WO2014034287A1 - Fuse - Google Patents

Fuse Download PDF

Info

Publication number
WO2014034287A1
WO2014034287A1 PCT/JP2013/068820 JP2013068820W WO2014034287A1 WO 2014034287 A1 WO2014034287 A1 WO 2014034287A1 JP 2013068820 W JP2013068820 W JP 2013068820W WO 2014034287 A1 WO2014034287 A1 WO 2014034287A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
fuse
wiring
low melting
point metal
Prior art date
Application number
PCT/JP2013/068820
Other languages
French (fr)
Japanese (ja)
Inventor
番場 真一郎
酒井 範夫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014532868A priority Critical patent/JPWO2014034287A1/en
Priority to KR1020157003361A priority patent/KR20150029023A/en
Publication of WO2014034287A1 publication Critical patent/WO2014034287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • H01H85/045General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified cartridge type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • H01H85/0047Heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/10Fusible members characterised by the shape or form of the fusible member with constriction for localised fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H85/463Circuit arrangements not adapted to a particular application of the protective device with printed circuit fuse

Definitions

  • the present invention relates to a fuse.
  • Patent Document 1 As an example of a fuse, first and second electrode portions disposed on an insulating substrate, a metal wiring portion that connects the first electrode portion and the second electrode portion, and A fuse including a low melting point metal part disposed on a part of a metal wiring part is described.
  • An object of the present invention is to provide a fuse capable of reliably interrupting an overcurrent.
  • the fuse according to the present invention includes an insulating substrate, wiring, a low melting point metal part, and an insulating layer.
  • the wiring is arranged on one main surface of the insulating substrate.
  • the low melting point metal part is provided on the wiring.
  • the low melting point metal part has a lower melting point than the wiring.
  • the low melting point metal part dissolves the wiring when it becomes a melt.
  • the insulating layer is disposed between the wiring and the low melting point metal part.
  • the melting point of the insulating layer is higher than the melting point of the low melting point metal part.
  • the melting point of the insulating layer is 180 ° C. to 350 ° C.
  • the insulating layer is made of a thermoplastic resin.
  • the fuse further includes a second insulating layer that covers the low melting point metal part and has a melting point higher than that of the low melting point metal part.
  • the fuse further includes a heating element for heating the low melting point metal part.
  • the low melting point metal part is mainly composed of Sn.
  • the insulating layer is provided over the entire portion where the wiring and the low melting point metal portion overlap each other.
  • FIG. 1 is a schematic plan view of a fuse in an embodiment of the present invention.
  • FIG. 2 is a schematic back view of a fuse in one embodiment of the present invention.
  • 3 is a schematic cross-sectional view taken along line III-III in FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a schematic plan view for explaining the shape of the second electrode layer in one embodiment of the present invention.
  • FIG. 7 is a schematic plan view for explaining the shapes of the first electrode layer and the heating element in one embodiment of the present invention.
  • FIG. 8 is a schematic circuit diagram of a fuse in one embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a fuse in the first modification.
  • FIG. 10 is a schematic cross-sectional view of a fuse in the second modification.
  • FIG. 1 is a schematic plan view of a fuse in the present embodiment.
  • FIG. 2 is a schematic rear view of the fuse in the present embodiment.
  • 3 is a schematic cross-sectional view taken along line III-III in FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a schematic plan view for explaining the shape of the second electrode layer in the present embodiment.
  • FIG. 7 is a schematic plan view for explaining the shapes of the first electrode layer and the heating element in the present embodiment.
  • FIG. 8 is a schematic circuit diagram of the fuse in the present embodiment. In FIG. 6 and FIG. 7, drawing of members located on the members to be explained is omitted.
  • the fuse 1 has a wiring 13 connected between a first terminal 11 and a second terminal 12.
  • fuse electrode portions 13a and 13b are connected in series.
  • the fuse electrode portions 13a and 13b are blown when an overcurrent flows through the fuse 1 or when a signal for causing the fuse function to be developed is input to the fuse 1, and the first terminal 11 and the second terminal 12 is an insulating part.
  • the fuse electrode portions 13a and 13b is melted.
  • the 1st terminal 11 and the 2nd terminal 12 are insulated. Therefore, the fuse 1 functions as a passive element that detects an overcurrent and automatically disconnects the wiring 13.
  • the thickness of the wiring 13 can be set to about 5 ⁇ m to 20 ⁇ m, for example.
  • connection point 13 c between the fuse electrode portion 13 a and the fuse electrode portion 13 b is connected to the fourth terminal 16.
  • a heating element 15 made of a resistor is provided between the third terminal 14 and the connection point 13c.
  • the heating element 15 generates heat when electric power is applied between the third terminal 14 and at least one of the first and second terminals 11 and 12. Thereby, at least one of the fuse electrode portion 13a and the fuse electrode portion 13b is melted, and the first terminal 11 and the second terminal 12 are insulated. Therefore, the fuse 1 also functions as an active element that detects an overcurrent and actively cuts the wiring 13.
  • the fuse according to the present invention may function only as a passive element or may function only as an active element.
  • the fuse 1 includes an insulating substrate 20.
  • the insulating substrate 20 can be configured by a ceramic substrate such as an alumina substrate, a resin substrate, or the like, for example.
  • the insulating substrate 20 may be a multilayer substrate having wiring inside.
  • the insulating substrate 20 has a first main surface 20a and a second main surface 20b. As shown in FIG. 2, the first to fourth terminals 11, 12, 14, and 16 are disposed on the second main surface 20b. The fourth terminal 16 is connected to a connection point between the heating element 15 and the connection point 13c shown in FIG.
  • the first to fourth terminals 11, 12, 14, and 16 can be made of an appropriate conductive material such as Ag, AgPt, AgPd, or Cu.
  • the thickness of the first to fourth terminals 11, 12, 14, and 16 can be, for example, about 10 ⁇ m to 20 ⁇ m.
  • electrodes 21 to 24 are provided on the first main surface 20a.
  • the electrode 21 is connected to the first terminal 11 by a side electrode 25 and a via hole electrode 26 (see FIG. 2).
  • the electrode 22 is connected to the second terminal 12 by a side electrode 27 and a via hole electrode 28.
  • the electrode 23 is connected to the third terminal 14 by a side electrode 29.
  • the electrode 24 is connected to the fourth terminal 16 by a side electrode 30.
  • Each of the electrodes 21 to 24 can be made of an appropriate conductive material such as Ag, AgPt, AgPd, or Cu.
  • the heating element 15 connected between the electrode 23 and the electrode 24 is provided on the main surface 20 a.
  • the electrode 23 and the heating element 15 are connected by a wiring 31.
  • the electrode 24 and the heating element 15 are connected by a wiring 32.
  • the heating element 15 is supported by the insulating substrate 20.
  • the heating element 15, for example, can be constituted by a resistive heating element consisting of RuO 2, AgPd, or the like.
  • An electrode layer 35 (see FIGS. 3 to 6) is provided on the electrodes 23 and 24, the heating element 15, and the wirings 31 and 32.
  • An insulating layer 36 is disposed between the electrode layer 35 and the electrodes 23 and 24 and the wirings 31 and 32.
  • the insulating layer 36 is provided on the entire portion where the wirings 31 and 32 and the low melting point metal parts 41 and 42 overlap.
  • an opening or the like is formed in the insulating layer, and the wiring and the low melting point metal part may be connected to such an extent that the electrical resistance of the wiring does not decrease too much as a whole.
  • the insulating layer 36 is provided with a through hole 36 a.
  • the through hole 36a is connected to each of the heating element 15 and the wiring 13 (specifically, the connection point 13c).
  • the through hole 36a may be provided with a substantially constant diameter in the direction in which the central axis extends, or may be provided in a tapered shape.
  • the through hole 36a may be provided in a tapered shape that tapers toward the insulating substrate 20 side, for example.
  • the thickness of the insulating layer 36 can be set to about 15 ⁇ m to 30 ⁇ m, for example.
  • the electrode layer 35 includes a wiring 13 that connects the electrode 21 and the electrode 22.
  • the wiring 13 includes a fuse electrode portion 13a and a fuse electrode portion 13b.
  • a connection point 13c between the fuse electrode portion 13a and the fuse electrode portion 13b and the electrode 24 are connected by an electrode 37 shown in FIGS.
  • the connection point 13c is connected to the heating element 15 through a high thermal conductor 38 disposed in the through hole 36a.
  • the thermal conductivity of the high thermal conductor 38 is higher than the thermal conductivity of the insulating layer 36.
  • the high thermal conductor 38 can be made of, for example, a metal.
  • the high thermal conductor 38 and the wiring 13 are integrally provided. In this case, the high thermal conductor 38 can be easily provided.
  • the thickness of the electrode layer 35 can be set to about 5 ⁇ m to 20 ⁇ m, for example.
  • low melting point metal parts 41 and 42 are provided on the fuse electrode parts 13a and 13b of the wiring 13, respectively.
  • the low melting point metal parts 41 and 42 are made of a low melting point metal that has a melting point lower than that of the wiring 13 and that melts the wiring 13 when it becomes a melt.
  • the low melting point metal may be composed mainly of Sn, for example.
  • Specific examples of such low melting point metals include Sn alloys such as SnSb, SnCu, SnAg, SnAgCu, SnCuNi, and Bi alloys such as BiAg, BiSb, BiZn.
  • the thickness of the low melting point metal parts 41, 42 can be set to about 0.1 mm to 0.5 mm, for example.
  • a protective film such as a flux layer, an antioxidant film, or the like may be provided on the low melting point metal parts 41 and 42 so as to cover at least a part of the low melting point metal parts 41 and 42.
  • insulating layers 51 and 52 are arranged between the wiring 13 and the low melting point metal portions 41 and 42.
  • the melting points of the insulating layers 51 and 52 are higher than the melting points of the low melting point metal parts 41 and 42.
  • the melting points of the insulating layers 51 and 52 are preferably 180 ° C. to 350 ° C., and more preferably 220 ° C. to 320 ° C.
  • the insulating layers 51 and 52 can be made of an appropriate insulating material, but are preferably made of, for example, a thermoplastic resin.
  • thermoplastic resin preferably used for forming the insulating layers 51 and 52 examples include polyester resins such as polyethylene terephthalate (PET, melting point 264 ° C.), polybutylene terephthalate (PBT, melting point 232 ° C.), and polyvinyl chloride.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • polyvinyl chloride examples include polyvinyl chloride.
  • the thickness of the insulating layers 51 and 52 can be, for example, about 10 ⁇ m to 200 ⁇ m, preferably about 20 to 150 ⁇ m.
  • metal films 61 to 64 are disposed outside the insulating layers 51 and 52.
  • the metal films 61 to 64 are preferably made of, for example, a metal or alloy having high wettability to the melt of the low melting point metal parts 41 and 42 such as Ag, AgPt, AgPd, and Cu.
  • the metal films 61 to 64 are preferably not easily dissolved in the melt of the low melting point metal parts 41 and 42, and are particularly preferably composed of AgPt, AgPd, or the like.
  • the metal films 61 to 64 are provided on both sides of the insulating layers 51 and 52 in the width direction of the wiring 13.
  • the metal films 61 and 62 are provided on both sides of the insulating layer 51 in the width direction of the wiring 13.
  • the metal films 61 and 62 are provided so as to sandwich the fuse electrode portion 13a.
  • the low melting point metal part 41 is provided in contact with the metal films 61 and 62.
  • the low melting point metal portion 41 is provided so as to straddle the insulating layer 51 and the metal film 62 from the top of the metal film 61.
  • Metal films 63 and 64 are provided on both sides of the insulating layer 52 in the width direction of the wiring 13. In the width direction of the wiring 13, the metal films 63 and 64 are provided so as to sandwich the fuse electrode portion 13b.
  • the low melting point metal part 42 is provided in contact with the metal films 63 and 64. Specifically, the low melting point metal part 42 is provided across the insulating layer 52 and the metal film 64 from the metal film 63.
  • the metal films 61 to 64 may be formed of a laminate of a plurality of metal films.
  • the plurality of metal films constituting the metal films 61 to 64 may include a plurality of types of metal films having different melting points.
  • the metal films 61 to 64 are provided on the first metal film and the first metal film, and may include a second metal film having a melting point lower than that of the first metal film. In that case, the second metal film may reach the insulating layers 51 and 52.
  • the thickness of the metal films 61 to 64 can be set to about 20 ⁇ m to 40 ⁇ m, for example.
  • a protective layer 70 surrounding each of the region provided with the low melting point metal part 41 and the region provided with the low melting point metal part 42 is provided.
  • the thickness of the protective layer 70 can be, for example, about 10 ⁇ m to 20 ⁇ m.
  • the fuse electrode portions 13a and 13b provided narrowly generate heat. Due to this heat generation, the low melting point metal parts 41 and 42 are heated and melted. Further, the insulating layers 51 and 52 are also melted, and the low melting point metal melt comes into contact with the fuse electrode portions 13a and 13b. As a result, the fuse electrode portions 13a and 13b are dissolved in the melt of the low melting point metal, and the wiring 13 is melted. As a result, a fuse function appears.
  • insulating layers 51 and 52 are provided between the wiring 13 and the low melting point metal parts 41 and 42.
  • the insulating layer 51, 52 electrically insulates the wiring 13 from the low melting point metal parts 41, 42.
  • the specific resistance of the wiring 13 is large. Therefore, the wiring 13 tends to generate heat when an overcurrent flows between the first terminal 11 and the second terminal 12. Therefore, in the fuse 1, when an overcurrent flows between the first terminal 11 and the second terminal 12, the fuse function appears with high certainty.
  • the melting points of the insulating layers 51 and 52 are higher than the melting points of the low melting point metal parts 41 and 42. For this reason, it is suppressed effectively that the specific resistance of the wiring 13 falls because the low melting-point metal parts 41 and 42 and the wiring 13 contact until the insulating layers 51 and 52 melt
  • the melting points of the insulating layers 51 and 52 are preferably higher by 10 ° C. than the melting points of the low melting point metal parts 41 and 42, and more preferably higher by 20 ° C. or more.
  • the melting points of the insulating layers 51 and 52 are too high relative to the melting points of the low melting point metal parts 41 and 42, the insulating layers 51 and 52 are difficult to melt, and the low melting point metal melt and the wiring 13 are difficult to contact.
  • the fuse function may be difficult to develop.
  • the melting points of the insulating layers 51 and 52 are preferably not higher than the melting point of the low melting point metal portions 41 and 42 + 50 ° C., more preferably not higher than the melting point of the low melting point metal portions 41 and 42 + 30 ° C.
  • the melting points of the insulating layers 51 and 52 are preferably within a range of 180 ° C. to 350 ° C., more preferably within a range of 220 ° C. to 320 ° C., and a range of 260 ° C. to 280 ° C. More preferably, it is within.
  • the fuse 1 metal films 61 to 64 are disposed on the insulating substrate 20 outside the insulating layers 51 and 52.
  • the low melting point metal melt contacts the metal films 61 to 64, the low melting point metal melt is captured by the metal films 61 to 64. Therefore, in the fuse 1, it is possible to reliably keep the melt of the low melting point metal in a region where it can come into contact with the wiring 13. Therefore, in the fuse 1, the fuse function can be expressed with high certainty.
  • the low melting point metal portions 41 and 42 are preferably provided so as to be in contact with the metal films 61 to 64.
  • the metal films 61 to 64 are preferably provided on both sides of the insulating layers 51 and 52 in the width direction of the wiring 13. In the width direction of the wiring 13, the metal films 61 to 64 are preferably provided on both sides of the fuse electrode portions 13a and 13b.
  • the low melting point metal parts 41 and 42 are preferably provided across the metal film 61 and the metal film 62, and the metal film 63 and the metal film 64 provided on both sides of the wiring 13.
  • the fuse function can be exhibited by causing the heating element 15 to generate heat.
  • the heating element 15 is caused to generate heat by applying electric power between the third terminal 14 and the terminals 11, 12 or 16. Due to the heat from the heating element 15, the low melting point metal parts 41 and 42 are melted and the fuse electrode parts 13 a and 13 b of the wiring 13 are melted.
  • the heating element 15 and the wiring 13 are connected by a high thermal conductor 38 that is provided in the through hole 36 a and has a higher thermal conductivity than the insulating layer 36. For this reason, the heat of the heating element 15 is easily transmitted to the low melting point metal parts 41 and 42 via the wiring 13. Therefore, in the fuse 1, the fuse function is expressed with high certainty even when the heating element 15 is heated to actively develop the fuse function.
  • the through hole 36a is provided so as not to overlap the low melting point metal parts 41 and 42 in a plan view.
  • the high thermal conductor 38 is conductive in order to melt the wiring 13 and insulate the first terminal 11 and the second terminal 12 from each other. In the case where it has the property, it is necessary to blow up to the high thermal conductor 38 together with the wiring 13.
  • the through hole 36a is provided so as not to overlap the low melting point metal parts 41 and 42, the first terminal 11 and the second terminal 12 are insulated if only the wiring 13 is melted. Is done. Accordingly, the fuse function is more easily exhibited.
  • FIG. 9 is a schematic cross-sectional view of a fuse in the first modification.
  • the fuse 1 a covers the low melting point metal parts 41 and 42, and may further include an insulating layer 80 having a melting point higher than that of the low melting point metal parts 41 and 42.
  • an insulating layer 80 By providing this insulating layer 80, it is possible to prevent the low melting point metal portions 41 and 42 from being melted and spreading in the unintended direction of the low melting point metal melt.
  • the melting point of the insulating layer 80 is preferably higher than the melting point of the low melting point metal parts 41, 42 by 10 ° C. or more, more preferably 20 ° C. or more.
  • the insulating layer 80 can be made of an insulating material that can be used for the insulating layers 51 and 52, such as polyethylene terephthalate, polybutylene terephthalate, and polycarbonate.
  • FIG. 10 is a schematic cross-sectional view of a fuse in the second modification.
  • the heating element 15 is provided on the insulating substrate 20 in the fuse 1 according to the above embodiment.
  • the present invention is not limited to this configuration.
  • the heating element 15 is provided inside the insulating substrate 20 in the fuse 1 b according to this modification.
  • a portion located between the heating element 15 and the wiring 13 of the insulating substrate 20 constitutes an insulating layer 36. Even in such a case, substantially the same effect as the above embodiment can be obtained.

Abstract

Provided is a fuse which can reliably cut off overcurrent. A fuse (1) is provided with an insulating substrate (20), wiring (13), low melting point metal parts (41, 42), and insulating layers (51, 52). The wiring (13) is arranged on one main surface (20a) of the insulating substrate (20). The low melting point metal parts (41, 42) are disposed on the wiring (13). The low melting point metal parts (41, 42) have a lower melting point than the wiring (13). The low melting point metal parts (41, 42) dissolve the wiring (13) when the low melting point metal parts (41, 42) turn into melt. The insulating layers (51, 52) are disposed between the wiring (13) and the low melting point metal parts (41, 42).

Description

ヒューズfuse
 本発明は、ヒューズに関する。 The present invention relates to a fuse.
 従来、電子部品に対してヒューズを接続し、過電流から電子部品を保護する試みがなされている。例えば、特許文献1には、ヒューズの一例として、絶縁基板上に配された第1及び第2の電極部と、第1の電極部と第2の電極部とを接続する金属配線部と、金属配線部の一部の上に配された低融点金属部とを備えるヒューズが記載されている。 Conventionally, attempts have been made to protect electronic components from overcurrent by connecting fuses to the electronic components. For example, in Patent Document 1, as an example of a fuse, first and second electrode portions disposed on an insulating substrate, a metal wiring portion that connects the first electrode portion and the second electrode portion, and A fuse including a low melting point metal part disposed on a part of a metal wiring part is described.
特開2012-18777号公報JP 2012-18777 A
 しかしながら、特許文献1に記載のヒューズでは、金属配線部の上に、導電性を有する低融点金属部が設けられているため、金属配線部の比抵抗が低く、過電流が流れても発熱しにくい。このため、特許文献1に記載のヒューズには、断線しにくい、すなわち、過電流を確実に遮断できない場合があるという問題がある。 However, in the fuse described in Patent Document 1, since the low melting point metal part having conductivity is provided on the metal wiring part, the specific resistance of the metal wiring part is low, and heat is generated even when an overcurrent flows. Hateful. For this reason, the fuse described in Patent Document 1 has a problem that it is difficult to break, that is, the overcurrent cannot be reliably interrupted.
 本発明の目的は、過電流を確実に遮断できるヒューズを提供することにある。 An object of the present invention is to provide a fuse capable of reliably interrupting an overcurrent.
 本発明に係るヒューズは、絶縁性基板と、配線と、低融点金属部と、絶縁層とを備える。配線は、絶縁性基板の一主面上に配されている。低融点金属部は、配線の上に設けられている。低融点金属部は、配線よりも低い融点を有する。低融点金属部は、融液となった際に配線を溶解させる。絶縁層は、配線と低融点金属部との間に配されている。 The fuse according to the present invention includes an insulating substrate, wiring, a low melting point metal part, and an insulating layer. The wiring is arranged on one main surface of the insulating substrate. The low melting point metal part is provided on the wiring. The low melting point metal part has a lower melting point than the wiring. The low melting point metal part dissolves the wiring when it becomes a melt. The insulating layer is disposed between the wiring and the low melting point metal part.
 本発明に係るヒューズのある特定の局面では、絶縁層の融点は、低融点金属部の融点よりも高い。 In a specific aspect of the fuse according to the present invention, the melting point of the insulating layer is higher than the melting point of the low melting point metal part.
 本発明に係るヒューズの他の特定の局面では、絶縁層の融点は、180℃~350℃である。 In another specific aspect of the fuse according to the present invention, the melting point of the insulating layer is 180 ° C. to 350 ° C.
 本発明に係るヒューズのさらに他の特定の局面では、絶縁層は、熱可塑性樹脂により構成されている。 In yet another specific aspect of the fuse according to the present invention, the insulating layer is made of a thermoplastic resin.
 本発明に係るヒューズのさらに別の特定の局面では、ヒューズは、低融点金属部を覆っており、低融点金属部の融点よりも高い融点を有する第2の絶縁層をさらに備える。 In yet another specific aspect of the fuse according to the present invention, the fuse further includes a second insulating layer that covers the low melting point metal part and has a melting point higher than that of the low melting point metal part.
 本発明に係るヒューズのまた別の特定の局面では、ヒューズは、低融点金属部を加熱する発熱体をさらに備える。 In another specific aspect of the fuse according to the present invention, the fuse further includes a heating element for heating the low melting point metal part.
 本発明に係るヒューズのさらにまた他の特定の局面では、低融点金属部は、Snを主成分とする。 In yet another specific aspect of the fuse according to the present invention, the low melting point metal part is mainly composed of Sn.
 本発明に係るヒューズのさらにまた別の特定の局面では、絶縁層は、配線と低融点金属部とが重なっている部分の全体に設けられている。 In yet another specific aspect of the fuse according to the present invention, the insulating layer is provided over the entire portion where the wiring and the low melting point metal portion overlap each other.
 本発明によれば、過電流を確実に遮断できるヒューズを提供することができる。 According to the present invention, it is possible to provide a fuse capable of reliably interrupting overcurrent.
図1は、本発明の一実施形態におけるヒューズの略図的平面図である。FIG. 1 is a schematic plan view of a fuse in an embodiment of the present invention. 図2は、本発明の一実施形態におけるヒューズの略図的裏面図である。FIG. 2 is a schematic back view of a fuse in one embodiment of the present invention. 図3は、図1の線III-IIIにおける略図的断面図である。3 is a schematic cross-sectional view taken along line III-III in FIG. 図4は、図1の線IV-IVにおける略図的断面図である。4 is a schematic cross-sectional view taken along line IV-IV in FIG. 図5は、図1の線V-Vにおける略図的断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. 図6は、本発明の一実施形態における第2の電極層の形状を説明するための略図的平面図である。FIG. 6 is a schematic plan view for explaining the shape of the second electrode layer in one embodiment of the present invention. 図7は、本発明の一実施形態における第1の電極層及び発熱体の形状を説明するための略図的平面図である。FIG. 7 is a schematic plan view for explaining the shapes of the first electrode layer and the heating element in one embodiment of the present invention. 図8は、本発明の一実施形態におけるヒューズの略図的回路図である。FIG. 8 is a schematic circuit diagram of a fuse in one embodiment of the present invention. 図9は、第1の変形例におけるヒューズの略図的断面図である。FIG. 9 is a schematic cross-sectional view of a fuse in the first modification. 図10は、第2の変形例におけるヒューズの略図的断面図である。FIG. 10 is a schematic cross-sectional view of a fuse in the second modification.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 図1は、本実施形態におけるヒューズの略図的平面図である。図2は、本実施形態におけるヒューズの略図的裏面図である。図3は、図1の線III-IIIにおける略図的断面図である。図4は、図1の線IV-IVにおける略図的断面図である。図5は、図1の線V-Vにおける略図的断面図である。図6は、本実施形態における第2の電極層の形状を説明するための略図的平面図である。図7は、本実施形態における第1の電極層及び発熱体の形状を説明するための略図的平面図である。図8は、本実施形態におけるヒューズの略図的回路図である。なお、図6及び図7においては、説明対象となる部材の上に位置している部材の描画を省略している。 FIG. 1 is a schematic plan view of a fuse in the present embodiment. FIG. 2 is a schematic rear view of the fuse in the present embodiment. 3 is a schematic cross-sectional view taken along line III-III in FIG. 4 is a schematic cross-sectional view taken along line IV-IV in FIG. FIG. 5 is a schematic cross-sectional view taken along line VV in FIG. FIG. 6 is a schematic plan view for explaining the shape of the second electrode layer in the present embodiment. FIG. 7 is a schematic plan view for explaining the shapes of the first electrode layer and the heating element in the present embodiment. FIG. 8 is a schematic circuit diagram of the fuse in the present embodiment. In FIG. 6 and FIG. 7, drawing of members located on the members to be explained is omitted.
 図8に示されるように、ヒューズ1は、第1の端子11と、第2の端子12との間に接続された配線13を有する。配線13において、ヒューズ電極部13a、13bが直列に接続されている。ここで、ヒューズ電極部13a、13bは、ヒューズ1に過電流が流れた際や、ヒューズ1にヒューズ機能を発現させる信号が入力された際に溶断し、第1の端子11と第2の端子12との間を絶縁する部分である。例えば、第1の端子11と第2の端子12との間に過電流が流れると、ヒューズ電極部13a、13bの少なくとも一方が溶断する。これにより、第1の端子11と第2の端子12とが絶縁される。このため、ヒューズ1は、過電流を検知し、配線13が自動的に切断される受動素子として機能する。なお、配線13の厚みは、例えば、5μm~20μm程度とすることができる。 As shown in FIG. 8, the fuse 1 has a wiring 13 connected between a first terminal 11 and a second terminal 12. In the wiring 13, fuse electrode portions 13a and 13b are connected in series. Here, the fuse electrode portions 13a and 13b are blown when an overcurrent flows through the fuse 1 or when a signal for causing the fuse function to be developed is input to the fuse 1, and the first terminal 11 and the second terminal 12 is an insulating part. For example, when an overcurrent flows between the first terminal 11 and the second terminal 12, at least one of the fuse electrode portions 13a and 13b is melted. Thereby, the 1st terminal 11 and the 2nd terminal 12 are insulated. Therefore, the fuse 1 functions as a passive element that detects an overcurrent and automatically disconnects the wiring 13. The thickness of the wiring 13 can be set to about 5 μm to 20 μm, for example.
 ヒューズ電極部13aとヒューズ電極部13bとの間の接続点13cは、第4の端子16に接続されている。第3の端子14と接続点13cとの間には、抵抗により構成された発熱体15が設けられている。第3の端子14と、第1及び第2の端子11,12の少なくとも一方との間に電力が付与された際に発熱体15が発熱する。これにより、ヒューズ電極部13aとヒューズ電極部13bとのうちの少なくとも一方が溶断し、第1の端子11と第2の端子12とが絶縁される。このため、ヒューズ1は、過電流を検知し、能動的に配線13を切断する能動素子としても機能する。なお、本発明に係るヒューズは、受動素子としてのみ機能するものであってもよいし、能動素子としてのみ機能するものであってもよい。 The connection point 13 c between the fuse electrode portion 13 a and the fuse electrode portion 13 b is connected to the fourth terminal 16. A heating element 15 made of a resistor is provided between the third terminal 14 and the connection point 13c. The heating element 15 generates heat when electric power is applied between the third terminal 14 and at least one of the first and second terminals 11 and 12. Thereby, at least one of the fuse electrode portion 13a and the fuse electrode portion 13b is melted, and the first terminal 11 and the second terminal 12 are insulated. Therefore, the fuse 1 also functions as an active element that detects an overcurrent and actively cuts the wiring 13. The fuse according to the present invention may function only as a passive element or may function only as an active element.
 次に、ヒューズ1の具体的構成について、図1~図7を参照しながら詳細に説明する。 Next, a specific configuration of the fuse 1 will be described in detail with reference to FIGS.
 図1~図5に示されるように、ヒューズ1は、絶縁性基板20を備えている。絶縁性基板20は、例えば、アルミナ基板などのセラミック基板や樹脂基板等により構成することができる。絶縁性基板20は、内部に配線を有する多層基板であってもよい。 As shown in FIGS. 1 to 5, the fuse 1 includes an insulating substrate 20. The insulating substrate 20 can be configured by a ceramic substrate such as an alumina substrate, a resin substrate, or the like, for example. The insulating substrate 20 may be a multilayer substrate having wiring inside.
 絶縁性基板20は、第1の主面20aと、第2の主面20bとを有する。図2に示されるように、第2の主面20bの上には、第1~第4の端子11,12,14,16が配されている。第4の端子16は、図8に示す発熱体15と接続点13cとの間の接続点に接続されている。なお、第1~第4の端子11,12,14,16は、それぞれ、Ag,AgPt,AgPd,Cu等の適宜の導電材料により構成することができる。第1~第4の端子11,12,14,16の厚みは、例えば、10μm~20μm程度とすることができる。 The insulating substrate 20 has a first main surface 20a and a second main surface 20b. As shown in FIG. 2, the first to fourth terminals 11, 12, 14, and 16 are disposed on the second main surface 20b. The fourth terminal 16 is connected to a connection point between the heating element 15 and the connection point 13c shown in FIG. The first to fourth terminals 11, 12, 14, and 16 can be made of an appropriate conductive material such as Ag, AgPt, AgPd, or Cu. The thickness of the first to fourth terminals 11, 12, 14, and 16 can be, for example, about 10 μm to 20 μm.
 図1及び図6に示されるように、第1の主面20aの上には、電極21~24が設けられている。電極21は、側面電極25及びビアホール電極26(図2を参照)によって第1の端子11と接続されている。電極22は、側面電極27及びビアホール電極28によって第2の端子12と接続されている。電極23は、側面電極29によって第3の端子14に接続されている。電極24は、側面電極30によって第4の端子16に接続されている。なお、電極21~24は、それぞれ、Ag,AgPt,AgPd,Cu等の適宜の導電材料により構成することができる。 As shown in FIGS. 1 and 6, electrodes 21 to 24 are provided on the first main surface 20a. The electrode 21 is connected to the first terminal 11 by a side electrode 25 and a via hole electrode 26 (see FIG. 2). The electrode 22 is connected to the second terminal 12 by a side electrode 27 and a via hole electrode 28. The electrode 23 is connected to the third terminal 14 by a side electrode 29. The electrode 24 is connected to the fourth terminal 16 by a side electrode 30. Each of the electrodes 21 to 24 can be made of an appropriate conductive material such as Ag, AgPt, AgPd, or Cu.
 図7に示されるように、主面20aの上には、電極23と電極24との間に接続された発熱体15が設けられている。電極23と発熱体15とは、配線31により接続されている。電極24と発熱体15とは、配線32により接続されている。発熱体15は、絶縁性基板20によって支持されている。なお、発熱体15は、例えば、RuO,AgPd等からなる抵抗発熱体により構成することができる。 As shown in FIG. 7, the heating element 15 connected between the electrode 23 and the electrode 24 is provided on the main surface 20 a. The electrode 23 and the heating element 15 are connected by a wiring 31. The electrode 24 and the heating element 15 are connected by a wiring 32. The heating element 15 is supported by the insulating substrate 20. Incidentally, the heating element 15, for example, can be constituted by a resistive heating element consisting of RuO 2, AgPd, or the like.
 電極23,24、発熱体15及び配線31,32の上には、電極層35(図3~図6を参照)が設けられている。電極層35と、電極23,24及び配線31,32との間には、絶縁層36が配されている。本実施形態では、絶縁層36は、配線31,32と低融点金属部41,42とが重なっている部分の全体に設けられている。もっとも、本発明においては、例えば、絶縁層に開口等が形成されており、配線の電気抵抗が全体として低下しすぎない程度に配線と低融点金属部とが接続されていてもよい。図3及び図5に示されるように、絶縁層36には、貫通孔36aが設けられている。この貫通孔36aは、発熱体15と、配線13(詳細には、接続点13c)とのそれぞれに接続されている。貫通孔36aは、中心軸の延びる方向において、直径が略一定に設けられていてもよいし、テーパ状に設けられていてもよい。貫通孔36aは、例えば、絶縁性基板20側に向かって先細るテーパ状に設けられていてもよい。なお、絶縁層36の厚みは、例えば、15μm~30μm程度とすることができる。 An electrode layer 35 (see FIGS. 3 to 6) is provided on the electrodes 23 and 24, the heating element 15, and the wirings 31 and 32. An insulating layer 36 is disposed between the electrode layer 35 and the electrodes 23 and 24 and the wirings 31 and 32. In the present embodiment, the insulating layer 36 is provided on the entire portion where the wirings 31 and 32 and the low melting point metal parts 41 and 42 overlap. However, in the present invention, for example, an opening or the like is formed in the insulating layer, and the wiring and the low melting point metal part may be connected to such an extent that the electrical resistance of the wiring does not decrease too much as a whole. As shown in FIGS. 3 and 5, the insulating layer 36 is provided with a through hole 36 a. The through hole 36a is connected to each of the heating element 15 and the wiring 13 (specifically, the connection point 13c). The through hole 36a may be provided with a substantially constant diameter in the direction in which the central axis extends, or may be provided in a tapered shape. The through hole 36a may be provided in a tapered shape that tapers toward the insulating substrate 20 side, for example. The thickness of the insulating layer 36 can be set to about 15 μm to 30 μm, for example.
 図5及び図6に示されるように、電極層35は、電極21と電極22とを接続している配線13を含む。配線13は、ヒューズ電極部13aとヒューズ電極部13bとを含む。ヒューズ電極部13aとヒューズ電極部13bとの接続点13cと、電極24とは、図3及び図6に示される電極37によって接続されている。また、接続点13cは、貫通孔36a内に配された高熱伝導体38を介して発熱体15と接続されている。高熱伝導体38の熱伝導率は、絶縁層36の熱伝導率よりも高い。高熱伝導体38は、例えば、金属により構成することができる。本実施形態では、高熱伝導体38と、配線13とが一体に設けられている。この場合、高熱伝導体38を容易に設けることができる。 As shown in FIGS. 5 and 6, the electrode layer 35 includes a wiring 13 that connects the electrode 21 and the electrode 22. The wiring 13 includes a fuse electrode portion 13a and a fuse electrode portion 13b. A connection point 13c between the fuse electrode portion 13a and the fuse electrode portion 13b and the electrode 24 are connected by an electrode 37 shown in FIGS. The connection point 13c is connected to the heating element 15 through a high thermal conductor 38 disposed in the through hole 36a. The thermal conductivity of the high thermal conductor 38 is higher than the thermal conductivity of the insulating layer 36. The high thermal conductor 38 can be made of, for example, a metal. In the present embodiment, the high thermal conductor 38 and the wiring 13 are integrally provided. In this case, the high thermal conductor 38 can be easily provided.
 なお、電極層35の厚みは、例えば、5μm~20μm程度とすることができる。 The thickness of the electrode layer 35 can be set to about 5 μm to 20 μm, for example.
 図1,図4及び図5に示されるように、配線13の各ヒューズ電極部13a、13bの上には、低融点金属部41,42が設けられている。低融点金属部41,42は、配線13よりも低い融点を有すると共に、融液となった際に配線13を融解させる低融点金属からなる。低融点金属は、例えば、Snを主成分とするものであってもよい。このような低融点金属の具体例としては、例えば,SnSb、SnCu、SnAg,SnAgCu,SnCuNi等のSn合金や、BiAg,BiSb,BiZn等のBi合金が挙げられる。低融点金属部41,42の厚みは、例えば、0.1mm~0.5mm程度とすることができる。 As shown in FIG. 1, FIG. 4 and FIG. 5, low melting point metal parts 41 and 42 are provided on the fuse electrode parts 13a and 13b of the wiring 13, respectively. The low melting point metal parts 41 and 42 are made of a low melting point metal that has a melting point lower than that of the wiring 13 and that melts the wiring 13 when it becomes a melt. The low melting point metal may be composed mainly of Sn, for example. Specific examples of such low melting point metals include Sn alloys such as SnSb, SnCu, SnAg, SnAgCu, SnCuNi, and Bi alloys such as BiAg, BiSb, BiZn. The thickness of the low melting point metal parts 41, 42 can be set to about 0.1 mm to 0.5 mm, for example.
 なお、低融点金属部41,42の上に、フラックス層等の保護膜や酸化防止膜等が低融点金属部41,42の少なくとも一部を覆うように設けられていてもよい。 Note that a protective film such as a flux layer, an antioxidant film, or the like may be provided on the low melting point metal parts 41 and 42 so as to cover at least a part of the low melting point metal parts 41 and 42.
 図4及び図5に示されるように、ヒューズ1では、配線13と、低融点金属部41,42との間に絶縁層51,52が配されている。絶縁層51,52の融点は、低融点金属部41,42の融点よりも高い。絶縁層51,52の融点は、180℃~350℃であることが好ましく、220℃~320℃であることがより好ましい。絶縁層51,52は、適宜の絶縁材料により構成することができるが、例えば、熱可塑性樹脂により構成されていることが好ましい。絶縁層51,52を構成するために好ましく用いられる熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET、融点264℃)、ポリブチレンテレフタレート(PBT,融点232℃)などのポリエステル系樹脂、ポリ塩化ビニル(融点180℃)などのビニル系樹脂、ポリスチレン(融点230℃)などのポリスチレン系樹脂、ナイロン6(登録商標、融点225℃)やナイロン66(登録商標、融点267℃)などのポリアミド系樹脂、ポリカーボネート(融点250℃)などのポリカーボネート系樹脂、ポリフッ化ビニリデン(融点210℃)、三フッ化塩化エチレン(融点220℃)などのフッ素系樹脂等が挙げられる。絶縁層51,52の厚みは、例えば、10μm~200μm、好ましくは20~150μm程度とすることができる。 4 and 5, in the fuse 1, insulating layers 51 and 52 are arranged between the wiring 13 and the low melting point metal portions 41 and 42. The melting points of the insulating layers 51 and 52 are higher than the melting points of the low melting point metal parts 41 and 42. The melting points of the insulating layers 51 and 52 are preferably 180 ° C. to 350 ° C., and more preferably 220 ° C. to 320 ° C. The insulating layers 51 and 52 can be made of an appropriate insulating material, but are preferably made of, for example, a thermoplastic resin. Examples of the thermoplastic resin preferably used for forming the insulating layers 51 and 52 include polyester resins such as polyethylene terephthalate (PET, melting point 264 ° C.), polybutylene terephthalate (PBT, melting point 232 ° C.), and polyvinyl chloride. (Melting point 180 ° C.) vinyl resin, polystyrene (melting point 230 ° C.) polystyrene resin, nylon 6 (registered trademark, melting point 225 ° C.) and nylon 66 (registered trademark, melting point 267 ° C.) polyamide resin, Examples thereof include polycarbonate resins such as polycarbonate (melting point 250 ° C.), and fluorine resins such as polyvinylidene fluoride (melting point 210 ° C.) and ethylene trifluoride chloride (melting point 220 ° C.). The thickness of the insulating layers 51 and 52 can be, for example, about 10 μm to 200 μm, preferably about 20 to 150 μm.
 図6に示されるように、絶縁性基板20上において、絶縁層51,52の外側には、金属膜61~64が配されている。この金属膜61~64は、例えば、Ag,AgPt,AgPd,Cu等の低融点金属部41,42の融液に対する濡れ性が高い金属や合金により構成されていることが好ましい。さらに、金属膜61~64は低融点金属部41,42の融液に溶解しにくいことが好ましく、特に、AgPt,AgPd等により構成されていることが好ましい。 As shown in FIG. 6, on the insulating substrate 20, metal films 61 to 64 are disposed outside the insulating layers 51 and 52. The metal films 61 to 64 are preferably made of, for example, a metal or alloy having high wettability to the melt of the low melting point metal parts 41 and 42 such as Ag, AgPt, AgPd, and Cu. Furthermore, the metal films 61 to 64 are preferably not easily dissolved in the melt of the low melting point metal parts 41 and 42, and are particularly preferably composed of AgPt, AgPd, or the like.
 金属膜61~64は、配線13の幅方向において、絶縁層51,52の両側に設けられている。本実施形態では、具体的には、配線13の幅方向において、金属膜61,62が絶縁層51の両側に設けられている。配線13の幅方向において、金属膜61,62は、ヒューズ電極部13aを挟むように設けられている。低融点金属部41は、金属膜61,62に接触するように設けられている。具体的には、低融点金属部41は、金属膜61の上から、絶縁層51及び金属膜62の上に跨がって設けられている。 The metal films 61 to 64 are provided on both sides of the insulating layers 51 and 52 in the width direction of the wiring 13. In the present embodiment, specifically, the metal films 61 and 62 are provided on both sides of the insulating layer 51 in the width direction of the wiring 13. In the width direction of the wiring 13, the metal films 61 and 62 are provided so as to sandwich the fuse electrode portion 13a. The low melting point metal part 41 is provided in contact with the metal films 61 and 62. Specifically, the low melting point metal portion 41 is provided so as to straddle the insulating layer 51 and the metal film 62 from the top of the metal film 61.
 配線13の幅方向において、金属膜63,64が絶縁層52の両側に設けられている。配線13の幅方向において、金属膜63,64は、ヒューズ電極部13bを挟むように設けられている。低融点金属部42は、金属膜63,64に接触するように設けられている。具体的には、低融点金属部42は、金属膜63の上から、絶縁層52及び金属膜64の上に跨がって設けられている。 Metal films 63 and 64 are provided on both sides of the insulating layer 52 in the width direction of the wiring 13. In the width direction of the wiring 13, the metal films 63 and 64 are provided so as to sandwich the fuse electrode portion 13b. The low melting point metal part 42 is provided in contact with the metal films 63 and 64. Specifically, the low melting point metal part 42 is provided across the insulating layer 52 and the metal film 64 from the metal film 63.
 なお、金属膜61~64は、複数の金属膜の積層体により構成されていてもよい。金属膜61~64を構成している複数の金属膜は、融点が異なる複数種類の金属膜を含んでいてもよい。金属膜61~64は、第1の金属膜と、第1の金属膜の上に設けられており、第1の金属膜よりも融点が低い第2の金属膜を有していてもよい。その場合、第2の金属膜は、絶縁層51,52の上にまで至っていてもよい。 Note that the metal films 61 to 64 may be formed of a laminate of a plurality of metal films. The plurality of metal films constituting the metal films 61 to 64 may include a plurality of types of metal films having different melting points. The metal films 61 to 64 are provided on the first metal film and the first metal film, and may include a second metal film having a melting point lower than that of the first metal film. In that case, the second metal film may reach the insulating layers 51 and 52.
 金属膜61~64の厚みは、例えば、20μm~40μm程度とすることができる。 The thickness of the metal films 61 to 64 can be set to about 20 μm to 40 μm, for example.
 図1に示されるように、低融点金属部41が設けられた領域と、低融点金属部42が設けられた領域とのそれぞれを包囲する保護層70が設けられている。この保護層70を設けることにより、低融点金属の融液が意図しない方向へ濡れ広がることを効果的に抑制することができる。保護層70の厚みは、例えば、10μm~20μm程度とすることができる。 As shown in FIG. 1, a protective layer 70 surrounding each of the region provided with the low melting point metal part 41 and the region provided with the low melting point metal part 42 is provided. By providing this protective layer 70, it is possible to effectively suppress the low melting point metal melt from spreading in an unintended direction. The thickness of the protective layer 70 can be, for example, about 10 μm to 20 μm.
 次に、ヒューズ1におけるヒューズ機能の発動について説明する。 Next, the activation of the fuse function in the fuse 1 will be described.
 例えば、第1の端子11と第2の端子12との間に過電流が流れると、幅細に設けられたヒューズ電極部13a、13bが発熱する。この発熱により、低融点金属部41,42が加熱され、融解する。また、絶縁層51,52も融解し、低融点金属の融液がヒューズ電極部13a、13bと接触する。その結果、ヒューズ電極部13a、13bが低融点金属の融液に溶解し、配線13が溶断する。これにより、ヒューズ機能が発現する。 For example, when an overcurrent flows between the first terminal 11 and the second terminal 12, the fuse electrode portions 13a and 13b provided narrowly generate heat. Due to this heat generation, the low melting point metal parts 41 and 42 are heated and melted. Further, the insulating layers 51 and 52 are also melted, and the low melting point metal melt comes into contact with the fuse electrode portions 13a and 13b. As a result, the fuse electrode portions 13a and 13b are dissolved in the melt of the low melting point metal, and the wiring 13 is melted. As a result, a fuse function appears.
 ヒューズ1では、配線13と低融点金属部41,42との間に絶縁層51,52が設けられている。この絶縁層51,52によって配線13が低融点金属部41,42から電気的に絶縁されている。このため、低融点金属部と配線とが電気的に接続されている場合とは異なり、配線13の比抵抗が大きい。よって、第1の端子11と第2の端子12との間に過電流が流れた際に配線13が発熱しやすい。従って、ヒューズ1では、第1の端子11と第2の端子12との間に過電流が流れた際に、ヒューズ機能が高い確実性で発現する。 In the fuse 1, insulating layers 51 and 52 are provided between the wiring 13 and the low melting point metal parts 41 and 42. The insulating layer 51, 52 electrically insulates the wiring 13 from the low melting point metal parts 41, 42. For this reason, unlike the case where the low melting point metal portion and the wiring are electrically connected, the specific resistance of the wiring 13 is large. Therefore, the wiring 13 tends to generate heat when an overcurrent flows between the first terminal 11 and the second terminal 12. Therefore, in the fuse 1, when an overcurrent flows between the first terminal 11 and the second terminal 12, the fuse function appears with high certainty.
 また、ヒューズ1では、絶縁層51,52の融点が低融点金属部41,42の融点よりも高い。このため、絶縁層51,52が融解するまで低融点金属部41,42と配線13とが接触することにより、配線13の比抵抗が低下することが効果的に抑制されている。従って、ヒューズ機能がより高い確実性で発現する。 In the fuse 1, the melting points of the insulating layers 51 and 52 are higher than the melting points of the low melting point metal parts 41 and 42. For this reason, it is suppressed effectively that the specific resistance of the wiring 13 falls because the low melting- point metal parts 41 and 42 and the wiring 13 contact until the insulating layers 51 and 52 melt | dissolve. Therefore, the fuse function is expressed with higher certainty.
 ヒューズ機能をさらに高い確実性で発現させる観点から、絶縁層51,52の融点が低融点金属部41,42の融点よりも10℃以上高いことが好ましく、20℃以上高いことがさらに好ましい。但し、絶縁層51,52の融点が低融点金属部41,42の融点に対して高すぎると、絶縁層51,52が融解しにくく、低融点金属の融液と配線13とが接触しにくくなり、かえってヒューズ機能が発現しにくくなる場合がある。従って、絶縁層51,52の融点は、低融点金属部41,42の融点+50℃以下であることが好ましく、低融点金属部41,42の融点+30℃以下であることがより好ましい。具体的には、絶縁層51,52の融点は、180℃~350℃の範囲内であることが好ましく、220℃~320℃の範囲内であることがより好ましく、260℃~280℃の範囲内であることがさらに好ましい。 From the viewpoint of expressing the fuse function with higher certainty, the melting points of the insulating layers 51 and 52 are preferably higher by 10 ° C. than the melting points of the low melting point metal parts 41 and 42, and more preferably higher by 20 ° C. or more. However, if the melting points of the insulating layers 51 and 52 are too high relative to the melting points of the low melting point metal parts 41 and 42, the insulating layers 51 and 52 are difficult to melt, and the low melting point metal melt and the wiring 13 are difficult to contact. On the contrary, the fuse function may be difficult to develop. Therefore, the melting points of the insulating layers 51 and 52 are preferably not higher than the melting point of the low melting point metal portions 41 and 42 + 50 ° C., more preferably not higher than the melting point of the low melting point metal portions 41 and 42 + 30 ° C. Specifically, the melting points of the insulating layers 51 and 52 are preferably within a range of 180 ° C. to 350 ° C., more preferably within a range of 220 ° C. to 320 ° C., and a range of 260 ° C. to 280 ° C. More preferably, it is within.
 ところで、低融点金属の融液により配線13を確実に溶断するためには、低融点金属の融液を配線13と接触し得る領域に確実にとどめておくことが重要である。しかしながら、低融点金属部41,42の下方に、低融点金属の融液の濡れ性が低い絶縁層51,52が設けられているため、低融点金属の融液が変位しやすい。そこで、ヒューズ1では、絶縁性基板20上において、絶縁層51,52の外側に金属膜61~64が配されている。低融点金属の融液が金属膜61~64に接触することにより、低融点金属の融液が、金属膜61~64により捕捉される。従って、ヒューズ1では、低融点金属の融液を配線13と接触し得る領域に確実にとどめておくことができる。従って、ヒューズ1では、ヒューズ機能を高い確実性で発現させることができる。 By the way, in order to surely melt the wiring 13 with the melt of the low melting point metal, it is important to keep the melt of the low melting point metal in an area where it can contact the wiring 13. However, since the insulating layers 51 and 52 having low wettability of the low melting point metal melt are provided below the low melting point metal portions 41 and 42, the low melting point metal melt is easily displaced. Therefore, in the fuse 1, metal films 61 to 64 are disposed on the insulating substrate 20 outside the insulating layers 51 and 52. When the low melting point metal melt contacts the metal films 61 to 64, the low melting point metal melt is captured by the metal films 61 to 64. Therefore, in the fuse 1, it is possible to reliably keep the melt of the low melting point metal in a region where it can come into contact with the wiring 13. Therefore, in the fuse 1, the fuse function can be expressed with high certainty.
 低融点金属の融液が金属膜61~64により確実に捕捉されるようにする観点からは、低融点金属部41,42が金属膜61~64に接触するように設けられていることが好ましい。配線13の幅方向において、金属膜61~64が絶縁層51,52の両側に設けられていることが好ましい。配線13の幅方向において、金属膜61~64がヒューズ電極部13a、13bの両側に設けられていることが好ましい。低融点金属部41,42が、配線13の両側に設けられた金属膜61と金属膜62、金属膜63と金属膜64とに跨がって設けられていることが好ましい。 From the viewpoint of ensuring that the low melting point metal melt is captured by the metal films 61 to 64, the low melting point metal portions 41 and 42 are preferably provided so as to be in contact with the metal films 61 to 64. . The metal films 61 to 64 are preferably provided on both sides of the insulating layers 51 and 52 in the width direction of the wiring 13. In the width direction of the wiring 13, the metal films 61 to 64 are preferably provided on both sides of the fuse electrode portions 13a and 13b. The low melting point metal parts 41 and 42 are preferably provided across the metal film 61 and the metal film 62, and the metal film 63 and the metal film 64 provided on both sides of the wiring 13.
 また、ヒューズ1では、第1の端子11と第2の端子12に過電流が流れない場合であっても、発熱体15を発熱させることによりヒューズ機能を発現させることができる。具体的には、第3の端子14と、端子11,12または端子16との間に電力を付与することにより、発熱体15を発熱させる。この発熱体15からの熱により、低融点金属部41,42が融解し、配線13のヒューズ電極部13a、13bが溶断される。 In the fuse 1, even when no overcurrent flows through the first terminal 11 and the second terminal 12, the fuse function can be exhibited by causing the heating element 15 to generate heat. Specifically, the heating element 15 is caused to generate heat by applying electric power between the third terminal 14 and the terminals 11, 12 or 16. Due to the heat from the heating element 15, the low melting point metal parts 41 and 42 are melted and the fuse electrode parts 13 a and 13 b of the wiring 13 are melted.
 ヒューズ1では、貫通孔36a内に設けられており、絶縁層36よりも熱伝導率が高い高熱伝導体38により発熱体15と配線13とが接続されている。このため、発熱体15の熱が配線13を介して低融点金属部41,42に伝わりやすい。従って、ヒューズ1では、発熱体15を発熱させて能動的にヒューズ機能を発現させる際においても、ヒューズ機能が高い確実性で発現する。 In the fuse 1, the heating element 15 and the wiring 13 are connected by a high thermal conductor 38 that is provided in the through hole 36 a and has a higher thermal conductivity than the insulating layer 36. For this reason, the heat of the heating element 15 is easily transmitted to the low melting point metal parts 41 and 42 via the wiring 13. Therefore, in the fuse 1, the fuse function is expressed with high certainty even when the heating element 15 is heated to actively develop the fuse function.
 ヒューズ機能をより高い確実性で発現させる観点からは、平面視において、貫通孔36aが低融点金属部41,42と重ならないように設けられていることが好ましい。低融点金属部41,42が貫通孔36a上に位置している場合、配線13を溶断して第1の端子11と第2の端子12とを絶縁するためには、高熱伝導体38が導電性を有する場合、配線13と共に、高熱伝導体38まで溶断する必要がある。一方、平面視において、貫通孔36aが低融点金属部41,42と重ならないように設けられている場合は、配線13のみを溶断すれば第1の端子11と第2の端子12とが絶縁される。従って、ヒューズ機能がより発現しやすくなる。 From the viewpoint of expressing the fuse function with higher certainty, it is preferable that the through hole 36a is provided so as not to overlap the low melting point metal parts 41 and 42 in a plan view. When the low melting point metal parts 41 and 42 are located on the through hole 36a, the high thermal conductor 38 is conductive in order to melt the wiring 13 and insulate the first terminal 11 and the second terminal 12 from each other. In the case where it has the property, it is necessary to blow up to the high thermal conductor 38 together with the wiring 13. On the other hand, in the plan view, when the through hole 36a is provided so as not to overlap the low melting point metal parts 41 and 42, the first terminal 11 and the second terminal 12 are insulated if only the wiring 13 is melted. Is done. Accordingly, the fuse function is more easily exhibited.
 以下、上記実施形態の変形例について説明する。以下の説明において、上記実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, modifications of the above embodiment will be described. In the following description, members having substantially the same functions as those of the above embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第1の変形例)
 図9は、第1の変形例におけるヒューズの略図的断面図である。
(First modification)
FIG. 9 is a schematic cross-sectional view of a fuse in the first modification.
 図9に示されるように、ヒューズ1aは、低融点金属部41,42を覆っており、低融点金属部41,42の融点よりも高い融点を有する絶縁層80をさらに備えていてもよい。この絶縁層80を設けることにより、低融点金属部41,42が融解してなる低融点金属の融液の意図しない方向へ濡れ広がることを抑制することができる。 As shown in FIG. 9, the fuse 1 a covers the low melting point metal parts 41 and 42, and may further include an insulating layer 80 having a melting point higher than that of the low melting point metal parts 41 and 42. By providing this insulating layer 80, it is possible to prevent the low melting point metal portions 41 and 42 from being melted and spreading in the unintended direction of the low melting point metal melt.
 絶縁層80の融点は、低融点金属部41,42の融点よりも10℃以上高いことが好ましく、20℃以上高いことがより好ましい。絶縁層80は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート等、絶縁層51,52に用いることのできる絶縁材料により構成することができる。 The melting point of the insulating layer 80 is preferably higher than the melting point of the low melting point metal parts 41, 42 by 10 ° C. or more, more preferably 20 ° C. or more. The insulating layer 80 can be made of an insulating material that can be used for the insulating layers 51 and 52, such as polyethylene terephthalate, polybutylene terephthalate, and polycarbonate.
 (第2の変形例)
 図10は、第2の変形例におけるヒューズの略図的断面図である。
(Second modification)
FIG. 10 is a schematic cross-sectional view of a fuse in the second modification.
 上記実施形態に係るヒューズ1では、発熱体15が絶縁性基板20上に設けられている例について説明した。但し、本発明はこの構成に限定されない。図10に示されるように、本変形例に係るヒューズ1bでは、発熱体15は、絶縁性基板20の内部に設けられている。絶縁性基板20の発熱体15と配線13との間に位置する部分が絶縁層36を構成している。このような場合であっても、上記実施形態と実質的に同様の効果が得られる。 In the fuse 1 according to the above embodiment, the example in which the heating element 15 is provided on the insulating substrate 20 has been described. However, the present invention is not limited to this configuration. As shown in FIG. 10, in the fuse 1 b according to this modification, the heating element 15 is provided inside the insulating substrate 20. A portion located between the heating element 15 and the wiring 13 of the insulating substrate 20 constitutes an insulating layer 36. Even in such a case, substantially the same effect as the above embodiment can be obtained.
1,1a,1b…ヒューズ
11…第1の端子
12…第2の端子
13…配線
13a、13b…ヒューズ電極部
13c…接続点
14…第3の端子
15…発熱体
16…第4の端子
20…絶縁性基板
20a…第1の主面
20b…第2の主面
21~24…電極
25,27,29,30…側面電極
26,28…ビアホール電極
31,32…配線
35…電極層
36…絶縁層
36a…貫通孔
37…電極
38…高熱伝導体
41,42…低融点金属部
51,52…絶縁層
61~64…金属膜
70…保護層
80…絶縁層
DESCRIPTION OF SYMBOLS 1, 1a, 1b ... fuse 11 ... 1st terminal 12 ... 2nd terminal 13 ... wiring 13a, 13b ... fuse electrode part 13c ... connection point 14 ... 3rd terminal 15 ... heating element 16 ... 4th terminal 20 ... Insulating substrate 20a ... first main surface 20b ... second main surfaces 21-24 ... electrodes 25, 27, 29, 30 ... side electrodes 26, 28 ... via hole electrodes 31, 32 ... wiring 35 ... electrode layer 36 ... Insulating layer 36a ... through hole 37 ... electrode 38 ... high thermal conductors 41,42 ... low melting point metal parts 51,52 ... insulating layers 61-64 ... metal film 70 ... protective layer 80 ... insulating layer

Claims (8)

  1.  絶縁性基板と、
     前記絶縁性基板の一主面上に配された配線と、
     前記配線の上に設けられており、前記配線よりも低い融点を有するとともに、融液となった際に前記配線を溶解させる低融点金属部と、
     前記配線と前記低融点金属部との間に配された絶縁層と、
    を備える、ヒューズ。
    An insulating substrate;
    Wiring disposed on one main surface of the insulating substrate;
    A low melting point metal part which is provided on the wiring and has a melting point lower than that of the wiring and which dissolves the wiring when it becomes a melt;
    An insulating layer disposed between the wiring and the low melting point metal part;
    A fuse.
  2.  前記絶縁層の融点は、前記低融点金属部の融点よりも高い、請求項1に記載のヒューズ。 The fuse according to claim 1, wherein a melting point of the insulating layer is higher than a melting point of the low melting point metal part.
  3.  前記絶縁層の融点は、180℃~350℃である、請求項1または2に記載のヒューズ。 The fuse according to claim 1 or 2, wherein the insulating layer has a melting point of 180 ° C to 350 ° C.
  4.  前記絶縁層は、熱可塑性樹脂により構成されている、請求項1~3のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 3, wherein the insulating layer is made of a thermoplastic resin.
  5.  前記低融点金属部を覆っており、前記低融点金属部の融点よりも高い融点を有する第2の絶縁層をさらに備える、請求項1~4のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 4, further comprising a second insulating layer covering the low melting point metal part and having a melting point higher than that of the low melting point metal part.
  6.  前記低融点金属部を加熱する発熱体をさらに備える、請求項1~5のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 5, further comprising a heating element for heating the low melting point metal part.
  7.  前記低融点金属部は、Snを主成分とする、請求項1~6のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 6, wherein the low-melting-point metal part is composed mainly of Sn.
  8.  前記絶縁層は、前記配線と前記低融点金属部とが重なっている部分の全体に設けられている、請求項1~7のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 7, wherein the insulating layer is provided over an entire portion where the wiring and the low melting point metal portion overlap each other.
PCT/JP2013/068820 2012-08-29 2013-07-10 Fuse WO2014034287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014532868A JPWO2014034287A1 (en) 2012-08-29 2013-07-10 fuse
KR1020157003361A KR20150029023A (en) 2012-08-29 2013-07-10 Fuse

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012188351 2012-08-29
JP2012188265 2012-08-29
JP2012-188351 2012-08-29
JP2012-188265 2012-08-29
JP2013003129 2013-01-11
JP2013-003129 2013-01-11

Publications (1)

Publication Number Publication Date
WO2014034287A1 true WO2014034287A1 (en) 2014-03-06

Family

ID=50183108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068820 WO2014034287A1 (en) 2012-08-29 2013-07-10 Fuse

Country Status (4)

Country Link
JP (1) JPWO2014034287A1 (en)
KR (1) KR20150029023A (en)
TW (1) TWI493588B (en)
WO (1) WO2014034287A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059955A1 (en) * 2013-10-24 2015-04-30 株式会社村田製作所 Fuse element and method for producing same
WO2018159283A1 (en) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 Fuse element
JP2018166099A (en) * 2017-02-28 2018-10-25 デクセリアルズ株式会社 Fuse element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6622960B2 (en) * 2014-12-18 2019-12-18 デクセリアルズ株式会社 Switch element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522731Y2 (en) * 1975-02-07 1980-05-30
JP2006286224A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Chip-type fuse
JP2009016338A (en) * 2007-07-06 2009-01-22 Qiankun Kagi Kofun Yugenkoshi Chip fuse and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265617A (en) * 2003-02-05 2004-09-24 Sony Chem Corp Protective element
JP2004342544A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Circuit protection element
JP2006164639A (en) * 2004-12-03 2006-06-22 Mitsubishi Materials Corp Chip type fuse and its manufacturing method
JP5415318B2 (en) * 2010-02-19 2014-02-12 デクセリアルズ株式会社 Protection circuit, battery control device, and battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522731Y2 (en) * 1975-02-07 1980-05-30
JP2006286224A (en) * 2005-03-31 2006-10-19 Mitsubishi Materials Corp Chip-type fuse
JP2009016338A (en) * 2007-07-06 2009-01-22 Qiankun Kagi Kofun Yugenkoshi Chip fuse and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015059955A1 (en) * 2013-10-24 2015-04-30 株式会社村田製作所 Fuse element and method for producing same
WO2018159283A1 (en) * 2017-02-28 2018-09-07 デクセリアルズ株式会社 Fuse element
JP2018166099A (en) * 2017-02-28 2018-10-25 デクセリアルズ株式会社 Fuse element
JP7002955B2 (en) 2017-02-28 2022-01-20 デクセリアルズ株式会社 Fuse element

Also Published As

Publication number Publication date
TW201409520A (en) 2014-03-01
JPWO2014034287A1 (en) 2016-08-08
TWI493588B (en) 2015-07-21
KR20150029023A (en) 2015-03-17

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
JP5939311B2 (en) fuse
KR102213303B1 (en) Fuse element and fuse device
KR102232981B1 (en) Production method for mounting body, mounting method for temperature fuse elements, and temperature fuse element
JP6017603B2 (en) Composite protective element
WO2014034287A1 (en) Fuse
JP2010165685A (en) Protection element, and battery pack
TWI629702B (en) Blocking element and blocking element circuit
JP6102266B2 (en) fuse
JP6097178B2 (en) Switch circuit and switch control method using the same
JP6171500B2 (en) fuse
JP6381980B2 (en) Switch element and switch circuit
WO2014034261A1 (en) Fuse
KR20200085896A (en) Fuse element
KR101529829B1 (en) The complex protection device of blocking the abnormal state of current and voltage
JP2014044955A (en) Protection element, and battery pack
JP2016170892A (en) Fuse element and fuse device
JP6711704B2 (en) Protective device with bypass electrode
JP2012059719A (en) Protection element, and battery pack
JP6437221B2 (en) Switch element, switch circuit and alarm circuit
JP7040886B2 (en) Protective element
WO2014034262A1 (en) Fuse
KR20210105995A (en) circuit module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13834214

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532868

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003361

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13834214

Country of ref document: EP

Kind code of ref document: A1