WO2014034178A1 - Method for assessing polymer and process for producing polymer - Google Patents

Method for assessing polymer and process for producing polymer Download PDF

Info

Publication number
WO2014034178A1
WO2014034178A1 PCT/JP2013/061725 JP2013061725W WO2014034178A1 WO 2014034178 A1 WO2014034178 A1 WO 2014034178A1 JP 2013061725 W JP2013061725 W JP 2013061725W WO 2014034178 A1 WO2014034178 A1 WO 2014034178A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
filter
color developing
solution
developing solution
Prior art date
Application number
PCT/JP2013/061725
Other languages
French (fr)
Japanese (ja)
Inventor
真由美 草野
正臣 ▲吉▼田
新弥 笠間
栄二 穐田
北村 秀樹
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to JP2014532827A priority Critical patent/JPWO2014034178A1/en
Priority to CN201380023813.6A priority patent/CN104285146B/en
Publication of WO2014034178A1 publication Critical patent/WO2014034178A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators

Definitions

  • the present invention relates to a method for evaluating a polymer and a method for producing a polymer. More specifically, the present invention relates to a method for evaluating a polymer by detecting foreign matters contained in the polymer, and a polymer including the evaluation method. It relates to a manufacturing method.
  • Vinylidene fluoride polymers are used in various applications because they are excellent in heat resistance, chemical resistance and electrochemical stability.
  • foreign components such as inorganic components such as metals and metal compounds and organic components such as other polymers may be mixed.
  • high-purity vinylidene fluoride polymers that are less contaminated with such foreign substances are required.
  • an inorganic component such as a metal
  • a decomposition reaction of the vinylidene fluoride polymer is induced at the time of melt molding, or a molded product of vinylidene fluoride polymer such as a pipe for ultrapure water is used.
  • the inorganic components and polymer decomposition products are eluted, which causes a problem. Therefore, quality control that reduces the content of foreign matter as much as possible is required.
  • an ICP emission analysis method using a high frequency inductively coupled plasma (ICP) as a light source is known.
  • ICP emission analysis method a metal component in a polymer is extracted into a solvent such as water and acid, and the solution sample is applied to an ICP emission analysis device to detect an existing metal component.
  • Patent Document 1 discloses an image of foreign matter captured by a filter after filtering the liquid matter, detects the foreign matter from this image, and detects the foreign matter. A method for calculating the size and number is described.
  • Patent Document 2 uses a determination liquid containing potassium ferricyanide and potassium ferrocyanide to cause a color reaction between iron ions and an indicator, and the degree of mixing of iron ions in the resin-impregnated composition. It is described to know. It is known as a general chemical reaction that potassium ferricyanide reacts with divalent iron ions to give turn blue, and potassium ferrocyanide reacts with trivalent iron ions to give Berlin blue.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2005-221291 (published on August 18, 2005)” Japanese Patent Publication “JP-A-5-172805 (published July 13, 1993)”
  • the analysis method of the metal component in the polymer by the ICP emission analysis method is complicated in operation because the metal component in the polymer is extracted into a solvent such as water and acid and the solution sample is applied to the emission analyzer. An ICP emission analyzer is required.
  • this analysis method can detect the presence of foreign matter, it has the disadvantage that the number and size of foreign matters cannot be measured.
  • Patent Document 2 does not consider the detection of metal foreign objects other than iron, and is not sufficient as a foreign object detection method when a metal other than iron is assumed as the foreign object. is there.
  • a general polymer production facility including a vinylidene fluoride polymer is made using SUS304 or SUS316 or an austenitic stainless steel according to these. Therefore, there is a high possibility that stainless steel is mixed as a foreign substance in the polymer. According to the result of confirming the foreign matter in the vinylidene fluoride polymer adhering to the iron remover using the iron remover, stainless steel and iron are mixed as foreign matters in the vinylidene fluoride polymer. .
  • an object of the present invention is to provide a method for easily detecting iron and metal foreign matters other than iron contained in a polymer.
  • the polymer evaluation method includes a filtration step of filtering a polymer solution in which the polymer is dissolved in a solvent, a hexacyanoiron (II) potassium, and a hexacyanoiron.
  • III In the polymer solution captured by the filter by the contact step of bringing the color developing solution containing potassium and acid into contact with the filter after filtration, and color development on the filter caused by the color developing solution.
  • a measuring step of detecting foreign matter and measuring at least one of the number and size of the foreign matter, and the pH of the color developing solution is in the range of ⁇ 0.40 to +0.75. .
  • the foreign matter mixed in the polymer is captured by the filter by filtration of the polymer solution using a filter. If a foreign substance containing iron is present in the trapped foreign substance, the foreign substance exhibits a blue color due to the reaction with the color developing solution.
  • the production quality of the polymer from the viewpoint of the foreign matter mixed in the polymer can be evaluated.
  • the pH of the color developing solution is lower than 0.75, even if the foreign material is, for example, stainless steel having high corrosion resistance, the color developing reaction proceeds and a blue color is exhibited.
  • the foreign material is a metal other than iron, it can be detected based on color development. Further, since the pH of the color developing solution is higher than ⁇ 0.40, when the foreign material is iron, it can be prevented from being lost, and the foreign material can be detected while maintaining the size of the foreign material. it can.
  • the manufacturing method of the polymer which concerns on this invention manufactures a polymer by polymerization reaction, the manufacturing process of obtaining the powder of this polymer by drying, and the obtained said polymer A part of the powder is dissolved in a solvent having a polymer dissolving ability and not having a foreign substance dissolving ability, and a filtration is performed by filtering the polymer solution in which the polymer is dissolved in the solvent with a filter.
  • a polymer is produced by a polymerization reaction and then dried to obtain a polymer powder.
  • a part of the powder is dissolved in a solvent having the ability to dissolve the polymer and not the foreign substance, thereby preparing a polymer solution.
  • the foreign matter mixed in the polymer powder is captured by the filter by filtration of the polymer solution using a filter. If a foreign substance containing iron is present in the trapped foreign substance, the foreign substance exhibits a blue color due to the reaction with the color developing solution. Foreign matter is detected based on this color development, and at least one of the number and size is measured. And based on the measurement result, the production quality of the polymer from the viewpoint of the foreign matter mixed in the polymer is determined.
  • the pH of the color developing solution is lower than 0.75, even if the foreign material is, for example, stainless steel having high corrosion resistance, the color developing reaction proceeds and a blue color is exhibited. Therefore, even if the foreign material is a metal other than iron, it can be detected based on color development. Further, since the pH of the color developing solution is higher than ⁇ 0.40, when the foreign material is iron, it can be prevented from being lost, and the foreign material can be detected while maintaining the size of the foreign material. it can. Therefore, the produced polymer can be sorted according to production quality, and a polymer having a desired production quality can be provided.
  • the detection of foreign matter by color development caused by the reaction of a color developing solution containing hexacyano iron (II) potassium, hexacyano iron (III) potassium and an acid with foreign matter captured by a filter is in the range of ⁇ 0.40 to +0.75. Therefore, it is possible to easily detect iron and metal foreign matters other than iron contained in the polymer.
  • the polymer evaluation method according to the present invention is suitably incorporated as part of the polymer production method, and more suitably incorporated into the vinylidene fluoride polymer production method. Therefore, below, one Embodiment of the manufacturing method of the vinylidene fluoride polymer in which the evaluation method of the polymer based on this invention was integrated is described.
  • the polymer evaluation method according to the present invention is not limited to the one incorporated in the polymer production method, and the polymer is not limited to the vinylidene fluoride polymer.
  • the manufacturing method of the vinylidene fluoride polymer in the present embodiment includes a manufacturing process of manufacturing a vinylidene fluoride polymer by a polymerization reaction and obtaining a vinylidene fluoride polymer powder by drying, and a manufactured vinylidene fluoride polymer.
  • a dissolution step for dissolving in a solvent, a filtration step for filtering a polymer solution in which a vinylidene fluoride polymer is dissolved in a solvent, a hexacyano iron (II) potassium, a hexacyano iron (III) potassium and an acid are included.
  • a vinylidene fluoride is polymerized in an aqueous medium together with a monomer capable of being copolymerized alone or copolymerized to produce a vinylidene fluoride polymer, and the powder is obtained by drying.
  • the “vinylidene fluoride polymer” includes not only a homopolymer of vinylidene fluoride but also a copolymer of vinylidene fluoride and other monomers.
  • the polymerization method of the vinylidene fluoride polymer is not particularly limited, and solution polymerization, emulsion polymerization, and suspension polymerization can be used.
  • the slurry of the vinylidene fluoride polymer obtained by the polymerization reaction is subjected to dehydration treatment and water washing treatment, and then dried in an oven at a temperature of 50 ° C. or higher and lower than 150 ° C., for example. Thereby, the powder of a vinylidene fluoride polymer is obtained.
  • the solvent has the ability to dissolve the polymer and does not have the ability to dissolve foreign matter, that is, can dissolve vinylidene fluoride polymer, dissolves iron and stainless steel mixed as foreign matter in the vinylidene fluoride polymer
  • NMP N-methyl-2-pyrrolidone
  • N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used.
  • NMP N-methyl-2-pyrrolidone
  • NMP N, N-dimethylformamide, N, N-dimethylacetamide and the like
  • the concentration of the vinylidene fluoride polymer in the prepared polymer solution is preferably 20% by mass or less, and more preferably 10% by mass or less. .
  • the charging of the vinylidene fluoride polymer into the solvent may be either batch charging or split charging. Further, in order to disperse the vinylidene fluoride polymer in the solvent so that the vinylidene fluoride polymer can be easily dissolved, it is preferable that the vinylidene fluoride polymer is charged and dissolved while stirring the solvent.
  • the temperature at which the vinylidene fluoride polymer is dissolved in the solvent is not limited, but it is preferably dissolved at 60 ° C. to 80 ° C. By dissolving at 60 ° C. or higher, the dissolution time can be shortened. Accordingly, it is possible to shorten the time required from detection of the mixed foreign matter after the vinylidene fluoride polymer is obtained by the polymerization reaction.
  • the filtration step the polymer solution in which the vinylidene fluoride polymer is dissolved in the solvent is filtered by a filter, so that foreign matters mixed in the vinylidene fluoride are captured by the filter.
  • Filtration may be performed using a general filtration device, and suction filtration is preferable from the viewpoint of improving the filtration rate.
  • the filter may be any filter that does not contain a metal and has resistance to a solvent.
  • a known membrane filter formed of a fluororesin and cellulose acetate can be used.
  • the pore diameter of the filter may be appropriately determined according to the size of the foreign substance to be detected.
  • a filter having a pore diameter of 1 to 20 ⁇ m can be used, and a filter having a pore diameter of 5 to 15 ⁇ m is preferably used. It is done.
  • the temperature of the polymer solution in the filtration step is preferably 30 ° C. to 100 ° C., and more preferably 50 ° C. to 80 ° C.
  • the solution temperature is 30 ° C. or higher in the filtration step, the solution viscosity decreases, thereby shortening the time required for filtration and improving the work efficiency.
  • the solution temperature is 100 ° C. or lower, the risk of burns when an operator touches the solvent is reduced, and the risk of the solvent igniting is also reduced.
  • the filter is washed with a solvent and acetone, and then the filter is dried.
  • the solvent is further passed after filtration, and then acetone is passed to remove the solvent remaining on the filter.
  • the solvent used for cleaning the filter may be any solvent that can dissolve the vinylidene fluoride polymer.
  • the same type of solvent as that used for preparing the polymer solution can be used.
  • acetone is used to remove the solvent remaining on the filter.
  • the solvent is not limited to acetone as long as the solvent can be removed. For example, methanol and ethanol can be used.
  • the color developing solution in the present embodiment is an aqueous solution containing hexacyano iron (II) potassium, hexacyano iron (III) potassium and an acid, and may contain other components as long as the effects of the present invention are not impaired.
  • the acid used in the color developing solution is not particularly limited, but for example, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid are preferable, and hydrochloric acid is more preferable.
  • the color developing solution in this embodiment can be prepared, for example, by dissolving 0.1 to 5 parts by weight of a mixture of potassium hexacyanoiron (II) and hexacyanoiron (III) potassium in 100 parts by weight of an acidic aqueous solution. it can.
  • the main foreign substances to be detected are iron and stainless steel.
  • Stainless steel is known to have strong corrosion resistance. Therefore, when the acid concentration is low, even if the color developing solution comes into contact with stainless steel, hexacyano iron (II) potassium and hexacyano iron (III) potassium cannot react with sufficient iron ions and detection is possible. Color development does not occur to the extent. Therefore, stainless steel cannot be detected using color development as an index. In addition, if the acid concentration is too high, iron as a foreign matter is lost. As a result, the presence or absence of foreign matter or the size of foreign matter cannot be measured correctly.
  • the acid concentration in the color developing solution is within a range in which color development occurs due to the reaction with the stainless steel by contact with the color developing solution and iron is not lost.
  • the concentration of the acid that satisfies such conditions varies depending on the type of acid.
  • the concentration of hydrochloric acid in the color developing solution is 0.5 to 4.0% by mass, preferably 1.0 to 4.0% by mass, and more preferably 2.0 to 3. 0% by mass. If the concentration of hydrochloric acid in the color developing solution is 0.5% by mass or more, color development occurs due to the reaction between the stainless steel as a foreign material and the color developing solution, so that the stainless steel contained as a foreign material can be detected.
  • the concentration of hydrochloric acid is 4.0% by mass or less, iron melting can be prevented, and thus iron contained as foreign matter can be detected while maintaining the size as foreign matter.
  • the color developing solution (potassium hexacyanoiron (II): 0.5% by mass, potassium hexacyanoiron (III): 0.5% by mass, hydrochloric acid: 0.5% by mass or 4.0% by mass, solvent: water)
  • the pH was measured using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., model: HM-30V).
  • the pH of the color developing solution containing hydrochloric acid at a concentration of 0.5% by mass was 0.75.
  • the pH of the color developing solution contained at a concentration of 0% by mass was ⁇ 0.40. Therefore, a color developing solution that satisfies the above conditions can be defined as a color developing solution having a pH in the range of ⁇ 0.40 to +0.75.
  • the pH of the color developing solution containing hydrochloric acid at a concentration of 2.0% by mass was 0.05, and the pH of the color developing solution containing a concentration of 3.0% by mass was ⁇ 0.19. Therefore, a color developing solution having a pH in the range of ⁇ 0.19 to +0.05 is more preferably used.
  • the method of bringing the color developing solution into contact with the filter is not particularly limited as long as the foreign matter captured by the filter can react with the color developing solution, but it is preferable to spray the color developing solution on the filter surface. According to the contact by spraying, the trapped foreign matter can be prevented from flowing away from the filter.
  • the colored portion is observed using a microscope, the foreign matter in the colored portion is observed, the number of the whole on the filter is measured, and the size of each is measured. It is not limited to this.
  • the foreign matter in the color development portion may be observed and the number thereof on the entire filter may be measured.
  • the size of the foreign material in a color development part may be measured, and the presence or absence of the foreign material exceeding a specific size may be confirmed.
  • the measurement object in the measurement process is appropriately determined by the user of the production method according to the present invention according to the use of the produced vinylidene fluoride polymer or the user's request to use the produced vinylidene fluoride polymer. That's fine.
  • the production quality of the vinylidene fluoride polymer from the viewpoint of the foreign matter mixed in is determined based on the measurement result in the measurement step described above. That is, the quality of the produced vinylidene fluoride polymer is determined based on the number of foreign substances contained in the produced vinylidene fluoride polymer and / or the size thereof. For example, a threshold is set for the number or size of foreign matter to be detected, and when there is a foreign matter exceeding the threshold, the lot can be determined as a defective lot. Alternatively, a finer standard can be set and the quality can be determined based on the standard.
  • the threshold value or the standard for determining the quality is determined by the user of the production method according to the present invention according to the use of the produced vinylidene fluoride polymer or the user's request to use the produced vinylidene fluoride polymer. What is necessary is just to determine suitably. For example, when the number of foreign matters detected from 1 g of the produced vinylidene fluoride polymer exceeds 10, the lot is regarded as a defective product, and when the number of foreign matters is 4 to 10, the lot is usually As an example, the standard is that the lot is a high-purity product when the number of foreign materials is 2 or 3, and the lot is an ultra-high-purity product when the number of foreign materials is 1 or less. it can.
  • threshold value or reference is, for example, when the size of a foreign material is measured in the measurement process and a foreign material larger than 50 ⁇ m is found, the lot is regarded as a defective product, and no foreign material exceeding 50 ⁇ m is found. In this case, it is possible to exemplify a standard for making the lot a normal product.
  • a vinylidene fluoride polymer having a desired quality can be provided as the final manufactured product.
  • the polymer evaluation method according to the present invention includes a filtration step of filtering a polymer solution in which a polymer is dissolved in a solvent, a hexacyanoiron (II) potassium, and a hexacyanoiron (III).
  • a foreign substance in the polymer solution captured by the filter is detected by a contacting step in which a coloring solution containing potassium and an acid is brought into contact with the filter after filtration, and coloring on the filter caused by the coloring solution.
  • a measuring step for measuring at least one of the number and size of the foreign substances, and the pH of the color developing solution is in the range of ⁇ 0.40 to +0.75.
  • the acid is preferably hydrochloric acid
  • the color developing solution preferably contains hydrochloric acid at a concentration of 0.5 to 4.0% by mass.
  • the color developing solution in the contact step, it is preferable that the color developing solution is brought into contact with the filter by spraying the color developing solution.
  • the foreign material is preferably at least one of iron and stainless steel.
  • the polymer is preferably a vinylidene fluoride polymer.
  • the solvent is a solvent having a polymer dissolving ability and a foreign substance dissolving ability
  • the polymer powder is dissolved in the solvent to dissolve the polymer. It further includes a dissolution step of preparing a solution, and in the dissolution step, the powder is preferably dissolved at 60 to 80 ° C.
  • the solvent is preferably N-methyl-2-pyrrolidone.
  • the color developing solution is a mixture of the hexacyano iron (II) potassium and the hexacyano iron (III) potassium in an amount of 0.1 to 5 with respect to 100 parts by weight of the aqueous solution containing the acid. It is preferable that the part by weight is dissolved.
  • the content ratio of hexacyano iron (II) potassium and hexacyano iron (III) potassium in the mixture is preferably in the range of 1: 5 to 5: 1.
  • Example 1 Confirmation of color development and erosion
  • concentration of hydrochloric acid in each color developing solution is 0.02, 0.25, 2.5, or 4.5 mass%.
  • Each color developing solution contains potassium hexacyanoiron (II) and hexacyanoiron (III) at a concentration of 0.5% by mass.
  • the solvent of the color developer is water.
  • each of a plurality of color developing solutions having different hydrochloric acid concentrations was sprayed on powdery SUS316 (hereinafter referred to as SUS powder), and it was confirmed using a microscope whether the SUS powder had a blue color.
  • each of a plurality of coloring solutions having different hydrochloric acid concentrations was sprayed on the iron powder, and the state of the iron powder was confirmed using a microscope.
  • Example 2 Production of vinylidene fluoride polymer
  • An autoclave with an internal volume of 2 L is charged with 1,024 g of ion-exchanged water, 0.20 g of methyl cellulose, 11.2 g of ethyl acetate, 2.0 g of diisopropyl peroxydicarbonate, and 400 g of vinylidene fluoride, and the temperature is raised to 26 ° C. in 1 hour. Then, suspension polymerization was performed for 25.5 hours from the start of temperature increase. After completion of the polymerization, the polymer was washed with 5 L of ion exchange water while dehydrating the resulting polymer slurry. Then, it heated for 10 hours in 80 degreeC oven, and obtained the powder of the dried vinylidene fluoride polymer.
  • the prepared polymer solution was put into a funnel of a filtration device, and suction filtered using a membrane filter (pore diameter: 10 ⁇ m). After suction filtration, NMP and acetone were passed through the membrane filter in this order to wash the membrane filter. After washing, the membrane filter was dried. After the membrane filter was transferred to a petri dish, a coloring solution was sprayed on the membrane filter to cause a color reaction. Using a microscope, the number and size of foreign matters that were colored on the membrane filter were measured.
  • the present invention can be used for the production of a vinylidene fluoride polymer and its quality evaluation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The present invention provides a method for detecting, easily and simply, iron and other metallic foreign particles which are contained in a polymer. This method comprises: a step for passing a polymer solution through a filter; a step for bringing a color-forming fluid which contains potassium hexacyanoferrate (II), potassium hexacyanoferrate (III) and an acid into contact with the filter; and a step for detecting foreign particles on the basis of the color developed on the filter, and measuring the number and/or sizes of the foreign particles. The pH of the color-forming fluid is ­0.40 to +0.75.

Description

重合体の評価方法、および重合体の製造方法POLYMER EVALUATION METHOD AND POLYMER MANUFACTURING METHOD
 本発明は、重合体の評価方法、および重合体の製造方法に関し、より詳細には、重合体に含まれる異物を検出することによる重合体の評価方法、および当該評価方法を包含する重合体の製造方法に関する。 The present invention relates to a method for evaluating a polymer and a method for producing a polymer. More specifically, the present invention relates to a method for evaluating a polymer by detecting foreign matters contained in the polymer, and a polymer including the evaluation method. It relates to a manufacturing method.
 フッ化ビニリデン重合体は、耐熱性、耐薬品性および電気化学的安定性に優れていることから、様々な用途に用いられている。製造されたフッ化ビニリデン重合体には、金属および金属化合物等の無機成分ならびに他の重合体等の有機成分等の異物が混入する場合がある。多くの用途においては、このような異物の混入が少ない、高純度のフッ化ビニリデン重合体が求められている。なかでも、金属等の無機成分がフッ化ビニリデン重合体に混入すると、溶融成形時にフッ化ビニリデン重合体の分解反応を誘発したり、超純水用のパイプといったフッ化ビニリデン重合体の成形物を使用する際に、無機成分および重合体分解物等が溶出したりして、問題となる。そのため、できる限り異物の含有量を少なくする品質管理が求められている。 Vinylidene fluoride polymers are used in various applications because they are excellent in heat resistance, chemical resistance and electrochemical stability. In the manufactured vinylidene fluoride polymer, foreign components such as inorganic components such as metals and metal compounds and organic components such as other polymers may be mixed. In many applications, high-purity vinylidene fluoride polymers that are less contaminated with such foreign substances are required. In particular, when an inorganic component such as a metal is mixed into the vinylidene fluoride polymer, a decomposition reaction of the vinylidene fluoride polymer is induced at the time of melt molding, or a molded product of vinylidene fluoride polymer such as a pipe for ultrapure water is used. When used, the inorganic components and polymer decomposition products are eluted, which causes a problem. Therefore, quality control that reduces the content of foreign matter as much as possible is required.
 重合体中の金属成分の分析方法としては、例えば、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)を光源とするICP発光分析法が知られている。ICP発光分析法では、水および酸等の溶媒に重合体中の金属成分を抽出し、その溶液試料をICP発光分析装置にかけて、存在する金属成分を検出する方法である。 As a method for analyzing a metal component in a polymer, for example, an ICP emission analysis method using a high frequency inductively coupled plasma (ICP) as a light source is known. In the ICP emission analysis method, a metal component in a polymer is extracted into a solvent such as water and acid, and the solution sample is applied to an ICP emission analysis device to detect an existing metal component.
 また、液状物中に含まれる異物を検査する方法として、特許文献1には、液状物をろ過した後のフィルターに捕捉された異物の画像を撮像し、この画像から異物を検出し、異物の大きさおよび個数を算出する方法が記載されている。 In addition, as a method for inspecting foreign matters contained in a liquid material, Patent Document 1 discloses an image of foreign matter captured by a filter after filtering the liquid matter, detects the foreign matter from this image, and detects the foreign matter. A method for calculating the size and number is described.
 また、特許文献2には、フェリシアン化カリウムおよびフェロシアン化カリウムを含む判定液を用いて、鉄イオンと指示薬との間で呈色反応を起こさせて、樹脂含浸組成物中の鉄イオンの混入の程度を知ることが記載されている。フェリシアン化カリウムが2価の鉄イオンと反応するとターンブル青を呈し、フェロシアン化カリウムが3価の鉄イオンと反応してベルリン青を呈することは、一般的な化学反応として知られている。 In addition, Patent Document 2 uses a determination liquid containing potassium ferricyanide and potassium ferrocyanide to cause a color reaction between iron ions and an indicator, and the degree of mixing of iron ions in the resin-impregnated composition. It is described to know. It is known as a general chemical reaction that potassium ferricyanide reacts with divalent iron ions to give turn blue, and potassium ferrocyanide reacts with trivalent iron ions to give Berlin blue.
日本国公開特許公報「特開2005-221291号公報(2005年8月18日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-221291 (published on August 18, 2005)” 日本国公開特許公報「特開平5-172805号公報(1993年7月13日公開)」Japanese Patent Publication “JP-A-5-172805 (published July 13, 1993)”
 ICP発光分析法による重合体中の金属成分の分析方法は、水および酸等の溶媒に重合体中の金属成分を抽出し、その溶液試料を発光分析装置にかけるため、操作が煩雑であるとともに、ICP発光分析装置が必要となる。また、本分析方法では、異物の存在は検出できるものの、異物の数および大きさを計測できないという欠点がある。 The analysis method of the metal component in the polymer by the ICP emission analysis method is complicated in operation because the metal component in the polymer is extracted into a solvent such as water and acid and the solution sample is applied to the emission analyzer. An ICP emission analyzer is required. In addition, although this analysis method can detect the presence of foreign matter, it has the disadvantage that the number and size of foreign matters cannot be measured.
 また、上記特許文献1に記載の方法では、異物の数および大きさを確認できるものの、異物が金属であるのか、金属以外の鉱物であるのか、あるいは炭化物であるのか等、異物の種類を区別することは困難である。 In the method described in Patent Document 1, although the number and size of foreign substances can be confirmed, the type of foreign substances such as whether the foreign substances are metals, minerals other than metals, or carbides is distinguished. It is difficult to do.
 さらに、特許文献2に記載の方法では、鉄以外の金属異物を検出することは考慮されておらず、異物として鉄以外の金属が想定される場合には、異物の検出方法としては不十分である。例えば、フッ化ビニリデン重合体を含む一般的な重合体の製造設備は、SUS304もしくはSUS316またはこれらに準じたオーステナイト系ステンレス鋼を使用して作られている。そのため、重合体中にステンレス鋼が異物として混入する可能性が高い。除鉄器を用いて、除鉄器に付着するフッ化ビニリデン重合体中の異物の確認を行った結果によれば、フッ化ビニリデン重合体中には、異物としてステンレス鋼と鉄とが混在している。 Furthermore, the method described in Patent Document 2 does not consider the detection of metal foreign objects other than iron, and is not sufficient as a foreign object detection method when a metal other than iron is assumed as the foreign object. is there. For example, a general polymer production facility including a vinylidene fluoride polymer is made using SUS304 or SUS316 or an austenitic stainless steel according to these. Therefore, there is a high possibility that stainless steel is mixed as a foreign substance in the polymer. According to the result of confirming the foreign matter in the vinylidene fluoride polymer adhering to the iron remover using the iron remover, stainless steel and iron are mixed as foreign matters in the vinylidene fluoride polymer. .
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、重合体中に含まれる鉄および鉄以外の金属異物を簡便に検出する方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for easily detecting iron and metal foreign matters other than iron contained in a polymer.
 本発明に係る重合体の評価方法は、上記課題を解決するために、重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後の上記フィルターに接触させる接触工程と、上記発色液により生じる上記フィルター上での発色により、上記フィルターに捕捉された上記重合体溶液中の異物を検出し、該異物の数および大きさの少なくとも一方を計測する計測工程とを含み、上記発色液のpHは、-0.40~+0.75の範囲内である構成を有している。 In order to solve the above problems, the polymer evaluation method according to the present invention includes a filtration step of filtering a polymer solution in which the polymer is dissolved in a solvent, a hexacyanoiron (II) potassium, and a hexacyanoiron. (III) In the polymer solution captured by the filter by the contact step of bringing the color developing solution containing potassium and acid into contact with the filter after filtration, and color development on the filter caused by the color developing solution. A measuring step of detecting foreign matter and measuring at least one of the number and size of the foreign matter, and the pH of the color developing solution is in the range of −0.40 to +0.75. .
 上記構成によれば、溶解した重合体中に異物が混入していると、フォルターを用いた重合体溶液のろ過によって、重合体中に混入していた異物がフィルターに捕捉される。捕捉された異物中に鉄を含有する異物が存在すると、発色液との反応により異物が青色を呈する。この発色に基づき異物を検出し、その数および大きさの少なくとも一方を計測することで、重合体中に混入している異物の観点からの重合体の製造品質を評価することができる。ここで、発色液のpHは0.75よりも低いため、異物が、例えば耐食性の高いステンレス鋼であっても、発色反応が進み、青色を呈することになる。そのため、異物が鉄以外の金属であっても発色に基づき検出することができる。また、発色液のpHは-0.40よりも高いため、異物が鉄であった場合に、その溶失を防ぐことができ、異物としての大きさを維持したままで異物を検出することができる。 According to the above configuration, if foreign matter is mixed in the dissolved polymer, the foreign matter mixed in the polymer is captured by the filter by filtration of the polymer solution using a filter. If a foreign substance containing iron is present in the trapped foreign substance, the foreign substance exhibits a blue color due to the reaction with the color developing solution. By detecting foreign matter based on this color development and measuring at least one of the number and size, the production quality of the polymer from the viewpoint of the foreign matter mixed in the polymer can be evaluated. Here, since the pH of the color developing solution is lower than 0.75, even if the foreign material is, for example, stainless steel having high corrosion resistance, the color developing reaction proceeds and a blue color is exhibited. Therefore, even if the foreign material is a metal other than iron, it can be detected based on color development. Further, since the pH of the color developing solution is higher than −0.40, when the foreign material is iron, it can be prevented from being lost, and the foreign material can be detected while maintaining the size of the foreign material. it can.
 また、本発明に係る重合体の製造方法は、上記課題を解決するために、重合反応により重合体を製造し、乾燥により該重合体の粉末を得る製造工程と、得られた上記重合体の粉末の一部を、重合体の溶解能を有しかつ異物の溶解能を有しない溶剤に溶解する溶解工程と、上記重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後の上記フィルターに接触させる接触工程と、上記発色液により生じる上記フィルター上での発色により、上記フィルターに捕捉された上記重合体溶液中の異物を検出し、該異物の数および大きさの少なくとも一方を計測する計測工程と、上記計測工程の結果に基づき、製造された上記重合体の品質を決定する決定工程とを含み、上記発色液のpHは、-0.40~+0.75の範囲内である構成を有している。 Moreover, in order to solve the said subject, the manufacturing method of the polymer which concerns on this invention manufactures a polymer by polymerization reaction, the manufacturing process of obtaining the powder of this polymer by drying, and the obtained said polymer A part of the powder is dissolved in a solvent having a polymer dissolving ability and not having a foreign substance dissolving ability, and a filtration is performed by filtering the polymer solution in which the polymer is dissolved in the solvent with a filter. A step of contacting the color developing solution containing hexacyano iron (II) potassium, hexacyano iron (III) potassium and acid with the filter after filtration, and color development on the filter generated by the color developing solution, A foreign substance in the polymer solution captured by the filter is detected, and a measurement process for measuring at least one of the number and size of the foreign substance and a result of the measurement process are manufactured. And a determination step of determining the quality of the polymer, pH of the color developing solution has a structure in the range of -0.40 ~ +0.75.
 上記構成によれば、重合反応により重合体を製造した後、乾燥し、重合体の粉末を得る。その粉末の一部を、重合体の溶解能を有しかつ異物の溶解能を有しない溶剤に溶解し、重合体溶液を調製する。重合体の粉末中に異物が混入していると、フォルターを用いた重合体溶液のろ過によって、重合体の粉末中に混入していた異物がフィルターに捕捉される。捕捉された異物中に鉄を含有する異物が存在すると、発色液との反応により異物が青色を呈する。この発色に基づき異物を検出し、その数および大きさの少なくとも一方を計測する。そしてその計測結果に基づき、重合体中に混入している異物の観点からの重合体の製造品質を決定する。ここで、発色液のpHは0.75よりも低いため、異物が、例えば耐食性の高いステンレス鋼であっても、発色反応が進み、青色を呈することになる。そのため、異物が鉄以外の金属であっても発色に基づき検出することができる。また、発色液のpHは-0.40よりも高いため、異物が鉄であった場合に、その溶失を防ぐことができ、異物としての大きさを維持したままで異物を検出することができる。したがって、製造された重合体を製造品質によって振り分けることができ、所望の製造品質を有する重合体を提供することが可能となる。 According to the above configuration, a polymer is produced by a polymerization reaction and then dried to obtain a polymer powder. A part of the powder is dissolved in a solvent having the ability to dissolve the polymer and not the foreign substance, thereby preparing a polymer solution. If foreign matter is mixed in the polymer powder, the foreign matter mixed in the polymer powder is captured by the filter by filtration of the polymer solution using a filter. If a foreign substance containing iron is present in the trapped foreign substance, the foreign substance exhibits a blue color due to the reaction with the color developing solution. Foreign matter is detected based on this color development, and at least one of the number and size is measured. And based on the measurement result, the production quality of the polymer from the viewpoint of the foreign matter mixed in the polymer is determined. Here, since the pH of the color developing solution is lower than 0.75, even if the foreign material is, for example, stainless steel having high corrosion resistance, the color developing reaction proceeds and a blue color is exhibited. Therefore, even if the foreign material is a metal other than iron, it can be detected based on color development. Further, since the pH of the color developing solution is higher than −0.40, when the foreign material is iron, it can be prevented from being lost, and the foreign material can be detected while maintaining the size of the foreign material. it can. Therefore, the produced polymer can be sorted according to production quality, and a polymer having a desired production quality can be provided.
 本発明に係る重合体の評価方法によれば、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液と、フィルターによって捕捉された異物との反応による発色でもって異物の検出を行い、発色液のpHは、-0.40~+0.75の範囲内である。そのため、重合体中に含まれる鉄および鉄以外の金属異物を簡便に検出することができる。 According to the polymer evaluation method of the present invention, the detection of foreign matter by color development caused by the reaction of a color developing solution containing hexacyano iron (II) potassium, hexacyano iron (III) potassium and an acid with foreign matter captured by a filter. The pH of the color developing solution is in the range of −0.40 to +0.75. Therefore, it is possible to easily detect iron and metal foreign matters other than iron contained in the polymer.
 本発明に係る重合体の評価方法の一実施形態について、以下に説明する。なお、本発明に係る重合体の評価方法は、重合体の製造方法の一環に好適に組み込まれ、フッ化ビニリデン重合体の製造方法の一環に、より好適に組み込まれる。そのため、以下では、本発明に係る重合体の評価方法が組み込まれたフッ化ビニリデン重合体の製造方法の一実施形態について説明する。しかしながら本発明に係る重合体の評価方法は、重合体の製造方法の一環に組み込まれるものに限定されず、また、重合体はフッ化ビニリデン重合体に限定されるものではない。 An embodiment of a polymer evaluation method according to the present invention will be described below. The polymer evaluation method according to the present invention is suitably incorporated as part of the polymer production method, and more suitably incorporated into the vinylidene fluoride polymer production method. Therefore, below, one Embodiment of the manufacturing method of the vinylidene fluoride polymer in which the evaluation method of the polymer based on this invention was integrated is described. However, the polymer evaluation method according to the present invention is not limited to the one incorporated in the polymer production method, and the polymer is not limited to the vinylidene fluoride polymer.
 本実施形態におけるフッ化ビニリデン重合体の製造方法は、重合反応によりフッ化ビニリデン重合体を製造し、乾燥によりフッ化ビニリデン重合体の粉末を得る製造工程と、製造されたフッ化ビニリデン重合体を溶剤に溶解する溶解工程と、フッ化ビニリデン重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後のフィルターに接触させる接触工程と、発色液により生じるフィルター上での発色により、フィルターに捕捉された重合体溶液中の異物を検出し、異物の数および大きさの少なくとも一方を計測する計測工程と、計測工程の結果に基づき、製造されたフッ化ビニリデン重合体の品質を決定する決定工程とを含んで構成される。 The manufacturing method of the vinylidene fluoride polymer in the present embodiment includes a manufacturing process of manufacturing a vinylidene fluoride polymer by a polymerization reaction and obtaining a vinylidene fluoride polymer powder by drying, and a manufactured vinylidene fluoride polymer. A dissolution step for dissolving in a solvent, a filtration step for filtering a polymer solution in which a vinylidene fluoride polymer is dissolved in a solvent, a hexacyano iron (II) potassium, a hexacyano iron (III) potassium and an acid are included. By detecting the foreign matter in the polymer solution trapped in the filter by the contact step of contacting the color developing solution with the filter after filtration and the color development on the filter caused by the color developing solution, at least the number and size of the foreign matter are detected. Determine the quality of the vinylidene fluoride polymer produced based on the measurement process that measures one and the results of the measurement process Configured to include a constant step.
 (製造工程)
 製造工程では、フッ化ビニリデンを単独または共重合可能なモノマーとともに水性媒体中で重合反応を行い、フッ化ビニリデン重合体を製造し、乾燥によりその粉末を得る。したがって、本明細書において「フッ化ビニリデン重合体」は、フッ化ビニリデンの単独重合体のみならず、フッ化ビニリデンと他のモノマーとの共重合体も包含するものである。フッ化ビニリデン重合体の重合方法は特に限定されず、溶液重合、乳化重合および懸濁重合を用いることができる。重合反応によって得られたフッ化ビニリデン重合体のスラリーは、脱水処理および水洗処理を施した後、例えばオーブン中で50℃以上150℃未満の温度で乾燥する。これにより、フッ化ビニリデン重合体の粉末が得られる。
(Manufacturing process)
In the production process, a vinylidene fluoride is polymerized in an aqueous medium together with a monomer capable of being copolymerized alone or copolymerized to produce a vinylidene fluoride polymer, and the powder is obtained by drying. Accordingly, in the present specification, the “vinylidene fluoride polymer” includes not only a homopolymer of vinylidene fluoride but also a copolymer of vinylidene fluoride and other monomers. The polymerization method of the vinylidene fluoride polymer is not particularly limited, and solution polymerization, emulsion polymerization, and suspension polymerization can be used. The slurry of the vinylidene fluoride polymer obtained by the polymerization reaction is subjected to dehydration treatment and water washing treatment, and then dried in an oven at a temperature of 50 ° C. or higher and lower than 150 ° C., for example. Thereby, the powder of a vinylidene fluoride polymer is obtained.
 (溶解工程)
 溶解工程では、製造されたフッ化ビニリデン重合体の粉末の一部を溶剤に溶解し、フッ化ビニリデン重合体が溶解した重合体溶液を調製する。
(Dissolution process)
In the dissolving step, a part of the produced vinylidene fluoride polymer powder is dissolved in a solvent to prepare a polymer solution in which the vinylidene fluoride polymer is dissolved.
 溶剤は、重合体の溶解能を有しかつ異物の溶解能を有しない溶剤、すなわちフッ化ビニリデン重合体を溶解でき、フッ化ビニリデン重合体中に異物として混入している鉄およびステンレス鋼を溶解しないものであれば、特に制限はなく、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミドおよびN,N-ジメチルアセトアミド等を用いることができる。なかでも、フッ化ビニリデン系樹脂の溶解能に優れ、汎用品で比較的毒性が低く、沸点および蒸気圧がハンドリングに適しているという観点から、NMPを用いることが好ましい。 The solvent has the ability to dissolve the polymer and does not have the ability to dissolve foreign matter, that is, can dissolve vinylidene fluoride polymer, dissolves iron and stainless steel mixed as foreign matter in the vinylidene fluoride polymer As long as it does not, there is no particular limitation, and N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. Among these, it is preferable to use NMP from the viewpoint that it is excellent in solubility of vinylidene fluoride resin, is a general-purpose product, has relatively low toxicity, and has a boiling point and vapor pressure suitable for handling.
 調製される重合体溶液におけるフッ化ビニリデン重合体の濃度に制限はないが、多くの量のフッ化ビニリデン重合体について異物の有無を調べることにより評価の精度を高めることができるため、1質量%以上であることが好ましく、3質量%以上であることがより好ましい。また、溶解およびろ過に要する時間を短くする観点から、調製される重合体溶液におけるフッ化ビニリデン重合体の濃度は、20質量%以下であることが好ましく、10質量%以下であることがより好ましい。 Although there is no restriction | limiting in the density | concentration of the vinylidene fluoride polymer in the polymer solution prepared, since the precision of evaluation can be raised by investigating the presence or absence of a foreign material about many amounts of vinylidene fluoride polymers, 1 mass% Preferably, it is preferably 3% by mass or more. Further, from the viewpoint of shortening the time required for dissolution and filtration, the concentration of the vinylidene fluoride polymer in the prepared polymer solution is preferably 20% by mass or less, and more preferably 10% by mass or less. .
 フッ化ビニリデン重合体の溶剤への投入は、一括投入および分割投入のいずれであってもよい。また、フッ化ビニリデン重合体が溶解しやすいようフッ化ビニリデン重合体を溶剤中で分散させるために、溶剤を攪拌しながら、フッ化ビニリデン重合体の投入および溶解を行うことが好ましい。 The charging of the vinylidene fluoride polymer into the solvent may be either batch charging or split charging. Further, in order to disperse the vinylidene fluoride polymer in the solvent so that the vinylidene fluoride polymer can be easily dissolved, it is preferable that the vinylidene fluoride polymer is charged and dissolved while stirring the solvent.
 フッ化ビニリデン重合体を溶剤に溶解する際の温度に制限はないが、60℃~80℃において溶解することが好ましい。60℃以上で溶解することにより、溶解時間を短くすることができる。したがって、重合反応によりフッ化ビニリデン重合体が得られてから、混入する異物の検出を行うまでに要する時間を短くすることができる。 The temperature at which the vinylidene fluoride polymer is dissolved in the solvent is not limited, but it is preferably dissolved at 60 ° C. to 80 ° C. By dissolving at 60 ° C. or higher, the dissolution time can be shortened. Accordingly, it is possible to shorten the time required from detection of the mixed foreign matter after the vinylidene fluoride polymer is obtained by the polymerization reaction.
 (ろ過工程)
 ろ過工程では、フッ化ビニリデン重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過することにより、フッ化ビニリデンに混入していた異物をフィルターで捕捉する。
(Filtration process)
In the filtration step, the polymer solution in which the vinylidene fluoride polymer is dissolved in the solvent is filtered by a filter, so that foreign matters mixed in the vinylidene fluoride are captured by the filter.
 ろ過は、一般的なろ過装置を用いて行えばよく、ろ過速度を向上させる観点から吸引ろ過であることが好ましい。 Filtration may be performed using a general filtration device, and suction filtration is preferable from the viewpoint of improving the filtration rate.
 フィルターは、金属を含まず、溶剤に対して耐性を有するものであればよく、例えば、フッ素樹脂およびセルロースアセテート等によって形成された公知のメンブレンフィルターを用いることができる。 The filter may be any filter that does not contain a metal and has resistance to a solvent. For example, a known membrane filter formed of a fluororesin and cellulose acetate can be used.
 フィルターの孔径は、検出対象とする異物の大きさに応じて適宜決定すればよく、例えば孔径が1~20μmであるフィルターを用いることができ、好適には孔径が5~15μmであるフィルターが用いられる。 The pore diameter of the filter may be appropriately determined according to the size of the foreign substance to be detected. For example, a filter having a pore diameter of 1 to 20 μm can be used, and a filter having a pore diameter of 5 to 15 μm is preferably used. It is done.
 ろ過工程における重合体溶液の温度は、30℃~100℃であることが好ましく、50℃~80℃であることがより好ましい。 The temperature of the polymer solution in the filtration step is preferably 30 ° C. to 100 ° C., and more preferably 50 ° C. to 80 ° C.
 ろ過工程において溶液温度が30℃以上であると、溶液粘度が低下し、それによりろ過に要する時間が短くなり作業効率が向上する。また、溶液温度が100℃以下であると、作業者が溶剤に触れた際の火傷の危険性が低くなるとともに、溶剤が引火する危険性も低くなる。 When the solution temperature is 30 ° C. or higher in the filtration step, the solution viscosity decreases, thereby shortening the time required for filtration and improving the work efficiency. In addition, when the solution temperature is 100 ° C. or lower, the risk of burns when an operator touches the solvent is reduced, and the risk of the solvent igniting is also reduced.
 ろ過後、溶剤およびアセトンを用いてフィルターを洗浄した後、フィルターを乾燥させる。具体的には、フィルター上に残存するフッ化ビニリデン重合体を除去するために、ろ過後、溶剤をさらに通過させ、次いで、フィルター上に残存する溶剤を除去するために、アセトンを通過させる。なお、フィルターの洗浄に用いる溶剤は、フッ化ビニリデン重合体を溶解できるものであればよく、例えば、重合体溶液の調製に用いた溶剤と同種の溶剤を用いることができる。また、フィルター上に残存する溶剤を除去するためにアセトンを用いているが、溶剤を除去できるものであればアセトンに限定されず、例えば、メタノールおよびエタノール等を用いることができる。 After filtration, the filter is washed with a solvent and acetone, and then the filter is dried. Specifically, in order to remove the vinylidene fluoride polymer remaining on the filter, the solvent is further passed after filtration, and then acetone is passed to remove the solvent remaining on the filter. The solvent used for cleaning the filter may be any solvent that can dissolve the vinylidene fluoride polymer. For example, the same type of solvent as that used for preparing the polymer solution can be used. Further, acetone is used to remove the solvent remaining on the filter. However, the solvent is not limited to acetone as long as the solvent can be removed. For example, methanol and ethanol can be used.
 (接触工程)
 接触工程では、ろ過および乾燥後のフィルターに発色液を接触させる。このとき、フィルター上に異物が捕捉されていると、異物と発色液との反応により、異物およびその周囲が青色に発色する。
(Contact process)
In the contact step, the coloring solution is brought into contact with the filter after filtration and drying. At this time, if foreign matter is trapped on the filter, the foreign matter and its surroundings are colored blue due to the reaction between the foreign matter and the coloring solution.
 本実施形態における発色液は、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む水溶液であり、本発明の効果を阻害しない限り、他の成分を含んでいてもよい。 The color developing solution in the present embodiment is an aqueous solution containing hexacyano iron (II) potassium, hexacyano iron (III) potassium and an acid, and may contain other components as long as the effects of the present invention are not impaired.
 発色液に用いられる酸に特に制限はないが、例えば、塩酸、硫酸およびリン酸等の無機酸が好ましく、より好ましくは塩酸である。 The acid used in the color developing solution is not particularly limited, but for example, inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid are preferable, and hydrochloric acid is more preferable.
 本実施形態における発色液は、例えば、酸性水溶液100重量部に対して、ヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムの混合物0.1~5重量部を溶解することにより調製することができる。ヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムの混合物における混合比は、ヘキサシアノ鉄(II)カリウム:ヘキサシアノ鉄(III)カリウム=1:5~5:1の範囲内であることが好ましい。 The color developing solution in this embodiment can be prepared, for example, by dissolving 0.1 to 5 parts by weight of a mixture of potassium hexacyanoiron (II) and hexacyanoiron (III) potassium in 100 parts by weight of an acidic aqueous solution. it can. The mixing ratio in the mixture of hexacyano iron (II) potassium and hexacyano iron (III) potassium is preferably in the range of hexacyano iron (II) potassium: hexacyano iron (III) potassium = 1: 5 to 5: 1.
 本実施形態において検出対象としている主たる異物は、鉄およびステンレス鋼である。ステンレス鋼は耐食性が強いことが知られている。そのため、酸の濃度が低い場合には、発色液がステンレス鋼に接触しても、ヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムが十分な鉄イオンと反応できず、検出が可能となる程度には発色が生じない。したがって、発色を指標としてステンレス鋼を検出することができない。また、酸の濃度が高すぎると、異物としての鉄が溶失してしまう。そのため、異物の有無あるいは異物の大きさを正しく計測することができなくなる。このことから、発色液における酸の濃度は、発色液の接触により、ステンレス鋼との反応で発色が生じ、かつ鉄が溶失しない範囲内である。このような条件を満たす酸の濃度は、酸の種類によって異なる。例えば塩酸を用いる場合には、発色液における塩酸の濃度は0.5~4.0質量%であり、好ましくは1.0~4.0質量%であり、より好ましくは2.0~3.0質量%である。発色液における塩酸の濃度が0.5質量%以上であれば、異物としてのステンレス鋼と発色液との反応により発色が生じるため、異物として含まれるステンレス鋼を検出することができる。また、塩酸の濃度が4.0質量%以下であれば、鉄の溶失を防ぐことができるため、異物として含まれる鉄を、異物としての大きさを維持したまま検出することができる。なお、発色液(ヘキサシアノ鉄(II)カリウム:0.5質量%、ヘキサシアノ鉄(III)カリウム:0.5質量%、塩酸:0.5質量%または4.0質量%、溶媒:水)のpHを、pHメーター(東亜電波工業株式会社製、型式:HM-30V)を用いて測定したところ、塩酸を0.5質量%の濃度で含む発色液のpHは0.75であり、4.0質量%の濃度で含む発色液のpHは-0.40であった。そのため、上述の条件を満たす発色液は、pHが-0.40~+0.75の範囲内にある発色液と規定することできる。同様に、塩酸を2.0質量%の濃度で含む発色液のpHは0.05であり、3.0質量%の濃度で含む発色液のpHは-0.19であった。そのため、pHが-0.19~+0.05の範囲内にある発色液がより好適に使用される。 In the present embodiment, the main foreign substances to be detected are iron and stainless steel. Stainless steel is known to have strong corrosion resistance. Therefore, when the acid concentration is low, even if the color developing solution comes into contact with stainless steel, hexacyano iron (II) potassium and hexacyano iron (III) potassium cannot react with sufficient iron ions and detection is possible. Color development does not occur to the extent. Therefore, stainless steel cannot be detected using color development as an index. In addition, if the acid concentration is too high, iron as a foreign matter is lost. As a result, the presence or absence of foreign matter or the size of foreign matter cannot be measured correctly. For this reason, the acid concentration in the color developing solution is within a range in which color development occurs due to the reaction with the stainless steel by contact with the color developing solution and iron is not lost. The concentration of the acid that satisfies such conditions varies depending on the type of acid. For example, when hydrochloric acid is used, the concentration of hydrochloric acid in the color developing solution is 0.5 to 4.0% by mass, preferably 1.0 to 4.0% by mass, and more preferably 2.0 to 3. 0% by mass. If the concentration of hydrochloric acid in the color developing solution is 0.5% by mass or more, color development occurs due to the reaction between the stainless steel as a foreign material and the color developing solution, so that the stainless steel contained as a foreign material can be detected. Further, if the concentration of hydrochloric acid is 4.0% by mass or less, iron melting can be prevented, and thus iron contained as foreign matter can be detected while maintaining the size as foreign matter. The color developing solution (potassium hexacyanoiron (II): 0.5% by mass, potassium hexacyanoiron (III): 0.5% by mass, hydrochloric acid: 0.5% by mass or 4.0% by mass, solvent: water) The pH was measured using a pH meter (manufactured by Toa Denpa Kogyo Co., Ltd., model: HM-30V). The pH of the color developing solution containing hydrochloric acid at a concentration of 0.5% by mass was 0.75. The pH of the color developing solution contained at a concentration of 0% by mass was −0.40. Therefore, a color developing solution that satisfies the above conditions can be defined as a color developing solution having a pH in the range of −0.40 to +0.75. Similarly, the pH of the color developing solution containing hydrochloric acid at a concentration of 2.0% by mass was 0.05, and the pH of the color developing solution containing a concentration of 3.0% by mass was −0.19. Therefore, a color developing solution having a pH in the range of −0.19 to +0.05 is more preferably used.
 発色液をフィルターに接触させる方法は、フィルターに捕捉された異物と発色液とが反応できるものであれば特に制限はないが、フィルター表面に発色液を噴霧することが好ましい。噴霧による接触によれば、捕捉された異物がフィルターから流れ去ることを防ぐことができる。 The method of bringing the color developing solution into contact with the filter is not particularly limited as long as the foreign matter captured by the filter can react with the color developing solution, but it is preferable to spray the color developing solution on the filter surface. According to the contact by spraying, the trapped foreign matter can be prevented from flowing away from the filter.
 (計測工程)
 上述の通り、フィルター上に異物が捕捉されていると、発色液と異物との反応により、異物およびその周囲が発色する。計測工程では、発色液と異物との反応により生じた発色に基づき、フィルターに捕捉された重合体溶液中の異物を検出し、検出された異物の数および異物の大きさの少なくとも一方を計測する。
(Measurement process)
As described above, when foreign matter is trapped on the filter, the foreign matter and its surroundings develop color due to the reaction between the coloring solution and the foreign matter. In the measurement step, the foreign matter in the polymer solution trapped by the filter is detected based on the color developed by the reaction between the color developing solution and the foreign matter, and at least one of the number of detected foreign matters and the size of the foreign matter is measured. .
 本実施形態においては、顕微鏡を用いて発色部分を観察し、発色部分における異物を観察し、フィルター上全体でのその数を計測するとともに、それぞれの大きさを計測しているが、観察方法はこれに限定されるものではない。例えば、発色部分における異物を観察し、フィルター上全体でのその数を計測するだけであってもよい。あるいは、発色部分における異物の大きさを計測し、特定の大きさを超える異物の有無を確認するものであってもよい。計測工程における計測対象は、製造されたフッ化ビニリデン重合体の用途、あるいは製造されたフッ化ビニリデン重合体を使用するユーザーの要求に応じて、本発明に係る製造方法の使用者が適宜決定すればよい。 In the present embodiment, the colored portion is observed using a microscope, the foreign matter in the colored portion is observed, the number of the whole on the filter is measured, and the size of each is measured. It is not limited to this. For example, the foreign matter in the color development portion may be observed and the number thereof on the entire filter may be measured. Or the size of the foreign material in a color development part may be measured, and the presence or absence of the foreign material exceeding a specific size may be confirmed. The measurement object in the measurement process is appropriately determined by the user of the production method according to the present invention according to the use of the produced vinylidene fluoride polymer or the user's request to use the produced vinylidene fluoride polymer. That's fine.
 (決定工程)
 決定工程では、上述の計測工程における計測結果に基づき、混入している異物の観点からの、フッ化ビニリデン重合体の製造品質を決定する。すなわち、製造されたフッ化ビニリデン重合体に含まれる異物の数もしくはその大きさまたはその両方の指標に基づいて、製造されたフッ化ビニリデン重合体の品質の良し悪しを決定する。例えば、検出される異物の数あるいは大きさに閾値を設定し、この閾値を越える異物が存在する場合には、そのロットを不良品のロットと決定することができる。あるいは、さらに細かな基準を設定し、その基準に基づき品質を決定することができる。
(Decision process)
In the determination step, the production quality of the vinylidene fluoride polymer from the viewpoint of the foreign matter mixed in is determined based on the measurement result in the measurement step described above. That is, the quality of the produced vinylidene fluoride polymer is determined based on the number of foreign substances contained in the produced vinylidene fluoride polymer and / or the size thereof. For example, a threshold is set for the number or size of foreign matter to be detected, and when there is a foreign matter exceeding the threshold, the lot can be determined as a defective lot. Alternatively, a finer standard can be set and the quality can be determined based on the standard.
 上記閾値あるいは品質を決定する基準は、製造されたフッ化ビニリデン重合体の用途、あるいは製造されたフッ化ビニリデン重合体を使用するユーザーの要求に応じて、本発明に係る製造方法の使用者が適宜決定すればよい。例えば、製造されたフッ化ビニリデン重合体1g当たりから検出される異物の数が10個を超える場合に、そのロットを不良品とし、異物の数が4~10個の場合に、そのロットを通常品とし、異物の数が2または3個である場合に、そのロットを高純度品とし、異物の数が1個以下の場合に、そのロットを超高純度品とする基準を、一例として例示できる。 The threshold value or the standard for determining the quality is determined by the user of the production method according to the present invention according to the use of the produced vinylidene fluoride polymer or the user's request to use the produced vinylidene fluoride polymer. What is necessary is just to determine suitably. For example, when the number of foreign matters detected from 1 g of the produced vinylidene fluoride polymer exceeds 10, the lot is regarded as a defective product, and when the number of foreign matters is 4 to 10, the lot is usually As an example, the standard is that the lot is a high-purity product when the number of foreign materials is 2 or 3, and the lot is an ultra-high-purity product when the number of foreign materials is 1 or less. it can.
 また、別の閾値あるいは基準の例としては、例えば、計測工程において異物の大きさを計測し、50μmよりも大きな異物が見つかった場合に、そのロットを不良品とし、50μmを超える異物が見つからなかった場合に、そのロットを通常品とする基準を例示できる。 Another example of the threshold value or reference is, for example, when the size of a foreign material is measured in the measurement process and a foreign material larger than 50 μm is found, the lot is regarded as a defective product, and no foreign material exceeding 50 μm is found. In this case, it is possible to exemplify a standard for making the lot a normal product.
 上記のようにして不良品と決定されたロットを最終的な製造品から除外すれば、所望の品質を有するフッ化ビニリデン重合体を、最終的な製造品として提供することが可能となる。 If the lot determined to be defective as described above is excluded from the final manufactured product, a vinylidene fluoride polymer having a desired quality can be provided as the final manufactured product.
 以上のように、本発明に係る重合体の評価方法は、重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後の上記フィルターに接触させる接触工程と、上記発色液により生じる上記フィルター上での発色により、上記フィルターに捕捉された上記重合体溶液中の異物を検出し、該異物の数および大きさの少なくとも一方を計測する計測工程とを含み、上記発色液のpHは、-0.40~+0.75の範囲内である構成を有している。 As described above, the polymer evaluation method according to the present invention includes a filtration step of filtering a polymer solution in which a polymer is dissolved in a solvent, a hexacyanoiron (II) potassium, and a hexacyanoiron (III). A foreign substance in the polymer solution captured by the filter is detected by a contacting step in which a coloring solution containing potassium and an acid is brought into contact with the filter after filtration, and coloring on the filter caused by the coloring solution. And a measuring step for measuring at least one of the number and size of the foreign substances, and the pH of the color developing solution is in the range of −0.40 to +0.75.
 本発明に係る重合体の評価方法において、上記酸は塩酸であり、上記発色液は塩酸を0.5~4.0質量%の濃度で含むことが好ましい。 In the polymer evaluation method according to the present invention, the acid is preferably hydrochloric acid, and the color developing solution preferably contains hydrochloric acid at a concentration of 0.5 to 4.0% by mass.
 本発明に係る重合体の評価方法において、上記接触工程では、上記発色液を噴霧することにより上記発色液を上記フィルターに接触させることが好ましい。 In the polymer evaluation method according to the present invention, in the contact step, it is preferable that the color developing solution is brought into contact with the filter by spraying the color developing solution.
 本発明に係る重合体の評価方法において、上記異物は、鉄およびステンレス鋼の少なくとも一方であることが好ましい。 In the polymer evaluation method according to the present invention, the foreign material is preferably at least one of iron and stainless steel.
 本発明に係る重合体の評価方法において、上記重合体は、フッ化ビニリデン重合体であることが好ましい。 In the polymer evaluation method according to the present invention, the polymer is preferably a vinylidene fluoride polymer.
 本発明に係る重合体の評価方法において、上記溶剤は、重合体の溶解能を有しかつ異物の溶解能を有しない溶剤であり、上記重合体の粉末を上記溶剤に溶解して上記重合体溶液を調製する溶解工程をさらに含み、上記溶解工程では、60~80℃で上記粉末を溶解することが好ましい。 In the polymer evaluation method according to the present invention, the solvent is a solvent having a polymer dissolving ability and a foreign substance dissolving ability, and the polymer powder is dissolved in the solvent to dissolve the polymer. It further includes a dissolution step of preparing a solution, and in the dissolution step, the powder is preferably dissolved at 60 to 80 ° C.
 本発明に係る重合体の評価方法において、上記溶剤は、N-メチル-2-ピロリドンであることが好ましい。 In the polymer evaluation method according to the present invention, the solvent is preferably N-methyl-2-pyrrolidone.
 本発明に係る重合体の評価方法において、上記発色液は、上記酸を含む水溶液100重量部に対して、上記ヘキサシアノ鉄(II)カリウムおよび上記ヘキサシアノ鉄(III)カリウムの混合物0.1~5重量部が溶解して形成されていることが好ましい。 In the polymer evaluation method according to the present invention, the color developing solution is a mixture of the hexacyano iron (II) potassium and the hexacyano iron (III) potassium in an amount of 0.1 to 5 with respect to 100 parts by weight of the aqueous solution containing the acid. It is preferable that the part by weight is dissolved.
 本発明に係る重合体の評価方法において、上記混合物におけるヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムの含有比は、1:5~5:1の範囲内であることが好ましい。 In the polymer evaluation method according to the present invention, the content ratio of hexacyano iron (II) potassium and hexacyano iron (III) potassium in the mixture is preferably in the range of 1: 5 to 5: 1.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
 〔実施例1:発色および溶失の確認〕
 酸として塩酸を含み、その塩酸濃度が異なる複数の発色液を用いて、各発色液間でのステンレス鋼における発色の比較および鉄の溶失の比較を行った。各発色液における塩酸の濃度は、0.02、0.25、2.5または4.5質量%である。また、各発色液は、ヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムを、それぞれ0.5質量%の濃度で含んでいる。発色液の溶媒は水である。
[Example 1: Confirmation of color development and erosion]
Using a plurality of color developing solutions containing hydrochloric acid as the acid and having different hydrochloric acid concentrations, color development in stainless steel and iron loss were compared between the color developing solutions. The concentration of hydrochloric acid in each color developing solution is 0.02, 0.25, 2.5, or 4.5 mass%. Each color developing solution contains potassium hexacyanoiron (II) and hexacyanoiron (III) at a concentration of 0.5% by mass. The solvent of the color developer is water.
 まず、塩酸濃度が異なる複数の発色液それぞれを粉体状のSUS316(以下、SUS粉)に噴霧して、SUS粉が青色を呈するかについて顕微鏡を用いて確認した。 First, each of a plurality of color developing solutions having different hydrochloric acid concentrations was sprayed on powdery SUS316 (hereinafter referred to as SUS powder), and it was confirmed using a microscope whether the SUS powder had a blue color.
 その結果、塩酸の濃度が0.02または0.25質量%である発色液を噴霧した場合には、SUS粉は青色を呈さなかった。一方、塩酸の濃度が2.5または4.5質量%である発色液を噴霧した場合には、SUS粉が青色を呈することが観察された。 As a result, when the color developing solution having a hydrochloric acid concentration of 0.02 or 0.25% by mass was sprayed, the SUS powder did not exhibit a blue color. On the other hand, it was observed that the SUS powder had a blue color when sprayed with a color developing solution having a hydrochloric acid concentration of 2.5 or 4.5% by mass.
 次に、塩酸濃度が異なる複数の発色液それぞれを鉄粉に噴霧して、鉄粉の状態について顕微鏡を用いて確認した。 Next, each of a plurality of coloring solutions having different hydrochloric acid concentrations was sprayed on the iron powder, and the state of the iron powder was confirmed using a microscope.
 その結果、塩酸濃度が4.5質量%である発色液を噴霧した場合には、気泡が生じることが確認された。すなわち、塩酸濃度が4.5質量%である発色液を用いた場合には、鉄粉と発色液とがガス発生を伴って反応することが観察された。すなわち、塩酸濃度が4.5質量%である発色液を用いた場合には、発色液と鉄粉とが過度に反応し、鉄粉が溶失してしまっている。なお、発色は、塩酸濃度が0.02質量%である発色液においても生じており、塩酸の濃度が高くなるにつれ、青色を呈する部分の面積が増加した。 As a result, it was confirmed that bubbles were generated when a coloring solution having a hydrochloric acid concentration of 4.5 mass% was sprayed. That is, when a color developing solution having a hydrochloric acid concentration of 4.5% by mass was used, it was observed that the iron powder and the color developing solution reacted with gas generation. That is, when a color developing solution having a hydrochloric acid concentration of 4.5% by mass is used, the color developing solution and the iron powder react excessively, and the iron powder is lost. Color development also occurred in a color developing solution having a hydrochloric acid concentration of 0.02% by mass, and the area of the blue portion increased as the concentration of hydrochloric acid increased.
 次に、塩酸の濃度が2.5質量%である発色液を用いて、発色液の接触によるSUS粉および鉄粉の大きさの変化を観察した。特定の粉体について発色液噴霧前後の大きさを観察するため、SUS粉および鉄粉をテープ上に固定して、発色液を噴霧した。 Next, using a color developing solution having a hydrochloric acid concentration of 2.5% by mass, changes in the sizes of SUS powder and iron powder due to contact with the color developing solution were observed. In order to observe the size of the specific powder before and after spraying the coloring liquid, SUS powder and iron powder were fixed on the tape and the coloring liquid was sprayed.
 その結果、発色液における塩酸の濃度が2.5質量%である場合には、発色液を噴霧する前および後において、発色液が吹き付けられた粉体の大きさに変化はほとんど見られなかった。 As a result, when the concentration of hydrochloric acid in the color developing solution was 2.5% by mass, there was almost no change in the size of the powder sprayed with the color developing solution before and after spraying the color developing solution. .
 〔実施例2:フッ化ビニリデン重合体の製造〕
 (フッ化ビニリデン重合体粉末の調製)
 内容量2Lのオートクレーブに、イオン交換水1,024g、メチルセルロース0.20g、酢酸エチル11.2g、ジイソプロピルパーオキシジカーボネート2.0g、およびフッ化ビニリデン400gを仕込み、26℃まで1時間で昇温し、昇温開始から25.5時間、懸濁重合を行った。重合終了後、得られた重合体スラリーを脱水しつつ5Lのイオン交換水によって重合体を洗浄した。その後、80℃のオーブンで10時間加熱し、乾燥したフッ化ビニリデン重合体の粉末を得た。
[Example 2: Production of vinylidene fluoride polymer]
(Preparation of vinylidene fluoride polymer powder)
An autoclave with an internal volume of 2 L is charged with 1,024 g of ion-exchanged water, 0.20 g of methyl cellulose, 11.2 g of ethyl acetate, 2.0 g of diisopropyl peroxydicarbonate, and 400 g of vinylidene fluoride, and the temperature is raised to 26 ° C. in 1 hour. Then, suspension polymerization was performed for 25.5 hours from the start of temperature increase. After completion of the polymerization, the polymer was washed with 5 L of ion exchange water while dehydrating the resulting polymer slurry. Then, it heated for 10 hours in 80 degreeC oven, and obtained the powder of the dried vinylidene fluoride polymer.
 (重合体溶液の調製)
 1000mlの共栓付三角フラスコにNMP475gを入れ、この中に、フッ化ビニリデン重合体粉末25gを攪拌しながら少量ずつ投入した。投入後3分間攪拌を続けることにより、フッ化ビニリデン重合体をNMP中に分散させた。引き続き、攪拌を続けながら、70℃で4時間加熱することによりフッ化ビニリデン重合体を溶解した。その結果、フッ化ビニリデン重合体がNMPに溶解した透明な重合体溶液が得られた。
(Preparation of polymer solution)
Into a 1000 ml Erlenmeyer flask with a stopper, 475 g of NMP was added, and 25 g of vinylidene fluoride polymer powder was added little by little while stirring. The vinylidene fluoride polymer was dispersed in NMP by continuing stirring for 3 minutes after the addition. Subsequently, the vinylidene fluoride polymer was dissolved by heating at 70 ° C. for 4 hours while continuing stirring. As a result, a transparent polymer solution in which the vinylidene fluoride polymer was dissolved in NMP was obtained.
 (発色液の調製)
 ヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムをそれぞれ1質量%の濃度で含む水溶液2g、ならびに5% HCl 2gを噴霧器に入れて混合し、計4gの発色液を得た。東亜電波工業株式会社製のpHメーター(型式:HM-30V)で発色液のpHを測定した結果、pHは、-0.16であった。
(Preparation of coloring solution)
An aqueous solution containing 2 g of hexacyano iron (II) potassium and hexacyano iron (III) potassium at a concentration of 1% by mass and 2 g of 5% HCl were placed in a sprayer and mixed to obtain a total of 4 g of a color developing solution. As a result of measuring the pH of the color developing solution with a pH meter (model: HM-30V) manufactured by Toa Denpa Kogyo Co., Ltd., the pH was -0.16.
 (異物の計測)
 調製した重合体溶液をろ過装置のファンネルに入れ、メンブレンフィルター(孔径10μm)を使用して吸引ろ過した。吸引ろ過の後、NMPおよびアセトンをこの順にメンブレンフィルターに通し、メンブレンフィルターを洗浄した。洗浄後、メンブレンフィルターを乾燥させた。メンブレンフィルターをシャーレに移した後、メンブレンフィルターに発色液を噴霧し、呈色反応を起こさせた。顕微鏡を用いて、メンブレンフィルター上で発色している異物の数および大きさを計測した。
(Measurement of foreign matter)
The prepared polymer solution was put into a funnel of a filtration device, and suction filtered using a membrane filter (pore diameter: 10 μm). After suction filtration, NMP and acetone were passed through the membrane filter in this order to wash the membrane filter. After washing, the membrane filter was dried. After the membrane filter was transferred to a petri dish, a coloring solution was sprayed on the membrane filter to cause a color reaction. Using a microscope, the number and size of foreign matters that were colored on the membrane filter were measured.
 (ロットの評価)
 計測の結果、フッ化ビニリデン重合体1g当たりから検出される異物の数が10個を超える場合には、そのロットを不良品として製品から除外した。一方、フッ化ビニリデン重合体1g当たりから検出される異物の数が4~10個の場合には、そのロットを通常品とし、フッ化ビニリデン重合体1g当たりから検出される異物の数が2または3個である場合には、そのロットを高純度品とし、フッ化ビニリデン重合体1g当たりから検出される異物の数が1個以下の場合には、そのロットを超高純度品として、最終製品としてのフッ化ビニリデン重合体を得た。
(Lot evaluation)
As a result of the measurement, when the number of foreign matters detected from 1 g of vinylidene fluoride polymer exceeded 10, the lot was excluded from the product as a defective product. On the other hand, when the number of foreign matters detected per gram of vinylidene fluoride polymer is 4 to 10, the lot is regarded as a normal product, and the number of foreign matters detected per gram of vinylidene fluoride polymer is 2 or If there are three, the lot is a high-purity product, and if the number of foreign matter detected per gram of vinylidene fluoride polymer is 1 or less, the lot is an ultra-high-purity product and the final product As a result, a vinylidene fluoride polymer was obtained.
 本発明は、フッ化ビニリデン重合体の製造、およびその品質評価に利用することができる。 The present invention can be used for the production of a vinylidene fluoride polymer and its quality evaluation.

Claims (10)

  1.  重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、
     ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後の上記フィルターに接触させる接触工程と、
     上記発色液により生じる上記フィルター上での発色により、上記フィルターに捕捉された上記重合体溶液中の異物を検出し、該異物の数および大きさの少なくとも一方を計測する計測工程とを含み、
     上記発色液のpHは、-0.40~+0.75の範囲内であることを特徴とする重合体の評価方法。
    A filtration step in which a polymer solution in which the polymer is dissolved in a solvent is filtered by a filter;
    A contacting step in which a coloring liquid containing potassium hexacyanoiron (II), potassium hexacyanoiron (III) and an acid is contacted with the filter after filtration;
    A step of detecting foreign matter in the polymer solution captured by the filter by color development on the filter caused by the coloring solution, and measuring at least one of the number and size of the foreign matter,
    A method for evaluating a polymer, wherein the pH of the color developing solution is in the range of −0.40 to +0.75.
  2.  上記酸は塩酸であり、
     上記発色液は塩酸を0.5~4.0質量%の濃度で含むことを特徴とする請求項1に記載の重合体の評価方法。
    The acid is hydrochloric acid;
    2. The method for evaluating a polymer according to claim 1, wherein the color developing solution contains hydrochloric acid at a concentration of 0.5 to 4.0% by mass.
  3.  上記接触工程では、上記発色液を噴霧することにより上記発色液を上記フィルターに接触させることを特徴とする請求項1または2に記載の重合体の評価方法。 3. The method for evaluating a polymer according to claim 1, wherein, in the contacting step, the color developing solution is brought into contact with the filter by spraying the color developing solution.
  4.  上記異物は、鉄およびステンレス鋼の少なくとも一方であることを特徴とする請求項1~3の何れか1項に記載の重合体の評価方法。 The polymer evaluation method according to any one of claims 1 to 3, wherein the foreign matter is at least one of iron and stainless steel.
  5.  上記重合体は、フッ化ビニリデン重合体であることを特徴とする請求項1~4の何れか1項に記載の重合体の評価方法。 The method for evaluating a polymer according to any one of claims 1 to 4, wherein the polymer is a vinylidene fluoride polymer.
  6.  上記溶剤は、重合体の溶解能を有しかつ異物の溶解能を有しない溶剤であり、
     上記重合体の粉末を上記溶剤に溶解して上記重合体溶液を調製する溶解工程をさらに含み、
     上記溶解工程では、60~80℃で上記粉末を溶解することを特徴とする請求項1~5の何れか1項に記載の重合体の評価方法。
    The solvent is a solvent that has a polymer dissolving ability and does not have a foreign substance dissolving ability,
    And further comprising a dissolution step of dissolving the polymer powder in the solvent to prepare the polymer solution,
    The method for evaluating a polymer according to any one of claims 1 to 5, wherein, in the dissolving step, the powder is dissolved at 60 to 80 ° C.
  7.  上記溶剤は、N-メチル-2-ピロリドンであることを特徴とする請求項1~6の何れか1項に記載の重合体の評価方法。 The polymer evaluation method according to any one of claims 1 to 6, wherein the solvent is N-methyl-2-pyrrolidone.
  8.  上記発色液は、上記酸を含む水溶液100重量部に対して、上記ヘキサシアノ鉄(II)カリウムおよび上記ヘキサシアノ鉄(III)カリウムの混合物0.1~5重量部が溶解して形成されていることを特徴とする請求項1~7の何れか1項に記載の重合体の評価方法。 The color developing solution is formed by dissolving 0.1 to 5 parts by weight of a mixture of the hexacyanoiron (II) potassium and the hexacyanoiron (III) potassium in 100 parts by weight of the aqueous solution containing the acid. The method for evaluating a polymer according to any one of claims 1 to 7, wherein:
  9.  上記混合物におけるヘキサシアノ鉄(II)カリウムおよびヘキサシアノ鉄(III)カリウムの含有比は、1:5~5:1の範囲内であることを特徴とする請求項8に記載の重合体の評価方法。 9. The method for evaluating a polymer according to claim 8, wherein the content ratio of potassium hexacyanoiron (II) and hexacyanoiron (III) potassium in the mixture is in the range of 1: 5 to 5: 1.
  10.  重合反応により重合体を製造し、乾燥により該重合体の粉末を得る製造工程と、
     得られた上記重合体の粉末の一部を重合体の溶解能を有しかつ異物の溶解能を有しない溶剤に溶解する溶解工程と、
     上記重合体が溶剤に溶解している重合体溶液を、フィルターによってろ過するろ過工程と、
     ヘキサシアノ鉄(II)カリウム、ヘキサシアノ鉄(III)カリウムおよび酸を含む発色液を、ろ過した後の上記フィルターに接触させる接触工程と、
     上記発色液により生じる上記フィルター上での発色により、上記フィルターに捕捉された上記重合体溶液中の異物を検出し、該異物の数および大きさの少なくとも一方を計測する計測工程と、
     上記計測工程の結果に基づき、製造された上記重合体の品質を決定する決定工程とを含み、
     上記発色液のpHは、-0.40~+0.75の範囲内であることを特徴とする重合体の製造方法。
    A production process of producing a polymer by a polymerization reaction and obtaining a powder of the polymer by drying;
    A dissolving step of dissolving a part of the obtained polymer powder in a solvent having a polymer dissolving ability and not having a foreign substance dissolving ability;
    A filtration step of filtering the polymer solution in which the polymer is dissolved in a solvent with a filter;
    A contacting step in which a coloring liquid containing potassium hexacyanoiron (II), potassium hexacyanoiron (III) and an acid is contacted with the filter after filtration;
    A measurement step of detecting foreign matter in the polymer solution trapped by the filter by color development on the filter caused by the color developing solution, and measuring at least one of the number and size of the foreign matter;
    A determination step for determining the quality of the produced polymer based on the result of the measurement step,
    A method for producing a polymer, wherein the pH of the color developing solution is within a range of −0.40 to +0.75.
PCT/JP2013/061725 2012-08-27 2013-04-22 Method for assessing polymer and process for producing polymer WO2014034178A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014532827A JPWO2014034178A1 (en) 2012-08-27 2013-04-22 POLYMER EVALUATION METHOD AND POLYMER MANUFACTURING METHOD
CN201380023813.6A CN104285146B (en) 2012-08-27 2013-04-22 The appraisal procedure of polymkeric substance and the manufacture method of polymkeric substance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012186902 2012-08-27
JP2012-186902 2012-08-27

Publications (1)

Publication Number Publication Date
WO2014034178A1 true WO2014034178A1 (en) 2014-03-06

Family

ID=50183006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/061725 WO2014034178A1 (en) 2012-08-27 2013-04-22 Method for assessing polymer and process for producing polymer

Country Status (3)

Country Link
JP (1) JPWO2014034178A1 (en)
CN (1) CN104285146B (en)
WO (1) WO2014034178A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176802A (en) * 2015-03-19 2016-10-06 株式会社クレハ Methods for recovering metallic foreign matter and for inspecting metallic foreign matter of polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641950A (en) * 1987-04-09 1989-01-06 Metallges Ag Method for measuring zinc content of chemical conversion treatment bath for phosphate
JPH05172805A (en) * 1991-12-24 1993-07-13 Three Bond Co Ltd Stability judgement method for resin-impregnated composition
JP2000074800A (en) * 1998-08-28 2000-03-14 Toshiba Corp Quantitative determination method of trace metallic element
JP2005221291A (en) * 2004-02-04 2005-08-18 Toray Ind Inc Method for inspecting foreign matter in liquid material
JP2006023132A (en) * 2004-07-06 2006-01-26 National Institute Of Advanced Industrial & Technology Filter membrane and simple determination method of lead ions using it
WO2008066003A1 (en) * 2006-11-28 2008-06-05 Nomura Micro Science Co., Ltd. Method for quantitative determination of nickel and/or copper and equipment to be used in the method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271891A (en) * 1992-07-20 1993-12-21 General Motors Corporation Method of sintering using polyphenylene oxide coated powdered metal
CN102364331B (en) * 2011-05-12 2013-04-17 大连理工大学 Method for classifying iron pollution on surface of austenitic stainless steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS641950A (en) * 1987-04-09 1989-01-06 Metallges Ag Method for measuring zinc content of chemical conversion treatment bath for phosphate
JPH05172805A (en) * 1991-12-24 1993-07-13 Three Bond Co Ltd Stability judgement method for resin-impregnated composition
JP2000074800A (en) * 1998-08-28 2000-03-14 Toshiba Corp Quantitative determination method of trace metallic element
JP2005221291A (en) * 2004-02-04 2005-08-18 Toray Ind Inc Method for inspecting foreign matter in liquid material
JP2006023132A (en) * 2004-07-06 2006-01-26 National Institute Of Advanced Industrial & Technology Filter membrane and simple determination method of lead ions using it
WO2008066003A1 (en) * 2006-11-28 2008-06-05 Nomura Micro Science Co., Ltd. Method for quantitative determination of nickel and/or copper and equipment to be used in the method

Also Published As

Publication number Publication date
CN104285146B (en) 2016-04-27
JPWO2014034178A1 (en) 2016-08-08
CN104285146A (en) 2015-01-14

Similar Documents

Publication Publication Date Title
Rastegarzadeh et al. An optical chemical sensor for thorium (IV) determination based on thorin
CN105842389B (en) The detection method of free lithium content is remained in a kind of lithium iron phosphate/carbon composite material
CN103954617B (en) Method for detecting content of lithium carbonate
EP1862791B1 (en) Method of checking or determining the characteristics of an ultrafiltration or microfiltration membrane
WO2014034178A1 (en) Method for assessing polymer and process for producing polymer
JP6288669B2 (en) Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method
CN107607434A (en) A kind of sludge sand content detection method
JP2014052369A (en) Simple detection method of metal
CN102033051B (en) Continuous flow measuring method for pectin content in plant
CN111289686A (en) Method for measuring content of residual alkali in solution and application thereof
CN102565041B (en) Determination method of sodium oxide content in regenerated sand of sodium silicate sand
Orriach-Fernández et al. Hg 2+-selective sensing film based on the incorporation of a rhodamine 6G derivative into a novel hydrophilic water-insoluble copolymer
CN107202861A (en) A kind of method of COD contents in detection High Cl- water sample
CN104020029A (en) Sample pretreatment method for measuring heteroatom content of polymer and application thereof
CN109589632B (en) Recovery method of stripping liquid
CN103592411B (en) A kind of method of testing of capsule core release amount of concrete chemical self-repair microcapsule
CN113533625A (en) Method for rapidly detecting ammonium sulfate in magnesium alloy oxidation tank liquid
CN114062091B (en) Method for detecting hydroxyalkyl piperazine in flue gas desulfurizing agent
CN104020163A (en) Method for detecting contents of main metal elements in silicate materials
CN106249710B (en) A kind of research and application in Process of Chemical Cleaning and control method
CN104297304B (en) AFc/carbon powder/PVB modified electrode preparation and method for determining free state sulfite and amount by electrode
JP6837681B2 (en) Method for manufacturing high-sensitivity imaging device for corrosiveness analysis
TWI735318B (en) Quick kit and method for detecting activity of dye solution for aluminum anodizing
CN105891135B (en) A method of micro methylene blue in aqueous solution is intuitively shown, quantitative determines and removed using brufen
Godhino et al. Use of catalytic thermometric titrimetry to investigate the interaction of dipolar aprotic solvents with water

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380023813.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13833978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014532827

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13833978

Country of ref document: EP

Kind code of ref document: A1