit of a transmitting branch such as an up-converter or a power amplifier.
  • the circulator is transmitted by the antenna ANT#1.
  • the antenna ANT #1 is also used to receive the signal from the communication opposite end, in the received signal, in addition to the useful signal component from the communication opposite end, including the transmission through the antenna ANT#1 and its near and far regions.
  • the self-interference signal of the transmitting branch #1 reflected by the scatterer, and the emission transmitted through the antenna ANT#2, etc., through the spatial direct path into the antenna ANT#1 and reflected by the scatterers in the near and far regions thereof Self-interference signal of branch #2.
  • These signals are received by the antenna ANT#1 and then enter the receiving branch #1 via the circulator. Since the circulator has limited transmission and reception isolation (usually 20 ⁇ 30dB), the RF signal to be transmitted of the transmitting branch #1 will also leak through the circulator.
  • the main path self-interference signal corresponding to the transmission branch #1 is transmitted from the transmission branch #1 through the spatial direct path to the receiving branch. #1's receiving antenna.
  • the self-interference signal is configured to have only one transmitting antenna (ie, one transmitting branch) at the transmitting end, or in the MIM0 system, the transmitting end usually has multiple transmitting antennas (corresponding to multiple transmitting branches) ).
  • the self-interference signal of the arbitrary receiving branch is the sum of the self-interference signals corresponding to each of the transmitting branches, and the self-interference signals corresponding to each of the transmitting branches include the above three types of self-interference signals. Interference signal component.
  • the LNA of the receiving branch, the RF unit in the down-conversion (including the substation, the filter, etc.) and the ADC are typical receiver functional units.
  • the self-interference signal is configured to have only one transmitting antenna (ie, one transmitting branch) at the transmitting end, or in the MIM0 system, the transmitting end usually has multiple transmitting antennas (corresponding to multiple transmitting branches) road).
  • the self-interference signal of the arbitrary receiving branch is the sum of the self-interference signals corresponding to each of the transmitting branches entering the receiving branch, wherein the self-interference signal corresponding to each of the transmitting branches includes the first self-interference signal And a second self-interference signal or a third self-interference signal and any combination of the above three signals.
  • FIG. 2 provides a flowchart of an interference signal processing method according to an embodiment of the present invention.
  • the method includes: S201 receiving a wireless signal, the signal comprising a self-interference signal of a transmitting antenna, the self-interference signal comprising a first self-interference signal And the second self-interference signal, the power of the first self-interference signal is greater than the first power threshold, the delay of the first self-interference signal is less than the first delay threshold, and the power of the second self-interference signal If the first power threshold is greater than the second power threshold, the second self-interference signal has a time delay greater than the first delay threshold and less than the second delay threshold; S203 uses the first reference signal to receive the The signal performs a first-order interference cancellation process to eliminate the first self-interference signal, the first reference signal is obtained by coupling a local transmit signal; S205 uses a second reference signal pair to pass the first-order interference cancellation process the two signal interference cancellation process
  • the power and delay thresholds are determined according to empirical values of those skilled in the art and are related to factors such as channel environment and system complexity.
  • the main path self-interference signal is the most powerful interfering signal, with delays in Ins.
  • the delay of the near-field reflection self-interference signal is within 30 ns, and the delay of more than 30 ns can be used as the far-field reflection self-interference signal.
  • the delay of the near-field reflection self-interference signal is Within 100 ns, a delay of more than 100 ns can be used as a self-interference signal for far-field reflection.
  • the local transmit signal includes a radio frequency signal of a local transmit antenna.
  • the embodiment of the invention divides the self-interference signal during full-duplex communication into multiple types of power and multipath according to power and delay characteristics. Self-interference signals with large differences in delay and the like. According to the characteristics of the self-interference signal, the interference of each component is suppressed, and the efficiency of interference suppression is improved.
  • FIG. 3 provides a flow chart of one embodiment of an interference signal processing method of the present invention.
  • the self-interference signal further includes a third self-interference signal, the power of the third self-interference signal is less than the second power threshold, and the delay of the third self-interference signal is greater than the second delay threshold;
  • the method further includes: S207 performing third-level interference cancellation processing on the signal after the first-level interference cancellation processing and the second-level interference cancellation processing by using the third reference signal a third self-interference signal;
  • the third reference signal includes: a digital baseband signal at the transmitting end, and a signal for compensating the digital baseband signal at the transmitting end, Or a signal obtained by downconverting and analog-to-digital conversion of the first reference signal.
  • the nonlinear distortion of the transmitting channel causing the unit such as the power amplifier
  • the multipath delay replica generated by the transmitting branch baseband signal as a reference cannot effectively cancel the baseband receiving signal.
  • Self-interference signal component Therefore, when the nonlinear distortion of the transmitting channel is large (for example, more than 0.5%), it is necessary to measure the nonlinear characteristics of each transmitting branch, and accordingly compensate the baseband signals of the respective transmitting branches to make each transmitting.
  • the first self-interference signal includes a main path self-interference signal, and if the transmitting and receiving uses different antennas, the main path self-interference signal is generated by the local transmitting signal passing through the direct view path to the local receiving end, if And transmitting and receiving a shared antenna, wherein the main path self-interference signal is generated by a local transmitting signal leaking to a local receiving end through a transceiver isolator, where the local transmitting signal includes a transmitting signal of a local transmitting antenna or a transmitting signal of a local transmitting antenna; Performing a first-order interference cancellation process to eliminate the first self-interference signal: eliminating the main path self-interference signal.
  • the main path self-interference signal is the component with the strongest intensity in the self-interference signal (typically, its power is P T -60dBm, and ⁇ ⁇ is the local transmit signal power), because the transmitting and receiving antennas are close to each other and the transmitting and receiving antennas
  • the position of the transmission channel is also relatively slow, and the signal delay is 4 ⁇ (typically 0. 1-lns).
  • the delay, amplitude, phase, etc. change little with time and slowly (the signals to be transmitted to the receiver front end have the same characteristics when transmitting and receiving the shared antenna).
  • the second self-interference signal comprises a near-field reflection self-interference signal
  • the near-field reflection self-interference signal is entered by a non-direct view path after the local transmit signal is reflected by the near-region scatterer.
  • generating, by the local receiving end, the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal including a local transmitting antenna; and performing the second-level interference cancellation processing to eliminate the second self-interference signal includes: A two-stage interference cancellation process is performed to eliminate the near-field reflected self-interference signal.
  • the second self-interference signal includes a near-field reflected self-interference signal and a partially residual main-path self-interference signal.
  • the near-region reflection self-interference signal corresponds to a near-field reflection path of about 0.3-10 m. Due to the absorption of the scatterer and the larger propagation path loss than the L0S, the power of the component is significantly lower than the main-path self-interference component (typically The power is lower than P T - 60dBm ), and the typical multipath propagation delay is on the order of l_30ns. Since the variation of the propagation environment in the vicinity of the transmitting and receiving antenna is small, the delay of the self-interference signal changes little and slowly with time. Since the near-region reflected self-interference signal component corresponding to each of the transmitting branches is a multipath delay replica of the corresponding transmitting branch transmitting signal, the second reference signal and the first reference signal are the same.
  • the third self-interference signal includes a far-field reflection self-interference signal, and the far-field reflection self-interference signal enters a non-direct view path after the local transmit signal is reflected by the scatterer in the far area.
  • generating, by the local receiving end, the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal including a local transmitting antenna; and performing the three-level interference cancellation processing to eliminate the third self-interference signal includes: A three-stage interference cancellation process is performed to eliminate the far-field reflected self-interference signal.
  • the third self-interference signal includes a far-field reflection self-interference signal and a partial near-region self-interference signal; or the third self-interference signal includes a far-field reflection self-interference signal, and a partial residual The main path self-interference signal; or, the third self-interference signal includes a far-field self-interference signal, a partial near-region self-interference signal, and a partially residual main-path self-interference signal.
  • the far-field reflection self-interference signal corresponds to a far-field reflection path (typically several tens of meters to several hundred meters) of about 10 m or more. Since it experiences a large propagation path and may undergo multiple reflections by the scatterer, it re-enters the local receiving antenna.
  • the power is much lower than the above two types of self-interference components (typically its power is lower than
  • the powers are arranged in descending order of order: the main path self-interference signal, the near-field self-interference signal, and the far-field self-interference signal; the delay time is arranged from short to long, in the following order: Self-interference signal, self-interference signal in near-field reflection, self-interference signal in far-field reflection.
  • the embodiments of the present invention suppress the different characteristics of multipath propagation self-interference signals in the near and far regions by considering the influence of local transmission signals in the near-field and far-field multipath propagation, and improve the self-interference cancellation performance of the full-duplex technology. .
  • FIG. 4 provides a flowchart of an interference signal processing method according to an embodiment of the present invention.
  • the method further includes: S204 performing a low noise amplification process on the signal that cancels the first self-interference signal; and using the second reference signal pair to pass a
  • the second-order interference cancellation processing of the signal after the level interference cancellation processing includes performing, by using the second reference signal, the second-order interference cancellation processing on the signal number subjected to the first-order interference cancellation processing and the low-noise amplification processing.
  • the main path self-interference signal has a large power, and the main path self-interference is cancelled before the low noise amplification (LNA) to avoid saturation of the low noise amplification processor at the front end of the receiver and block the receiver front end.
  • LNA low noise amplification
  • the useful signal received from the communication opposite end after low noise amplification processing is still weak, and the near-field reflection self-interference signal is much stronger than the useful signal part in the received signal after low noise amplification processing.
  • the interference component of the near-field reflection self-interference signal is cancelled, which will avoid the saturation of the RF or IF amplification unit after the LNA.
  • the method further includes: S206 performing a down-conversion process on the signal after canceling the second self-interference signal;
  • the third reference signal performs three-stage interference cancellation processing on the signal after the first-level interference cancellation processing and the second-level interference cancellation processing, including: using the third reference signal pair to pass the first-order interference cancellation processing, and the second level
  • the interference cancellation processing and the down-converted signal perform a three-stage interference cancellation process.
  • the self-interference signal power is already low, and will not saturate the RF or IF amplification unit after the LNA, so it can enter these units for signal amplification and down-conversion to baseband signals. .
  • the third-level interference cancellation processing is performed on the signal after the first-level interference cancellation processing and the second-level interference cancellation processing by using the third reference signal, where:
  • the first-order interference cancellation processing and the second-order interference cancellation processing perform analog-to-digital conversion, and subtract the digitally-processed signal of the third reference signal from the analog-digital converted signal.
  • the received signal still contains the far-field reflected self-interference signal component, and the residual interference of the main path and the near-field reflected self-interference signal component that have not been completely cancelled by the first-order interference cancellation processing and the second-order interference cancellation processing.
  • the ADC After passing through the ADC, it becomes a digital baseband signal.
  • the intensity of the self-interference signal reflected from the far-field is within the range of useful signal strength received from the communication peer.
  • the ADC sampling rate satisfies the resolution of this type of self-interference component.
  • the digital baseband interference cancellation unit is responsible for further canceling the self-interference signals, from reducing the self-interference signal power to a low enough level, so that the subsequent digital baseband signal receiving and processing unit can correctly receive the communication pair.
  • digital filtering is used to eliminate interference from far-field reflected self-interference signals.
  • the spatial interference suppression and the RF front-end analog interference cancellation can only achieve about 60dB of self-interference suppression, while in mobile cellular communication systems, the power difference of the transmitted and received signals can usually reach 80dB ⁇ 140dB or even more.
  • the baseband received signal may exceed the dynamic range of the ADC to cause signal distortion; the prior art mainly focuses on self-interference to block the RF front end of the receiver, and self-interference to receive The signal exceeds the dynamic range of the ADC, but even if the self-interference signal has dropped below the dynamic range of the ADC, since some of the useful received signals in mobile cellular communications and other systems may be very weak, the residual self-interfering signal power still far exceeds these useful receptions. The signals make these useful signals not received correctly.
  • the method provided by the embodiment of the invention solves the above problems better.
  • the third-level interference cancellation processing of the signal after the first-order interference cancellation processing and the second-level interference cancellation processing by using the third reference signal further includes:
  • the fourth reference signal is obtained by using the following signal: the third reference signal, the emission An analog baseband signal of the antenna, a signal for compensating the analog baseband signal of the transmitting antenna, or a signal obtained by downconverting the first reference signal; the said to be subjected to the first-order interference cancellation processing and the second-order interference cancellation processing
  • the signal is subjected to analog-to-digital conversion, and subtracting the third reference signal from the analog-digital converted signal by digital filtering comprises: performing the first-order interference cancellation processing and the second-order interference cancellation processing.
  • the signal is subtracted from the signal after the filtering of the fourth reference signal, and the subtracted signal is subjected to analog digital conversion, and the signal subjected to the analog digital conversion is subtracted from the signal after the third reference signal is digitally filtered.
  • the dynamic range of useful received signals in wireless communication systems such as mobile cellular communications is inherently wide, especially from the terminal to the base station, typically 70 to 80 dB or more, and is limited by cost and engineering. Usually only 12 bits of bit width can be achieved, that is, the margin of the dynamic range of the ADC (Margin) is limited.
  • the margin of the dynamic range of the ADC (Margin) is limited.
  • the first-order interference cancellation processing and the second-order interference cancellation processing may be located before the LNA; or, if the LNA is composed of a multi-stage amplification circuit, the first-order interference cancellation processing and the second-order interference cancellation The processing may be located at different positions of the amplification circuit of each stage of the LNA; or, the first-order interference cancellation processing is located before the LNA, and before the down-conversion after the LNA, the multi-level RF signal amplification module is further included, and the second-level interference cancellation processing may be located in the Different positions of the multi-level RF signal amplification module.
  • the first reference signal includes a plurality of first sub-reference signals
  • the first self-interference signal includes a plurality of first sub-interference signals. No. each of the first sub-interference signals corresponds to each of the plurality of local transmit antennas, and the first sub-reference signal is obtained by using a local transmit antenna corresponding to the first sub-interference signal And performing, by using the first reference signal, performing a first-level interference cancellation process on the received signal, including: performing, by using the first sub-reference signal, the first-level sub-processing on the received signal;
  • the first level sub-processing includes: subtracting, by the first-level sub-process, a signal to be processed, a signal of the first sub-reference signal after delay and amplitude phase adjustment to cancel a local transmission corresponding to the first sub-reference signal
  • the first sub-interference signal corresponding to the antenna includes: subtracting, by the first-level sub-process, a signal to be processed, a signal of the first sub-reference signal after delay
  • Embodiment of the present invention provides a device for processing the interference signal, as shown in FIG. 5, FIG. 5 provides a structural diagram of one embodiment of the interference signal processing apparatus of the present invention.
  • the device includes: a receiving unit 501, a primary interference cancellation processing unit 503, a secondary interference cancellation processing unit 505, and one or more local transmitting antennas 509;
  • the receiving unit 501 is configured to receive a wireless signal, where the signal includes transmitting a self-interference signal of the antenna, the self-interference signal includes a first self-interference signal, and a second self-interference signal, wherein a power of the first self-interference signal is greater than a first power threshold, and a delay of the first self-interference signal a first delay value smaller than the threshold, the power from the second interference signal power less than the first threshold value and greater than the second power threshold value, the first delay is greater than the delay threshold and the second self interference signal is less than a first time delay threshold; the first level interference cancellation processing unit 503 is configured to perform first
  • FIG. 6 is a schematic structural diagram of still another embodiment of an apparatus for processing an interference signal according to the present invention.
  • the self-interference signal further includes a third self-interference signal, the power of the third self-interference signal is less than the second power threshold, and the delay of the third self-interference signal is greater than the second delay threshold.
  • the device further includes a three-stage interference cancellation processing unit 507, configured to use the third reference signal pair to pass through the first-order interference cancellation processing and the second-level interference cancellation processing
  • the signal performs a three-stage interference cancellation process to eliminate the third self-interference signal
  • the third reference signal includes: a digital baseband signal at the transmitting end, a signal for compensating the digital baseband signal at the transmitting end, or a first reference signal The signal obtained by down-conversion and analog-to-digital conversion.
  • the first self-interference signal includes a main path self-interference signal, and if the transmitting and receiving uses different antennas, the main path self-interference signal is generated by the local transmitting signal passing through the direct view path to the local receiving end, if And transmitting and receiving a shared antenna, wherein the main path self-interference signal is generated by a local transmitting signal leaking to a local receiving end through a transceiver isolator, where the local transmitting signal includes a transmitting signal of a local transmitting antenna or a transmitting signal of a local transmitting antenna;
  • the first-order interference cancellation processing unit is used to eliminate the main path self-interference signal.
  • the second self-interference signal comprises a near-field reflection self-interference signal
  • the near-field reflection self-interference signal is entered by a non-direct view path after the local transmit signal is reflected by the near-region scatterer.
  • the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal including a local transmitting antenna; and the first-stage interference cancellation processing unit is configured to cancel the near-field reflection self-interference signal .
  • FIG. 7(a) provides a schematic structural diagram of still another embodiment of the apparatus for processing an interference signal according to the present invention.
  • the device further includes a low noise amplification processing unit 504, configured to perform low noise amplification processing on the signal for canceling the first self-interference signal after the canceling the first self-interference signal;
  • the interference cancellation processing unit is configured to perform the second-order interference cancellation processing on the signal number processed by the first-order interference cancellation processing unit and the low-noise amplification processing unit by using the second reference signal.
  • the apparatus further includes a down-conversion unit 506, configured to perform down-conversion processing on the signal after eliminating the second self-interference signal after canceling the second self-interference signal
  • the third-order interference cancellation processing unit performs a three-level interference cancellation process on the signal processed by the first-order interference cancellation processing unit, the second-level interference cancellation processing unit, and the down-conversion unit by using the third reference signal.
  • Fig. 7 (b) is a schematic structural view showing still another embodiment of the processing apparatus for the interference signal of the present invention.
  • the three-stage interference cancellation processing unit includes a digital baseband interference cancellation processing unit and an analog baseband interference cancellation processing unit. As shown in Fig. 7(b), Fig. 7(b) shows a further refinement structure of the three-stage interference cancellation processing unit in Fig. 7(a).
  • the three-level interference cancellation processing unit includes a digital baseband interference cancellation processing unit, and the digital baseband interference cancellation processing unit is configured to perform the first-order interference cancellation processing and the second-level interference cancellation processing.
  • the signal is subjected to analog-to-digital conversion, and the digitally-processed signal of the third reference signal is subtracted from the analog-digital converted signal.
  • the three-stage interference cancellation processing unit further includes an analog baseband interference cancellation processing unit, where the analog baseband interference cancellation processing unit is configured to perform the first-order interference cancellation processing and the second-level interference cancellation processing.
  • the signal is subtracted from the filtered signal of the fourth reference signal, and the digital baseband interference cancellation processing unit passes the first and second reference signals after the first-order interference cancellation processing and the second-level interference cancellation processing.
  • a third reference signal an analog baseband signal of the transmitting antenna, a signal for compensating the analog baseband signal of the transmitting antenna, or a signal obtained by downconverting the first reference signal.
  • the third self-interference signal includes a far-field reflection self-interference signal, and the far-field reflection self-interference signal enters a non-direct view path after the local transmit signal is reflected by the scatterer in the far area.
  • the local transmitting signal is generated by the local receiving end, where the local transmitting signal includes a transmitting signal of each local transmitting antenna or a transmitting signal including a local transmitting antenna; and the three-stage interference cancellation processing unit is configured to cancel the remote reflected self-interference signal .
  • said local transmitter means includes a plurality of antennas; a plurality of first reference signal comprises a first sub-reference signal, a first interfering signal from the first plurality of sub packets from interfering Trichosanthes a signal, each of the first sub-interference signals corresponding to each of the plurality of local transmit antennas, wherein the first sub-reference signal is through a local transmit antenna corresponding to the first sub-interference signal Transmitting signal coupling is obtained; the first-level interference cancellation processing unit is configured to perform multiple levels of sub-processing on the received signal by using the plurality of first sub-reference signals, and in each level of sub-processing, Deciphering, by the first-level sub-process, the signal to be processed, the signal of the corresponding first sub-reference signal after the delay amplitude phase adjustment, to eliminate the first sub-interference signal corresponding to the local transmit antenna corresponding to the first sub-reference signal .
  • Fig. 8(a) is a structural diagram of an embodiment of the primary interference cancellation processing unit of the present invention.
  • the primary interference cancellation processing unit includes at least one primary interference cancellation processing sub-unit 801.
  • Fig. 8(b) is a structural diagram of an embodiment of the primary interference cancellation processing unit of the present invention.
  • a further refinement structure of the primary interference cancellation processing sub-unit 801 is shown in Fig. 8(b) 8(a).
  • the first-order interference cancellation processing sub-unit 801 includes an error control signal extraction unit 8011, a delay amplitude phase tracking unit 8013, and an interference signal cancellation unit 8015.
  • the error control signal extraction unit is configured to use the first-order interference cancellation processing sub-unit.
  • the output of the interference signal canceling unit generates an error control signal;
  • the delay amplitude phase tracking unit is configured to perform delay amplitude phase tracking on the first sub-reference signal according to the error control signal to obtain a reconstructed first sub a self-interference signal;
  • the interference signal cancellation unit is configured to subtract the reconstructed first sub-interference signal from the signal input by the first-order interference cancellation processing sub-unit to eliminate the first sub-self-interference signal.
  • the error control signal extracting unit may be implemented by a power measuring circuit for an error signal
  • the delay amplitude phase tracking unit 8013 may be a delay line, an attenuator phase shifter, and the interference signal canceling unit.
  • the 8015 can be implemented as a subtractor, a combiner, a coupler, and the like.
  • Fig. 9(a) is a block diagram showing another embodiment of the primary interference cancellation processing unit of the present invention.
  • the first sub-interference signals of the respective transmitting branches are linearly superimposed and independent of each other, so the canceling processing can be performed one by one by adopting the sequential interference canceling method.
  • the self-interference signal components of other near-field and far-field reflections are much less powerful, and in the radio frequency main-path self-interference cancellation processing, they can be regarded as noise without considering their influence.
  • the leakage through the duplexer to the first sub-branch received signals are typically the strongest interference. Therefore, preferably, the main path self-interference of the interference strongest branch may be cancelled first, and then the main path self-interference of the corresponding transmitting branch is cancelled in order according to the order of self-interference from large to small.
  • a first sub-interference signal canceling unit of each of the transmitting branches includes a delay amplitude phase tracking unit, an error control signal extracting unit, and an interference signal canceling unit.
  • the delay amplitude phase tracking unit adaptively adjusts the delay, amplitude, and phase of the first sub-reference signal to generate an estimate of the first sub-interference signal of the transmit branch to be as close as possible to the transmit branch in the received signal.
  • the first sub-interference signal is close to; the interference signal cancellation module subtracts the adaptive delay of the received signal from the main path interference signal from the estimate of the first sub-interference signal of the transmit branch generated by the amplitude-to-phase tracking module, thereby The first sub-interference signal of the transmitting branch is cancelled out of the received signal.
  • the delay, amplitude and phase of the first sub-interference signal change little and slowly with time, and the error control signal extraction module That is, according to the output signal (ie, the error signal) after the main path self-interference cancellation, the control signal for the adaptive delay of the main path interference signal and the amplitude and phase tracking module is generated, which is used to control the module to implement the corresponding branch of the transmitting branch.
  • the delay of the first sub-interference signal and the automatic tracking of the amplitude and phase changes, thereby minimizing the output signal power of the main path self-interference cancellation, and achieving the purpose of maximizing the self-interference signal of the main path of the corresponding transmission branch, wherein delay and amplitude
  • the phase tracking algorithm can use algorithms such as LMS (Least Mean Squares), RLS (Recursive least squares) in the existing adaptive filtering technique.
  • the first-order interference cancellation processing unit includes an error control signal extraction unit and at least one primary interference cancellation processing sub-unit, and the primary interference cancellation processing sub-unit includes a delay amplitude phase a tracking unit and an interference signal canceling unit; the error control signal extracting unit configured to generate an error control signal according to an output of the interference signal canceling unit in the at least one primary interference canceling processing subunit; each of the interference canceling processing The delay amplitude phase tracking unit in the subunit is configured to perform delay amplitude on the first sub-reference signal according to the error control signal Degree phase tracking to obtain a reconstructed first sub-self-interference signal; the interference signal cancellation unit is configured to subtract the reconstructed first sub-self-interference signal from the signal input by the first-order interference cancellation processing sub-unit To eliminate the first sub-interference signal.
  • the self-interference signal components of other near-field and far-field reflections are much smaller in power, and can be regarded as noise in the self-interference cancellation processing of the RF main path.
  • the error control signal extracting module is only located in the main path self-interference signal corresponding to all the transmitting branches. After the cancellation module, the extracted error control signal is used as the main path interference signal adaptive delay corresponding to all the transmission branches and the error control signal of the amplitude and phase tracking module.
  • the second reference signal includes a plurality of second sub-reference signals
  • the second self-interference signal includes a plurality of second sub-self-interference signals
  • Each of the second sub-interference signals corresponds to each of the plurality of local transmit antennas
  • the second sub-reference signal is a transmit signal of a local transmit antenna corresponding to the second sub-interference signal
  • the second-level interference cancellation processing unit is configured to perform a plurality of second-level sub-processing on the received signal by using the plurality of second sub-reference signals, and in each of the second-level sub-processes, the second The stage processes the signal to be processed by subtracting the filtered signal of the second sub-reference signal to eliminate the second sub-interference signal corresponding to the local transmitting antenna corresponding to the second sub-reference signal.
  • Fig. 10 (a) is a structural diagram of an embodiment of the secondary interference canceling processing unit of the present invention.
  • the secondary interference cancellation processing unit includes a plurality of secondary interference cancellation processing subunits 1001; the secondary interference cancellation processing subunit includes the error control signal extraction unit 10011 and the filter unit 10013 The interference signal canceling unit 10015; the error control signal extracting unit is configured to generate an error control signal according to an output of the interference signal canceling unit in the second level interference canceling processing subunit; the filter unit is configured to be used according to the The error control signal filters the second sub-reference signal to obtain a reconstructed second sub-interference signal; the interference signal cancellation unit is configured to subtract the signal input by the second-order interference cancellation processing sub-unit Reconstructing the second sub-self-interference signal to cancel the second sub-interference signal.
  • Figure 10 (b) is A block diagram of an embodiment of a two-stage interference cancellation processing unit of the present invention.
  • Figure 10 (b) shows the structure of Figure (
  • the error control signal extracting unit may be a power measuring circuit, and the filter unit may be a linear combination of a plurality of delay amplitude phase tracking units, and the interference signal canceling unit may be a subtractor or a combiner.
  • Figure 11 (a) provides a block diagram of one embodiment of a secondary interference cancellation processing device.
  • the self-interference signal component consists of a near-field reflection multipath delay signal from each of the transmit branches.
  • the near-region reflection channel experienced by the self-interference signal is a frequency selective channel
  • the self-interference signal components corresponding to the respective transmission branches are linearly superimposed, and independent of each other, so that sequential interference cancellation methods can still be adopted one by one. Offset processing.
  • the self-interference signal component of the far-field reflection is much smaller than the self-interference signal component of the near-field reflection, so it can be regarded as noise in the secondary interference cancellation process without considering their influence.
  • the secondary interference cancellation processing unit includes an error control signal extraction unit and at least one secondary interference cancellation processing subunit, and the secondary interference cancellation processing subunit includes a filter unit And an interference signal cancellation unit; configured to generate an error control signal according to an output of the interference signal cancellation unit in the at least one second-level interference cancellation processing sub-unit;
  • the error control signal performs filtering processing on the second sub-reference signal to obtain a reconstructed second sub-interference signal;
  • the interference signal cancellation unit is configured to subtract the signal input by the second-order interference cancellation processing sub-unit And removing the reconstructed second sub-interference signal to cancel the second sub-interference signal.
  • Fig. 11(b) further shows a block diagram of an embodiment of the secondary interference canceling process.
  • the secondary interference cancellation process is further illustrated in Figure 11(b).
  • the self-interfering signal components of the far-field reflection are much smaller in power than the self-interfering signal components of the near-field reflection, and therefore can be regarded as noise in the secondary interference cancellation processing regardless of their influence.
  • the error control signal extracting module is located only in the near-region reflection corresponding to all the transmitting branches.
  • Self-interference signal cancellation module Thereafter, the extracted error control signal reconstructs an error control signal of the adaptive filter module as a near-field reflection self-interference signal corresponding to all of the transmit branches.
  • Fig. 12 is a block diagram showing an embodiment of a filter unit of the present invention, the filter unit being a linear combination of a plurality of delay amplitude phase tracking units.
  • the delay amplitude phase tracking unit is configured to perform delay amplitude phase tracking on the second sub-reference signal according to the error control signal, and the filter unit is configured to linearly weight the second sub-reference signal of the delay amplitude phase tracking to obtain The reconstructed second sub-interference signal.
  • the structure of the three-stage interference cancellation processing unit and the four-stage interference cancellation processing unit is similar to that of the secondary interference cancellation processing, and therefore will not be described again.
  • the difference is that the multipath propagation delay of the far-field reflection self-interference signal component is on the order of 30 ns to lus.
  • the delay of each fixed delay unit in the three-stage interference cancellation processing and the four-level interference cancellation processing is 20ns.
  • the four-stage interference cancellation processing mainly serves to avoid excessive self-interference and exceed the dynamic range of the ADC, less filter order (ie, the number of fixed delay units) can be used, and the self-level three-stage interference cancellation processing
  • the adaptive filter adopts digital method to achieve high precision, and bears the main function of effectively canceling the self-interference signal component and other residual self-interference components in the far-field reflection. Therefore, more filter orders (ie, fixed delay units) can be used. .
  • the four-stage interference cancellation process has a filter order of 10
  • the three-stage interference cancellation process has a filter order of 50.
  • the present invention provides a near-region reflection self-interference signal component (including the residual of the first sub-interference signal), because the near-region reflection self-interference signal component is composed of the near-field reflection multipath delay signal of each of the transmission branches.
  • Reconstruction method of interference As shown in FIG. 7, FIG. 7 provides a method for reconstructing a near-field reflected self-interference signal component according to an embodiment of the present invention.
  • the adaptive filter corresponding to the self-interference signal reconstruction method includes N fixed delay units, and since the typical multipath propagation delay of the near-region reflection self-interference signal component is on the order of l ⁇ 30 ns, in a specific embodiment, With 15 fixed delay units, each fixed delay unit is delayed by 2 ns.
  • the fixed delay unit can be implemented by using an analog delay line or the like.
  • Embodiments of the present invention provide a system with an interference signal cancellation function.
  • FIG. 13 provides a structural diagram of an embodiment of a system with interference signal cancellation function according to the present invention.
  • the system The device includes a transmission device, such as the interference cancellation device described in any of the above embodiments, where the transmitting device is configured to send a wireless signal received by the interference cancellation device.
  • Figure 14 is a block diagram showing the transmitting branch and the receiving branch of the interference signal canceling system of the embodiment of the present invention.
  • the second reference signal is the same as the first reference signal.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disc, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the description of the embodiments, or the corresponding changes may be located in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into multiple sub-modules.
  • all or part of the steps of implementing the above embodiments may be completed by a program instructing related hardware, and the program may be stored in a computer readable storage medium, the storage medium, Includes: R0M/RAM, disk, CD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Noise Elimination (AREA)
  • Transceivers (AREA)

Abstract

本发明实施例提供了一种干扰信号的处理方法、装置和系统,以消除全双工多天线系统中的干扰信号。所述方法包括:接收无线信号,所述信号包括发射天线的自干扰信号,所述自干扰信号包括第一自干扰信号、和第二自干扰信号;利用第一参考信号对接收的所述信号进行一级干扰抵消处理,以消除所述第一自干扰信号;利用第二参考信号对经过所述一级干扰抵消处理后的所述信号进行二级干扰抵消处理,以消除所述第二自干扰信号。

Description

一种干扰信号的处理方法、 装置和系统 本申请要求于 2012年 9月 7日提交中国专利局、 申请号为 201210329936.X, 发明名称为 "一种干扰信号的处理方法、 装置和系统" 的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域, 具体涉及一种干扰信号的处理方法、 装置和系统。 背景技术
在移动蜂窝通信系统、 无线局域网、 固定无线接入等无线通信系统中, 基 站或接入点、 中继站以及用户设备等通信节点通常具有发射自身信号和接收其 它通信节点信号的能力。 无线全双工技术在相同无线信道上同时进行接收与发 送操作, 理论上频谱效率是现有的频分双工或时分双工技术的两倍, 逐渐成为 大家关注的下一代通信热点技术。 实现无线全双工的前提在于尽可能地避免、 降低与消除同一收发信机的发射信号对接收信号的强干扰,使之不对有用信号 的正确接收造成影响。
而且, 在无线通信系统中, 传播环境远比点到点无线通信复杂, 无线信号 以非视距传播为主, 通信两端的距离可能远至数百米或更大, 而 MIMO在这 些系统中已广泛应用。 例如, 在 LTE、 UMTS等移动蜂窝通信系统中, 基站至 少配置为两发两收天线, 收发信号的功率差通常可达 80dB~140dB甚至更大。 在这些系统中, 现有的无线全双工技术中, MIMO场景中各发射天线的无线信 号都会耦合到每个接收天线, 而现有技术只能抵消单一发射天线或部分发射天 线的自干扰, 干扰抑制的效率不高, 无法有效地消除全双工多天线系统中的干 扰信号。
发明内容
有鉴于此, 本发明实施例提供了一种干扰信号的处理方法、 装置和系统, 以消除全双工多天线系统中的干扰信号。 第一方面, 本发明实施例提供了一种干扰信号处理方法, 所述方法包括: 接收无线信号, 所述信号包括发射天线的自干扰信号, 所述自干扰信号包括第 一自干扰信号、 和第二自干扰信号, 所述第一自干扰信号的功率大于第一功率 阈值, 所述第一自干扰信号的时延小于第一时延阈值, 所述第二自干扰信号的 功率小于所述第一功率阈值且大于第二功率阈值, 所述第二自干扰信号的时延 大于所述第一时延阈值且小于第二时延阈值; 利用第一参考信号对接收的所述 信号进行一级干扰抵消处理, 以消除所述第一自干扰信号, 所述第一参考信号 通过对本地发射信号耦合获得; 利用第二参考信号对经过所述一级干扰抵消处 理后的所述信号进行二级干扰抵消处理, 以消除所述第二自干扰信号, 所述第 二参考信号通过对本地发射信号耦合获得。
在第一方面的第一种可能的实现方式中, 所述自干扰信号还包括第三自干 扰信号, 所述第三自干扰信号的功率小于所述第二功率阈值, 所述第三自干扰 信号的时延大于所述第二时延阈值; 在所述进行二级干扰抵消处理之后, 所述 方法还包括: 利用第三参考信号对经过所述一级干扰抵消处理、 所述二级干扰 抵消处理后的所述信号进行三级干扰抵消处理, 以消除所述第三自干扰信号; 所述第三参考信号包括: 发射端的数字基带信号, 对发射端的数字基带信号进 行补偿的信号, 或对第一参考信号进行下变频及模数变换得到的信号。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实现 方式中, 所述第一自干扰信号包括主径自干扰信号, 若收发采用不同天线, 所 述主径自干扰信号由本地发射信号经过直视路径进入本地接收端而生成, 若收 发共用天线, 所述主径自干扰信号由本地发射信号经过收发隔离器泄漏到本地 接收端而生成, 所述本地发射信号包括本地各发射天线的发射信号或本地的一 个发射天线的发射信号; 所述进行一级干扰抵消处理以消除所述第一自干扰信 号: 所述进行一级干扰抵消处理以消除主径自干扰信号。
结合第一方面或第一方面上述的实现方式, 在第三种可能的实现方式中, 所述第二自干扰信号包括近区反射自干扰信号, 所述近区反射自干扰信号由本 地发射信号经过近区的散射体反射后的非直视路径进入本地接收端而生成, 所 述本地发射信号包括本地各发射天线的发射信号或包括本地的一个发射天线 的发射信号; 所述进行二级干扰^!氏消处理以消除所述第二自干扰信号包括: 进 行二级干扰抵消处理以消除所述近区反射自干扰信号。
结合第一方面或第一方面上述的实现方式, 在第四种可能的实现方式中, 所述第三自干扰信号包括远区反射自干扰信号, 所述远区反射自干扰信号由本 地发射信号经过远区的散射体反射后的非直视路径进入本地接收端而生成, 所 述本地发射信号包括本地各发射天线的发射信号或包括本地的一个发射天线 的发射信号; 所述进行三级干扰^!氏消处理以消除所述第三自干扰信号包括: 进 行三级干扰抵消处理以消除所述远区反射自干扰信号。
结合第一方面或第一方面上述的实现方式, 在第五种可能的实现方式中, 在所述进行一级干扰抵消处理以消除所述第一自干扰信号之后, 所述方法还包 括, 对消除所述第一自干扰信号的所述信号进行低噪声放大处理; 所述利用第 二参考信号对经过一级干扰抵消处理后的所述信号进行二级干扰抵消处理包 括, 利用第二参考信号对经过一级干扰抵消处理、 低噪声放大处理处理的所述 信号号进行二级干扰抵消处理。
结合第一方面或第一方面上述的实现方式, 在第六种可能的实现方式中, 在消除所述第二自干扰信号之后所述方法还包括,对消除所述第二自干扰信号 后的所述信号进行下变频处理; 所述利用第三参考信号对经过所述一级干扰抵 消处理、 所述二级干扰氏消处理后的所述信号进行三级干扰氏消处理包括: 所 述利用第三参考信号对经过一级干扰抵消处理、 二级干扰抵消处理、 下变频处 理后的所述信号进行三级干扰抵消处理。
结合第一方面或第一方面上述的实现方式, 在第七种可能的实现方式中, 所述利用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理 后的所述信号进行三级干扰抵消处理包括: 将对经过一级干扰抵消处理、 二级 干扰抵消处理后的所述信号进行模拟数字变换,将经过模拟数字变换的所述信 号减去第三参考信号经过数字滤波处理后的信号。
结合第一方面或第一方面上述的实现方式, 在第八种可能的实现方式中, 所述利用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理 后的所述信号进行三级干扰抵消处理还包括: 将经过一级干扰抵消处理、 二级 干扰抵消处理后的所述信号与第四参考信号经过滤波处理后的信号相减; 所述 第四参考信号利用如下信号获得: 第三参考信号、 发射天线的模拟基带信号、 对发射天线的模拟基带信号进行补偿的信号、或对第一参考信号经过下变频得 到的信号; 所述所述将对经过一级干扰氏消处理、 二级干扰氏消处理后的所述 信号进行模拟数字变换, 将经过模拟数字变换的所述信号减去第三参考信号经 过数字滤波处理后的信号包括: 将经过一级干扰抵消处理、 二级干扰抵消处理 后的所述信号与第四参考信号经过滤波处理后的信号相减,对相减后的所述信 号进行模拟数字变换,将经过模拟数字变换的所述信号减去第三参考信号经过 数字滤波处理后的信号。
结合第一方面或第一方面上述的实现方式, 在第九种可能的实现方式中, 若本地端包括多个本地发射天线, 所述第一参考信号包括多个第一子参考信 号, 第一自干扰信号包栝多个第一子自干扰信号, 每个所述第一子自干扰信号 对应所述多个本地发射天线中的每个本地发射天线 , 所述第一子参考信号是通 过对第一子自干扰信号对应的本地发射天线的发射信号耦合获得所述利用第 一参考信号对接收的所述信号进行一级干扰抵消处理, 包括: 利用第一子参考 信号对接收的所述信号进行多个一级子处理; 所述进行所述一级子处理包括: 将所述一级子处理待处理的信号减去第一子参考信号经过延迟和幅度相位调 整后的信号, 以消除与所述第一子参考信号对应的本地发射天线对应的第一子 自干扰信号。
结合第一方面或第一方面上述的实现方式, 在第十种可能的实现方式中, 若本地端包括多个本地发射天线, 所述第二参考信号包括多个第二子参考信 号, 第二自干扰信号包栝多个第二子自干扰信号, 每个所述第二子自干扰信号 对应所述多个本地发射天线中的每个本地发射天线, 所述第二子参考信号是通 过对第二子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述利用第 二参考信号对接收的所述信号进行二级干扰抵消处理包括: 利用第二参考信号 对接收的所述信号进行多个二级子处理; 所述进行所述二级子处理包括: 将所 述二级子处理待处理的信号减去第二子参考信号经过滤波处理后的信号, 以消 除与所述第二子参考信号对应的本地发射天线对应的第二子自干扰信号。
第二方面, 本发明实施例提供了一种干扰信号的处理装置, 所述装置包括 一个或多个本地发射天线; 所述装置包括:接收单元、一级干扰抵消处理单元、 二级干扰抵消处理单元; 所述接收单元用于接收无线信号, 所述信号包括所述 本地发射天线的自干扰信号, 所述自干扰信号包括第一自干扰信号、 和第二自 干扰信号, 所述第一自干扰信号的功率大于第一功率阈值, 所述第一自干扰信 号的时延小于第一时延阈值, 所述第二自干扰信号的功率小于所述第一功率阈 值且大于第二功率阈值, 所述第二自干扰信号的时延大于所述第一时延阈值且 小于第二时延阈值; 所述一级干扰抵消处理单元用于利用第一参考信号对接收 的所述信号进行一级干扰抵消处理, 以消除所述第一自干扰信号, 所述第一参 考信号通过对本地发射信号耦合获得; 所述二级干扰抵消处理单元用于利用第 二参考信号对经过所述一级干扰抵消处理后的所述信号进行二级干扰抵消处 理, 以消除所述第二自干扰信号, 所述第二参考信号通过对本地发射信号耦合 获得。
在第二方面第一种可能的实现方式中, 所述自干扰信号还包括第三自干扰 信号, 所述第三自干扰信号的功率小于所述第二功率阈值, 所述第三自干扰信 号的时延大于所述第二时延阈值; 所述装置还包括三级干扰抵消处理单元, 用 于利用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理后 的所述信号进行三级干扰抵消处理, 以消除所述第三自干扰信号; 所述第三参 考信号包括: 发射端的数字基带信号, 对发射端的数字基带信号进行补偿的信 号, 或对第一参考信号进行下变频及模数变换得到的信号。 结合第二方面或第二方面上述的实现方式, 在第二种可能的实现方式中, 所述第一自干扰信号包括主径自干扰信号, 若收发采用不同天线, 所述主径自 干扰信号由本地发射信号经过直视路径进入本地接收端而生成, 若收发共用天 线, 所述主径自干扰信号由本地发射信号经过收发隔离器泄漏到本地接收端而 生成, 所述本地发射信号包括本地各发射天线的发射信号或本地的一个发射天 线的发射信号; 所述一级干扰氏消处理单元用于消除主径自干扰信号。
结合第二方面或第二方面上述的实现方式, 在第三种可能的实现方式中, 所述第二自干扰信号包括近区反射自干扰信号, 所述近区反射自干扰信号由本 地发射信号经过近区的散射体反射后的非直视路径进入本地接收端而生成, 所 述本地发射信号包括本地各发射天线的发射信号或包括本地的一个发射天线 的发射信号; 所述一级干扰氏消处理单元用于消除所述近区反射自干扰信号。
结合第二方面或第二方面上述的实现方式, 在第四种可能的实现方式中, 所述第三自干扰信号包括远区反射自干扰信号, 所述远区反射自干扰信号由本 地发射信号经过远区的散射体反射后的非直视路径进入本地接收端而生成, 所 述本地发射信号包括本地各发射天线的发射信号或包括本地的一个发射天线 的发射信号; 所述三级干扰氏消处理单元用于消除所述远区反射自干扰信号。
结合第二方面或第二方面上述的实现方式, 在第五种可能的实现方式中, 所述装置还包括低噪声放大处理单元, 用于在所述消除所述第一自干扰信号之 后, 对消除所述第一自干扰信号的所述信号进行低噪声放大处理; 所述二级干 扰抵消处理单元用于利用第二参考信号对经过一级干扰抵消处理单元、低噪声 放大处理单元处理的所述信号号进行二级干扰抵消处理。
结合第二方面或第二方面上述的实现方式, 在第六种可能的实现方式中, 所述装置还包括下变频单元, 用于在消除所述第二自干扰信号之后, 对消除所 述第二自干扰信号后的所述信号进行下变频处理; 所述利三级干扰抵消处理单 元利用第三参考信号对经过一级干扰抵消处理单元、 二级干扰抵消处理单元、 下变频单元处理后的所述信号进行三级干扰氏消处理。 结合第二方面或第二方面上述的实现方式, 在第七种可能的实现方式中, 所述三级干扰氏消处理用于将对经过一级干扰氏消处理、二级干扰氏消处理后 的所述信号进行模拟数字变换, 将经过模拟数字变换的所述信号减去第三参考 信号经过数字滤波处理后的信号。
结合第二方面或第二方面上述的实现方式, 在第八种可能的实现方式中, 所述三级干扰氏消处理单元用于将经过一级干扰氏消处理、二级干扰氏消处理 后的所述信号与第四参考信号经过滤波处理后的信号相减 , 将经过一级干扰抵 消处理、二级干扰抵消处理后的所述信号与第四参考信号经过滤波处理后的信 号相减, 对相减后的所述信号进行模拟数字变换, 将经过模拟数字变换的所述 信号减去第三参考信号经过数字滤波处理后的信号; 所述第四参考信号利用如 下信号获得: 第三参考信号、 发射天线的模拟基带信号、 对发射天线的模拟基 带信号进行补偿的信号、 或对第一参考信号经过下变频得到的信号。
结合第二方面或第二方面上述的实现方式, 在第九种可能的实现方式中, 若所述装置包括多个本地发射天线; 所述第一参考信号包括多个第一子参考信 号, 第一自干扰信号包栝多个第一子自干扰信号, 每个所述第一子自干扰信号 对应所述多个本地发射天线中的每个本地发射天线 , 所述第一子参考信号是通 过对第一子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述一级干 扰抵消处理单元用于利用所述多个第一子参考信号对接收的所述信号进行多 个一级子处理, 在每个一级子处理中, 将所述一级子处理待处理的信号减去对 应的第一子参考信号经过延迟幅度相位调整后的信号, 以消除与所述第一子参 考信号对应的本地发射天线对应的第一子自干扰信号。。
结合第二方面或第二方面上述的实现方式, 在第十种可能的实现方式中, 所述一级干扰抵消处理单元包括至少一个一级干扰抵消处理子单元, 所述一级 干扰抵消处理子单元包括误差控制信号提取单元、 延迟幅度相位跟踪单元, 干 扰信号抵消单元; 所述误差控制信号提取单元用于根据所述一级干扰抵消处理 子单元中的干扰信号抵消单元的输出生成误差控制信号; 所述延迟幅度相位跟 踪单元用于根据所述所述误差控制信号对第一子参考信号进行延迟幅度相位 跟踪, 以获得重构的第一子自干扰信号; 所述干扰信号抵消单元用于把所述一 级干扰抵消处理子单元输入的信号减去所述重构的第一子自干扰信号, 以消除 所述第一子自干扰信号。
结合第二方面或第二方面上述的实现方式,在第十一种可能的实现方式中, 所述一级干扰抵消处理单元包括一个误差控制信号提取单元以及至少一个一 级干扰抵消处理子单元, 所述一级干扰抵消处理子单元包括延迟幅度相位跟踪 单元与干扰信号抵消单元; 所述误差控制信号提取单元用于根据所述至少一个 一级干扰抵消处理子单元中的干扰信号抵消单元的输出生成误差控制信号; 每 个所述干扰抵消处理子单元中的所述延迟幅度相位跟踪单元用于根据所述误 差控制信号对第一子参考信号进行延迟幅度相位跟踪, 以获得重构的第一子自 干扰信号; 所述干扰信号抵消单元用于把所述一级干扰抵消处理子单元输入的 信号减去所述重构的第一子自干扰信号, 以消除所述第一子自干扰信号。
结合第二方面或第二方面上述的实现方式,在第十二种可能的实现方式中, 所述二级干扰抵消处理单元包括至少一个二级干扰抵消处理子单元, 所述二级 干扰抵消处理子单元包括误差控制信号提取单元、 滤波器单元、 和干扰信号抵 消单元; 所述误差控制信号提取单元用于根据所述二级干扰抵消处理子单元中 的干扰信号抵消单元的输出生成误差控制信号; 所述滤波器单元用于根据所述 所述误差控制信号对第二子参考信号进行滤波处理, 以获得重构的第二子自干 扰信号; 所述干扰信号抵消单元用于把所述二级干扰抵消处理子单元输入的信 号减去所述重构的第二子自干扰信号, 以消除所述第二子自干扰信号。
结合第二方面或第二方面上述的实现方式,在第十三种可能的实现方式中, 所述二级干扰抵消处理单元包括一个误差控制信号提取单以及至少一个二级 干扰抵消处理子单元, 所述二级干扰抵消处理子单元包括滤波器单元、 干扰信 号抵消单元; 所述误差控制信号提取单元用于根据所述至少一个尔级干扰抵消 处理子单元中的干扰信号抵消单元的输出生成误差控制信号; 所述滤波器单元 用于根据所述所述误差控制信号对第二子参考信号进行滤波处理, 以获得重构 的第二子自干扰信号; 所述干扰信号抵消单元用于把所述二级干扰抵消处理子 单元输入的信号减去所述重构的第二子自干扰信号, 以消除所述第二子自干扰 信号。
第三方面, 本发明实施例提供了一种具有干扰信号消除功能的系统, 所述 系统包括发送装置, 如上所述的干扰消除装置, 所述发送装置用于发送所述干 扰消除装置接收的无线信号。
通过上述方案, 本发明实施例通过按照功率和延迟特性, 把全双工通信时 自干扰信号划分为多类在功率、 多径延迟等方面有较大区别的自干扰信号。 针 对自干扰信号的构成特点, 对各个分量的干扰进行抑制, 提高了干扰抑制的效 率
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作一筒单地介绍, 显而易见, 下面描述 中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1提供了本发明实施例发射支路和接收支路的结构图;
图 2提供了本发明干扰信号处理方法一个实施例的流程图;
图 3提供了本发明干扰信号处理方法一个实施例的流程图;
图 4提供了本发明干扰信号处理方法又一个实施例的流程图;
图 5提供了本发明干扰信号的处理装置一个实施例的结构示意图; 图 6提供了本发明干扰信号的处理装置又一个实施例的结构示意图; 图 7提供了本发明干扰信号的处理装置又一个实施例的结构示意图; 图 8提供了本发明一级干扰抵消处理单元一个实施例的结构示意图; 图 9提供了本发明一级干扰抵消处理单元又一个实施例的结构图; 图 10提供了本发明二级干扰抵消处理单元一个实施例的结构示意图; 图 11提供了了本发明二级干扰抵消处理单元的又一个实施例的结构图; 图 12提供了本发明实施例二级干扰抵消处理单元滤波器的结构图; 图 13提供了本发明干扰信号消除系统一个实施例的结构示意图;
图 14提供了本发明实施例干扰信号消除系统另一个实施例的结构图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中 的实施例 , 本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有 其他实施例, 都属于本发明保护的范围。
本领域技术人员可以理解附图只是一个优选实施例的示意图, 附图中的模 块或流程并不一定是实施本发明所必须的。
发射天线和接收天线组成的收发系统包括: 发射通道的数模转换器 (Digital to Analog Converter, DAC )、上变频器及功率放大器(筒称功放), 以及接收通道的低噪声放大器(Low Noise Amplifier, LNA ) 、 下变频器及模 数变换器(analog digital converter, ADC) 。 如图 1所示。 另夕卜, 发射和接 收通道通常还包括滤波器、 放大器等辅助功能单元, 图 1未示出。
图 1所示为收发共用天线的情况, 采用如环行器隔离收发端。 但其自干扰抵 消处理方式与系统结构也适用于收发采用不同的天线的情况, 为筒化图中仅示 出了一个接收支路的自干扰抵消结构, 实际系统可能包括多个接收支路, 每个 接收支路的结构仍如图 1所示。
若发射端配置两个发射天线 ANT#1和 ANT#2 (分别对应发射支路 #1和 #2) , 以发射支路 #1为例, 由数字基带信号处理单元生成的待发射数字基带信号 Txl_BB首先经数模转换器(DAC, Digital to Analog Converter )转变为模拟 信号, 后经上变频器、 功放等发射支路的中射频单元生成待发射射频信号, 经 环行器由天线 ANT#1发射出去。 同时, 天线 ANT #1也用于接收来自通信对端的 信号, 在其所接收的信号中, 除了来自通信对端的有用信号成分, 还包括经由 天线 ANT#1发射出去而由其近区和远区的散射体反射回来的发射支路 #1的自干 扰信号, 以及经由天线 ANT#2等发射出去、 经空间直达路径进入天线 ANT#1以及 由其近区和远区的散射体反射回来的发射支路 #2的自干扰信号。 这些信号由天 线 ANT#1接收后经环行器进入接收支路 #1 , 由于环行器收发隔离度有限(通常 20 ~ 30dB ) , 因此发射支路 #1的待发射射频信号也会经由环行器泄漏到接收支 路 #1 , 成为发射支路 #1对应的主径自干扰信号。 如前所述, 如果不采用环行器 进行收发隔离而使用不同的收发天线, 则发射支路 #1对应的主径自干扰信号源 于发射支路 #1的发射信号经空间直达路径进入接收支路 #1的接收天线。
本发明实施例中, 自干扰信号的构成是针对发射端只有一个发射天线 (即 一条发射支路)的情况, 或者在 MIM0系统中, 发射端通常有多个发射天线(对 应多条发射支路)。 这时, 任意接收支路的自干扰信号, 为每一个发射支路对 应的进入该接收支路的自干扰信号之和, 其中, 每一个发射支路对应的自干扰 信号均包含上述三类自干扰信号分量。
接收支路的 LNA、 下变频中射频单元(包括下变频器、 滤波器等模块)及 ADC等为典型的接收机功能单元。
本发明实施例中, 自干扰信号的构成是针对发射端只有一个发射天线 (即 一条发射支路)的情况,或者,在 MIM0系统中,发射端通常有多个发射天线(对 应多条发射支路)。 这时, 任意接收支路的自干扰信号, 为每一个发射支路对 应的进入该接收支路的自干扰信号之和, 其中, 每一个发射支路对应的自干扰 信号包含第一自干扰信号、 第二自干扰信号或第三自干扰信号及上述三种信号 的任意组合。
本发明实施例提供了一种干扰信号处理方法, 如图 2所示, 图 2提供了本 发明实施例干扰信号处理方法的一个流程图。所述方法包括: S201接收无线信 号, 所述信号包括发射天线的自干扰信号, 所述自干扰信号包括第一自干扰信 号、 和第二自干扰信号, 所述第一自干扰信号的功率大于第一功率阈值, 所述 第一自干扰信号的时延小于第一时延阈值, 所述第二自干扰信号的功率小于所 述第一功率阈值且大于第二功率阈值, 所述第二自干扰信号的时延大于所述第 一时延阈值且小于第二时延阈值; S203利用第一参考信号对接收的所述信号进 行一级干扰抵消处理, 以消除所述第一自干扰信号, 所述第一参考信号通过对 本地发射信号耦合获得; S205利用第二参考信号对经过所述一级干扰抵消处理 后的所述信号进行二级干扰抵消处理, 以消除所述第二自干扰信号, 所述第二 参考信号通过对本地发射信号耦合获得。
所述功率与时延阈值, 根据本领域技术人员的经验值确认, 与信道环境和 系统复杂度等因素有关。 典型地, 主径自干扰信号是功率最强的干扰信号, 延 迟在 Ins 以内。 对于室内或微基站场景, 近区反射自干扰信号的延迟在 30ns 以内, 延迟 30ns 以上的可作为远区反射自干扰信号; 对于室外较大发射功率 的场景, 近区反射自干扰信号的延迟在 100ns 以内, 延迟 100ns以上的可作为 远区反射自干扰信号。
在本发明的一个实施例中, 所述本地发射信号包括本地发射天线的射频信 本发明实施例通过按照功率和延迟特性, 把全双工通信时自干扰信号划分 为多类在功率、 多径延迟等方面有较大区别的自干扰信号。 针对自干扰信号的 构成特点, 对各个分量的干扰进行抑制, 提高了干扰抑制的效率。
在本发明的另一个实施例中, 如图 3所示, 图 3提供了本发明干扰信号处 理方法一个实施例的流程图。 所述自干扰信号还包括第三自干扰信号, 所述第 三自干扰信号的功率小于所述第二功率阈值, 所述第三自干扰信号的时延大于 所述第二时延阈值;在所述进行二级干扰抵消处理之后,所述方法还包括: S207 利用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理后的 所述信号进行三级干扰抵消处理, 以消除所述第三自干扰信号; 所述第三参考 信号包括:发射端的数字基带信号,对发射端的数字基带信号进行补偿的信号, 或对第一参考信号进行下变频及模数变换得到的信号。
在本发明的一个实施例中,若发射通道的非线性失真(起因于功放等单元) 较大, 则由发射支路基带信号作为参考生成的多径时延副本, 已经无法有效抵 消基带接收信号中的自干扰信号分量。因此,当发射通道非线性失真较大时(如 超过 0.5% ), 需要测量各发射支路的非线性特性, 并据此对各发射支路的基带 信号进行相应的补偿, 使之成为各个发射支路发射的射频信号(含有非线性失 真)对应的基带信号。
在本发明的一个实施例中, 所述第一自干扰信号包括主径自干扰信号, 若 收发采用不同天线, 所述主径自干扰信号由本地发射信号经过直视路径进入本 地接收端而生成, 若收发共用天线, 所述主径自干扰信号由本地发射信号经过 收发隔离器泄漏到本地接收端而生成, 所述本地发射信号包括本地各发射天线 的发射信号或本地的一个发射天线的发射信号; 所述进行一级干扰氏消处理以 消除所述第一自干扰信号: 消除主径自干扰信号。
在本发明实施例中, 主径自干扰信号是自干扰信号中强度最大的分量(典 型地其功率为 PT - 60dBm , Ρτ为本地发射信号功率) , 由于收发天线距离^艮近 且收发天线的位置相对固定, 发射通道模拟器件参数的变化也较慢, 因此信号 延迟 4艮小 (典型为 0. 1-lns量级) 。 延迟、 幅度和相位等随时间变化小而緩慢 (当收发共用天线时待发射信号泄漏到接收机前端的信号具有相同的特点) 。
在本发明的一个实施例中, 所述第二自干扰信号包括近区反射自干扰信号, 所述近区反射自干扰信号由本地发射信号经过近区的散射体反射后的非直视 路径进入本地接收端而生成, 所述本地发射信号包括本地各发射天线的发射信 号或包括本地的一个发射天线的发射信号; 所述进行二级干扰氏消处理以消除 所述第二自干扰信号包括: 进行二级干扰抵消处理以消除所述近区反射自干扰 信号。
在本发明的另一个实施例中, 第二自干扰信号包括近区反射自干扰信号、 部分残留的主径自干扰信号。 近区反射自干扰信号对应约 0. 3-10m的近区反射路径, 由于散射体的吸收和 相比 L0S较大的传播路径损耗, 该分量的功率明显低于主径自干扰分量(典型 地其功率低于 PT - 60dBm ) , 典型的多径传播延迟为 l_30ns量级, 由于收发天 线附近区域传播环境的变化较小, 因此该自干扰信号的延迟随时间变化较小且 较为緩慢。 由于各发射支路对应的近区反射自干扰信号分量是相应发射支路发 射信号的多径时延副本, 因此第二参考信号和第一参考信号相同。
在本发明的一个实施例中, 所述第三自干扰信号包括远区反射自干扰信号, 所述远区反射自干扰信号由本地发射信号经过远区的散射体反射后的非直视 路径进入本地接收端而生成, 所述本地发射信号包括本地各发射天线的发射信 号或包括本地的一个发射天线的发射信号; 所述进行三级干扰氏消处理以消除 所述第三自干扰信号包括: 进行三级干扰抵消处理以消除所述远区反射自干扰 信号。
在本发明的另一个实施例中, 第三自干扰信号包括远区反射自干扰信号、 和部分近区反射自干扰信号;或者,第三自干扰信号包括远区反射自干扰信号、 和部分残留的主径自干扰信号; 或者, 第三自干扰信号包括远区反射自干扰信 号、 部分近区反射自干扰信号、 和部分残留的主径自干扰信号。
远区反射自干扰信号对应约 10m以上的远区反射路径 (典型为几十米至数百 米) , 由于其经历的传播路径较大且可能经过散射体的多次反射, 重新进入本 地接收天线的功率比上述两类自干扰分量低很多 (典型地其功率低于
PT " 80d B nl ) , 但是, 在移动蜂窝通信等无线通信系统中, 通信两端距离很远 且对端发射的无线信号同样经历了复杂的空间传播路径, 因此, 尽管该分量功 率远低于上述两类自干扰分量,但其信号强度仍足以对来自通信对端的有用信 号构成较大干扰。 由于远区反射路径较大, 典型的多径传播延迟为 30ns_lus量 级, 由于收发天线远区的传播环境变化较大(风及如车辆移动等的影响) , 该 自干扰信号的延迟随时间变化较快。 综上, 按照功率从大到小的顺序排列, 顺序如下: 主径自干扰信号、 近区 反射自干扰信号、 远区反射自干扰信号; 按照延迟时间从短到长的顺序排列, 顺序如下: 主径自干扰信号、 近区反射自干扰信号、 远区反射自干扰信号。
本发明实施例通过考虑本地的发射信号在近区和远区多径传播的影响,针 对近区和远区多径传播自干扰信号的不同特征进行抑制,提高了全双工技术自 干扰抵消性能。
在本发明的一个实施例中, 如图 4所示, 图 4提供了本发明实施例干扰信号 处理方法的一个流程图。 在所述 S203消除所述第一自干扰信号之后, 所述方法 还包括, S204对消除所述第一自干扰信号的所述信号进行低噪声放大处理; 所 述利用第二参考信号对经过一级干扰抵消处理后的所述信号进行二级干扰抵 消处理包括, 利用第二参考信号对经过一级干扰抵消处理、 低噪声放大处理处 理的所述信号号进行二级干扰抵消处理。
主径自干扰信号功率很大,在低噪声放大处理( Low Noise Amplifier, LNA ) 之前先对主径自干扰进行抵消, 以避免接收机前端的低噪声放大处理器饱和, 而阻塞接收机前端。
经低噪声放大处理后接收的来自通信对端的有用信号仍很微弱 , 近区反射 自干扰信号经低噪声放大处理后强度远大于接收信号中的有用信号部分。 在 LNA之后对近区反射自干扰信号干扰分量进行抵消, 将避免 LNA之后的射频或 中频放大单元的饱和。
在本发明的一个实施例中,在 S205消除所述第二自干扰信号之后所述方法 还包括, S206对消除所述第二自干扰信号后的所述信号进行下变频处理; 所述 利用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理后的 所述信号进行三级干扰抵消处理包括: 所述利用第三参考信号对经过一级干扰 抵消处理、 二级干扰抵消处理、 下变频处理后的所述信号进行三级干扰抵消处 理。 经过一级干扰抵消处理和二级干扰抵消处理后, 自干扰信号功率已经比较 低, 不会对 LNA之后的射频或中频放大单元造成饱和, 因此可进入这些单元进 行信号放大及下变频为基带信号。
在本发明的一个实施例中 , 所述利用第三参考信号对经过所述一级干扰抵 消处理、 所述二级干扰抵消处理后的所述信号进行三级干扰抵消处理包括: S207将对经过一级干扰抵消处理、二级干扰抵消处理后的所述信号进行模拟数 字变换,将经过模拟数字变换的所述信号减去第三参考信号经过数字滤波处理 后的信号。
此时, 接收信号中仍然包含远区反射自干扰信号分量, 以及经过一级干扰 抵消处理和二级干扰抵消处理仍未能完全抵消的主径和近区反射自干扰信号 分量的残留干扰。再经过 ADC后成为数字基带信号。 远区反射自干扰信号的强 度在接收的来自通信对端的有用信号强度范围内, 这时, 由于远区反射的自干 扰分量多径延迟较大, ADC采样率正好满足分辨这一类自干扰分量时延的要 求, 因此数字基带干扰消除单元负责对这些自干扰信号进一步进行抵消处理, 从将自干扰信号功率降低到足够低的程度,使得后续的数字基带信号接收处理 单元能够正确接收来自通信对端的有用接收信号。在基带 ADC之后( ADC采样 率正好满足分辨这一类自干扰分量时延的要求 )采用数字滤波以消除远区反射 自干扰信号的干扰。
现有全双工干扰抵消方案中, 空间干扰抑制和射频前端模拟干扰抵消仅能 实现大约 60dB的自干扰抑制, 而移动蜂窝通信等系统中, 收发信号的功率差通 常可达到 80dB~140dB甚至更大, 因此, 即使经过空间干扰抑制和射频前端模 拟干扰抵消, 基带接收信号仍可能超出 ADC的动态范围造成信号失真; 现有技 术主要针对自干扰对接收机射频前端的阻塞, 以及自干扰造成接收信号超出 ADC动态范围的问题, 但是, 即使自干扰信号已经降低到 ADC动态范围以内, 由于移动蜂窝通信等系统中一部分有用接收信号可能非常微弱, 残留的自干扰 信号功率仍然远远超过这些有用接收信号, 使得这些有用信号无法正确接收。 本发明实施例提供的方法较好的解决了上述问题。
在本发明的一个实施例中 , 所述利用第三参考信号对经过所述一级干扰抵 消处理、 所述二级干扰抵消处理后的所述信号进行三级干扰抵消处理还包括:
S208将经过一级干扰抵消处理、二级干扰抵消处理后的所述信号与第四参考信 号经过滤波处理后的信号相减; 所述第四参考信号利用如下信号获得: 第三参 考信号、 发射天线的模拟基带信号、 对发射天线的模拟基带信号进行补偿的信 号、 或对第一参考信号经过下变频得到的信号; 所述所述将对经过一级干扰抵 消处理、 二级干扰抵消处理后的所述信号进行模拟数字变换, 将经过模拟数字 变换的所述信号减去第三参考信号经过数字滤波处理后的信号包括: 将经过一 级干扰抵消处理、二级干扰抵消处理后的所述信号与第四参考信号经过滤波处 理后的信号相减, 对相减后的所述信号进行模拟数字变换, 将经过模拟数字变 换的所述信号减去第三参考信号经过数字滤波处理后的信号。
移动蜂窝通信等无线通信系统中有用接收信号的动态范围本来就很宽, 特 别是从终端到基站的上行链路, 典型为 70 ~ 80dB甚至更大, 而受成本和工程等 的限制宽带高速 ADC通常只能达到 12bit的位宽,也就是说, ADC动态范围的余 量(Margin )有限, 一旦 ADC之前的基带信号中的自干扰信号功率过大, 就容 易使得模拟基带信号超过 ADC的动态范围造成量化失真。 为此, 可以在 ADC 之前增加模拟基带干扰消除单元对基带信号中的自干扰信号进行初步的抵消 处理, 从而保证模拟基带信号在 ADC的动态范围以内。
在本发明的另一实施例中,一级干扰氏消处理和二级干扰氏消处理可以同 时位于 LNA之前; 或者, 若 LNA由多级放大电路组成, 一级干扰抵消处理和二 级干扰抵消处理可以位于 LNA各级放大电路的不同位置; 或者, 一级干扰抵消 处理位于 LNA之前,而在 LNA之后下变频之前,还包括多级射频信号放大模块, 则二级干扰抵消处理可以位于所述多级射频信号放大模块的不同位置。
在本发明的一个实施例中, 若本地端包括多个本地发射天线, 所述第一参 考信号包括多个第一子参考信号, 第一自干扰信号包栝多个第一子自干扰信 号,每个所述第一子自干扰信号对应所述多个本地发射天线中的每个本地发射 天线, 所述第一子参考信号是通过对第一子自干扰信号对应的本地发射天线的 发射信号耦合获得; 所述利用第一参考信号对接收的所述信号进行一级干扰抵 消处理, 包括: 利用第一子参考信号对接收的所述信号进行多个一级子处理; 所述进行所述一级子处理包括: 将所述一级子处理待处理的信号减去第一子参 考信号经过延迟和幅度相位调整后的信号, 以消除与所述第一子参考信号对应 的本地发射天线对应的第一子自干扰信号。 本发明实施例提供了一种干扰信号的处理装置, 如图 5所示, 图 5提供了本 发明干扰信号的处理装置一个实施例的结构示意图。 所述装置包括: 接收单元 501、 一级干扰抵消处理单元 503、 二级干扰抵消处理单元 505、 一个或多个本 地发射天线 509; 所述接收单元 501用于接收无线信号, 所述信号包括发射天线 的自干扰信号, 所述自干扰信号包括第一自干扰信号、 和第二自干扰信号, 所 述第一自干扰信号的功率大于第一功率阈值, 所述第一自干扰信号的时延小于 第一时延阈值, 所述第二自干扰信号的功率小于所述第一功率阈值且大于第二 功率阈值, 所述第二自干扰信号的时延大于所述第一时延阈值且小于第二时延 阈值; 所述一级干扰抵消处理单元 503用于利用第一参考信号对接收的所述信 号进行一级干扰抵消处理, 以消除所述第一自干扰信号, 所述第一参考信号通 过对本地发射信号耦合获得; 所述二级干扰抵消处理单元 505用于利用第二参 考信号对经过所述一级干扰抵消处理后的所述信号进行二级干扰抵消处理, 以 消除所述第二自干扰信号, 所述第二参考信号通过对本地发射信号耦合获得。
在本发明的一个实施例中, 如图 6所示, 图 6提供了本发明干扰信号的处理 装置又一个实施例的结构示意图。 所述自干扰信号还包括第三自干扰信号, 所 述第三自干扰信号的功率小于所述第二功率阈值, 所述第三自干扰信号的时延 大于所述第二时延阈值; 所述装置还包括三级干扰抵消处理单元 507, 用于利 用第三参考信号对经过所述一级干扰抵消处理、所述二级干扰抵消处理后的所 述信号进行三级干扰抵消处理, 以消除所述第三自干扰信号; 所述第三参考信 号包括: 发射端的数字基带信号, 对发射端的数字基带信号进行补偿的信号, 或对第一参考信号进行下变频及模数变换得到的信号。
在本发明的一个实施例中, 所述第一自干扰信号包括主径自干扰信号, 若 收发采用不同天线, 所述主径自干扰信号由本地发射信号经过直视路径进入本 地接收端而生成, 若收发共用天线, 所述主径自干扰信号由本地发射信号经过 收发隔离器泄漏到本地接收端而生成, 所述本地发射信号包括本地各发射天线 的发射信号或本地的一个发射天线的发射信号; 所述一级干扰氏消处理单元用 于消除主径自干扰信号。
在本发明的一个实施例中, 所述第二自干扰信号包括近区反射自干扰信 号, 所述近区反射自干扰信号由本地发射信号经过近区的散射体反射后的非直 视路径进入本地接收端而生成, 所述本地发射信号包括本地各发射天线的发射 信号或包括本地的一个发射天线的发射信号; 所述一级干扰氏消处理单元用于 消除所述近区反射自干扰信号。
在本发明的一个实施例中, 如图 7 ( a )所示, 图 7 ( a )提供了本发明干扰 信号的处理装置再一个实施例的结构示意图。 所述装置还包括低噪声放大处理 单元 504, 用于在所述消除所述第一自干扰信号之后, 对消除所述第一自干扰 信号的所述信号进行低噪声放大处理; 所述二级干扰抵消处理单元用于利用第 二参考信号对经过一级干扰抵消处理单元、低噪声放大处理单元处理的所述信 号号进行二级干扰 4氏消处理。
在本发明的一个实施例中, 所述装置还包括下变频单元 506, 用于在消除 所述第二自干扰信号之后,对消除所述第二自干扰信号后的所述信号进行下变 频处理; 所述利三级干扰抵消处理单元利用第三参考信号对经过一级干扰抵消 处理单元、 二级干扰抵消处理单元、 下变频单元处理后的所述信号进行三级干 扰抵消处理。 图 7 ( b )提供了本发明干扰信号的处理装置再一个实施例的结构示意图。 三级干扰抵消处理单元包括数字基带干扰抵消处理单元、模拟基带干扰抵消处 理单元。 如图 7 ( b )所示, 图 7 ( b )给出了图 7 ( a ) 中三级干扰抵消处理单元 的进一步细化结构。
在本发明的一个实施例中, 所述三级干扰抵消处理单元包括数字基带干扰 抵消处理单元, 所述数字基带干扰抵消处理单元用于将对经过一级干扰抵消处 理、 二级干扰抵消处理后的所述信号进行模拟数字变换, 将经过模拟数字变换 的所述信号减去第三参考信号经过数字滤波处理后的信号。
在本发明的一个实施例中, 所述三级干扰抵消处理单元还包括模拟基带干 扰抵消处理单元, 所述模拟基带干扰抵消处理单元用于将经过一级干扰抵消处 理、二级干扰抵消处理后的所述信号与第四参考信号经过滤波处理后的信号相 减, 所述数字基带干扰抵消处理单元将经过一级干扰抵消处理、 二级干扰抵消 处理后的所述信号与第四参考信号经过滤波处理后的信号相减,对相减后的所 述信号进行模拟数字变换, 将经过模拟数字变换的所述信号减去第三参考信号 经过数字滤波处理后的信号; 所述第四参考信号利用如下信号获得: 第三参考 信号、发射天线的模拟基带信号、对发射天线的模拟基带信号进行补偿的信号、 或对第一参考信号经过下变频得到的信号。
在本发明的一个实施例中, 所述第三自干扰信号包括远区反射自干扰信 号, 所述远区反射自干扰信号由本地发射信号经过远区的散射体反射后的非直 视路径进入本地接收端而生成, 所述本地发射信号包括本地各发射天线的发射 信号或包括本地的一个发射天线的发射信号; 所述三级干扰氏消处理单元用于 消除所述远区反射自干扰信号。
在本发明的一个实施例中,所述装置包括多个本地发射天线时; ,所述第一 参考信号包括多个第一子参考信号, 第一自干扰信号包栝多个第一子自干扰信 号,每个所述第一子自干扰信号对应所述多个本地发射天线中的每个本地发射 天线, 所述第一子参考信号是通过对第一子自干扰信号对应的本地发射天线的 发射信号耦合获得; 所述一级干扰抵消处理单用于利用所述多个第一子参考信 号对接收的所述信号进行多个一级子处理, 在每个一级子处理中, 将所述一级 子处理待处理的信号减去对应的第一子参考信号经过延迟幅度相位调整后的 信号, 以消除与所述第一子参考信号对应的本地发射天线对应的第一子自干扰 信号。
如图 8 ( a )所示, 图 8 ( a )是本发明一级干扰抵消处理单元一个实施例的 结构图。 所述一级干扰抵消处理单元包括至少一个一级干扰抵消处理子单元 801。 如图 8 ( b )所示, 图 8 ( b )是本发明一级干扰氐消处理单元一个实施例 的结构图。 图 8 ( b ) 8 ( a )给出了所述一级干扰抵消处理子单元 801的进一步 细化结构。所述一级干扰抵消处理子单元 801包括误差控制信号提取单元 8011、 延迟幅度相位跟踪单元 8013 , 干扰信号抵消单元 8015; 所述误差控制信号提取 单元用于根据所述一级干扰抵消处理子单元中的干扰信号抵消单元的输出生 成误差控制信号; 所述延迟幅度相位跟踪单元用于根据所述所述误差控制信号 对第一子参考信号进行延迟幅度相位跟踪, 以获得重构的第一子自干扰信号; 所述干扰信号抵消单元用于把所述一级干扰抵消处理子单元输入的信号减去 所述重构的第一子自干扰信号, 以消除所述第一子自干扰信号。
在具体的电路结构中, 所述误差控制信号提取单元可以是对误差信号的功 率测量电路实现, 所述延迟幅度相位跟踪单元 8013可以是延迟线、 衰减器移相 器, 所述干扰信号抵消单元 8015可以是减法器、 合路器、 耦合器等实现。
图 9(a)示出了本发明一级干扰抵消处理单元另一个实施例的结构图。各个发 射支路的第一子干扰信号是线性迭加的, 相互独立互不影响, 因此可以采取顺 序干扰消除方式逐一进行抵消处理。 同时, 与第一子干扰信号相比, 其它近区 和远区反射的自干扰信号分量功率小很多, 在射频主径自干扰消除处理中, 可 以视为噪声而不考虑它们的影响。
另外, 在各个发射支路的第一子干扰信号中, 对任意一个接收天线而言, 距离其越近的发射天线经过空间传播的衰减越小, 因此该发射天线对应发射支 路的自干扰越强, 当收发共用天线时, 通过双工器泄漏到接收支路的第一子干 扰信号通常是最强的。 因此, 优选地, 可以先对干扰最强支路的主径自干扰进 行抵消, 然后再按照自干扰由大到小的顺序, 依次对相应发射支路的主径自干 扰进行抵消。
每个发射支路的第一子干扰信号抵消单元, 包括延迟幅度相位跟踪单元、 误差控制信号提取单元和干扰信号抵消单元。 其中, 延迟幅度相位跟踪单元自 适应地调节第一子参考信号的延迟、 幅度和相位, 生成该发射支路的第一子干 扰信号的估计, 使之尽量与接收信号中的该发射支路的第一子干扰信号接近; 干扰信号抵消模块则将接收信号与主径干扰信号自适应延迟与幅相跟踪模块 生成的该发射支路的第一子干扰信号的估计相减,从而尽可能地将该发射支路 的第一子干扰信号从接收信号中抵消掉。
如前所述, 由于收发天线附近区域传播环境的微小变化以及发射通道模拟 器件参数的变化, 因此第一子干扰信号的延迟、 幅度和相位随时间变化较小且 较为緩慢,误差控制信号提取模块即负责根据该级主径自干扰抵消后的输出信 号 (即误差信号), 生成对主径干扰信号自适应延迟与幅相跟踪模块的控制信 号, 用于控制该模块实现对该发射支路对应的第一子干扰信号的延迟与幅相变 化的自动跟踪, 从而最小化该级主径自干扰抵消后输出信号功率, 达到最大化 抵消相应发射支路的主径自干扰信号的目的, 其中, 延迟与幅相跟踪算法可以 采用现有的自适应滤波技术中的 LMS ( Least Mean Squares ), RLS ( Recursive least squares )等算法。
在本发明的另一个实施例中, 所述一级干扰氏消处理单元包括一个误差控 制信号提取单元以及至少一个一级干扰抵消处理子单元, 所述一级干扰抵消处 理子单元包括延迟幅度相位跟踪单元与干扰信号抵消单元; 所述误差控制信号 提取单元用于根据所述至少一个一级干扰抵消处理子单元中的干扰信号抵消 单元的的输出生成误差控制信号; 每个所述干扰抵消处理子单元中的所述延迟 幅度相位跟踪单元用于根据所述误差控制信号对第一子参考信号进行延迟幅 度相位跟踪, 以获得重构的第一子自干扰信号; 所述干扰信号抵消单元用于把 所述一级干扰抵消处理子单元输入的信号减去所述重构的第一子自干扰信号, 以消除所述第一子自干扰信号。 如图 9(b)所示同样, 与第一子干扰信号相比, 其它近区和远区反射的自干扰信号分量功率小很多, 在射频主径自干扰消除处 理中, 可以视为噪声而不考虑它们的影响。 与与图 9(a)所示第一实施例不同的 是, 每个发射支路对应的第一子干扰信号抵消单元中, 误差控制信号提取模块 仅位于所有发射支路对应的主径自干扰信号抵消模块之后, 所提取的误差控制 信号作为所有发射支路对应的主径干扰信号自适应延迟与幅相跟踪模块的误 差控制信号。
在本发明的一个实施例中, 若本地端包括多个本地发射天线, 所述第二参 考信号包括多个第二子参考信号, 第二自干扰信号包栝多个第二子自干扰信 号,每个所述第二子自干扰信号对应所述多个本地发射天线中的每个本地发射 天线, 所述第二子参考信号是通过对第二子自干扰信号对应的本地发射天线的 发射信号耦合获得; 所述二级干扰抵消处理单元用于利用所述多个第二子参考 信号对接收的所述信号进行多个二级子处理, 在每个二级子处理中, 将所述二 级子处理待处理的信号减去第二子参考信号经过滤波处理后的信号, 以消除与 所述第二子参考信号对应的本地发射天线对应的第二子自干扰信号。 如图 10 ( a )所示, 图 10 ( a )是本发明二级干扰抵消处理单元一个实施例的结构图。 所述二级干扰抵消处理单元包括多个二级干扰抵消处理子单元 1001 ; 所述二级 干扰抵消处理子单元所述二级干扰抵消处理子单元包括误差控制信号提取单 元 10011、 滤波器单元 10013、 干扰信号抵消单元 10015; 所述误差控制信号提 取单元用于根据所述二级干扰抵消处理子单元中的干扰信号抵消单元的输出 生成误差控制信号; 所述滤波器单元用于根据所述所述误差控制信号对第二子 参考信号进行滤波处理, 以获得重构的第二子自干扰信号; 所述干扰信号抵消 单元用于把所述二级干扰抵消处理子单元输入的信号减去所述重构的第二子 自干扰信号, 以消除所述第二子自干扰信号。 如图 10 ( b )所示, 图 10 ( b )是 本发明二级干扰抵消处理单元一个实施例的结构图。 图 10 ( b )给出了图 10 ( a ) 二级干扰氏消处理子单元进一步细化的结构图
所述误差控制信号提取单元可以是功率测量电路, 所述滤波器单元可以是 多个延迟幅度相位跟踪单元的线性组合, 所述干扰信号抵消单元可以是减法 器、 合路器。
图 11(a)提供了了二级干扰抵消处理装置的一个实施例的结构图。近区反射 自干扰信号分量由各发射支路发射信号的近区反射多径延迟信号构成。尽管自 干扰信号经历的近区反射信道是频率选择性信道,但各发射支路对应的自干扰 信号分量仍是线性迭加的, 相互独立互不影响, 因此仍可采取顺序干扰消除方 式逐一进行抵消处理。 同时, 与近区反射的自干扰信号分量相比, 远区反射的 自干扰信号分量功率小很多, 因此在二级干扰抵消处理中可以视为噪声而不考 虑它们的影响。
在本发明的另一个实施例中, 所述二级干扰氏消处理单元包括一个误差控 制信号提取单元以及至少一个二级干扰抵消处理子单元, 所述二级干扰抵消处 理子单元包括滤波器单元、 干扰信号抵消单元; 所述误差控制信号提取单元用 于根据所述至少一个二级干扰抵消处理子单元中的干扰信号抵消单元的的输 出生成误差控制信号; 所述滤波器单元用于根据所述所述误差控制信号对第二 子参考信号进行滤波处理, 以获得重构的第二子自干扰信号; 所述干扰信号抵 消单元用于把所述二级干扰抵消处理子单元输入的信号减去所述重构的第二 子自干扰信号, 以消除所述第二子自干扰信号。 图 11(b)进一步示出了二级干扰 抵消处理的实施例的结构图。
图 11(b)进一步示出了二级干扰抵消处理的另一个实施例。 同样, 与近区反 射的自干扰信号分量相比, 远区反射的自干扰信号分量功率小很多, 因此在二 级干扰抵消处理中可以视为噪声而不考虑它们的影响。 与图 6(a)所示第一实施 例不同的是, 每个发射支路对应的近区反射自干扰信号分量抵消单元中, 误差 控制信号提取模块仅位于所有发射支路对应的近区反射自干扰信号抵消模块 之后, 所提取的误差控制信号作为所有发射支路对应的近区反射自干扰信号重 构自适应滤波器模块的误差控制信号。
如图 12所示, 图 12给出了本发明滤波器单元一个实施例的结构图, 所述滤 波器单元是多个延迟幅度相位跟踪单元的线性组合。 所述延迟幅度相位跟踪单 元用于根据所述所述误差控制信号对第二子参考信号进行延迟幅度相位跟踪, 滤波器单元用于对延迟幅度相位跟踪的第二子参考信号进行线性加权以获得 重构的第二子自干扰信号。
三级干扰抵消处理单元和四级干扰抵消处理单元的结构与二级干扰抵消 处理的结构类似, 因此不再赘述。 不同的是远区反射自干扰信号分量多径传播 延迟为 30ns~lus量级, 在一个典型的实施例中, 三级干扰抵消处理和四级干扰 抵消处理中每个固定延迟单元的时延为 20ns。 由于四级干扰抵消处理主要起到 避免自干扰过强而超过 ADC动态范围的作用, 因此, 可以采用较少的滤波器阶 数(即固定延迟单元数), 而三级干扰抵消处理中的自适应滤波器采用数字方 式实现精度较高,承担着有效抵消远区反射自干扰信号分量及其它残留自干扰 分量的主要功能, 因此, 可以采用较多的滤波器阶数(即固定延迟单元数) 。 例如, 四级干扰氏消处理的滤波器阶数为 10, 而三级干扰氏消处理的滤波器阶 数为 50。
由于近区反射自干扰信号分量由各发射支路发射信号的近区反射多径延 迟信号构成, 本发明实施例提供了一种近区反射自干扰信号分量(也包括第一 子干扰信号的残留干扰)的重构方法。 如图 7所示, 图 7提供了本发明实施例近 区反射自干扰信号分量的重构方法。 自干扰信号重构方法对应的自适应滤波器 包含 N个固定延迟单元, 由于近区反射自干扰信号分量典型的多径传播延迟为 l~30ns量级, 因此, 在一个具体的实施例中, 采用 15个固定延迟单元, 每个固 定延迟单元延迟 2ns。 其中, 固定延迟单元可以采用模拟延迟线等器件实现。
本发明实施例提供了一种具有干扰信号消除功能的系统, 如图 13所示, 图 13提供了本发明具有干扰信号消除功能的系统一个实施例的结构图。 所述系统 包括发送装置, 如上述任一实施例所述的干扰消除装置, 所述发送装置用于发 送所述干扰消除装置接收的无线信号。
图 14提供了本发明实施例干扰信号消除系统发射支路和接收支路的结构 图。
所述第二参考信号和所述第一参考信号相同。通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发明可以用硬件实现, 或固件实现, 或它们的组合方式来实现。 当使用软件实现时, 可以将上述功能存储在计算机 可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算 机可读介质包括计算机存储介质和通信介质, 其中通信介质包括便于从一个地 方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取 的任何可用介质。 以此为例但不限于: 计算机可读介质可以包括 RAM、 ROM, EEPROM、 CD-ROM或其他光盘存储、 磁盘存储介质或者其他磁存储设备、 或 者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由 计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。 例如, 如果软件是使用同轴电缆、 光纤光缆、 双绞线、 数字用户线(DSL )或 者诸如红外线、 无线电和微波之类的无线技术从网站、 服务器或者其他远程源 传输的, 那么同轴电缆、 光纤光缆、 双绞线、 DSL或者诸如红外线、 无线和微 波之类的无线技术包括在所属介质的定影中。 如本发明所使用的, 盘(Disk ) 和碟(disc ) 包括压缩光碟(CD ) 、 激光碟、 光碟、 数字通用光碟 ( DVD ) 、 软盘和蓝光光碟, 其中盘通常磁性的复制数据, 而碟则用激光来光学的复制数 据。 上面的组合也应当包括在计算机可读介质的保护范围之内。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例描述 进行分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个 或多个装置中。 上述实施例的模块可以合并为一个模块, 也可以进一步拆分成 多个子模块。 本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关硬件来完成, 所述程序可以存储于一计算机可读取 存储介质中, 所述的存储介质, 包括: R0M/RAM、 磁碟、 光盘等。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的 本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1. 一种干扰信号处理方法, 其特征在于, 包括: 接收无线信号, 所述信号包 括发射天线的自干扰信号, 所述自干扰信号包括第一自干扰信号和第二自 干扰信号, 所述第一自干扰信号的功率大于第一功率阈值, 所述第一自干 扰信号的时延小于第一时延阈值, 所述第二自干扰信号的功率小于所述第 一功率阈值且大于第二功率阈值, 所述第二自干扰信号的时延大于所述第 一时延阈值且小于第二时延阈值;
利用第一参考信号对接收的所述信号进行一级干扰抵消处理以消除所述第 一自干扰信号, 所述第一参考信号通过对本地发射信号耦合获得; 利用第二参考信号对经过所述一级干扰抵消处理后的所述信号进行二级干 扰抵消处理以消除所述第二自干扰信号, 所述第二参考信号通过对本地发 射信号耦合获得。
2. 根据权利要求 1所述的方法, 其特征在于, 所述自干扰信号还包括第三自 干扰信号, 所述第三自干扰信号的功率小于所述第二功率阈值, 所述第三 自干扰信号的时延大于所述第二时延阈值;
在所述进行二级干扰抵消处理之后, 所述方法还包括: 利用第三参考信号 对经过所述一级干扰氏消处理、 所述二级干扰氏消处理后的所述信号进行 三级干扰抵消处理以消除所述第三自干扰信号;
所述第三参考信号包括: 发射端的数字基带信号, 对发射端的数字基带信 号进行补偿的信号, 或对第一参考信号进行下变频及模数变换得到的信号。
3. 根据权利要求 1或 2的方法, 其特征在于, 所述第一自干扰信号包括主径自 干扰信号, 若收发采用不同天线, 所述主径自干扰信号由本地发射信号经 过直视路径进入本地接收端而生成, 若收发共用天线, 所述主径自干扰信 号由本地发射信号经过收发隔离器泄漏到本地接收端而生成, 所述本地发 射信号包括本地各发射天线的发射信号或本地的一个发射天线的发射信 号; 所述进行一级干扰氏消处理以消除所述第一自干扰信号包括: 进行一 级干扰抵消处理以消除主径自干扰信号。
4. 根据权利要求 1至 3任一项所述的方法, 其特征在于, 所述第二自干扰信号 包括近区反射自干扰信号, 所述近区反射自干扰信号由本地发射信号经过 近区的散射体反射后的非直视路径进入本地接收端而生成, 所述本地发射 信号包括本地各发射天线的发射信号或包括本地的一个发射天线的发射信 号; 所述进行二级干扰氏消处理以消除所述第二自干扰信号包括: 进行二 级干扰抵消处理以消除所述近区反射自干扰信号。
5. 根据权利要求 1至 4任一项所述的方法, 其特征在于, 所述第三自干扰信号 包括远区反射自干扰信号, 所述远区反射自干扰信号由本地发射信号经过 远区的散射体反射后的非直视路径进入本地接收端而生成, 所述本地发射 信号包括本地各发射天线的发射信号或包括本地的一个发射天线的发射信 号; 所述进行三级干扰氏消处理以消除所述第三自干扰信号包括: 进行三 级干扰抵消处理以消除所述远区反射自干扰信号。
6. 根据权利要求 2至 5任一项所述的方法, 其特征在于, 在所述进行一级干扰 抵消处理以消除所述第一自干扰信号之后, 所述方法还包括, 对消除所述 第一自干扰信号的所述信号进行低噪声放大处理; 所述利用第二参考信号 对经过一级干扰抵消处理后的所述信号进行二级干扰抵消处理包括, 利用 第二参考信号对经过一级干扰抵消处理、 低噪声放大处理处理的所述信号 号进行二级干扰氏消处理。
7. 根据权利要求 2至 6任一项所述的方法, 其特征在于, 在消除所述第二自干 扰信号之后所述方法还包括, 对消除所述第二自干扰信号后的所述信号进 行下变频处理; 所述利用第三参考信号对经过所述一级干扰抵消处理、 所 述二级干扰抵消处理后的所述信号进行三级干扰抵消处理包括: 所述利用 第三参考信号对经过一级干扰抵消处理、 二级干扰抵消处理、 下变频处理 后的所述信号进行三级干扰抵消处理。
8. 根据权利要求 2至 7任一项所述的方法, 其特征在于, 所述利用第三参考信 号对经过所述一级干扰氏消处理、 所述二级干扰氏消处理后的所述信号进 行三级干扰抵消处理包括: 将对经过一级干扰抵消处理、 二级干扰抵消处 理后的所述信号进行模拟数字变换, 将经过模拟数字变换的所述信号减去 第三参考信号经过数字滤波处理后的信号。
9. 根据权利要求 8所述的方法, 其特征在于, 在所述将对经过一级干扰抵消处 理、 二级干扰抵消处理后的所述信号进行模拟数字变换, 将经过模拟数字 变换的所述信号减去第三参考信号经过数字滤波处理后的信号之前, 所述 利用第三参考信号对经过所述一级干扰抵消处理、 所述二级干扰抵消处理 后的所述信号进行三级干扰抵消处理还包括: 将经过一级干扰抵消处理、 二级干扰抵消处理后的所述信号与第四参考信号经过滤波处理后的信号相 减; 所述第四参考信号利用如下信号获得: 第三参考信号、 发射天线的模 拟基带信号、 对发射天线的模拟基带信号进行补偿的信号、 或对第一参考 信号经过下变频得到的信号; 所述所述将对经过一级干扰氏消处理、 二级 干扰抵消处理后的所述信号进行模拟数字变换, 将经过模拟数字变换的所 述信号减去第三参考信号经过数字滤波处理后的信号包括: 将经过一级干 扰抵消处理、 二级干扰抵消处理后的所述信号与第四参考信号经过滤波处 理后的信号相减, 对相减后的所述信号进行模拟数字变换, 将经过模拟数 字变换的所述信号减去第三参考信号经过数字滤波处理后的信号。
10.根据权利要求 1至 9任一项所述的方法, 其特征在于, 若本地端包括多个本 地发射天线, 所述第一参考信号包括多个第一子参考信号, 第一自干扰信 号包栝多个第一子自干扰信号, 每个所述第一子自干扰信号对应所述多个 本地发射天线中的每个本地发射天线, 所述第一子参考信号是通过对第一 子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述利用第一参 考信号对接收的所述信号进行一级干扰抵消处理, 包括: 利用所述第一子 参考信号对接收的所述信号进行多个一级子处理; 所述进行所述一级子处 理包括: 将所述一级子处理待处理的信号减去第一子参考信号经过延迟和 幅度相位调整后的信号, 以消除与所述第一子参考信号对应的本地发射天 线对应的第一子自干扰信号。
根据权利要求 1至 10任一项所述的方法, 其特征在于, 若本地端包括多个本 地发射天线, 所述第二参考信号包括多个第二子参考信号, 第二自干扰信 号包栝多个第二子自干扰信号, 每个所述第二子自干扰信号对应所述多个 本地发射天线中的每个本地发射天线, 所述第二子参考信号是通过对第二 子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述利用第二参 考信号对接收的所述信号进行二级干扰抵消处理, 包括: 利用所述第二子 参考信号对接收的所述信号进行多个二级子处理; 所述进行所述二级子处 理包括: 将所述二级子处理待处理的信号减去第二子参考信号经过滤波处 理后的信号, 以消除与所述第二子参考信号对应的本地发射天线对应的第 二子自干扰信号。
—种干扰信号的处理装置, 所述装置包括一个或多个本地发射天线; 其特 征在于, 所述装置还包括: 接收单元、 一级干扰抵消处理单元、 二级干扰 抵消处理单元;
所述接收单元用于接收无线信号, 所述信号包括所述本地发射天线的自干 扰信号, 所述自干扰信号包括第一自干扰信号和第二自干扰信号,所述第一 自干扰信号的功率大于第一功率阈值, 所述第一自干扰信号的时延小于第 一时延阈值, 所述第二自干扰信号的功率小于所述第一功率阈值且大于第 二功率阈值, 所述第二自干扰信号的时延大于所述第一时延阈值且小于第 二时延阈值;
所述一级干扰抵消处理单元用于利用第一参考信号对接收的所述信号进行 一级干扰抵消处理, 以消除所述第一自干扰信号, 所述第一参考信号通过 对本地发射信号耦合获得;
所述二级干扰抵消处理单元用于利用第二参考信号对经过所述一级干扰抵 消处理后的所述信号进行二级干扰抵消处理, 以消除所述第二自干扰信号, 所述第二参考信号和所述第一参考信号相同。
根据权利要求 12所述的装置, 其特征在于, 所述自干扰信号还包括第三自 干扰信号, 所述第三自干扰信号的功率小于所述第二功率阈值, 所述第三 自干扰信号的时延大于所述第二时延阈值;
所述装置还包括三级干扰抵消处理单元, 用于利用第三参考信号对经过所 述一级干扰抵消处理、 所述二级干扰抵消处理后的所述信号进行三级干扰 抵消处理, 以消除所述第三自干扰信号; 所述第三参考信号包括: 发射端 的数字基带信号, 对发射端的数字基带信号进行补偿的信号, 或对第一参 考信号进行下变频及模数变换得到的信号。
根据权利要求 12或 13的装置, 其特征在于, 所述第一自干扰信号包括主径 自干扰信号, 若收发采用不同天线, 所述主径自干扰信号由本地发射信号 经过直视路径进入本地接收端而生成, 若收发共用天线, 所述主径自干扰 信号由本地发射信号经过收发隔离器泄漏到本地接收端而生成, 所述本地 发射信号包括本地各发射天线的发射信号或本地的一个发射天线的发射信 号; 所述一级干扰氏消处理单元用于消除主径自干扰信号。
根据权利要求 12至 14任一项所述的装置, 其特征在于, 所述第二自干扰信 号包括近区反射自干扰信号, 所述近区反射自干扰信号由本地发射信号经 过近区的散射体反射后的非直视路径进入本地接收端而生成, 所述本地发 射信号包括本地各发射天线的发射信号或包括本地的一个发射天线的发射 信号; 所述一级干扰抵消处理单元用于消除所述近区反射自干扰信号。 根据权利要求 12至 15任一项所述的装置, 其特征在于, 所述第三自干扰信 号包括远区反射自干扰信号, 所述远区反射自干扰信号由本地发射信号经 过远区的散射体反射后的非直视路径进入本地接收端而生成, 所述本地发 射信号包括本地各发射天线的发射信号或包括本地的一个发射天线的发射 信号; 所述三级干扰抵消处理单元用于消除所述远区反射自干扰信号。 根据权利要求 13至 16任一项所述的装置, 其特征在于, 所述装置还包括低 噪声放大处理单元, 用于在所述消除所述第一自干扰信号之后, 对消除所 述第一自干扰信号的所述信号进行低噪声放大处理; 所述二级干扰抵消处 理单元用于利用第二参考信号对经过一级干扰抵消处理单元、 低噪声放大 处理单元处理的所述信号号进行二级干扰氏消处理。
根据权利要求 13至 17任一项所述的装置, 其特征在于, 所述装置还包括下 变频单元, 用于在消除所述第二自干扰信号之后, 对消除所述第二自干扰 信号后的所述信号进行下变频处理; 所述利三级干扰抵消处理单元利用第 三参考信号对经过一级干扰抵消处理单元、 二级干扰抵消处理单元、 下变 频单元处理后的所述信号进行三级干扰抵消处理。
根据权利要求 13至 18任一项所述的装置, 其特征在于, 所述三级干扰抵消 处理用于将对经过一级干扰 4氏消处理、 二级干扰氏消处理后的所述信号进 行模拟数字变换, 将经过模拟数字变换的所述信号减去第三参考信号经过 数字滤波处理后的信号。
根据权利要求 13至 18任一项所述的装置, 其特征在于, 所述三级干扰抵消 处理单元用于将经过一级干扰氏消处理、 二级干扰氏消处理后的所述信号 与第四参考信号经过滤波处理后的信号相减, 将经过一级干扰抵消处理、 二级干扰抵消处理后的所述信号与第四参考信号经过滤波处理后的信号相 减, 对相减后的所述信号进行模拟数字变换, 将经过模拟数字变换的所述 信号减去第三参考信号经过数字滤波处理后的信号; 所述第四参考信号利 用如下信号获得: 第三参考信号、 发射天线的模拟基带信号、 对发射天线 的模拟基带信号进行补偿的信号、 或对第一参考信号经过下变频得到的信 根据权利要求 12至 20任一项所述的装置, 其特征在于, 若所述装置包括多 个本地发射天线,所述第一参考信号包括多个第一子参考信号, 第一自干扰 信号包栝多个第一子自干扰信号, 每个所述第一子自干扰信号对应所述多 个本地发射天线中的每个本地发射天线, 所述第一子参考信号是通过对第 一子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述一级干扰 抵消处理单元用于利用所述多个第一子参考信号对接收的所述信号进行多 个一级子处理, 在每个一级子处理中, 将所述一级子处理待处理的信号减 去对应的第一子参考信号经过延迟幅度相位调整后的信号, 以消除与所述 第一子参考信号对应的本地发射天线对应的第一子自干扰信号。。
根据权利要求 12至 21任一项所述的装置, 其特征在于, 所述一级干扰抵消 处理单元包括至少一个一级干扰抵消处理子单元, 所述一级干扰抵消处理 子单元包括误差控制信号提取单元、 延迟幅度相位跟踪单元, 干扰信号抵 消单元; 所述误差控制信号提取单元用于根据所述一级干扰抵消处理子单 元中的干扰信号抵消单元的输出生成误差控制信号; 所述延迟幅度相位跟 踪单元用于根据所述所述误差控制信号对第一子参考信号进行延迟幅度相 位跟踪, 以获得重构的第一子自干扰信号; 所述干扰信号抵消单元用于把 所述一级干扰抵消处理子单元输入的信号减去所述重构的第一子自干扰信 号, 以消除所述第一子自干扰信号。
根据权利要求 12至 21任一项所述的装置, 其特征在于, 所述一级干扰抵消 处理单元包括一个误差控制信号提取单元以及至少一个一级干扰抵消处理 子单元, 所述一级干扰抵消处理子单元包括延迟幅度相位跟踪单元与干扰 信号抵消单元; 所述误差控制信号提取单元用于根据所述至少一个一级干 扰抵消处理子单元中的干扰信号抵消单元的输出生成误差控制信号; 每个 所述一级干扰抵消处理子单元中的所述延迟幅度相位跟踪单元用于根据所 述误差控制信号对第一子参考信号进行延迟幅度相位跟踪, 以获得重构的 第一子自干扰信号; 所述干扰信号抵消单元用于把所述一级干扰抵消处理 子单元输入的信号减去所述重构的第一子自干扰信号, 以消除所述第一子 自干扰信号。
根据权利要求 12至 23任一项所述的装置, 其特征在于, 所述装置包括多个 本地发射天线时, 所述第二参考信号包括多个第二子参考信号, 第二自干 扰信号包栝多个第二子自干扰信号, 每个所述第二子自干扰信号对应所述 多个本地发射天线中的每个本地发射天线, 所述第二子参考信号是通过对 第二子自干扰信号对应的本地发射天线的发射信号耦合获得; 所述二级干 扰抵消处理单元用于利用所述多个第二子参考信号对接收的所述信号进行 多个二级子处理, 在每个二级子处理中, 将所述二级子处理待处理的信号 减去第二子参考信号经过滤波处理后的信号, 以消除与所述第二子参考信 号对应的本地发射天线对应的第二子自干扰信号。
根据权利要求 12至 24任一项所述的装置, 其特征在于, 所述二级干扰抵消 处理单元包括至少一个二级干扰抵消处理子单元, 所述二级干扰抵消处理 子单元包括误差控制信号提取单元、 滤波器单元、 和干扰信号抵消单元; 所述误差控制信号提取单元用于根据所述二级干扰抵消处理子单元中的干 扰信号抵消单元的输出生成误差控制信号; 所述滤波器单元用于根据所述 所述误差控制信号对第二子参考信号进行滤波处理, 以获得重构的第二子 自干扰信号; 所述干扰信号抵消单元用于把所述二级干扰抵消处理子单元 输入的信号减去所述重构的第二子自干扰信号, 以消除所述第二子自干扰 信号。
权利要求 12至 24任一项所述的装置, 其特征在于, 所述二级干扰抵消处理 单元包括一个误差控制信号提取单以及至少一个二级干扰抵消处理子单 元, 所述二级干扰抵消处理子单元包括滤波器单元、 干扰信号抵消单元; 所述误差控制信号提取单元用于根据所述至少一个二级干扰抵消处理子单 元中的干扰信号抵消单元的输出生成误差控制信号; 所述滤波器单元用于 根据所述所述误差控制信号对第二子参考信号进行滤波处理, 以获得重构 的第二子自干扰信号; 所述干扰信号抵消单元用于把所述二级干扰抵消处 理子单元输入的信号减去所述重构的第二子自干扰信号, 以消除所述第二 子自干扰信号。
—种具有干扰信号消除功能的系统, 其特征在于, 所述系统包括发送装置, 以及如权利要求 12至 26任一项所述的干扰消除装置, 所述发送装置用于发 送所述干扰消除装置接收的无线信号。
PCT/CN2013/082859 2012-09-07 2013-09-03 一种干扰信号的处理方法、装置和系统 WO2014036930A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13835969.0A EP2884669B1 (en) 2012-09-07 2013-09-03 Interference signal processing method, apparatus and system
BR112015004904-4A BR112015004904B1 (pt) 2012-09-07 2013-09-03 Método e aparelho para processamento de sinal de interferência e sistema tendo uma função de eliminação de sinal de interferência
EP18202317.6A EP3496283A1 (en) 2012-09-07 2013-09-03 Method, apparatus, and system for processing interference signal
RU2015112618/07A RU2605455C2 (ru) 2012-09-07 2013-09-03 Способ, устройство и система для обработки сигналов помех
US14/639,731 US9712314B2 (en) 2012-09-07 2015-03-05 Method, apparatus and system for eliminating self-interference in a full-duplex communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210329936.XA CN103685098B (zh) 2012-09-07 2012-09-07 一种干扰信号的处理方法、装置和系统
CN201210329936.X 2012-09-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/639,731 Continuation US9712314B2 (en) 2012-09-07 2015-03-05 Method, apparatus and system for eliminating self-interference in a full-duplex communication

Publications (1)

Publication Number Publication Date
WO2014036930A1 true WO2014036930A1 (zh) 2014-03-13

Family

ID=50236539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/082859 WO2014036930A1 (zh) 2012-09-07 2013-09-03 一种干扰信号的处理方法、装置和系统

Country Status (6)

Country Link
US (1) US9712314B2 (zh)
EP (2) EP2884669B1 (zh)
CN (1) CN103685098B (zh)
BR (1) BR112015004904B1 (zh)
RU (1) RU2605455C2 (zh)
WO (1) WO2014036930A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553754A (zh) * 2015-12-08 2016-05-04 重庆金美通信有限责任公司 一种无线通信设备可测试性设计方法
EP3139556A4 (en) * 2014-06-26 2017-06-14 Huawei Technologies Co., Ltd. Interference cancellation device and method
US9973224B2 (en) 2014-06-26 2018-05-15 Huawei Technologies Co., Ltd. Interference cancellation apparatus and method
US10084584B2 (en) 2014-06-26 2018-09-25 Huawei Technologies Co., Ltd. Interference cancellation apparatus and method

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130880B1 (en) 2007-05-23 2012-03-06 Hypress, Inc. Wideband digital spectrometer
US9001920B2 (en) * 2013-02-19 2015-04-07 At&T Intellectual Property I, Lp Apparatus and method for interference cancellation in communication systems
US9831898B2 (en) * 2013-03-13 2017-11-28 Analog Devices Global Radio frequency transmitter noise cancellation
WO2015099344A1 (ko) * 2013-12-24 2015-07-02 엘지전자 주식회사 Fdr 통신 환경에서 단말이 상향링크 데이터를 전송하는 방법
US9231647B2 (en) * 2014-03-19 2016-01-05 Trellisware Technologies, Inc. Joint analog and digital interference cancellation in wireless systems
CN103956576B (zh) * 2014-04-26 2017-01-18 华为技术有限公司 一种反馈网络及阵列天线
EP3163762A4 (en) * 2014-06-26 2017-07-19 Huawei Technologies Co., Ltd. Wireless communication method and system, and full-duplex wireless transceiver
EP3159968B1 (en) * 2014-07-31 2019-03-20 Nanchang Coolpad Intelligent Technology Company Limited Co-frequency full-duplex antenna structure and electronic apparatus for wireless communications
US9705662B2 (en) * 2014-08-15 2017-07-11 Huawei Technologies Co., Ltd. System and method for radio full duplex
US9136883B1 (en) 2014-08-20 2015-09-15 Futurewei Technologies, Inc. Analog compensation circuit and method
TWI545907B (zh) * 2014-09-24 2016-08-11 鴻海精密工業股份有限公司 消減電路及收發電路
WO2016106604A1 (zh) * 2014-12-30 2016-07-07 华为技术有限公司 一种传输信号的方法和设备
DE112016000449B4 (de) 2015-01-23 2024-08-08 Lg Electronics Inc. Verfahren zum Schätzen eines nichtlinearen Selbstinterferenz-Signalkanals durch eine Vorrichtung unter Verwendung eines FDR-Schemas
EP3297172B1 (en) * 2015-05-30 2021-11-24 Huawei Technologies Co., Ltd. Device and method for canceling interference signal
CN106301419B (zh) * 2015-06-04 2019-05-28 华为技术有限公司 射频干扰消除方法及装置
US9966993B2 (en) * 2015-07-15 2018-05-08 Cisco Technology, Inc. Interference suppression in full duplex cable network environments
US9564932B1 (en) 2015-07-16 2017-02-07 LGS Innovations LLC Software defined radio front end
CN105099643B (zh) * 2015-08-18 2019-03-01 北京科技大学 一种全双工无线通信的方法、天线装置及系统
CN105119662B (zh) * 2015-09-10 2017-08-01 湖南迈克森伟电子科技有限公司 无线电抗干扰设备
WO2017069300A1 (ko) * 2015-10-21 2017-04-27 엘지전자 주식회사 Fdr 방식을 지원하는 환경에서 자기간섭 제거를 위한 자기간섭 복제 신호를 제어하는 방법 및 이를 위한 장치
WO2017070849A1 (zh) * 2015-10-27 2017-05-04 华为技术有限公司 一种同频干扰的消除方法及装置
CN105376184B (zh) * 2015-10-28 2019-03-29 西安电子科技大学 一种窄带全双工系统的二维天线对消方法
EP3394994A4 (en) * 2015-12-24 2019-07-31 Intel Corporation INTEGRATED CIRCUIT FOR SELF-INTERFERENCE ERASE AND METHOD FOR CARRYING OUT A FULL-DUPLEX RADIO COMMUNICATION
WO2017159930A1 (ko) * 2016-03-18 2017-09-21 엘지전자 주식회사 Fdr 환경에서 자기간섭 신호를 제거하는 방법 및 이를 위한 통신 장치
WO2018027797A1 (en) 2016-08-11 2018-02-15 Panasonic Intellectual Property Corporation Of America Base station, user equipment and wireless communication method
CN106100691B (zh) * 2016-08-12 2019-02-01 浙江航洋通信科技有限公司 一种收发分离的多系统融合系统
CN107872241B (zh) * 2016-09-23 2019-11-12 北京大学(天津滨海)新一代信息技术研究院 单天线同频同时全双工系统自干扰抑制系统
CN107872243A (zh) * 2016-09-23 2018-04-03 北京大学(天津滨海)新代信息技术研究院 一种射频干扰信号消除装置和方法
TW201820832A (zh) * 2016-11-16 2018-06-01 財團法人資訊工業策進會 無線通訊裝置及其數位自干擾估測方法
CN108632005B (zh) * 2017-03-24 2023-12-15 华为技术有限公司 一种参考信号传输方法、装置及系统
FR3067189B1 (fr) * 2017-06-01 2020-06-12 Continental Automotive France Procede de suppression spatiale et temporelle d'interferences multi-trajets pour recepteur de signaux radio modules en frequence
CN107317599B (zh) * 2017-07-24 2019-07-09 北京小米移动软件有限公司 一种自干扰信号的消除方法及装置
CN109428613B (zh) * 2017-08-25 2021-10-15 西安中兴新软件有限责任公司 一种干扰处理方法、装置和电路
WO2019112374A1 (en) * 2017-12-07 2019-06-13 Lg Electronics Inc. Method of transmitting uplink phase tracking reference signal by user euqipment in wireless communication system and apparatus supporting same
PL3741008T3 (pl) * 2018-01-21 2024-01-03 Infinidome Ltd. Urządzenie przeciwzakłóceniowe z szykiem fazowym oraz sposób
CN109412639B (zh) * 2018-09-30 2021-06-25 中国人民解放军海军工程大学 微波通信同频干扰防护装置
CN111130682B (zh) * 2018-11-01 2021-03-23 华为技术有限公司 一种信号处理方法及装置
EP3866422B1 (en) 2018-11-08 2023-11-01 Huawei Technologies Co., Ltd. Method, device and system for interference elimination
CN109412630B (zh) * 2018-11-16 2020-07-14 Oppo(重庆)智能科技有限公司 一种自干扰消除方法、终端及计算机存储介质
CN109660271B (zh) * 2018-12-13 2020-04-07 电子科技大学 一种圆极化天线的自干扰模拟对消系统及方法
CN110146848B (zh) * 2019-05-22 2023-06-23 西安电子科技大学 基于分数阶最小均方的调频连续波雷达自干扰消除方法
US11770473B2 (en) * 2020-05-01 2023-09-26 Qualcomm Incorporated Avoid and react to sudden possibility of damage to receiver in self-interference measurement
US11606116B2 (en) 2020-07-30 2023-03-14 Samsung Electronics Co., Ltd. Hybrid self-interference cancelation in frequency division duplexing system
CN114204962B (zh) * 2020-09-18 2023-11-17 上海华为技术有限公司 接收信号的方法和装置
CN113572487B (zh) * 2021-07-23 2022-08-19 闻泰通讯股份有限公司 射频信号杂波抑制方法、基站和终端
CN113938149B (zh) * 2021-12-08 2022-11-08 中国电子科技集团公司第三十六研究所 一种射频干扰抵消器及方法
CN115996064B (zh) * 2023-03-22 2023-06-30 北京理工大学 基于多重参考信号的自适应干扰抑制方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219049A (zh) * 1997-12-05 1999-06-09 富士通株式会社 干扰消除器
US20060098765A1 (en) * 2004-11-05 2006-05-11 Impinj, Inc. Interference cancellation in RFID systems
CN101425823A (zh) * 2007-11-01 2009-05-06 西门子公司 自干扰信号消除装置和方法以及射频识别读写器
CN101529729A (zh) * 2006-10-17 2009-09-09 交互数字技术公司 具有用于移除由发射机生成的噪声的混合型自适应干扰消除器的收发信机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU675382A1 (en) * 1977-08-01 1979-07-25 Vladimir K Volkov Noise suppressing device
GB9423027D0 (en) 1994-11-15 1995-01-04 Univ Bristol Full-duplex radio transmitter/receiver
US20060153283A1 (en) * 2005-01-13 2006-07-13 Scharf Louis L Interference cancellation in adjoint operators for communication receivers
US8175535B2 (en) * 2008-02-27 2012-05-08 Telefonaktiebolaget Lm Ericsson (Publ) Active cancellation of transmitter leakage in a wireless transceiver
US8023921B2 (en) * 2008-12-03 2011-09-20 Bae Systems Information And Electronic Systems Integration Inc. Quadratic amplitude control circuit for cosite interference cancellation
US8199681B2 (en) 2008-12-12 2012-06-12 General Electric Company Software radio frequency canceller
IL206008A0 (en) * 2010-05-27 2011-02-28 Amir Meir Zilbershtain Transmit receive interference cancellation
WO2012055469A1 (en) * 2010-10-29 2012-05-03 Telefonaktiebolaget L M Ericsson (Publ) Self-interference suppression control for a relay node
US8879433B2 (en) 2010-12-13 2014-11-04 Nec Laboratories America, Inc. Method for a canceling self interference signal using active noise cancellation in the air for full duplex simultaneous (in time) and overlapping (in space) wireless transmission and reception on the same frequency band
US9887728B2 (en) * 2011-02-03 2018-02-06 The Board Of Trustees Of The Leland Stanford Junior University Single channel full duplex wireless communications
US9325432B2 (en) * 2012-02-08 2016-04-26 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for full-duplex signal shaping
US9184902B2 (en) * 2012-04-25 2015-11-10 Nec Laboratories America, Inc. Interference cancellation for full-duplex communications
US8842584B2 (en) * 2012-07-13 2014-09-23 At&T Intellectual Property I, L.P. System and method for full duplex cancellation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219049A (zh) * 1997-12-05 1999-06-09 富士通株式会社 干扰消除器
US20060098765A1 (en) * 2004-11-05 2006-05-11 Impinj, Inc. Interference cancellation in RFID systems
CN101529729A (zh) * 2006-10-17 2009-09-09 交互数字技术公司 具有用于移除由发射机生成的噪声的混合型自适应干扰消除器的收发信机
CN101425823A (zh) * 2007-11-01 2009-05-06 西门子公司 自干扰信号消除装置和方法以及射频识别读写器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2884669A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3139556A4 (en) * 2014-06-26 2017-06-14 Huawei Technologies Co., Ltd. Interference cancellation device and method
US9973224B2 (en) 2014-06-26 2018-05-15 Huawei Technologies Co., Ltd. Interference cancellation apparatus and method
US10050812B2 (en) 2014-06-26 2018-08-14 Huawei Technologies Co., Ltd. Methods and apparatuses for interference cancellation
US10084584B2 (en) 2014-06-26 2018-09-25 Huawei Technologies Co., Ltd. Interference cancellation apparatus and method
CN105553754A (zh) * 2015-12-08 2016-05-04 重庆金美通信有限责任公司 一种无线通信设备可测试性设计方法
CN105553754B (zh) * 2015-12-08 2019-04-16 重庆金美通信有限责任公司 一种无线通信设备可测试性设计方法

Also Published As

Publication number Publication date
EP2884669A4 (en) 2015-08-19
US20150180640A1 (en) 2015-06-25
BR112015004904B1 (pt) 2022-07-12
CN103685098A (zh) 2014-03-26
US9712314B2 (en) 2017-07-18
CN103685098B (zh) 2017-04-12
RU2605455C2 (ru) 2016-12-20
EP3496283A1 (en) 2019-06-12
RU2015112618A (ru) 2016-10-27
EP2884669B1 (en) 2018-11-14
BR112015004904A2 (pt) 2017-07-04
EP2884669A1 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2014036930A1 (zh) 一种干扰信号的处理方法、装置和系统
US8542623B2 (en) Use of RF reference in a digital baseband interference cancellation repeater
US11283530B2 (en) Wideband remote unit for distributed antenna system
US8630211B2 (en) Hybrid radio architecture for repeaters using RF cancellation reference
RU2664392C2 (ru) Способ и устройство подавления помех
US8331509B2 (en) Method and device for cancelling transmitter interference in transceiver, and transceiver
Riihonen et al. Analog and digital self-interference cancellation in full-duplex MIMO-OFDM transceivers with limited resolution in A/D conversion
EP2719093B1 (en) Distributed antenna system architectures
CN107005266A (zh) 全双工无线电设备
KR20180030120A (ko) 트랜시버 및 트랜시버의 자체-간섭을 감소시키기 위한 방법
CN103973612A (zh) 近区反射自干扰信号抵消方法及装置
Omer et al. A PA-noise cancellation technique for next generation highly integrated RF front-ends
EP3866422B1 (en) Method, device and system for interference elimination
US9906262B2 (en) All-analog and hybrid radio interference cancellation using cables, attenuators and power splitters
KR101060585B1 (ko) 반향 제거 장치를 갖는 무선 중계기 및 반향 신호 제거 방법
Collins et al. Practical insights on full-duplex personal wireless communications gained from operational experience in the satellite environment
Kiayani et al. Active RF cancellation of nonlinear TX leakage in FDD transceivers
CN112368985B (zh) 一种用于无线通信的系统和方法
US11606116B2 (en) Hybrid self-interference cancelation in frequency division duplexing system
KR101090766B1 (ko) 동일채널 중계장치 및 그 방법
Diakité et al. Cancelación de Auto-Interferencia en Transceptores MIMO Full Dúplex
Shin Feasibility of a Full-Duplex Relay Based on Direct Interference Subtraction
Sui et al. A scheme to decrease the taps' number for adaptive filter in an interference cancellation repeater for mobile communication systems
CN111131103A (zh) 一种多模信号干扰消除方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013835969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015112618

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015004904

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015004904

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150305