JP6288669B2 - Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method - Google Patents

Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method Download PDF

Info

Publication number
JP6288669B2
JP6288669B2 JP2014028398A JP2014028398A JP6288669B2 JP 6288669 B2 JP6288669 B2 JP 6288669B2 JP 2014028398 A JP2014028398 A JP 2014028398A JP 2014028398 A JP2014028398 A JP 2014028398A JP 6288669 B2 JP6288669 B2 JP 6288669B2
Authority
JP
Japan
Prior art keywords
color former
solution
detection material
weight
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014028398A
Other languages
Japanese (ja)
Other versions
JP2015152514A (en
Inventor
玲子 若杉
玲子 若杉
達宣 坂本
達宣 坂本
仁美 深浦
仁美 深浦
良 庄司
良 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2014028398A priority Critical patent/JP6288669B2/en
Publication of JP2015152514A publication Critical patent/JP2015152514A/en
Application granted granted Critical
Publication of JP6288669B2 publication Critical patent/JP6288669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、環境汚染物質の検出材およびその製造方法に関する。また、その検出材を用いた環境汚染物質の有無を評価する方法に関する。   The present invention relates to an environmental pollutant detection material and a method for manufacturing the same. The present invention also relates to a method for evaluating the presence or absence of an environmental pollutant using the detection material.

産業廃棄物の処理場や工場跡地などの土壌や水系は、重金属等(クロム、ヒ素、鉛、フッ素等)の環境汚染物質による汚染が懸念される土壌となっている場合がある。このような土壌は降雨などによりその汚染物質が周辺地域へ溶出拡散したりすることで、さらに汚染地域が拡大し広範囲な環境汚染が生じるおそれがあり、その浄化が求められている。   Soil and water systems such as industrial waste treatment plants and factory sites may be soils that are likely to be polluted by environmental pollutants such as heavy metals (chromium, arsenic, lead, fluorine, etc.). In such soil, the pollutants may elute and diffuse into the surrounding area due to rainfall, etc., which may further expand the contaminated area and cause a wide range of environmental pollution, and its purification is required.

汚染土壌や水系の浄化を行うためには、各環境汚染物質の有無および汚染源の特定が必要であるが、そのためには、汚染が予測される広範囲な面積を対象とした土壌の採取とその分析が必要となる。JIS K0102(非特許文献1)は、広く工場排水試験方法に関する規格であり、土壌汚染の程度を評価するに当たってもこれに準じた試験方法が行われている。このJIS規格の評価方法では、フッ素(34.項)については、ランタン−アリザリンコンプレキソン吸光光度法、イオン電極法、イオンクロマトグラフ法、流れ分析法が開示されているが、これらは吸光光度計等を準備し、測定前の煩雑な処理を必要とするものであった。   In order to purify contaminated soil and water systems, it is necessary to identify the presence of each environmental pollutant and the source of the contamination. For this purpose, soil collection and analysis over a wide area where contamination is predicted is required. Is required. JIS K0102 (Non-Patent Document 1) is a standard widely related to factory drainage test methods, and test methods according to this are performed even when evaluating the degree of soil contamination. In this JIS standard evaluation method, lanthanum-alizarin complexone absorptiometry, ion electrode method, ion chromatograph method and flow analysis method are disclosed for fluorine (section 34.). And the like, and complicated processing before measurement is required.

同様に、JIS K0102においては、ホウ素(B)(47.項)の評価方法としては、メチレンブルー吸光光度法等、鉛(54.項)の評価方法としては、フレーム原子吸光法等が開示されており、いずれも、厳密な定量を目的とするものが多く、特別な測定装置、測定前の処理を行う必要があり、高度な評価技術を必要とするものであった。大型の装置を用いることなく簡便に環境調査を行うために、例えば特許文献1には、シリカ粒子と色素分子を複合化した水中六価クロム検知材が開示されている。しかしながら、特許文献1に開示された技術が適用できる対象、使用できる環境は限られたものであり、様々な環境で多様な環境汚染物質等の分析を行うには十分なものではなかった。   Similarly, in JIS K0102, as an evaluation method of boron (B) (Section 47.), methylene blue absorptiometry and the like, and as an evaluation method of lead (Section 54.), flame atomic absorption method and the like are disclosed. In many cases, all of them are intended for strict quantification, and a special measuring device and processing before measurement are required, and advanced evaluation techniques are required. In order to conduct an environmental survey easily without using a large apparatus, for example, Patent Document 1 discloses a hexavalent chromium detection material in water in which silica particles and pigment molecules are combined. However, the object to which the technique disclosed in Patent Document 1 can be applied and the environment in which the technique can be used are limited, and it is not sufficient for analyzing various environmental pollutants in various environments.

また、特許文献2は、フッ素イオン含有試料をイオンクロマトグラフで分離した後、ランタン・アリザリンコンプレキソン反応試薬と反応させ、その反応物を分光光度検出器で検出することを特徴とするフッ素イオン分析方法に関するものである。ここでも、フッ素イオンの分析のために、イオンクロマトグラフを行い、分光光度検出器を用いる為、複雑な処理と、特別な装置を必要とするものである。   Patent Document 2 discloses a fluorine ion analysis characterized in that after a fluorine ion-containing sample is separated by an ion chromatograph, the sample is reacted with a lanthanum / alizarin complexone reaction reagent, and the reaction product is detected with a spectrophotometric detector. It is about the method. Here too, in order to analyze fluorine ions, ion chromatography is performed and a spectrophotometric detector is used, so that complicated processing and a special apparatus are required.

特開2007−327886号公報JP 2007-327886 A 特開平7−198704号公報Japanese Patent Laid-Open No. 7-198704

JIS K0102“工場排水試験方法”(2013),34項、47項、54項JIS K0102 “Factory drainage test method” (2013), 34, 47, 54

前述のように、従来公知の評価方法は、高度な評価技術を必要とするものであったが、時間や費用がかかるものであり、より現場で速やかな評価結果を得られる評価方法のニーズがある。かかる状況下、本願発明は、簡易な手法で、速やかに評価することができる検出材を提供することを目的とする。また、そのような検出材の製造方法を提供する。さらには、そのような検出材を用いた環境汚染物質の有無を評価する方法を提供するものである。   As described above, conventionally known evaluation methods require advanced evaluation techniques, but they are time consuming and expensive, and there is a need for an evaluation method that can obtain a quick evaluation result on site. is there. Under such circumstances, an object of the present invention is to provide a detection material that can be quickly evaluated by a simple method. Moreover, the manufacturing method of such a detection material is provided. Furthermore, the present invention provides a method for evaluating the presence or absence of an environmental pollutant using such a detection material.

本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。   As a result of intensive studies to solve the above problems, the present inventor has found that the following inventions meet the above object, and have reached the present invention.

すなわち、本発明は、以下の発明に係るものである。
<1> 環境汚染物質の有無を評価する検出材であって、基材に発色剤溶液を担持させてなり、前記基材が吸収する発色剤溶液量が前記基材の重量に対して150重量%以上100,000重量%以下である検出材。
<2> 前記基材が、吸水性ポリマーおよび/またはホワイトカーボンである前記<1>記載の検出材。
<3> 前記発色剤溶液に含有される発色剤が、pH4〜9.5の範囲で発色する発色剤である前記<1>または<2>記載の検出材。
<4> 前記環境汚染物質が、フッ素、ホウ素または鉛のいずれかである前記<1>〜<3>のいずれかに記載の検出材。
<5> 前記発色剤溶液中の発色剤が、ランタン−アリザリンコンプレキソン、8−ヒドロキシ−1−(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸または4−(2−ピリジルアゾ)レゾルシノールである前記<1>〜<3>のいずれかに記載の検出材。
<6> 発色剤を含有する発色剤溶液に、吸収する発色剤溶液量がその基材の重量に対して150重量%以上100,000重量%以下である基材を、浸漬させることを特徴とする環境汚染物質の有無を評価する検出材を製造する方法。
<7> 前記<1>〜<5>のいずれかに記載の検出材を用いて、環境汚染の有無を評価する方法。
That is, the present invention relates to the following inventions.
<1> A detection material for evaluating the presence or absence of environmental pollutants, comprising a base material carrying a color former solution, and the amount of the color former solution absorbed by the base material is 150 weights with respect to the weight of the base material. % Or more and 100,000% by weight or less of the detection material.
<2> The detection material according to <1>, wherein the substrate is a water-absorbing polymer and / or white carbon.
<3> The detection material according to <1> or <2>, wherein the color former contained in the color former solution is a color former that develops color in a pH range of 4 to 9.5.
<4> The detection material according to any one of <1> to <3>, wherein the environmental pollutant is any one of fluorine, boron, and lead.
<5> The color former in the color former solution is lanthanum-alizarin complexone, 8-hydroxy-1- (salicylideneamino) -3,6-naphthalenedisulfonic acid or 4- (2-pyridylazo) resorcinol. The detection material according to any one of <1> to <3>.
<6> A base material in which the amount of the color former solution to be absorbed is 150% by weight or more and 100,000% by weight or less based on the weight of the base material is immersed in the color former solution containing the color former. A method of manufacturing a detection material for evaluating the presence or absence of environmental pollutants
<7> A method for evaluating the presence or absence of environmental contamination using the detection material according to any one of <1> to <5>.

本発明の検出材によれば、簡易な手法で、速やかに評価することができ、環境汚染物質の有無を確認することができる。特に、環境汚染物質を測定するにあたり、特別な試薬や光度計等の装置を必要とせず、直接土壌や水等の測定対象と接触させる等の簡易な方法で環境汚染物質の有無を確認することができる。また、本発明は、この検出材を製造する効率的な方法に関するものであり、さらには、この検出材を用いた土壌評価方法であり、この土壌評価方法は利便性に優れている。   According to the detection material of the present invention, it is possible to quickly evaluate by a simple method and confirm the presence or absence of environmental pollutants. In particular, when measuring environmental pollutants, the presence of environmental pollutants should be confirmed by a simple method such as direct contact with the measurement object such as soil or water without the need for special reagents or photometers. Can do. The present invention also relates to an efficient method for producing the detection material, and further to a soil evaluation method using the detection material, and the soil evaluation method is excellent in convenience.

本発明の検出材を用いて、フッ素の有無を評価した結果を表わす図である。It is a figure showing the result of having evaluated the presence or absence of fluorine using the detection material of the present invention. 本発明の検出材を用いて、ホウ素の有無を評価した結果を表わす図である。It is a figure showing the result of having evaluated the presence or absence of boron using the detection material of this invention. 本発明の検出材を用いて、鉛の有無を評価した結果を表わす図である。It is a figure showing the result of having evaluated the presence or absence of lead using the detection material of the present invention.

以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、以下の内容に限定されない。   DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will be described in detail below. However, the description of the constituent elements described below is an example (representative example) of an embodiment of the present invention. It is not limited to the contents.

本発明は環境汚染物質の有無を評価する検出材であって、基材に発色剤溶液を担持させてなり、前記基材が吸収する発色剤溶液量が前記基材の重量に対して150重量%以上100,000重量%以下であることを特徴とする検出材である。このような検出材とすることで、簡易に環境汚染物質の有無を評価することができる。   The present invention is a detection material for evaluating the presence or absence of environmental pollutants, comprising a base material carrying a color former solution, and the amount of the color former solution absorbed by the base material is 150 weights with respect to the weight of the base material. % Or more and 100,000% by weight or less. By setting it as such a detection material, the presence or absence of an environmental pollutant can be evaluated easily.

これは、本発明の検出材に発色剤溶液を担持させることによるが、このような発色剤溶液を担持させた基材は、発色剤が所定の条件で対象となる汚染物質と反応することで発色し、その発色の有無によって目的とする汚染物質の有無やその程度を把握することができるものである。しかしながら、一般的にこの発色剤溶液に用いられている発色剤自体は、単独では結晶状の粉末、溶液等のものが多く、単独での取り扱い性が低い。または、実際の試験のための発色剤の必要量は微量であるのに対して、目視等で観察するために必要な量を、試験のたびに用いるには高価すぎたり、発色が強すぎて結果を観察しにくい場合がある。そのため、検出対象となる物質とは反応せず、その表面や内部に発色剤を分散担持させることができる基材に、目視観察等に適した量の発色剤を担持させたものを用いることが適している。   This is because the color developing agent solution is carried on the detection material of the present invention, and the substrate carrying such a color developing agent solution reacts with the target contaminant under predetermined conditions. The color is developed, and the presence or absence and the extent of the target pollutant can be grasped by the presence or absence of the color development. However, the color former itself generally used in this color former solution is often in the form of a crystalline powder, a solution, etc. alone, and the handleability alone is low. Alternatively, the amount of color former required for actual testing is very small, but the amount necessary for visual observation is too expensive or too strong to use for each test. It may be difficult to observe the results. For this reason, it is necessary to use a base material that does not react with the substance to be detected and can carry the color former on its surface or inside, with a color developer suitable for visual observation or the like. Is suitable.

本発明の検出材に用いられる基材は、基材が吸収する発色剤溶液量が前記基材の重量に対して(基材が吸収する発色剤溶液量/基材重量)150重量%以上100,000重量%以下であることを特徴とする基材である。ここで、基材が吸収する発色剤溶液量(基材が吸収する発色剤溶液量/基材重量)を、以下、単に「吸液量」と記載し、発色剤溶液を吸収する特性を「吸液性」と記載する場合がある。まず、本発明に用いられる基材は、発色剤溶液を、その基材の表面や内部に分散担持させることができるものである。また、その基材は、基材の重量に対して150重量%以上100,000重量%以下の発色剤溶液の担持量を有するものである。すなわち、基材として用いられるものは自重の1.5倍以上1000倍以下の発色剤溶液を吸収することができるものである。これは、基材が自重を超える溶液を担持することであるが、このような基材を用いて検出材を作成することで、発色剤溶液を担持するのみでなく、さらに環境汚染物質の有無を評価しようとする液を吸収し、基材自身の表面や内部で発色反応が起こるため、使用時に適宜、この反応を所望の場所で行うことができるものである。   In the base material used for the detection material of the present invention, the amount of the color former solution absorbed by the base material is 150 wt% or more with respect to the weight of the base material (the amount of the color former solution absorbed by the base material / the base material weight). , 000% by weight or less. Here, the amount of the color former solution absorbed by the base material (the amount of the color former solution absorbed by the base material / the weight of the base material) is hereinafter simply referred to as “liquid absorption amount”. May be described as “liquid absorbency”. First, the base material used in the present invention is capable of dispersing and supporting the color former solution on the surface or inside of the base material. Further, the base material has a loading of the color former solution of 150% by weight to 100,000% by weight with respect to the weight of the base material. That is, what is used as the base material is capable of absorbing a color former solution having a weight of 1.5 to 1000 times its own weight. This means that the substrate carries a solution that exceeds its own weight. By creating a detection material using such a substrate, not only the color former solution is supported, but also the presence or absence of environmental pollutants. Since the color development reaction occurs on the surface or inside of the base material itself, the reaction can be appropriately performed at a desired place at the time of use.

この吸収する発色剤溶液量は、具体的には以下の方法で求めることができる。まず乾燥した基材の重量を測定した吸液前の基材を100重量部とすると、この基材よりも十分量多い発色剤溶液に基材を3時間浸漬し、その基材が吸液できる最大量の吸液量を吸液させ、その後、浸漬している液から最大量吸液した基材を濾別することで取り出し、吸液後の基材重量であるX重量部を求める。この吸液後の基材重量X重量部から、吸液前の基材100重量部を差し引き、吸液前の基材重量100重量部で割った比を、重量%表記で表す。すなわち、吸液量(重量%)=[(吸液後の基材重量X重量部−吸液前の基材重量100重量部)/吸液前の基材重量100重量部]×100の式より求めることができる。また、基材の種類によって吸液する液量が非常に大きいためバラつきが生じやすい場合は、この試験を3回行った平均値を求めてその基材の吸液量とすることが好ましい。なお、本発明の基材は、このような発色剤溶液量を吸収することができる基材を用いていればよく、実際に、検出材としたときこの量の発色剤溶液量を担持している量を示すものではない。   Specifically, the amount of the color former solution to be absorbed can be determined by the following method. First, assuming that the weight of the dried base material before measurement is 100 parts by weight, the base material can be immersed in a sufficiently large amount of the color former solution for 3 hours to absorb the base material. The maximum amount of liquid absorption is absorbed, and then the substrate that has absorbed the maximum amount from the immersed liquid is removed by filtration, and X parts by weight that is the weight of the substrate after liquid absorption is obtained. The ratio obtained by subtracting 100 parts by weight of the base material before liquid absorption from the weight X of the base material after liquid absorption and dividing by 100 parts by weight of the base material before liquid absorption is expressed in terms of wt%. That is, the amount of liquid absorption (% by weight) = [(base material weight after liquid absorption X parts by weight-base material weight before liquid absorption 100 parts by weight) / base material weight before liquid absorption 100 parts by weight] × 100 It can be obtained more. In addition, when the amount of liquid to be absorbed is very large depending on the type of the base material, when variation is likely to occur, it is preferable to obtain an average value obtained by performing this test three times to obtain the liquid absorption amount of the base material. Note that the base material of the present invention only needs to use a base material that can absorb the amount of the color former solution. Actually, when the detection material is used, this amount of the color former solution amount is supported. It does not indicate the amount.

基材が吸収する発色剤溶液量(吸液量)は、前記基材の重量に対して150重量%以上であり、好ましくは200重量%以上、より好ましくは、350重量%以上である。吸液量がより大きい方が、発色剤溶液および試験対象中の水分を吸収しやすく安定した測定結果を得やすい。また、100,000重量%以下好ましくは80,000重量%以下、より好ましくは65,000重量%以下である。吸液量の上限は、基材の種類によるためほぼ制限はないが、一方でこれらの値以上である必要性は低く、また、吸液量が大きすぎる場合、発色剤溶液と試験対象液との液量のバランスが崩れ、正しい試験結果を得られない場合がある。   The amount of the color former solution (absorbed amount) absorbed by the substrate is 150% by weight or more, preferably 200% by weight or more, more preferably 350% by weight or more with respect to the weight of the substrate. The larger the liquid absorption amount, the easier it is to absorb the water in the color former solution and the test object, and it is easier to obtain a stable measurement result. Moreover, it is 100,000 weight% or less, Preferably it is 80,000 weight% or less, More preferably, it is 65,000 weight% or less. The upper limit of the liquid absorption amount is almost not limited because it depends on the type of the substrate, but on the other hand, it is not necessary to exceed these values, and if the liquid absorption amount is too large, the color former solution and the test object liquid The balance of the amount of liquid may be lost and correct test results may not be obtained.

また、本発明における吸液量は、単に純水の吸収量ではなく、使用する発色剤溶液の量として、前記した範囲の量を吸収する基材である。単に水を吸収することができる基材であっても、実際に使用する発色剤溶液は、水と発色剤の他に、pH緩衝剤や、反応阻害物質抑制剤等、様々な反応、呈色補助剤を加えることが多く、これらはイオンや界面活性剤等、基材として使用される物質が吸収する液量に対して大きな影響を与えることが多いものであるから、水の吸収量とは異なる挙動を示す場合があるためである。   Further, the liquid absorption amount in the present invention is not a pure water absorption amount but a base material that absorbs an amount in the above range as the amount of the color former solution to be used. Even if it is a substrate that can simply absorb water, the color former solution that is actually used is not only water and the color former, but also various reactions and colors such as pH buffering agents and reaction inhibitor inhibitors. Adjuvants are often added, and these often have a large effect on the amount of liquid absorbed by substances used as substrates, such as ions and surfactants. This is because different behavior may be exhibited.

[担持量]
本発明の検出材は、前述したような吸液性を有する基材に、発色剤溶液を担持させたものである。この担持は、具体的な方法として後述するような含浸法などにより行うことができる。ここで、基材に担持させる発色剤溶液量は、その検出材が検出対象とする環境汚染物質等の濃度によって発色することを確認することができる量であればよい。このときの発色剤溶液の担持量は、この検出材を製造する際の仕込み量としての濃度比から求められる値として管理することもできる。この値は、担持された発色剤溶液中の発色剤重量/吸液前の基材重量として、一般的に単位は(mg/g)で表示される。
[Loading amount]
The detection material of the present invention is obtained by supporting a color former solution on a substrate having liquid absorbency as described above. This supporting can be performed by an impregnation method as described later as a specific method. Here, the amount of the color former solution carried on the substrate may be an amount that can confirm that the detection material develops color depending on the concentration of the environmental pollutant to be detected. The amount of the color former solution supported at this time can also be managed as a value obtained from the concentration ratio as the amount charged when the detection material is manufactured. This value is generally expressed in (mg / g) as the weight of the color former in the supported color former solution / base weight before liquid absorption.

この好ましい担持量の具体例を例示すると、フッ素検出に用いられるランタン−アリザリンコンプレキソンの場合、0.33〜0.5g/g程度、ホウ素検出に用いられる8−ヒドロキシ−1−(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸の場合、10〜50mg/g程度、鉛検出に用いられるPARの場合、0.0075〜7.5mg/g程度とすることができる。各発色剤や、測定対象中の汚染物質の濃度に応じて、これらは適宜変更されるが、本発明の検出材は、基材に担持させる発色剤液量を変更することでこれらを簡易に調製することができる点でも優れている。   As a specific example of this preferred loading, in the case of lanthanum-alizarin complexone used for fluorine detection, about 0.33-0.5 g / g, 8-hydroxy-1- (salicylidene) used for boron detection In the case of amino) -3,6-naphthalenedisulfonic acid, it can be about 10-50 mg / g, and in the case of PAR used for lead detection, it can be about 0.0075-7.5 mg / g. These are appropriately changed according to the concentration of each color former and the contaminant in the measurement object. However, the detection material of the present invention can be easily changed by changing the amount of the color former carried on the substrate. It is also excellent in that it can be prepared.

この担持量が少ない場合、発色が弱く目視等での確認が困難となる場合がある。一方、過度に高濃度の発色剤を担持させることは、基材を用いる利点を失うものとなるばかりではなく、想定している仕込みの担持量と実際の担持量とが乖離する原因となり、評価を適切に行えなくなったり、発色が強すぎその発色の程度を確認しにくくなったり、他の反応による呈色による弊害が生じる場合がある。また、当該検出材の吸液量の限度に近い発色剤溶液を担持させると、土壌や水から吸液することができなくなり、十分に反応させることができない場合もある。   When the amount is small, the color development is weak and it may be difficult to confirm with the naked eye. On the other hand, loading an excessively high concentration of color former not only loses the advantage of using the base material, but also causes a difference between the assumed loading amount and the actual loading amount. May not be properly performed, color development is too strong, and it is difficult to confirm the degree of color development, and adverse effects due to coloration due to other reactions may occur. In addition, if a color former solution close to the limit of the liquid absorption amount of the detection material is supported, the liquid cannot be absorbed from soil or water and may not be sufficiently reacted.

[基材]
本発明に用いられる基材は、前述したような吸液性を有するものであれば、無機系、有機系問わず用いることができる。このような発色剤吸液量を有する好ましい基材としては、例えば、吸水性ポリマーやホワイトカーボン等があげられる。この吸液性ポリマーおよび/またはホワイトカーボンを基材とすることで、観察性、取り扱い性、生産性に優れた本発明の検出剤を得ることができる。
[Base material]
The base material used in the present invention can be used regardless of whether it is inorganic or organic, as long as it has liquid absorbency as described above. Examples of a preferable base material having such a color former absorption amount include a water-absorbing polymer and white carbon. By using the liquid-absorbing polymer and / or white carbon as a base material, the detection agent of the present invention excellent in observability, handling property, and productivity can be obtained.

本発明の基材の一例である吸水性ポリマーとは、吸水性を有する高分子である。このような吸水性ポリマーしては、セルロース-アクリロニトリルグラフト共重合体やカルボキシメチルセルロース架橋体等のセルロース系のものや、ポリビニルアルコール架橋体やポリビニルアルコール吸水ゲル凍結・解凍エラストマーのようなポリビニルアルコール系のもの、アクリル酸とナトリウム・ビニルアルコール共重合体やポリアクリル酸ナトリウム架橋体等のアクリル酸系のもの、N−置換アクリルアミド架橋体等のアクリルアミド系のもの、ポリアルキレンオキサイド系のものが挙げられる。より具体的には、変性ポリアルキレンオキサイド/ノニオン型熱可塑性吸水樹脂、アクリル酸重合体部分ナトリウム塩架橋物等が好ましく用いられる。なお、これらの吸水性ポリマーの分子量等は適宜、本発明の目的を達成することができる範囲で任意に設定することができる。これらの吸水性ポリマーは、吸水力が高いものが多く、本発明の発色剤溶液の多くが水系の溶液のため、これらの発色剤溶液を充分量担持した上で、さらに、環境汚染物質の有無を評価するに当たっては、当該評価の対象となる土壌や水中の水分を吸収し、簡易にかつ速やかに使用することができる検出材として機能する。   The water-absorbing polymer which is an example of the base material of the present invention is a polymer having water absorption. Examples of such water-absorbing polymers include cellulose-based ones such as cellulose-acrylonitrile graft copolymers and carboxymethyl cellulose crosslinked products, and polyvinyl alcohol-based polymers such as polyvinyl alcohol crosslinked products and polyvinyl alcohol water-absorbing gel freeze / thaw elastomers. Acrylic acid-based materials such as acrylic acid and sodium / vinyl alcohol copolymer and crosslinked sodium polyacrylate, acrylamide-based materials such as N-substituted acrylamide crosslinked material, and polyalkylene oxide-based materials. More specifically, modified polyalkylene oxide / nonionic thermoplastic water-absorbing resin, acrylic acid polymer partial sodium salt crosslinked product and the like are preferably used. The molecular weight and the like of these water-absorbing polymers can be arbitrarily set as long as the object of the present invention can be achieved. Many of these water-absorbing polymers have high water-absorbing power, and since many of the color former solutions of the present invention are water-based solutions, a sufficient amount of these color former solutions are supported, and further, there are no environmental pollutants. When evaluating the above, it functions as a detection material that absorbs moisture in the soil or water to be evaluated and can be used easily and quickly.

基材としては、本発明の吸液性を満足するような無機系のホワイトカーボン等を用いてもよい。ホワイトカーボンは、微粉シリカともよばれ、微粉の無水ケイ酸、含水ケイ酸、ケイ酸カルシウム、ケイ酸アルミニウムの4種を指す。これらの主な製法としては、四塩化ケイ素の熱分解による乾式法や、ケイ酸ナトリウムの酸、二酸化炭素、アンモニウム塩などの複分解による沈殿生成物を得る湿式法、アルコールのような有機液体とシリカゲルをオートクレーブ中で加熱するいわゆるエアロゲル法などにより製造される。   As the substrate, inorganic white carbon or the like that satisfies the liquid absorbency of the present invention may be used. White carbon is also called fine silica, and refers to four types of fine silica, anhydrous silicic acid, hydrous silicic acid, calcium silicate, and aluminum silicate. These main production methods include the dry method by pyrolysis of silicon tetrachloride, the wet method to obtain precipitation products by metathesis of sodium silicate acid, carbon dioxide, ammonium salt, etc., organic liquids such as alcohol and silica gel Is produced by a so-called aerogel method in which is heated in an autoclave.

本発明に用いられる基材が有する吸液性は、土壌や水中等に接触させたときその液が速やかに接触吸収されるため好ましい。また、基材としては、発色剤が発色したときにその色を確認しやすいような色のものを用いることが好ましく、発色剤が白以外の有色の着色を行う試薬の場合、例えば、前述のホワイトカーボンのような白色のものや、各種吸水性ポリマーも無着色の白や透明、半透明のものを用いることが好ましい。   The liquid absorbency possessed by the substrate used in the present invention is preferable because the liquid is quickly contact-absorbed when brought into contact with soil or water. Further, as the substrate, it is preferable to use a color that makes it easy to confirm the color of the color former, and when the color former is a reagent that colors other than white, for example, the aforementioned It is preferable to use white materials such as white carbon and various water-absorbing polymers that are uncolored white, transparent, and translucent.

[発色剤]
本発明の検出材は、発色剤を基材に担持させたものである。この発色剤とは、汚染物質等の検出対象となる物質と接触することで、着色や変色する物質のことである。
例えば、フッ素(元素記号:F)を検出する場合、発色剤としてランタン-アリザリンコンプレキソンを用いることができる。また、ホウ素(元素記号:B)を検出する場合、アゾメチンH(8−ヒドロキシ−1―(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸・2ナトリウム塩)を用いることができる。また、鉛(元素記号:Pb)を検出する場合、PAR(4−(2−ピリジルアゾ)レゾルシノール)を用いることができる。この他にも、フッ素の発色剤として、カルセインブルー、4,5−ヒドロキシ−3−(4−スルホ−1−ナフチルアゾ)−2,7−ナフタレンジスルホン酸(二ナトリウム)(SPADNS)または8−ヒドロキシ−7−ヨード−5−キノリンスルホン酸を用いることができ、ホウ素の発色剤として、キナリザリン、クルクミンまたはメチレンブルーを用いることができ、鉛の発色剤として、カルボキシアルセナゾ、カルミン酸、キシレノールオレンジ(XO)、8−キノリノール(オキシン)、o−(サリチリデンアミノ)チオフェノール(SATP)、ジチゾン(ジフェニルチオカルバゾン)、ジフェニルカルバジド、ジフェニルカルバゾン、ジンコン(二ナトリウム塩)、スルホアルサゼン(ナトリウム塩)、チオオキシン、チオテノイルトリフルオロアセトン(STTA)、5,10,15,20,−テトラキス(p−スルホフェニル)ポルフィン(TPPS4)、ピロガロールレッド(PR)またはブロモピロガロールレッド(BPR)を用いることができ、フッ素およびホウ素の発色剤として、スチルバゾ(二アンモニウム塩)を用いることができ、フッ素、ホウ素および鉛の発色剤として、ピロカテコールバイオレット(PV)を用いることができる。
[Coloring agent]
The detection material of the present invention is obtained by supporting a color former on a base material. The color former is a substance that is colored or discolored by contact with a substance to be detected such as a contaminant.
For example, when detecting fluorine (element symbol: F), lanthanum-alizarin complexone can be used as a color former. When detecting boron (element symbol: B), azomethine H (8-hydroxy-1- (salicylideneamino) -3,6-naphthalenedisulfonic acid, disodium salt) can be used. When detecting lead (element symbol: Pb), PAR (4- (2-pyridylazo) resorcinol) can be used. In addition, calcein blue, 4,5-hydroxy-3- (4-sulfo-1-naphthylazo) -2,7-naphthalenedisulfonic acid (disodium) (SPADNS) or 8-hydroxy may be used as a color developing agent for fluorine. -7-iodo-5-quinolinesulfonic acid can be used, quinalizarin, curcumin or methylene blue can be used as the color former of boron, and carboxyarsenazo, carmic acid, xylenol orange (XO) can be used as the color former of lead. ), 8-quinolinol (oxin), o- (salicylideneamino) thiophenol (SATP), dithizone (diphenylthiocarbazone), diphenylcarbazide, diphenylcarbazone, zincone (disodium salt), sulfoarsazen (sodium salt) ), Thiooxin, thiothenoy Trifluoroacetone (STTA), 5,10,15,20, -tetrakis (p-sulfophenyl) porphine (TPPS4), pyrogallol red (PR) or bromopyrogallol red (BPR) can be used, and fluorine and boron Stilbazo (diammonium salt) can be used as the color former, and pyrocatechol violet (PV) can be used as the color developer of fluorine, boron and lead.

発色剤溶液に含まれる発色剤溶液について、さらに詳述すると、例えばフッ素化合物に反応するランタン−アリザリンコンプレキソンの場合は以下のような反応性と特徴を有する。すなわち、フッ素化合物のフッ化物イオン存在下に、ランタン(III)とアリザリンコンプレキソン(1,2−ジヒドロキシアントラキノン−3−イルメチルアミン−N,N−二酢酸二水和物)との錯体(ランタン−アリザリンコンプレキソン)を加え、これがフッ化物イオンと反応して生じる青い色の複合錯体を形成するため、この青色の着色を確認することで、フッ素化合物の有無を確認することができる。ランタン−アリザリンコンプレキソンを用いた反応については、前述の非特許文献1においてさらに詳述されており、本発明の検出材は、そこで開示されているような各種試薬を調製し加えることで、pHを調整する化合物や、反応阻害物による呈色抑制を防止する化合物等の反応助剤を、適宜、担持させておくことが好ましい。   The color former solution contained in the color former solution will be described in further detail. For example, lanthanum-alizarin complexone that reacts with a fluorine compound has the following reactivity and characteristics. That is, in the presence of fluoride ion of a fluorine compound, a complex (lanthanum) of lanthanum (III) and alizarin complexone (1,2-dihydroxyanthraquinone-3-ylmethylamine-N, N-diacetic acid dihydrate) -Alizarin complexone) is added and this reacts with fluoride ions to form a blue complex complex. Therefore, the presence or absence of a fluorine compound can be confirmed by confirming this blue coloration. The reaction using lanthanum-alizarin complexone is described in more detail in the aforementioned Non-Patent Document 1, and the detection material of the present invention is prepared by adding various reagents as disclosed therein, thereby adding pH. It is preferable to appropriately carry a reaction aid such as a compound that adjusts the color and a compound that prevents coloration inhibition by a reaction inhibitor.

この発色剤溶液に添加される発色剤以外の物質としてさらに詳述すると、以下のようなものが挙げられる。まず、フッ素を検出するための発色剤溶液に添加されるものとしては、アンモニア水、酢酸アンモニウム、酢酸ナトリウム三水和物、酢酸、アセトン、酢酸ナトリウム、硝酸カリウムが挙げられる。なお、このランタン−アリザリンコンプレキソン化合物を用いて各種反応助剤等を混合したフッ素検定試薬としてアルフッソン(登録商標、同仁化学研究所社製)を用いることができる。また、鉛を検出するためのPAR(4−(2−ピリジルアゾ)レゾルシノール)を用いる場合、シアン化物等を添加することができる。また、ホウ素を検出するためのアゾメチンH(8−ヒドロキシ−1―(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸)を用いる場合、アスコルビン酸、酢酸アンモニウム、硫酸、リン酸、クエン酸一水和物、EDTA・2Naなどを用いることができる。なお、ここで、フッ素、ホウ素、鉛を検出するための試薬について詳述したが、これらは基本的に弱酸性〜中性域〜弱アルカリ性(pH4〜9.5)で反応するため、これらのpHとなるようなpH緩衝剤を併せて担持させておくことが非常に有効である。   Further details of substances other than the color former added to the color former solution include the following. First, examples of the colorant solution for detecting fluorine include aqueous ammonia, ammonium acetate, sodium acetate trihydrate, acetic acid, acetone, sodium acetate, and potassium nitrate. Alfusson (registered trademark, manufactured by Dojindo Laboratories) can be used as a fluorine test reagent in which various reaction aids and the like are mixed using this lanthanum-alizarin complexone compound. Further, when PAR (4- (2-pyridylazo) resorcinol) for detecting lead is used, cyanide or the like can be added. When azomethine H (8-hydroxy-1- (salicylideneamino) -3,6-naphthalenedisulfonic acid) for detecting boron is used, ascorbic acid, ammonium acetate, sulfuric acid, phosphoric acid, citric acid Hydrates, EDTA · 2Na, and the like can be used. In addition, although the reagent for detecting a fluorine, boron, and lead was explained in full detail here, since these react fundamentally in weakly acidic-neutral range-weakly alkaline (pH 4-9.5), these It is very effective to carry a pH buffering agent that has a pH.

本発明は、検出材の製造方法としても達成することができる。すなわち、発色剤を含有する発色剤溶液に、基材が吸収する発色剤溶液量が前記基材の重量に対して150重量%以上100,000重量%以下である基材を浸漬させることを特徴とする環境汚染物質の有無を評価する検出材を製造する方法に関するものである。この方法は、優れた作業性で本発明の検出材を製造することができるものである。この浸漬にあたっては、基材の3〜10倍程度の発色剤溶液に浸漬させることが好ましく、吸液されない溶液は濾別して得られるものを検出材として用いることができる。   The present invention can also be achieved as a method for producing a detection material. That is, a substrate in which the amount of the color former solution absorbed by the substrate is 150% by weight or more and 100,000% by weight or less with respect to the weight of the substrate is immersed in the color former solution containing the color former. The present invention relates to a method for producing a detection material for evaluating the presence or absence of environmental pollutants. This method can produce the detection material of the present invention with excellent workability. In this immersion, it is preferable to immerse in a color former solution of about 3 to 10 times that of the base material, and a solution that is not absorbed can be obtained by filtration as a detection material.

[環境汚染物質]
本発明の検出材は、環境汚染物質の有無の評価検出に用いられる。環境汚染物質は、主に無機化合物系のものと有機化合物系のものとがあるが、本発明においては、本発明の基材に担持される発色剤溶液が反応することができるものであればいずれも評価対象とすることができる。特に、弱酸性〜弱アルカリ性の水系の発色剤溶液を用いるものを対象とすることが好ましく、例えば、フッ素、鉛、ホウ素を評価対象の環境汚染物質とすることができる。
[Environmental pollutants]
The detection material of the present invention is used for evaluation and detection of the presence or absence of environmental pollutants. Environmental pollutants mainly include inorganic compounds and organic compounds, but in the present invention, the color former solution supported on the substrate of the present invention can react. Any of them can be evaluated. In particular, it is preferable to use a weakly acidic to weakly alkaline aqueous color former solution. For example, fluorine, lead, and boron can be used as environmental pollutants to be evaluated.

[評価方法]
本発明は、前述した本発明の検出材を用いて、環境汚染の有無を評価する方法とすることができる。すなわち、土壌中や水中の汚染物質の有無、またはさらにその濃度を評価する評価方法としても達成することができる。
[Evaluation method]
The present invention can be a method for evaluating the presence or absence of environmental contamination using the detection material of the present invention described above. That is, it can also be achieved as an evaluation method for evaluating the presence or absence of contaminants in the soil or water, or the concentration thereof.

例えば、土壌を評価する方法の場合は、発色剤溶液を担持させた高い吸液性を有する基材による本発明の検出材を用いることで、必要に応じて適宜土壌を水で湿潤させる等した状態に、検出材を直接接触させることで土壌中に、検出材の発色剤が反応して発色する対象となる汚染物質が存在するか否かを評価することができる。また、評価対象が水中の環境汚染物質の場合、その試験対象とする水に、本発明の検出材を直接接触させ、呈色反応の有無から環境汚染物質の有無を評価することができる。   For example, in the case of a method for evaluating soil, by using the detection material of the present invention based on a substrate having a high liquid absorbency carrying a color former solution, the soil was appropriately wetted with water as necessary. By directly contacting the detection material to the state, it is possible to evaluate whether or not there is a pollutant to be colored by the reaction of the coloring agent of the detection material in the soil. Moreover, when the evaluation target is an environmental pollutant in water, the detection material of the present invention can be directly brought into contact with the water to be tested, and the presence or absence of the environmental pollutant can be evaluated from the presence or absence of a color reaction.

この評価方法は、前述のように検出材を土壌に直接接触させることで行って用いてもよい。また、直接接触させず、ろ紙等の吸水性物質を介在させて行うこともでき、ろ紙等を用いる場合、測定後の検出材の回収が容易であり、また、ろ紙を介することで土壌中の水分が検出材に直接吸い上げられ、着色の有無を観察しやすくすることができる。   As described above, this evaluation method may be performed by bringing the detection material into direct contact with the soil. In addition, it can be carried out by interposing a water-absorbing substance such as filter paper without direct contact. When filter paper or the like is used, it is easy to recover the detection material after measurement, and through the filter paper, Moisture is directly sucked up by the detection material, and the presence or absence of coloring can be easily observed.

以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is changed.

[評価項目]
[吸液量]
(1)まず、乾燥した吸液前の基材の重量を測定した(吸液前基材重量:X0(g))。
(2)次に、前記基材全量を容器に移し、当該容器に、基材よりも十分量多い発色剤溶液を加えた。この容器に加える発色剤溶液の量は、測定する基材の想定吸液量に応じて変更した。具体的には、吸水性ポリマーの場合は基材重量の1000倍程度、ホワイトカーボンの場合は10倍程度、シリカゲルの場合は3倍程度とした。この基材よりも十分量多い発色剤溶液に接触(浸漬)させた状態で、3時間静置した。
(3)その後、浸漬している液から最大量吸液した基材を、濾紙を用いて濾別することで取り出して、この吸液後の基材重量を求めた(吸液後基材重量:X1(g))。
(4)前述の吸着前基材重量X0と、吸液後基材重量X1とから、吸液量を計算した。ここで、吸液量(重量%)=(X1−X0)/X0×100である。
[Evaluation item]
[Liquid absorption]
(1) First, the weight of the dried base material before liquid absorption was measured (base material weight before liquid absorption: X 0 (g)).
(2) Next, the whole amount of the base material was transferred to a container, and a sufficiently larger amount of color former solution than the base material was added to the container. The amount of the color former solution added to the container was changed according to the assumed liquid absorption amount of the substrate to be measured. Specifically, in the case of a water-absorbing polymer, the weight was about 1000 times the weight of the substrate, in the case of white carbon, about 10 times, and in the case of silica gel, about 3 times. The sample was allowed to stand for 3 hours in a state of being contacted (immersed) in a sufficiently larger amount of the color former solution than the base material.
(3) Thereafter, the base material that has absorbed the maximum amount from the submerged liquid was removed by filtering using filter paper, and the weight of the base material after this liquid absorption was determined (base weight after liquid absorption) : X 1 (g)).
(4) The liquid absorption amount was calculated from the base material weight X 0 before adsorption and the substrate weight X 1 after liquid absorption. Here, the liquid absorption amount (% by weight) = (X 1 −X 0 ) / X 0 × 100.

[試薬]
[発色剤溶液]
・フッ素検出用発色剤溶液(発色剤溶液(F−a))
ランタン−アリザリンコンプレキソンを用いたフッ素検出用試薬であるアルフッソン(同仁化学製)5gを、純水95mLに溶解させることで、フッ素検出用発色剤溶液(F−a)を作成した。
[reagent]
[Coloring agent solution]
・ Coloring agent solution for fluorine detection (Coloring agent solution (Fa))
A fluorine detecting color former solution (F-a) was prepared by dissolving 5 g of Alfusson (manufactured by Dojindo Chemical Co., Ltd.), which is a fluorine detecting reagent using lanthanum-alizarin complexone, in 95 mL of pure water.

・鉛検出用発色剤溶液(発色剤溶液(Pb−a))
“PAR(4−(2−ピリジルアゾ)レゾルシノール)”(和光純薬製)20mgを純水に溶解させて1Lとすることで、鉛検出用発色剤溶液(Pb−a)を作成した。
・ Coloring agent solution for lead detection (Coloring agent solution (Pb-a))
A lead detection color former solution (Pb-a) was prepared by dissolving 20 mg of “PAR (4- (2-pyridylazo) resorcinol)” (manufactured by Wako Pure Chemical Industries, Ltd.) in pure water to make 1 L.

・ホウ素検出用発色剤溶液(発色剤溶液(B−a))
(1)溶液(B−a1):“アゾメチンH(8−ヒドロキシ−1−(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸・2ナトリウム塩)”(和光純薬製)1.0gとL−アスコルビン酸(昭和製薬株式会社製)3gとを秤量し、純水で100mLにメスアップした。
(2)溶液(B―a2):酢酸アンモニウム50g、クエン酸一水和物0.2g、EDTA・2Na0.2g、純水50mLに硫酸3mL、リン酸1mLを添加し、加熱しながら溶解させた。
(3)前記溶液(B−a1)と前記溶液(B−a2)を等体積比(25mL:25mL)で混合することで、0.5g−アゾメチンH/100mL溶液を作成し、これを発色剤溶液(B−a)とした。
・ Coloring agent solution for boron detection (coloring agent solution (Ba))
(1) Solution (B-a1): 1.0 g of “Azomethine H (8-hydroxy-1- (salicylideneamino) -3,6-naphthalenedisulfonic acid, disodium salt)” (manufactured by Wako Pure Chemical Industries, Ltd.) 3 g of L-ascorbic acid (manufactured by Showa Pharmaceutical Co., Ltd.) was weighed and made up to 100 mL with pure water.
(2) Solution (B-a2): 50 g of ammonium acetate, 0.2 g of citric acid monohydrate, 0.2 g of EDTA · 2Na, and 50 mL of pure water were added 3 mL of sulfuric acid and 1 mL of phosphoric acid and dissolved while heating. .
(3) The solution (B-a1) and the solution (B-a2) are mixed at an equal volume ratio (25 mL: 25 mL) to prepare a 0.5 g-azomethine H / 100 mL solution, which is used as a color former. It was set as the solution (Ba).

・ホウ素検出用発色剤溶液(発色剤溶液(B−a´))
前述の溶液(B−a1)50mLに対して、純水50mLを混合することで、発色剤溶液(B−a´)を作成した。これは、前記(B−a)から、主としてpH緩衝液として機能する溶液(B−a2)成分を除いたものである。
-Boron detection color developer solution (color developer solution (B-a '))
A color former solution (B-a ′) was prepared by mixing 50 mL of pure water with 50 mL of the aforementioned solution (B-a1). This is obtained by removing the component (B-a2) mainly functioning as a pH buffer solution from the (B-a).

[基材]
・ホワイトカーボン(1)
基材として、ホワイトカーボンである“ゼオシール 1100V”(多木化学社製)を用いた。
・ホワイトカーボン(2)
基材として、ホワイトカーボンである“マイコンF”(富田製薬社製)を用いた。
・吸水性ポリマー(1)
変性ポリアルキレンオキサイド/ノニオン型熱可塑性吸水性樹脂である“アクアコーク TWB−P”(住友精化社製)を吸水性ポリマー(1)として用いた。
・吸水性ポリマー(2)
アクリル酸重合体部分ナトリウム塩架橋物である“アクアキープ SA60”(住友精化社製)を吸水性ポリマー(2)として用いた。
・吸水性ポリマー(3)
アクリル酸重合体部分ナトリウム塩架橋物である“アクアキープ 10SH”(住友精化社製)を吸水性ポリマー(3)として用いた。
・A型シリカ
製品名「シリカゲル」、粒径2〜4mmメーカー(有限会社泰斗製)
[Base material]
・ White carbon (1)
As a base material, “Zeo Seal 1100V” (manufactured by Taki Chemical Co., Ltd.), which is white carbon, was used.
・ White carbon (2)
As the substrate, “Microcomputer F” (produced by Tomita Pharmaceutical Co., Ltd.), which is white carbon, was used.
・ Water-absorbing polymer (1)
“Aqua Coke TWB-P” (manufactured by Sumitomo Seika Co., Ltd.), which is a modified polyalkylene oxide / nonionic thermoplastic water-absorbing resin, was used as the water-absorbing polymer (1).
・ Water-absorbing polymer (2)
“Aquakeep SA60” (manufactured by Sumitomo Seika Co., Ltd.), which is a crosslinked sodium salt of an acrylic acid polymer, was used as the water-absorbing polymer (2).
・ Water-absorbing polymer (3)
“Aquakeep 10SH” (manufactured by Sumitomo Seika Co., Ltd.), which is a crosslinked sodium salt of an acrylic acid polymer, was used as the water-absorbing polymer (3).
-Type A silica product name "Silica gel", particle size 2-4mm manufacturer (manufactured by Taito Co., Ltd.)

「吸液量の評価結果」
各基材が吸液する量を評価した結果を表1に示す。なお、表1には参考までに各基材が吸収する純水量を併せて示す。
“Evaluation results of liquid absorption”
Table 1 shows the results of evaluating the amount of liquid absorbed by each substrate. Table 1 also shows the amount of pure water absorbed by each base material for reference.

[検出材の調製]
各基材に、基材重量の10倍の発色剤溶液を接触・吸収させることで、検出材の作成を行った。作成した検出材の一覧を表2〜4に示す。なお、基材の吸液量を超え、吸収されなかった余剰の発色剤溶液はろ別して分離させた。
[Preparation of detection material]
The detection material was prepared by making each base material contact and absorb the color former solution 10 times the weight of the base material. Tables 2 to 4 show the list of created detection materials. In addition, the excess color former solution which exceeded the liquid absorption amount of the substrate and was not absorbed was separated by filtration.

[試験液による呈色反応(1) フッ素試験液による呈色反応(フッ素)]
フッ素発色剤溶液を吸収させた検出材(F−1)〜(F−4)について、フッ素試験液(2.5ppm)を用いて、呈色反応を評価した。ここでは、検出材2gに対して、試験液10mLを接触させ、24時間後に呈色反応の有無を確認した。評価結果を表2に併せて示す。
ここで、フッ素試験液(フッ化物イオン試験液)は、以下の工程で調製した。フッ化物イオン標準液(F-:1000mg/L)を、純水で希釈し、F-濃度が5mg/L(ppm)のフッ化物イオン液(5ppm)を作成した。このフッ化物イオン液(5ppm)と、アセトンとを、容積比1:1で混合し、フッ素試験液(2.5ppm)を作成した。
[Color reaction with test solution (1) Color reaction with fluorine test solution (fluorine)]
About the detection materials (F-1) to (F-4) in which the fluorine color former solution was absorbed, the color reaction was evaluated using a fluorine test solution (2.5 ppm). Here, 10 mL of the test solution was brought into contact with 2 g of the detection material, and the presence or absence of a color reaction was confirmed after 24 hours. The evaluation results are also shown in Table 2.
Here, the fluorine test solution (fluoride ion test solution) was prepared by the following steps. A fluoride ion standard solution (F : 1000 mg / L) was diluted with pure water to prepare a fluoride ion solution (5 ppm) having an F concentration of 5 mg / L (ppm). This fluoride ion solution (5 ppm) and acetone were mixed at a volume ratio of 1: 1 to prepare a fluorine test solution (2.5 ppm).

表2に示すように、本発明の検出材にかかる検出材(F−1)〜(F−3)は、フッ素試験液と接触したとき、検出材の色の変化からフッ素の存在を確認することができた。一方、検出材(F−4)は、色の変化を確認しにくいものだった。また、フッ素試験液(2.5ppm)と、水・アセトン混合液(フッ素0ppm)とを接触させた際の、各検出材の様子を、図1に写真で示す。   As shown in Table 2, the detection materials (F-1) to (F-3) according to the detection material of the present invention confirm the presence of fluorine from the change in color of the detection material when in contact with the fluorine test solution. I was able to. On the other hand, the detection material (F-4) was difficult to confirm a change in color. Moreover, the state of each detection material when a fluorine test solution (2.5 ppm) and a water / acetone mixed solution (fluorine 0 ppm) are brought into contact with each other is shown in FIG.

[試験液による呈色反応(2) ホウ素試験液による呈色反応(ホウ素)]
ホウ素発色剤溶液を吸収させた検出材(B−1)〜(B−4)について、ホウ素試験液(10ppm)を用いて、呈色反応を評価した。ここでは、検出材2gに対して、試験液2mLを接触させ、2時間30分後に呈色反応の有無を確認した。評価結果を表3に併せて示す。
ここで、ホウ素試験液は、以下の工程で調製した。ホウ素標準液(B:1000mg/L)を、純水で希釈し、ホウ素濃度が10mg/L(ppm)のホウ素試験液(10ppm)を作成した。
[Color reaction with test solution (2) Color reaction with boron test solution (boron)]
About the detection materials (B-1) to (B-4) in which the boron color former solution was absorbed, the color reaction was evaluated using a boron test solution (10 ppm). Here, 2 mL of the test solution was brought into contact with 2 g of the detection material, and the presence or absence of a color reaction was confirmed after 2 hours and 30 minutes. The evaluation results are also shown in Table 3.
Here, the boron test solution was prepared by the following steps. A boron standard solution (B: 1000 mg / L) was diluted with pure water to prepare a boron test solution (10 ppm) having a boron concentration of 10 mg / L (ppm).

表3に示すように、本発明の検出材にかかる検出材(B−1)〜(B−3)は、ホウ素試験液と接触したとき、検出材の色の変化からホウ素の存在を確認することができた。一方、検出材(B−4)は、色の変化を確認しにくいものだった。また、この呈色の様子を、図2に写真で示す。図2は、ホウ素試験液(10ppm)を接触させたもの、純水(ホウ素0ppm)を接触させたものの、各検出材の様子を示すものである。   As shown in Table 3, the detection materials (B-1) to (B-3) according to the detection material of the present invention confirm the presence of boron from the change in color of the detection material when in contact with the boron test solution. I was able to. On the other hand, the detection material (B-4) was difficult to confirm the color change. In addition, this coloration is shown in FIG. FIG. 2 shows the state of each detection material in contact with a boron test solution (10 ppm) and in contact with pure water (boron 0 ppm).

[試験液による呈色反応 (3)鉛試験液による呈色反応]
鉛発色剤溶液を吸収させた検出材(Pb−1)、(Pb−2)について、鉛試験液(10ppm)を用いて、呈色反応を評価した。ここでは、検出材5gに対して、試験液5mLを接触させ、5分後に呈色反応の有無を確認した。評価結果を表4に併せて示す。
ここで、鉛試験液は、以下の工程で調製した。鉛標準液(Pb:1000mg/L)を、純水で希釈し、Pb濃度が10mg/L(ppm)の鉛試験液(10ppm)を作成した。
[Color reaction with test solution (3) Color reaction with lead test solution]
About the detection materials (Pb-1) and (Pb-2) in which the lead color former solution was absorbed, the color reaction was evaluated using a lead test solution (10 ppm). Here, 5 mL of the test solution was brought into contact with 5 g of the detection material, and the presence or absence of a color reaction was confirmed after 5 minutes. The evaluation results are also shown in Table 4.
Here, the lead test solution was prepared by the following steps. A lead standard solution (Pb: 1000 mg / L) was diluted with pure water to prepare a lead test solution (10 ppm) having a Pb concentration of 10 mg / L (ppm).

表4に示すように、本発明の検出材にかかる検出材(Pb−1)は、鉛試験液と接触したとき、検出材の色の変化から鉛の存在を確認することができた。一方、検出材(Pb−2)は、色の変化を確認しにくいものだった。この呈色のようすを、図3に写真で示す。図3は、鉛試験液(10ppm)を接触させたもの、純水(鉛0ppm)を接触させたものの、各検出材の様子を示すものである。   As shown in Table 4, when the detection material (Pb-1) according to the detection material of the present invention was in contact with the lead test solution, the presence of lead could be confirmed from the change in the color of the detection material. On the other hand, the detection material (Pb-2) was difficult to confirm a change in color. This color appearance is shown by a photograph in FIG. FIG. 3 shows the state of each detection material, which was brought into contact with a lead test solution (10 ppm) and pure water (lead 0 ppm).

本発明の検出材によれば、試験対象である土壌や液中の、フッ素やホウ素、鉛等の環境汚染物質の有無を、簡易に評価することができる。また、本発明はこのような検出材を製造する方法を提供するものである。さらに、そのような検出材を用いて、環境汚染物質の有無を評価することができ、産業上有用である。   According to the detection material of the present invention, it is possible to easily evaluate the presence or absence of environmental pollutants such as fluorine, boron, lead, etc. in the soil or liquid to be tested. The present invention also provides a method for producing such a detection material. Furthermore, the presence or absence of environmental pollutants can be evaluated using such a detection material, which is industrially useful.

Claims (7)

環境汚染物質の有無を評価する検出材であって、基材に発色剤溶液を担持させてなり、前記基材が吸収する発色剤溶液量が前記基材の重量に対して150重量%以上100,000重量%以下であることを特徴とする検出材。   A detection material for evaluating the presence or absence of an environmental pollutant, wherein a color former solution is supported on a substrate, and the amount of the color developer solution absorbed by the substrate is 150% by weight or more to 100% by weight of the substrate. , 000% by weight or less. 前記基材が、吸水性ポリマーおよび/またはホワイトカーボンである請求項1記載の検出材。   The detection material according to claim 1, wherein the substrate is a water-absorbing polymer and / or white carbon. 前記発色剤溶液に含有される発色剤が、pH4〜9.5の範囲で発色する発色剤である請求項1または2記載の検出材。   The detection material according to claim 1 or 2, wherein the color former contained in the color former solution is a color former that develops color in a pH range of 4 to 9.5. 前記環境汚染物質が、フッ素、ホウ素または鉛のいずれかであることを特徴とする請求項1〜3のいずれかに記載の検出材。   The detection material according to claim 1, wherein the environmental pollutant is any one of fluorine, boron, and lead. 前記発色剤溶液中の発色剤が、ランタン−アリザリンコンプレキソン、8−ヒドロキシ−1−(サリチリデンアミノ)−3,6−ナフタレンジスルホン酸または4−(2−ピリジルアゾ)レゾルシノールである請求項1〜3のいずれかに記載の検出材。   The color former in the color former solution is lanthanum-alizarin complexone, 8-hydroxy-1- (salicylideneamino) -3,6-naphthalenedisulfonic acid or 4- (2-pyridylazo) resorcinol. The detection material in any one of -3. 発色剤を含有する発色剤溶液に、吸収する発色剤溶液量がその基材の重量に対して150重量%以上100,000重量%以下である基材を浸漬させることを特徴とする環境汚染物質の有無を評価する検出材を製造する方法。   An environmental pollutant characterized by immersing a substrate in which the amount of the color former solution to be absorbed is 150% by weight or more and 100,000% by weight or less based on the weight of the base material in a color former solution containing the color former A method for producing a detection material for evaluating the presence or absence. 請求項1〜5のいずれかに記載の検出材を用いて、環境汚染の有無を評価する方法。   A method for evaluating the presence or absence of environmental contamination using the detection material according to claim 1.
JP2014028398A 2014-02-18 2014-02-18 Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method Active JP6288669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014028398A JP6288669B2 (en) 2014-02-18 2014-02-18 Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014028398A JP6288669B2 (en) 2014-02-18 2014-02-18 Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method

Publications (2)

Publication Number Publication Date
JP2015152514A JP2015152514A (en) 2015-08-24
JP6288669B2 true JP6288669B2 (en) 2018-03-07

Family

ID=53894915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014028398A Active JP6288669B2 (en) 2014-02-18 2014-02-18 Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method

Country Status (1)

Country Link
JP (1) JP6288669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6292647B1 (en) * 2017-04-03 2018-03-14 独立行政法人国立高等専門学校機構 Detection tool, method for manufacturing the same, and method for evaluating a test substance
JP7128505B2 (en) 2018-02-02 2022-08-31 国立大学法人富山大学 Simple color analysis method and analytical tool used therefor
JP6662524B1 (en) * 2019-01-31 2020-03-11 有限会社坂本石灰工業所 Detecting material and method for manufacturing the same, and detection tool and method for manufacturing the same
JP7120589B1 (en) 2022-01-27 2022-08-17 独立行政法人国立高等専門学校機構 Detection material, manufacturing method thereof, detection tool, and detection method
CN115028886B (en) * 2022-06-21 2023-11-21 贺州学院 Didemethoxycurcumin chromogenic film for detecting lead ions, preparation method thereof and rapid lead ion detection method

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3680864A (en) * 1970-04-21 1972-08-01 Raven Ind Inc Spinning top and target game
JP2577556B2 (en) * 1987-03-09 1997-02-05 大日本印刷株式会社 Body fluid test body
JPH063346A (en) * 1992-06-24 1994-01-11 Tome Sangyo Kk Hydrogel formed body for detecting free chlorine
JPH06160372A (en) * 1992-11-19 1994-06-07 Toppan Printing Co Ltd Manufacture of test piece
JP3291861B2 (en) * 1993-09-03 2002-06-17 石川島播磨重工業株式会社 Storage container for gas exposure indicator
JPH07191013A (en) * 1993-12-24 1995-07-28 Hayashi Kagaku Kogyo Kk Pigment particles for ph sensor
US5501945A (en) * 1994-08-30 1996-03-26 The University Of Akron Method of using multichromic polymers in packaging
DE69710584T2 (en) * 1996-07-22 2003-04-24 Novartis Ag, Basel COVALENTLY IMMOBILIZED FLUOROIONOPHORES FOR OPTICAL ION SENSORS
JP2002040010A (en) * 2000-07-24 2002-02-06 Sanyo Electric Co Ltd Coloring film carrying phosphoric acid reactive reagent, and phosphoric acid concentration measuring device using coloring film carrying phosphoric acid reactive reagent
JP2003066024A (en) * 2001-08-30 2003-03-05 Toppan Forms Co Ltd Discoloring pigment composition containing super absorbent polymer microspheres carrying discoloring pigments, method for producing the same, and antiforgery sheet using the same
JP2003344383A (en) * 2002-05-29 2003-12-03 Wako Pure Chem Ind Ltd Reagent for measuring formaldehyde
JP2006308284A (en) * 2004-03-31 2006-11-09 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Suspended fine particle collector and its manufacturing method
DE602006008276D1 (en) * 2005-02-28 2009-09-17 Fujifilm Corp DRY ANALYSIS ELEMENT
JP4739959B2 (en) * 2005-10-12 2011-08-03 株式会社神戸製鋼所 Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method
JP2008308357A (en) * 2007-06-13 2008-12-25 Dvitec Co Ltd Quality control method for application of concrete modification material
JP2010160113A (en) * 2009-01-09 2010-07-22 Sumitomo Electric Ind Ltd Reagent and test material and method for detecting cobalt
JP2013027800A (en) * 2011-07-26 2013-02-07 Mitsubishi Gas Chemical Co Inc Oxygen detecting agent-equipped deoxidizer
US20130158492A1 (en) * 2011-12-20 2013-06-20 Xuedong Song Absorbent Article With Moisture Indicator

Also Published As

Publication number Publication date
JP2015152514A (en) 2015-08-24

Similar Documents

Publication Publication Date Title
JP6288669B2 (en) Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method
Huang et al. Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd (II) ions
Awual et al. Novel composite material for selective copper (II) detection and removal from aqueous media
Awual An efficient composite material for selective lead (II) monitoring and removal from wastewater
Mittal et al. Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption
Das et al. A new dipstick colorimetric sensor for detection of arsenate in drinking water
Grieco et al. Removal of TCEP from aqueous solutions by adsorption with zeolites
Dimpe et al. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge
KR101738761B1 (en) Film for detecting harmful material with enhanced detection sensitivity and the method of preparing the same
JP2007327887A (en) Ion sensor and ion detection method
JP2015083971A (en) Metal ion detection material, manufacturing method thereof and soil evaluation method
JP4883577B2 (en) Chemical sensor material
JP6176636B2 (en) Mesoporous silica supporting iodine ion adsorbing compound, iodine ion collector and iodine recovery method using the same
Liu et al. Highly selective determination of methylmercury with methylmercury-imprinted polymers
JP6662524B1 (en) Detecting material and method for manufacturing the same, and detection tool and method for manufacturing the same
Savitha et al. Adsorptive preconcentration integrated with colorimetry for ultra-sensitive detection of lead and copper
CN109813705A (en) Method based on nanogold-graphene quantum dot paper chip detection mercury ion
US8187890B2 (en) Rapid sensing of toxic metals with hybrid inorganic materials
Faria et al. Water toxicity monitoring using Vibrio fischeri: a method free of interferences from colour and turbidity
Amin et al. Adsorption study of textile dye Basic Red 46 on clinoptilolite
JP7118541B2 (en) Separation method and analysis method of HATS from desulfurization wastewater sample or desulfurization absorption liquid sample and operation method of desulfurization equipment
JP3924617B2 (en) Highly sensitive measurement method for weakly basic ions by ion exclusion separation-conductivity enhancement system
JP2014071015A (en) Measurement instrument and measurement method
JP3924618B2 (en) Highly sensitive measurement method of weakly basic ions by ion exclusion separation-UV absorbance enhancement system
RU2599517C1 (en) Method of determining copper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180131

R150 Certificate of patent or registration of utility model

Ref document number: 6288669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250