WO2014034261A1 - Fuse - Google Patents

Fuse Download PDF

Info

Publication number
WO2014034261A1
WO2014034261A1 PCT/JP2013/068338 JP2013068338W WO2014034261A1 WO 2014034261 A1 WO2014034261 A1 WO 2014034261A1 JP 2013068338 W JP2013068338 W JP 2013068338W WO 2014034261 A1 WO2014034261 A1 WO 2014034261A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting point
point metal
wiring
low melting
metal part
Prior art date
Application number
PCT/JP2013/068338
Other languages
French (fr)
Japanese (ja)
Inventor
番場 真一郎
酒井 範夫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014532859A priority Critical patent/JPWO2014034261A1/en
Priority to KR1020157003463A priority patent/KR20150029028A/en
Priority to CN201380043450.2A priority patent/CN104584175A/en
Publication of WO2014034261A1 publication Critical patent/WO2014034261A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/044General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified
    • H01H85/045General constructions or structure of low voltage fuses, i.e. below 1000 V, or of fuses where the applicable voltage is not specified cartridge type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/0039Means for influencing the rupture process of the fusible element
    • H01H85/0047Heating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/46Circuit arrangements not adapted to a particular application of the protective device
    • H01H85/463Circuit arrangements not adapted to a particular application of the protective device with printed circuit fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/10Fusible members characterised by the shape or form of the fusible member with constriction for localised fusing

Definitions

  • the present invention relates to a fuse.
  • Patent Document 1 describes a fuse element in which a low-melting-point metal is attached to a fused part of a wiring as an example of a fuse element.
  • a fuse element in which a low-melting-point metal is attached to a fused part of a wiring as an example of a fuse element.
  • An object of the present invention is to provide a fuse capable of reliably interrupting an overcurrent.
  • the fuse according to the present invention includes an insulating substrate, wiring, a low melting point metal part, and a heating element.
  • the wiring is arranged on one main surface of the insulating substrate.
  • the low melting point metal part is provided on the wiring.
  • the low melting point metal part has a lower melting point than the wiring.
  • the low melting point metal part dissolves the wiring when it becomes a melt.
  • the heating element heats the low melting point metal part. In plan view, the heating element is provided on the other side of the one end in the direction in which the wiring extends in the region where the low melting point metal portion is disposed.
  • the heating element in the plan view, has the low melting point metal portion from the other side than the one end portion in the extending direction of the wiring in the region where the low melting point metal portion is arranged. It is provided over the other side rather than the other side end in the extending direction of the wiring in the arranged region.
  • the wiring includes a fused part and a non-fused part.
  • the fusing part is relatively easily blown by melting in the melt of the low melting point metal part.
  • the non-blown part is located on one side of the fused part in the direction in which the wiring extends.
  • the non-blown part is relatively difficult to blow.
  • the heating element is arranged so as not to overlap the fusing part.
  • the fusing portion is made of a metal having a relatively high melting rate with respect to the melt of the low melting point metal portion.
  • the unmelted portion is made of a metal having a relatively low dissolution rate with respect to the melt of the low melting point metal portion.
  • the fusing part includes at least one of Au and Ag.
  • the non-blown part includes at least one of Cu, Pb, Ni, and Pt.
  • the fused part is narrower than the non-fused part.
  • the fused part is thinner than the non-fused part.
  • the fuse further includes a liquid repellent portion.
  • the liquid repellent portion is provided on one main surface of the insulating substrate on one side in the wiring extending direction with respect to the low melting point metal portion.
  • the liquid repellent part repels the melt of the low melting point metal part.
  • the heating element is provided on one main surface of the substrate or inside the substrate.
  • the fuse further includes an insulating layer that insulates the wiring from the low melting point metal part.
  • the low melting point metal portion is mainly composed of Sn.
  • FIG. 1 is a schematic cross-sectional view of a fuse in the first embodiment.
  • FIG. 2 is a schematic cross-sectional view of a fuse in the second embodiment.
  • FIG. 3 is a schematic plan view of a fuse in the second embodiment.
  • FIG. 4 is a schematic cross-sectional view of a fuse in the third embodiment.
  • FIG. 5 is a schematic cross-sectional view of a fuse in the fourth embodiment.
  • FIG. 6 is a schematic cross-sectional view of a fuse in the fifth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a fuse in the first embodiment.
  • the fuse 1 shown in FIG. 1 may be a passive element that automatically disconnects the wiring 11 when an overcurrent occurs in the wiring 11 described later, or detects the overcurrent and actively connects the wiring 11. It may be an active element that cuts off.
  • the fuse 1 includes an insulating substrate 10.
  • the insulating substrate 10 can be constituted by, for example, a ceramic substrate such as an alumina substrate, a resin substrate, or the like.
  • the insulating substrate 10 may be a multilayer substrate having wiring inside.
  • wiring 11 is arranged on the first main surface 10 a of the insulating substrate 10.
  • One end of the wiring 11 is connected to a terminal electrode 13 disposed on the second main surface 10 b by a via hole electrode 12.
  • the other end of the wiring 11 is connected to a terminal electrode 15 disposed on the second main surface 10b by a via hole electrode 14.
  • the wiring 11 has a fusing part 11a and a non-fusing part 11b.
  • the fusing part 11 a is a part that is relatively easily melted by melting in the melt of the low melting point metal part 20, and the non-melting part 11 b is relatively melted by melting in the melt of the low melting point metal part 20. It is a part that is difficult to melt.
  • the fusing part 11a is made of a metal having a relatively high dissolution rate with respect to the melt of the low melting point metal part 20, and the non-melting part 11b is with respect to the melt of the low melting point metal part 20. It consists of a metal with a relatively low dissolution rate. More specifically, in the present embodiment, the fusing part 11a includes at least one of Au and Ag. It is preferable that the fusing part 11a is comprised with the alloy containing at least one of Ag, Au, or Ag and Au. In the present embodiment, the non-blown part 11b includes at least one of Cu, Pd, Ni, and Pt. The non-blown part 11b is preferably made of Cu, Pd, Ni, Pt, or an alloy containing at least one of Cu, Pd, Ni, and Pt.
  • the low melting point metal part 20 is arranged on the wiring 11.
  • the low melting point metal portion 20 has a melting point lower than that of the wiring 11 and is made of a low melting point metal that melts the wiring 11 when it becomes a melt.
  • Specific examples of such low melting point metals include Sn alloys such as SnSb, SnCu, SnAg, SnAgCu, SnCuNi.
  • an insulating layer 21 is disposed between the low melting point metal part 20 and the wiring 11.
  • the insulating layer 21 electrically insulates the wiring 11 from the low melting point metal part 20.
  • the terminal electrode 13 and the terminal electrode 15 are electrically connected by the via-hole electrodes 12 and 14 and the wiring 11, and no current flows through the low melting point metal part 20. Therefore, the wiring 11 tends to generate heat when an overcurrent occurs. Therefore, the fuse function of the fuse 1 is likely to be activated.
  • the insulating layer 21 can electrically insulate the low melting point metal part 20 and the wiring 11 and can be removed by melting in the melt of the low melting point metal part 20 or volatilizing when the melt is generated. It is preferable that The insulating layer 21 can be made of, for example, rosin flux, organic acid flux, or the like.
  • the fuse 1 is provided with a heating element 30 for heating the low melting point metal part 20. Therefore, the fuse 1 can function as a passive element or an active element.
  • the heating element 30 can be constituted by, for example, a resistance heating element.
  • the heating element 30 is disposed on the second main surface 10 b of the insulating substrate 10.
  • the heating element 30 may be electrically connected to the terminal electrode 13 and the terminal electrode 15, for example. In that case, when an overcurrent flows through the wiring 11, the overcurrent also flows through the heating element 30 and the heating element 30 generates heat.
  • the wiring 11 and the low melting point metal part 20 are covered with a sealing member 50 disposed on the insulating substrate 10.
  • the fuse function of fuse 1 is expressed as follows.
  • an overcurrent flows through the fuse 1, the wiring 11 generates heat.
  • an overcurrent is detected by a detection mechanism (not shown), current is supplied to the heating element 30 and the heating element 30 generates heat.
  • the low melting point metal part 20 is melted and a melt of the low melting point metal part 20 is generated.
  • the wiring 11 is cut and the terminal electrode 13 and the terminal electrode 15 are electrically insulated.
  • the fusing part 11 a is preferentially blown out of the wiring 11. Even after the melted part 11a is melted, at least a part of the non-fused part 11b remains.
  • the melt of the low melting point metal part is conductive. For this reason, if the melt of the low melting point metal portion connects the remaining portions of the wiring, the fuse function does not appear.
  • one end portion of the heating element 30 is provided so as to overlap a part of the low melting point metal portion 20 and the other end portion when the insulating substrate 10 is viewed in plan. .
  • the center of the heating element 30 in the x-axis direction which is the direction in which the wiring material 11 extends, is located on the x2 side of the center of the low melting point metal part 20 in the x-axis direction.
  • the heating element 30 is provided on the x2 side from the x1 side end in the x-axis direction, which is the direction in which the wiring member 11 extends, in the region where the low melting point metal part 20 is disposed. Therefore, since the melt of the low melting point metal part 20 flows toward a region where the temperature is higher, the melt of the low melting point metal part 20 tends to flow toward the x2 side. Therefore, the fuse function is surely exhibited and the overcurrent can be reliably interrupted.
  • the heating element 30 is, in plan view, the x2-side from the x1-side end of the region where the low-melting-point metal part 20 is disposed. Therefore, it is more preferable that the low melting point metal portion 20 is provided over the x2 side rather than the x2 side end portion in the x-axis direction of the region where the low melting point metal portion 20 is disposed. Furthermore, it is preferable that the heating element 30 is arranged so as not to overlap the fusing part 11a in plan view. It is preferable that the heat generating body 30 is arranged on the x2 side from the fusing part 11a. Furthermore, the heating element 30 is preferably located on the x2 side with respect to the low melting point metal part 20.
  • a liquid repellent part 40 is provided on the insulating substrate 10 on the x 1 side in the x-axis direction with respect to the low melting point metal part 20.
  • the liquid repellent part 40 repels the melt of the low melting point metal part 20. For this reason, the melt of the low melting point metal part 20 is repelled to the x2 side by the liquid repellent part 40 and moves more smoothly to the x2 side.
  • the liquid repellent portion 40 is preferably provided across the wiring 11 in the width direction of the wiring 11.
  • the liquid repellent part 40 can be comprised by resin materials, such as glass materials, such as a borosilicate type glass, and an epoxy resin, for example. “Repel the melt” means that the contact angle is 90 ° or more.
  • the fuse 1 of this embodiment exists as a single element, the fuse of the present invention may be incorporated in an electronic component.
  • the fuse of the present invention may be integrated with a wiring board of an electronic component.
  • FIG. 2 is a schematic cross-sectional view of a fuse in the second embodiment.
  • FIG. 3 is a schematic plan view of a fuse in the second embodiment.
  • FIG. 4 is a schematic cross-sectional view of a fuse in the third embodiment. In FIG. 3, drawing of the sealing member is omitted.
  • the wiring 11 is composed of a single layer.
  • the fusing part 11a is provided narrower than the non-fusing part 11b.
  • the fusing part 11a is provided thinner than the non-fusing part 11b. Even in these cases, the melted part 11a is more easily melted into the melt of the low melting point metal part 20 than the non-fused part 11b.
  • the wiring 11 is a single layer and does not have to have a narrow part or a thin part.
  • the fusing part 11a of the wiring 11 is a part on which the low melting point metal part 20 is provided.
  • the heating element 30 is located on the x2 side of the low melting point metal part 20 in plan view.
  • FIG. 5 is a schematic cross-sectional view of a fuse in the fourth embodiment.
  • FIG. 6 is a schematic cross-sectional view of a fuse in the fifth embodiment.
  • the heating element 30 is provided on the first main surface 10 a of the insulating substrate 10.
  • the low melting point metal part 20 and the heating element 30 are insulated by the insulating layer 60.
  • the heating element 30 is provided inside the insulating substrate 10. In these cases, the heat of the heating element 30 is more easily supplied to the low melting point metal part 20 than when the heating element 30 is provided on the second main surface 10b. Therefore, the wiring 11 is easily melted.

Abstract

Provided is a fuse which can reliably cut off overcurrent. A fuse (1) is provided with an insulating substrate (10), wiring (11), a low melting point metal part (20), and a heating element (30). The wiring (11) is arranged on one main surface (10a) of the insulating substrate (10). The low melting point metal part (20) is disposed on the wiring (11). The low melting point metal part (20) has a lower melting point than the wiring (11). The low melting point metal part (20) dissolves the wiring (11) when the low melting point metal part (20) turns into melt. The heating element (30) heats the low melting point metal part (20). In planar view, the heating element (30) is disposed further towards one side of a region on which the low melting point metal part (20) is arranged than the edge of the other side in the direction in which the wiring (11) extends.

Description

ヒューズfuse
 本発明は、ヒューズに関する。 The present invention relates to a fuse.
 従来、電子部品に対してヒューズエレメントを接続し、過電流から電子部品を保護する試みがなされている。例えば、特許文献1には、ヒューズエレメントの一例として、配線の溶断部に低融点金属が付着したヒューズエレメントが記載されている。このヒューズエレメントに過電流が流れると、低融点金属が溶融し、低融点金属の融液が形成される。この低融点金属の融液に溶断部が溶解することにより溶断部が溶断される。その結果、過電流が遮断される。 Conventionally, attempts have been made to protect electronic components from overcurrent by connecting fuse elements to the electronic components. For example, Patent Document 1 describes a fuse element in which a low-melting-point metal is attached to a fused part of a wiring as an example of a fuse element. When an overcurrent flows through the fuse element, the low melting point metal melts and a low melting point metal melt is formed. The melted portion is melted by dissolving the melted portion in the melt of the low melting point metal. As a result, the overcurrent is cut off.
特開2009-99372号公報JP 2009-99372 A
 しかしながら、特許文献1に記載のヒューズエレメントでは、過電流を確実に遮断できない場合があるという問題がある。 However, the fuse element described in Patent Document 1 has a problem that the overcurrent may not be cut off reliably.
 本発明の目的は、過電流を確実に遮断できるヒューズを提供することにある。 An object of the present invention is to provide a fuse capable of reliably interrupting an overcurrent.
 本発明に係るヒューズは、絶縁性基板と、配線と、低融点金属部と、発熱体とを備える。配線は、絶縁性基板の一主面上に配されている。低融点金属部は、配線の上に設けられている。低融点金属部は、配線よりも低い融点を有する。低融点金属部は、融液となった際に配線を溶解させる。発熱体は、低融点金属部を加熱する。平面視において、発熱体は、低融点金属部が配された領域の配線の延びる方向における一方側端部よりも他方側に設けられている。 The fuse according to the present invention includes an insulating substrate, wiring, a low melting point metal part, and a heating element. The wiring is arranged on one main surface of the insulating substrate. The low melting point metal part is provided on the wiring. The low melting point metal part has a lower melting point than the wiring. The low melting point metal part dissolves the wiring when it becomes a melt. The heating element heats the low melting point metal part. In plan view, the heating element is provided on the other side of the one end in the direction in which the wiring extends in the region where the low melting point metal portion is disposed.
 本発明に係るヒューズのある特定の局面では、平面視において、発熱体は、低融点金属部が配された領域の配線の延びる方向における一方側端部よりも他方側から、低融点金属部が配された領域の配線の延びる方向における他方側端部よりも他方側にわたって設けられている。 In a specific aspect of the fuse according to the present invention, in the plan view, the heating element has the low melting point metal portion from the other side than the one end portion in the extending direction of the wiring in the region where the low melting point metal portion is arranged. It is provided over the other side rather than the other side end in the extending direction of the wiring in the arranged region.
 本発明に係るヒューズの別の特定の局面では、配線は、溶断部と、非溶断部とを含む。溶断部は、低融点金属部の融液に融解することにより相対的に溶断されやすい。非溶断部は、配線の延びる方向において溶断部の一方側に位置している。非溶断部は、相対的に溶断されにくい。平面視において、発熱体が、溶断部と重ならないように配されている。 In another specific aspect of the fuse according to the present invention, the wiring includes a fused part and a non-fused part. The fusing part is relatively easily blown by melting in the melt of the low melting point metal part. The non-blown part is located on one side of the fused part in the direction in which the wiring extends. The non-blown part is relatively difficult to blow. In a plan view, the heating element is arranged so as not to overlap the fusing part.
 本発明に係るヒューズの他の特定の局面では、溶断部は、低融点金属部の融液に対する溶解速度が相対的に高い金属からなる。非溶断部は、低融点金属部の融液に対する溶解速度が相対的に低い金属からなる。 In another specific aspect of the fuse according to the present invention, the fusing portion is made of a metal having a relatively high melting rate with respect to the melt of the low melting point metal portion. The unmelted portion is made of a metal having a relatively low dissolution rate with respect to the melt of the low melting point metal portion.
 本発明に係るヒューズのさらに他の特定の局面では、溶断部がAu及びAgの少なくとも一方を含む。非溶断部がCu、Pb、Ni及びPtのうちの少なくとも一種を含む。 In yet another specific aspect of the fuse according to the present invention, the fusing part includes at least one of Au and Ag. The non-blown part includes at least one of Cu, Pb, Ni, and Pt.
 本発明に係るヒューズのさらに別の特定の局面では、溶断部は、非溶断部よりも幅狭である。 In yet another specific aspect of the fuse according to the present invention, the fused part is narrower than the non-fused part.
 本発明に係るヒューズのまた他の特定の局面では、溶断部は、非溶断部よりも薄い。 In another specific aspect of the fuse according to the present invention, the fused part is thinner than the non-fused part.
 本発明に係るヒューズのまた別の特定の局面では、ヒューズは、撥液部をさらに備える。撥液部は、絶縁性基板の一主面上において、低融点金属部に対して、配線の延びる方向の一方側に設けられている。撥液部は、低融点金属部の融液をはじく。 In another specific aspect of the fuse according to the present invention, the fuse further includes a liquid repellent portion. The liquid repellent portion is provided on one main surface of the insulating substrate on one side in the wiring extending direction with respect to the low melting point metal portion. The liquid repellent part repels the melt of the low melting point metal part.
 本発明に係るヒューズのさらにまた他の特定の局面では、発熱体は、基板の一主面上または基板の内部に設けられている。 In yet another specific aspect of the fuse according to the present invention, the heating element is provided on one main surface of the substrate or inside the substrate.
 本発明に係るヒューズのさらにまた別の特定の局面では、ヒューズは、配線と低融点金属部とを絶縁する絶縁層をさらに備える。 In yet another specific aspect of the fuse according to the present invention, the fuse further includes an insulating layer that insulates the wiring from the low melting point metal part.
 本発明に係るヒューズのまたさらに他の特定の局面では、低融点金属部は、Snを主成分とする。 In yet another specific aspect of the fuse according to the present invention, the low melting point metal portion is mainly composed of Sn.
 本発明によれば、過電流を確実に遮断できるヒューズを提供することができる。 According to the present invention, it is possible to provide a fuse capable of reliably interrupting overcurrent.
図1は、第1の実施形態におけるヒューズの略図的断面図である。FIG. 1 is a schematic cross-sectional view of a fuse in the first embodiment. 図2は、第2の実施形態におけるヒューズの略図的断面図である。FIG. 2 is a schematic cross-sectional view of a fuse in the second embodiment. 図3は、第2の実施形態におけるヒューズの略図的平面図である。FIG. 3 is a schematic plan view of a fuse in the second embodiment. 図4は、第3の実施形態におけるヒューズの略図的断面図である。FIG. 4 is a schematic cross-sectional view of a fuse in the third embodiment. 図5は、第4の実施形態におけるヒューズの略図的断面図である。FIG. 5 is a schematic cross-sectional view of a fuse in the fourth embodiment. 図6は、第5の実施形態におけるヒューズの略図的断面図である。FIG. 6 is a schematic cross-sectional view of a fuse in the fifth embodiment.
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。 Hereinafter, an example of a preferable embodiment in which the present invention is implemented will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。 In each drawing referred to in the embodiment and the like, members having substantially the same function are referred to by the same reference numerals. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.
 (第1の実施形態)
 図1は、第1の実施形態におけるヒューズの略図的断面図である。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a fuse in the first embodiment.
 図1に示されるヒューズ1は、後述する配線11に過電流が生じた際に配線11が自動的に切断される受動素子であってもよいし、過電流を検知し、能動的に配線11を切断する能動素子であってもよい。 The fuse 1 shown in FIG. 1 may be a passive element that automatically disconnects the wiring 11 when an overcurrent occurs in the wiring 11 described later, or detects the overcurrent and actively connects the wiring 11. It may be an active element that cuts off.
 ヒューズ1は、絶縁性基板10を備えている。絶縁性基板10は、例えば、アルミナ基板などのセラミック基板や樹脂基板等により構成することができる。絶縁性基板10は、内部に配線を有する多層基板であってもよい。 The fuse 1 includes an insulating substrate 10. The insulating substrate 10 can be constituted by, for example, a ceramic substrate such as an alumina substrate, a resin substrate, or the like. The insulating substrate 10 may be a multilayer substrate having wiring inside.
 絶縁性基板10の第1の主面10aの上には、配線11が配されている。配線11の一方側端部は、ビアホール電極12によって第2の主面10bの上に配された端子電極13に接続されている。配線11の他方側端部は、ビアホール電極14によって第2の主面10bの上に配された端子電極15に接続されている。 On the first main surface 10 a of the insulating substrate 10, wiring 11 is arranged. One end of the wiring 11 is connected to a terminal electrode 13 disposed on the second main surface 10 b by a via hole electrode 12. The other end of the wiring 11 is connected to a terminal electrode 15 disposed on the second main surface 10b by a via hole electrode 14.
 配線11は、溶断部11aと、非溶断部11bとを有する。溶断部11aは、低融点金属部20の融液に融解することにより相対的に溶断されやすい部分であり、非溶断部11bは、低融点金属部20の融液に融解することにより相対的に溶断されにくい部分である。 The wiring 11 has a fusing part 11a and a non-fusing part 11b. The fusing part 11 a is a part that is relatively easily melted by melting in the melt of the low melting point metal part 20, and the non-melting part 11 b is relatively melted by melting in the melt of the low melting point metal part 20. It is a part that is difficult to melt.
 本実施形態では、具体的には、溶断部11aは、低融点金属部20の融液に対する溶解速度が相対的に高い金属からなり、非溶断部11bは、低融点金属部20の融液に対する溶解速度が相対的に低い金属からなる。より具体的には、本実施形態では、溶断部11aは、Au及びAgの少なくとも一方を含む。溶断部11aは、Ag、Au、またはAg及びAuの少なくとも一方を含む合金により構成されていることが好ましい。本実施形態では、非溶断部11bは、Cu、Pd、Ni及びPtのうちの少なくとも一種を含む。非溶断部11bは、Cu、Pd、Ni、Pt、またはCu、Pd、Ni及びPtのうちの少なくとも一種を含む合金により構成されていることが好ましい。 Specifically, in the present embodiment, the fusing part 11a is made of a metal having a relatively high dissolution rate with respect to the melt of the low melting point metal part 20, and the non-melting part 11b is with respect to the melt of the low melting point metal part 20. It consists of a metal with a relatively low dissolution rate. More specifically, in the present embodiment, the fusing part 11a includes at least one of Au and Ag. It is preferable that the fusing part 11a is comprised with the alloy containing at least one of Ag, Au, or Ag and Au. In the present embodiment, the non-blown part 11b includes at least one of Cu, Pd, Ni, and Pt. The non-blown part 11b is preferably made of Cu, Pd, Ni, Pt, or an alloy containing at least one of Cu, Pd, Ni, and Pt.
 配線11の上には、低融点金属部20が配されている。この低融点金属部20は、配線11よりも低い融点を有すると共に、融液となった際に配線11を融解させる低融点金属からなる。このような低融点金属の具体例としては、例えば,SnSb、SnCu、SnAg,SnAgCu,SnCuNi等のSn合金が挙げられる。 The low melting point metal part 20 is arranged on the wiring 11. The low melting point metal portion 20 has a melting point lower than that of the wiring 11 and is made of a low melting point metal that melts the wiring 11 when it becomes a melt. Specific examples of such low melting point metals include Sn alloys such as SnSb, SnCu, SnAg, SnAgCu, SnCuNi.
 低融点金属部20と配線11との間には、絶縁層21が配されている。この絶縁層21によって配線11と低融点金属部20とが電気的に絶縁されている。このため、通常時においては、端子電極13と端子電極15とは、ビアホール電極12,14と配線11とによって電気的に接続されており、低融点金属部20には電流は流れない。従って、過電流が生じたときに配線11が発熱しやすい。よって、ヒューズ1のヒューズ機能が発動しやすい。 Between the low melting point metal part 20 and the wiring 11, an insulating layer 21 is disposed. The insulating layer 21 electrically insulates the wiring 11 from the low melting point metal part 20. For this reason, in a normal state, the terminal electrode 13 and the terminal electrode 15 are electrically connected by the via- hole electrodes 12 and 14 and the wiring 11, and no current flows through the low melting point metal part 20. Therefore, the wiring 11 tends to generate heat when an overcurrent occurs. Therefore, the fuse function of the fuse 1 is likely to be activated.
 絶縁層21は、低融点金属部20と配線11とを電気的に絶縁できると共に、低融点金属部20の融液に融解したり、融液が生じたときに揮発するなどして除去されたりするものであることが好ましい。絶縁層21は、例えば、ロジン系フラックス、有機酸系フラックス等により成することができる。 The insulating layer 21 can electrically insulate the low melting point metal part 20 and the wiring 11 and can be removed by melting in the melt of the low melting point metal part 20 or volatilizing when the melt is generated. It is preferable that The insulating layer 21 can be made of, for example, rosin flux, organic acid flux, or the like.
 ヒューズ1には、低融点金属部20を加熱する発熱体30が設けられている。このため、ヒューズ1は、受動素子としても機能するし、能動素子として機能させることもできる。発熱体30は、例えば、抵抗発熱体により構成することができる。なお、本実施形態では、発熱体30は、絶縁性基板10の第2の主面10bの上に配されている。発熱体30は、例えば、端子電極13と端子電極15とに電気的に接続されていてもよい。その場合は、配線11に過電流が流れた際に発熱体30にも過電流が流れ発熱体30が発熱する。 The fuse 1 is provided with a heating element 30 for heating the low melting point metal part 20. Therefore, the fuse 1 can function as a passive element or an active element. The heating element 30 can be constituted by, for example, a resistance heating element. In the present embodiment, the heating element 30 is disposed on the second main surface 10 b of the insulating substrate 10. The heating element 30 may be electrically connected to the terminal electrode 13 and the terminal electrode 15, for example. In that case, when an overcurrent flows through the wiring 11, the overcurrent also flows through the heating element 30 and the heating element 30 generates heat.
 配線11、低融点金属部20は、絶縁性基板10の上に配された封止部材50により覆われている。 The wiring 11 and the low melting point metal part 20 are covered with a sealing member 50 disposed on the insulating substrate 10.
 ヒューズ1のヒューズ機能は以下のようにして発現する。ヒューズ1に過電流が流れた際には、配線11が発熱する。または、図示しない検知機構により過電流が検出され、発熱体30に電流が供給され発熱体30が発熱する。その結果、低融点金属部20が融解され、低融点金属部20の融液が生じる。この低融点金属部20の融液に配線11が融解することにより、配線11が切断され、端子電極13と端子電極15との間が電気的に絶縁される。具体的には、配線11のうち、溶断部11aが優先的に溶断される。溶断部11aが溶断された後においても、非溶断部11bの少なくとも一部は残存している。 The fuse function of fuse 1 is expressed as follows. When an overcurrent flows through the fuse 1, the wiring 11 generates heat. Alternatively, an overcurrent is detected by a detection mechanism (not shown), current is supplied to the heating element 30 and the heating element 30 generates heat. As a result, the low melting point metal part 20 is melted and a melt of the low melting point metal part 20 is generated. When the wiring 11 is melted in the melt of the low melting point metal part 20, the wiring 11 is cut and the terminal electrode 13 and the terminal electrode 15 are electrically insulated. Specifically, the fusing part 11 a is preferentially blown out of the wiring 11. Even after the melted part 11a is melted, at least a part of the non-fused part 11b remains.
 ところで、低融点金属部の融液は導電性を有する。このため、低融点金属部の融液が配線の残部同士を接続しているとヒューズ機能は発現しない。ここで、ヒューズ1では、発熱体30の一方端部が、絶縁性基板10を平面視したときに、低融点金属部20の一部と重なり、他方端部が重ならないように設けられている。平面視において、配線材11の延びる方向であるx軸方向における発熱体30の中央が低融点金属部20のx軸方向における中央よりもx2側に位置している。平面視において、発熱体30が、低融点金属部20が配された領域の、配線材11の延びる方向であるx軸方向のx1側端部よりもx2側に設けられている。よって、低融点金属部20の融液は、より温度が高い領域に向かって流動するため、低融点金属部20の融液は、x2側に向かって流動しやすい。従って、ヒューズ機能が確実に発現し、過電流を確実に遮断することができる。 By the way, the melt of the low melting point metal part is conductive. For this reason, if the melt of the low melting point metal portion connects the remaining portions of the wiring, the fuse function does not appear. Here, in the fuse 1, one end portion of the heating element 30 is provided so as to overlap a part of the low melting point metal portion 20 and the other end portion when the insulating substrate 10 is viewed in plan. . In plan view, the center of the heating element 30 in the x-axis direction, which is the direction in which the wiring material 11 extends, is located on the x2 side of the center of the low melting point metal part 20 in the x-axis direction. In plan view, the heating element 30 is provided on the x2 side from the x1 side end in the x-axis direction, which is the direction in which the wiring member 11 extends, in the region where the low melting point metal part 20 is disposed. Therefore, since the melt of the low melting point metal part 20 flows toward a region where the temperature is higher, the melt of the low melting point metal part 20 tends to flow toward the x2 side. Therefore, the fuse function is surely exhibited and the overcurrent can be reliably interrupted.
 低融点金属部20の融液をx2側に向かってより流動しやすくなる観点から、平面視において、発熱体30は、低融点金属部20が配された領域のx1側端部よりもx2側から、低融点金属部20が配された領域のx軸方向におけるx2側端部よりもx2側にわたって設けられていることがより好ましい。さらには、平面視において、発熱体30が、溶断部11aと重ならないように配されていることが好ましい。発熱体30が、溶断部11aよりもx2側に配されていることが好ましい。さらには、発熱体30が低融点金属部20よりもx2側に位置していることが好ましい。 From the viewpoint of facilitating the flow of the melt of the low-melting-point metal part 20 toward the x2 side, the heating element 30 is, in plan view, the x2-side from the x1-side end of the region where the low-melting-point metal part 20 is disposed. Therefore, it is more preferable that the low melting point metal portion 20 is provided over the x2 side rather than the x2 side end portion in the x-axis direction of the region where the low melting point metal portion 20 is disposed. Furthermore, it is preferable that the heating element 30 is arranged so as not to overlap the fusing part 11a in plan view. It is preferable that the heat generating body 30 is arranged on the x2 side from the fusing part 11a. Furthermore, the heating element 30 is preferably located on the x2 side with respect to the low melting point metal part 20.
 さらに、ヒューズ1では、絶縁性基板10上において、低融点金属部20に対して、x軸方向のx1側に撥液部40が設けられている。撥液部40は、低融点金属部20の融液をはじく。このため、低融点金属部20の融液は、撥液部40によりx2側にはじかれ、よりスムーズにx2側に移動する。撥液部40は、配線11の幅方向において配線11に跨がって設けられていることが好ましい。撥液部40は、例えば、ホウケイ酸系ガラスなどのガラス材料、エポキシ樹脂などの樹脂材料などにより構成することができる。なお、「融液をはじく」とは、接触角が90°以上であることをいう。 Furthermore, in the fuse 1, a liquid repellent part 40 is provided on the insulating substrate 10 on the x 1 side in the x-axis direction with respect to the low melting point metal part 20. The liquid repellent part 40 repels the melt of the low melting point metal part 20. For this reason, the melt of the low melting point metal part 20 is repelled to the x2 side by the liquid repellent part 40 and moves more smoothly to the x2 side. The liquid repellent portion 40 is preferably provided across the wiring 11 in the width direction of the wiring 11. The liquid repellent part 40 can be comprised by resin materials, such as glass materials, such as a borosilicate type glass, and an epoxy resin, for example. “Repel the melt” means that the contact angle is 90 ° or more.
 なお、本実施形態のヒューズ1は、単独の素子として存在しているが、本発明のヒューズは、電子部品に組み込まれていてもよい。例えば、本発明のヒューズは、電子部品の配線基板と一体化されていてもよい。 In addition, although the fuse 1 of this embodiment exists as a single element, the fuse of the present invention may be incorporated in an electronic component. For example, the fuse of the present invention may be integrated with a wiring board of an electronic component.
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。 Hereinafter, another example of the preferred embodiment of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.
 (第2及び第3の実施形態)
 図2は、第2の実施形態におけるヒューズの略図的図断面である。図3は、第2の実施形態におけるヒューズの略図的平面図である。図4は、第3の実施形態におけるヒューズの略図的断面図である。なお、図3においては、封止部材の描画を省略している。
(Second and third embodiments)
FIG. 2 is a schematic cross-sectional view of a fuse in the second embodiment. FIG. 3 is a schematic plan view of a fuse in the second embodiment. FIG. 4 is a schematic cross-sectional view of a fuse in the third embodiment. In FIG. 3, drawing of the sealing member is omitted.
 第1の実施形態では、溶断部11aと非溶断部11bとで材料が互いに異なる例について説明した。但し、本発明は、この構成に限定されない。図2及び図4に示されるように、第2及び第3の実施形態では、配線11は、単一の層により構成されている。図3に示されるように、第2の実施形態に係るヒューズ2では、溶断部11aは、非溶断部11bよりも幅狭に設けられている。図4に示されるように、第3の実施形態に係るヒューズ3では、溶断部11aは、非溶断部11bよりも薄く設けられている。これらの場合であっても、溶断部11aの方が、非溶断部11bよりも低融点金属部20の融液に融解しやすい。 In the first embodiment, the example in which the materials are different from each other in the fused part 11a and the non-fused part 11b has been described. However, the present invention is not limited to this configuration. As shown in FIGS. 2 and 4, in the second and third embodiments, the wiring 11 is composed of a single layer. As shown in FIG. 3, in the fuse 2 according to the second embodiment, the fusing part 11a is provided narrower than the non-fusing part 11b. As shown in FIG. 4, in the fuse 3 according to the third embodiment, the fusing part 11a is provided thinner than the non-fusing part 11b. Even in these cases, the melted part 11a is more easily melted into the melt of the low melting point metal part 20 than the non-fused part 11b.
 また、配線11は、単一の層であって、幅狭部や薄い部分を有さなくてもよい。その場合は、配線11の溶断部11aは、低融点金属部20が上に設けられた部分となる。この場合は、平面視において、発熱体30が低融点金属部20よりもx2側に位置していることが特に好ましい。 Further, the wiring 11 is a single layer and does not have to have a narrow part or a thin part. In that case, the fusing part 11a of the wiring 11 is a part on which the low melting point metal part 20 is provided. In this case, it is particularly preferable that the heating element 30 is located on the x2 side of the low melting point metal part 20 in plan view.
 (第4及び第5の実施形態)
 図5は、第4の実施形態におけるヒューズの略図的断面図である。図6は、第5の実施形態におけるヒューズの略図的断面図である。
(Fourth and fifth embodiments)
FIG. 5 is a schematic cross-sectional view of a fuse in the fourth embodiment. FIG. 6 is a schematic cross-sectional view of a fuse in the fifth embodiment.
 図5に示されるように、第4の実施形態に係るヒューズ4では、発熱体30が絶縁性基板10の第1の主面10a上に設けられている。低融点金属部20と発熱体30とは、絶縁層60によって絶縁されている。図6に示されるように、第5の実施形態に係るヒューズ5では、発熱体30が絶縁性基板10の内部に設けられている。これらの場合は、発熱体30が第2の主面10b上に設けられている場合よりも、発熱体30の熱が低融点金属部20に供給されやすい。従って、配線11が溶断されやすい。 As shown in FIG. 5, in the fuse 4 according to the fourth embodiment, the heating element 30 is provided on the first main surface 10 a of the insulating substrate 10. The low melting point metal part 20 and the heating element 30 are insulated by the insulating layer 60. As shown in FIG. 6, in the fuse 5 according to the fifth embodiment, the heating element 30 is provided inside the insulating substrate 10. In these cases, the heat of the heating element 30 is more easily supplied to the low melting point metal part 20 than when the heating element 30 is provided on the second main surface 10b. Therefore, the wiring 11 is easily melted.
1~5…ヒューズ
10…絶縁性基板
10a…第1の主面
10b…第2の主面
11…配線
11a…溶断部
11b…非溶断部
12,14…ビアホール電極
13,15…端子電極
20…低融点金属部
21…絶縁層
30…発熱体
40…撥液部
50…封止部材
60…絶縁層
DESCRIPTION OF SYMBOLS 1-5 ... Fuse 10 ... Insulating board | substrate 10a ... 1st main surface 10b ... 2nd main surface 11 ... Wiring 11a ... Fusing part 11b ... Unblown part 12, 14 ... Via- hole electrode 13, 15 ... Terminal electrode 20 ... Low melting point metal part 21 ... insulating layer 30 ... heating element 40 ... liquid repellent part 50 ... sealing member 60 ... insulating layer

Claims (11)

  1.  絶縁性基板と、
     前記絶縁性基板の一主面上に配された配線と、
     前記配線の上に設けられており、前記配線よりも低い融点を有するとともに、融液となった際に前記配線を溶解させる低融点金属部と、
     前記低融点金属部を加熱する発熱体と、
    を備え、
     平面視において、前記発熱体は、前記低融点金属部が配された領域の前記配線の延びる方向における一方側端部よりも他方側に設けられている、ヒューズ。
    An insulating substrate;
    Wiring disposed on one main surface of the insulating substrate;
    A low melting point metal part which is provided on the wiring and has a melting point lower than that of the wiring and which dissolves the wiring when it becomes a melt;
    A heating element for heating the low melting point metal part;
    With
    In the plan view, the heating element is provided on the other side of one end in the direction in which the wiring extends in a region where the low melting point metal portion is disposed.
  2.  平面視において、前記発熱体は、前記低融点金属部が配された領域の前記配線の延びる方向における一方側端部よりも他方側から、前記低融点金属部が配された領域の前記配線の延びる方向における他方側端部よりも他方側にわたって設けられている、請求項1に記載のヒューズ。 In a plan view, the heating element is formed on the wiring in the region in which the low melting point metal part is disposed from the other side of the one end in the direction in which the wiring extends in the region in which the low melting point metal part is disposed. The fuse according to claim 1, which is provided over the other side rather than the other side end in the extending direction.
  3.  前記配線は、
     前記低融点金属部の融液に融解することにより相対的に溶断されやすい溶断部と、
     前記配線の延びる方向において前記溶断部の一方側に位置しており、相対的に溶断されにくい非溶断部と、
    を含み、
     平面視において、前記発熱体が、前記溶断部と重ならないように配されている、請求項1または2に記載のヒューズ。
    The wiring is
    A melted portion that is relatively easily melted by melting in the melt of the low melting point metal portion, and
    A non-blown part that is located on one side of the fused part in the direction in which the wiring extends, and is relatively less likely to be fused;
    Including
    The fuse according to claim 1, wherein the heating element is arranged so as not to overlap the fusing part in a plan view.
  4.  前記溶断部は、前記低融点金属部の融液に対する溶解速度が相対的に高い金属からなり、
     前記非溶断部は、前記低融点金属部の融液に対する溶解速度が相対的に低い金属からなる、請求項3に記載のヒューズ。
    The fusing part is made of a metal having a relatively high dissolution rate with respect to the melt of the low melting point metal part,
    4. The fuse according to claim 3, wherein the non-blown part is made of a metal having a relatively low dissolution rate with respect to the melt of the low melting point metal part.
  5.  前記溶断部がAu及びAgの少なくとも一方を含み、
     前記非溶断部がCu、Pb、Ni及びPtのうちの少なくとも一種を含む、請求項4に記載のヒューズ。
    The fusing part includes at least one of Au and Ag;
    The fuse according to claim 4, wherein the non-blown part includes at least one of Cu, Pb, Ni, and Pt.
  6.  前記溶断部は、前記非溶断部よりも幅狭である、請求項3~5のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 3 to 5, wherein the fusing part is narrower than the non-fusing part.
  7.  前記溶断部は、前記非溶断部よりも薄い、請求項3~6のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 3 to 6, wherein the fused part is thinner than the non-fused part.
  8.  前記絶縁性基板の一主面上において、前記低融点金属部に対して、前記配線の延びる方向の一方側に設けられており、前記低融点金属部の融液をはじく撥液部をさらに備える、請求項1~7のいずれか一項に記載のヒューズ。 Provided on one main surface of the insulating substrate with respect to the low melting point metal part on one side in the direction in which the wiring extends, and further includes a liquid repellent part that repels the melt of the low melting point metal part. The fuse according to any one of claims 1 to 7.
  9.  前記発熱体は、前記基板の一主面上または前記基板の内部に設けられている、請求項1~8のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 8, wherein the heating element is provided on one main surface of the substrate or inside the substrate.
  10.  前記配線と前記低融点金属部とを絶縁する絶縁層をさらに備える、請求項1~9のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 9, further comprising an insulating layer that insulates the wiring and the low-melting-point metal part.
  11.  前記低融点金属部は、Snを主成分とする、請求項1~10のいずれか一項に記載のヒューズ。 The fuse according to any one of claims 1 to 10, wherein the low-melting-point metal part is composed mainly of Sn.
PCT/JP2013/068338 2012-08-29 2013-07-04 Fuse WO2014034261A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014532859A JPWO2014034261A1 (en) 2012-08-29 2013-07-04 fuse
KR1020157003463A KR20150029028A (en) 2012-08-29 2013-07-04 Fuse
CN201380043450.2A CN104584175A (en) 2012-08-29 2013-07-04 Fuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012188351 2012-08-29
JP2012-188351 2012-08-29

Publications (1)

Publication Number Publication Date
WO2014034261A1 true WO2014034261A1 (en) 2014-03-06

Family

ID=50183084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068338 WO2014034261A1 (en) 2012-08-29 2013-07-04 Fuse

Country Status (5)

Country Link
JP (1) JPWO2014034261A1 (en)
KR (1) KR20150029028A (en)
CN (1) CN104584175A (en)
TW (1) TW201409518A (en)
WO (1) WO2014034261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142751B1 (en) 2021-07-05 2022-09-27 三菱電機株式会社 Power conversion device and interrupting mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6739922B2 (en) * 2015-10-27 2020-08-12 デクセリアルズ株式会社 Fuse element
JP6452001B2 (en) * 2016-06-08 2019-01-16 株式会社村田製作所 Electronic device and method for manufacturing electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113535A (en) * 1980-11-27 1982-07-15 Bitsukumannbueruke Gmbh Electric fuse
JPH0538748U (en) * 1991-10-29 1993-05-25 カルソニツク株式会社 Ventilation control device for automobile air conditioner
JP2000285777A (en) * 1999-03-31 2000-10-13 Nec Kansai Ltd Protective element
JP2004087467A (en) * 2002-06-28 2004-03-18 Fujikura Ltd Thermal fuse for resistive circuit substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007041529A2 (en) * 2005-10-03 2007-04-12 Littelfuse, Inc. Fuse with cavity forming enclosure
CN201449830U (en) * 2009-06-19 2010-05-05 西安中熔电气有限公司 Fuse resistor with M effect point

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113535A (en) * 1980-11-27 1982-07-15 Bitsukumannbueruke Gmbh Electric fuse
JPH0538748U (en) * 1991-10-29 1993-05-25 カルソニツク株式会社 Ventilation control device for automobile air conditioner
JP2000285777A (en) * 1999-03-31 2000-10-13 Nec Kansai Ltd Protective element
JP2004087467A (en) * 2002-06-28 2004-03-18 Fujikura Ltd Thermal fuse for resistive circuit substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142751B1 (en) 2021-07-05 2022-09-27 三菱電機株式会社 Power conversion device and interrupting mechanism
JP2023008013A (en) * 2021-07-05 2023-01-19 三菱電機株式会社 Power conversion device and interruption mechanism

Also Published As

Publication number Publication date
JPWO2014034261A1 (en) 2016-08-08
CN104584175A (en) 2015-04-29
TW201409518A (en) 2014-03-01
KR20150029028A (en) 2015-03-17

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
JP2010522420A (en) Fusible gold element, thermal fuse with fusible gold element, and method for manufacturing a thermal fuse
JP6389603B2 (en) Switch element, switch circuit, and alarm circuit
JP5939311B2 (en) fuse
WO2014034261A1 (en) Fuse
JP2010165685A (en) Protection element, and battery pack
TWI493588B (en) Fuse
JP6171500B2 (en) fuse
JP6102266B2 (en) fuse
JPH0412428A (en) Fuse element
WO2016098854A1 (en) Switch element
WO2014034262A1 (en) Fuse
JP2020071935A (en) fuse
JP2014044955A (en) Protection element, and battery pack
TWI677002B (en) Switching element
JP6437221B2 (en) Switch element, switch circuit and alarm circuit
JP2012059719A (en) Protection element, and battery pack
JP6615951B2 (en) Switch element, switch circuit, and alarm circuit
JP6142668B2 (en) Fuse element
JP5994410B2 (en) Protective element
JP2014235940A (en) Fuse element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13832656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532859

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157003463

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13832656

Country of ref document: EP

Kind code of ref document: A1