JP4739959B2 - Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method - Google Patents

Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method Download PDF

Info

Publication number
JP4739959B2
JP4739959B2 JP2006005249A JP2006005249A JP4739959B2 JP 4739959 B2 JP4739959 B2 JP 4739959B2 JP 2006005249 A JP2006005249 A JP 2006005249A JP 2006005249 A JP2006005249 A JP 2006005249A JP 4739959 B2 JP4739959 B2 JP 4739959B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
hydrogen
detection
dye
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006005249A
Other languages
Japanese (ja)
Other versions
JP2007132916A (en
Inventor
順 鈴木
秀和 井戸
俊樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006005249A priority Critical patent/JP4739959B2/en
Publication of JP2007132916A publication Critical patent/JP2007132916A/en
Application granted granted Critical
Publication of JP4739959B2 publication Critical patent/JP4739959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、例えば燃料電池システムの如く水素ガスを使用する装置・設備において、水素ガスの漏洩を簡便かつ確実に検知することのできる水素ガス検知材と検知部材、並びに水素ガス漏洩検知法に関するものである。   TECHNICAL FIELD The present invention relates to a hydrogen gas detection material and detection member capable of easily and reliably detecting hydrogen gas leakage in an apparatus / equipment using hydrogen gas such as a fuel cell system, and a hydrogen gas leakage detection method. It is.

金属材料などに含まれる水素については、例えばAPI−MS(大気圧イオン化質量分析)の如き昇温分析法や電気化学透過法などを使用し、ある温度域で被検査材料からの水素放出量を求めることによって確認できる。しかし、材料の部分的な水素含量については、特定X線などを用いた簡便な局所分析法が適用できないため、トリチウムオートラジオグラフィーや2次イオン質量分析法(SIMS)等が採用されている。前者は、トリチウムを用いて水素の存在位置を可視化する方法であり、後者は、被検体に数keV〜10数keVのイオンを照射し、放出されるイオンを質量分析する方法で、これらの方法によれば、微小領域に含まれる水素をppmオーダーで検出することができる。   For hydrogen contained in metal materials, etc., the amount of hydrogen released from the material to be inspected can be measured in a certain temperature range by using a temperature rising analysis method such as API-MS (atmospheric pressure ionization mass spectrometry) or an electrochemical permeation method. It can be confirmed by asking. However, tritium autoradiography, secondary ion mass spectrometry (SIMS), and the like are adopted for the partial hydrogen content of the material because a simple local analysis method using specific X-rays or the like cannot be applied. The former is a method for visualizing the location of hydrogen using tritium, and the latter is a method for irradiating a subject with ions of several keV to several tens keV and mass-analyzing the released ions. According to the above, hydrogen contained in a minute region can be detected on the order of ppm.

その他の水素可視化法として、銀デコレーション法や水素マイクロプリント法も知られている。前者は、ジシアン化銀が水素還元を受けることによって生成する銀粒子を水素の可視化に利用する方法であり、後者は、臭化銀が水素還元を受けることによって生成する銀粒子を電子顕微鏡で観察する方法である。また、雰囲気中に存在する水素ガス濃度の検知用として各種のセンサーも開発されている。   As other hydrogen visualization methods, a silver decoration method and a hydrogen microprint method are also known. The former is a method that uses silver particles produced by hydrogen reduction of silver dicyanide for hydrogen visualization, and the latter is an electron microscope that observes silver particles produced by silver reduction of silver bromide. It is a method to do. Various sensors have also been developed for detecting the concentration of hydrogen gas present in the atmosphere.

上記以外にも、水素の検知乃至分析には幾つかの方法が提案されている。例えば特許文献1は、固体材料の表面における水素分布を可視化する方法が開示されており、具体的には、表面に水素が吸着もしくは吸蔵した固体材料の表面を硝酸銀アンモニウム水溶液に接触させ、硝酸銀アンモニウム水溶液中の銀イオンを、固体材料の表面に吸着もしくは吸蔵した水素によって銀に還元し、固体材料の表面に析出させて可視化する方法である。この方法は、シアン化合物の如き有害な試薬を使用しないため、可視化試薬の調製や可視化操作の安全性が高く、廃液処理などの問題も生じない。   In addition to the above, several methods have been proposed for hydrogen detection or analysis. For example, Patent Document 1 discloses a method for visualizing the hydrogen distribution on the surface of a solid material. Specifically, the surface of the solid material on which hydrogen is adsorbed or occluded is brought into contact with a silver ammonium nitrate aqueous solution, thereby silver ammonium nitrate. In this method, silver ions in an aqueous solution are reduced to silver by hydrogen adsorbed or occluded on the surface of the solid material, and precipitated on the surface of the solid material for visualization. Since this method does not use a harmful reagent such as a cyanide, the preparation of the visualization reagent and the safety of the visualization operation are high, and problems such as waste liquid treatment do not occur.

また特許文献2には、白金が高温で水素に浸食されたときに生じる電気抵抗の上昇を利用し、電気抵抗の変化によって水素の漏洩を検知する方法が開示されている。この方法では、水素による侵食を促して検知応答の迅速性を高めるため、白金と共に燐や燐酸化物を共存させている。具体的には、白金からなる検知部をステンレス鋼管内に収容し、燐または燐酸化物の粉末をアルミナセメントに混ぜて前記白金検知部とステンレス鋼管との空隙に充填して充填層とし、検知部には、アルミナ焼結体からなる巻枠に白金細線同士が接触しない様に巻付け、該白金細線の両端に導線を接続して電気抵抗を測定する方法を採用している。   Further, Patent Document 2 discloses a method of detecting leakage of hydrogen by a change in electric resistance by utilizing an increase in electric resistance generated when platinum is eroded by hydrogen at a high temperature. In this method, phosphorus and phosphorous oxide are coexisted with platinum in order to promote erosion by hydrogen and increase the speed of detection response. Specifically, a detection unit made of platinum is accommodated in a stainless steel pipe, and a powder of phosphorus or phosphor oxide is mixed with alumina cement to fill a gap between the platinum detection unit and the stainless steel pipe to form a packed layer, and the detection unit In this method, a method is adopted in which a wire made of an alumina sintered body is wound so that the platinum fine wires do not come into contact with each other, and a conductive wire is connected to both ends of the platinum fine wire to measure the electrical resistance.

更に特許文献3には、燃料電池のセル型電極間に電圧を印加し、透過水素ガスを陽極側、空気を陰極側に夫々供給し、電極間に流れる電流値の変化によって、配管や機器を透過する水素ガス量を測定する方法が開示され、また特許文献4には、水素イオン伝導性を有する電解質膜の一方の表面に水素解離触媒電極を設けると共に、他方の表面には水素生成触媒電極を設け、前記水素解離触媒電極の表面には被検出ガスが流れるガス配管に開口する流路を設けた正極集電板を設け、また前記水素生成触媒電極の表面には水素生成触媒電極が被検出ガスに直接曝される負極集電板を配設し、該集電板の間に直流電圧を印加して、前記水素解離触媒電極から前記水素生成触媒電極に向かう水素イオン輸送作用により流路から送りこまれる被検出ガス中の水素ガス濃度に応じて変化する電流を検出する方法が開示されている。
特許第3428771号公報 特開昭62−271306号公報 特開昭57−84511号公報 特開2002−117734号公報
Further, in Patent Document 3, a voltage is applied between cell-type electrodes of a fuel cell, a permeated hydrogen gas is supplied to the anode side, and air is supplied to the cathode side. A method for measuring the amount of permeating hydrogen gas is disclosed, and Patent Document 4 provides a hydrogen dissociation catalyst electrode on one surface of an electrolyte membrane having hydrogen ion conductivity, and a hydrogen generation catalyst electrode on the other surface. A positive current collector plate provided with a flow path that opens to a gas pipe through which a gas to be detected flows is provided on the surface of the hydrogen dissociation catalyst electrode, and a hydrogen generation catalyst electrode is provided on the surface of the hydrogen generation catalyst electrode. A negative electrode current collector plate that is directly exposed to the detection gas is disposed, a DC voltage is applied between the current collector plates, and the negative ion current collector plate is fed from the flow path by the hydrogen ion transport action from the hydrogen dissociation catalyst electrode toward the hydrogen generation catalyst electrode. Detected gas Method for detecting a current that varies depending on the concentration of the hydrogen gas is disclosed.
Japanese Patent No. 3428771 JP-A-62-271306 JP-A-57-84511 JP 2002-117734 A

しかし、上記方法のうちトリチウムオートラジオグラフィーを用いる方法は、水素の存在位置を金属組織レベルで観察できるが、放射性同位元素であるトリチウムを使用する方法であるから、簡便な方法とは言えない。またイオン質量分析法によれば、材料の水平方向や深さ方向の水素分布状態を知ることができ、銀デコレーション法やマイクロプリント法では、材料表面の水素を精度よく観察できる。   However, among the above methods, the method using tritium autoradiography can observe the location of hydrogen at the metal structure level, but is not a simple method because it uses tritium, which is a radioisotope. Moreover, according to ion mass spectrometry, the hydrogen distribution state in the horizontal direction and depth direction of the material can be known, and hydrogen on the surface of the material can be accurately observed by the silver decoration method and the microprint method.

ところがこれらの方法は、微小領域に存在する水素の分析法としては有効であるが、広い領域に存在する水素の存在状態や漏洩を観察し、或いは、数10cm程度以上のマクロ領域における水素存在状態の観察や分析、水素ガス漏洩位置の確認などには適していない。前掲の特許文献1〜4に開示された技術も、比較的広い部位における水素分布の検知や水素漏洩部位の特定に適した方法でないことは、本質的に変わりがない。   However, these methods are effective as a method for analyzing hydrogen existing in a minute region, but the existence state and leakage of hydrogen existing in a wide region are observed, or the hydrogen existing state in a macro region of about several tens of centimeters or more. It is not suitable for the observation and analysis of hydrogen and the confirmation of hydrogen gas leak position. The techniques disclosed in the above-mentioned Patent Documents 1 to 4 are essentially the same in that they are not suitable methods for detecting a hydrogen distribution in a relatively wide site or specifying a hydrogen leak site.

また、API−MSなどの昇温分析法や電気化学透過法などでは、当然のことながら材料中の水素吸蔵部位や漏洩部位を知ることはできない。しかも上述した方法は、いずれも高価な装置や設備を必要とするため簡便な方法とは言えず、肉眼による目視観察も難しい。   In addition, it is not possible to know the hydrogen storage site or leakage site in a material by using a temperature rising analysis method such as API-MS or an electrochemical permeation method. Moreover, none of the methods described above is an easy method because it requires expensive equipment and equipment, and visual observation with the naked eye is difficult.

本発明は上記の様な従来技術に鑑みてなされたものであり、その目的は、比較的広い観察領域に存在する水素ガス(より具体的には、漏洩水素ガス)を、簡便且つ確実に肉眼検知し得る様な技術を提供することにある。   The present invention has been made in view of the prior art as described above, and an object of the present invention is to easily and reliably visually detect hydrogen gas (more specifically, leaked hydrogen gas) existing in a relatively wide observation region. It is to provide a technique that can be detected.

上記課題を解決することのできた本発明の水素ガス検知材は、保水性担持材に、水素還元を受けて脱色する発色団を有する染料と水素化触媒が担持され、好ましくは更に、pH調整剤が担持されているところに特徴を有している。   The hydrogen gas detection material of the present invention that has been able to solve the above-mentioned problem is that a water retention support material is loaded with a dye having a chromophore that undergoes hydrogen reduction and decolorization, and a hydrogenation catalyst. It is characterized in that is carried.

本発明に係る上記水素ガス検知材の主な構成要素となる染料において、水素還元を受ける好ましい発色団は、アゾ基、ニトロ基、ニトロソ基、カルボニル基、エチレン基よりなる群から選択される少なくとも1種の基を有するものであり、また水素化触媒としては、Pd,Ni,Ru,Ptよりなる群から選択される少なくとも1種(中でも特に好ましいのはPdとPt)が好ましく使用される。これらの水素化触媒の担持材に対する好ましい担持量は0.005mg/cm以上10mg/cm以下、より好ましくは0.01mg/cm以上0.5mg/cm以下である。 In the dye as the main component of the hydrogen gas detection material according to the present invention, a preferred chromophore that undergoes hydrogen reduction is at least selected from the group consisting of an azo group, a nitro group, a nitroso group, a carbonyl group, and an ethylene group. As the hydrogenation catalyst, at least one selected from the group consisting of Pd, Ni, Ru, and Pt (particularly preferable is Pd and Pt) is preferably used. A preferable loading amount of the hydrogenation catalyst with respect to the supporting material is 0.005 mg / cm 2 or more and 10 mg / cm 2 or less, more preferably 0.01 mg / cm 2 or more and 0.5 mg / cm 2 or less.

前記担持材は、水素ガス透過性の平布状もしくはテープ状物とし、片面の一部に仮止め用の接着剤が付着されているものが好ましい。   The carrier is preferably a hydrogen gas-permeable flat cloth or tape-like material, and a temporary fixing adhesive is attached to a part of one surface.

また本発明の水素ガス検知部材は、水素ガス検知部に上記構成の水素ガス検知材が配備されているところに特徴を有している。更に本発明の水素ガス漏洩検知法は、水素ガスの漏洩が懸念される部位に上記検知部材を配置し、該検知部材に含まれる染料に由来する色の消失によって水素ガスの漏洩を検知するところに特徴を有している。   The hydrogen gas detection member of the present invention is characterized in that the hydrogen gas detection material having the above-described configuration is provided in the hydrogen gas detection unit. Furthermore, in the hydrogen gas leak detection method of the present invention, the detection member is disposed at a site where hydrogen gas leak is a concern, and the hydrogen gas leak is detected by the disappearance of the color derived from the dye contained in the detection member. It has the characteristics.

本発明の水素ガス検知材は、上記の如く保水性の担持材に、水素還元を受けて脱色する発色団を有する染料と水素化触媒、好ましくは更にpH調整成分を担持せしめたもので、常態では染料特有の色に着色しているが、該検知材が水素ガスに接触すると、その中に含まれている染料が水素還元を受けて直ちに脱色する。そのため、当該検知材を、例えば水素ガスの漏洩が懸念される部位に配置しておけば、水素ガスの漏洩を簡便かつ確実に肉眼で検知できる。   The hydrogen gas detection material of the present invention comprises a water-holding support material as described above, and a dye having a chromophore that undergoes decolorization upon hydrogen reduction and a hydrogenation catalyst, preferably further a pH adjusting component. However, when the detection material comes into contact with hydrogen gas, the dye contained therein undergoes hydrogen reduction and decolorizes immediately. For this reason, if the detection material is arranged at a site where the leakage of hydrogen gas is a concern, for example, the leakage of hydrogen gas can be easily and reliably detected with the naked eye.

周知の通り水素ガスは高温では化学的に極めて活性であり、様々な化合物と反応する。中でも代表的なのは水素化反応であり、不飽和二重結合を有する化合物の水素化は様々の分野で利用されているが、室温での水素の活性は低く、他の化合物との反応は殆ど起こさない。しかし、PtやPdなどの水素化触媒を使用すると、室温条件下でも反応し得る。   As is well known, hydrogen gas is chemically extremely active at high temperatures and reacts with various compounds. A typical example is a hydrogenation reaction, and hydrogenation of a compound having an unsaturated double bond is used in various fields. However, hydrogen activity at room temperature is low, and reaction with other compounds hardly occurs. Absent. However, when a hydrogenation catalyst such as Pt or Pd is used, it can react even at room temperature.

他方、染料の殆どは、共役系の二重結合を有する発色団におけるπ電子の移動による電荷の偏りと、それに伴う様々な波長の光の吸収によって着色するもので、着色により美観を高めるための手段として汎用されている。また、着色した染料中の二重結合が水素化されると本来の色を失って脱色することも知られている。しかし、こうした染料の脱色や退色は、染料本来の特性を劣化させる好ましくない現象としてその防止対策が講じられているとしても、脱色や退色を積極的に活用しようとする技術思想は殆どなく、本発明者らが知る限り、こうした染料の脱色や退色を水素ガスの検知に利用するといった技術思想は存在しない。   On the other hand, most of the dyes are colored by the bias of charge due to the movement of π electrons in the chromophore having a conjugated double bond and the absorption of light of various wavelengths accompanying it. It is widely used as a means. It is also known that when a double bond in a colored dye is hydrogenated, it loses its original color and decolorizes. However, even if measures to prevent such decolorization and fading of dyes are taken as undesirable phenomena that degrade the original characteristics of the dyes, there is almost no technical idea to actively utilize decolorization and fading. As far as the inventors know, there is no technical idea of utilizing such decolorization and fading of dyes for detection of hydrogen gas.

ところで、最近注目されている燃料電池利用システム等を構築していく上で、その燃料として用いられる水素ガス利用に伴う安全性を確保するには、設備機器からの水素ガスの漏洩を防止し、或いはその漏洩検知技術が必要になることは必定であり、水素ガスをマクロレベルで簡便かつ確実に検知できる様な技術の確立が望まれる。   By the way, in order to build a fuel cell utilization system that has been attracting attention recently, in order to ensure safety associated with the use of hydrogen gas used as the fuel, leakage of hydrogen gas from equipment is prevented, Alternatively, the leak detection technology is necessarily required, and establishment of a technology that can easily and reliably detect hydrogen gas at a macro level is desired.

本発明者らは、こうした状況の下で、これまで殆ど注目されていなかったマクロレベルでの水素ガスの検知に、上記染料の水素ガスによる脱色現象を活用できるのではないかと考え、その線に沿って研究を進めてきた。その結果、水素還元を受けて脱色する発色団を有する染料と水素化触媒を保水性担持材に担持させておけば、水素化触媒の作用で常温雰囲気下においても水素ガスが染料と容易に反応し、当該染料中の発色団が水素還元されることで染料本来の色を失い、該脱色によって水素ガスの存在を肉眼で容易に検知できることを知り、上記本発明に想到した。   Under these circumstances, the present inventors thought that the decolorization phenomenon of the above-mentioned dye by hydrogen gas could be utilized for detection of the hydrogen gas at the macro level, which has not been attracting much attention so far. I have been researching along the way. As a result, if a dye having a chromophore that undergoes hydrogen reduction and decolorization and a hydrogenation catalyst are supported on a water-retaining material, the hydrogen gas can easily react with the dye even at room temperature due to the action of the hydrogenation catalyst. Then, the chromophore in the dye was reduced with hydrogen, and the original color of the dye was lost. By the decolorization, it was found that the presence of hydrogen gas could be easily detected with the naked eye.

従って本発明で使用する染料は、水素還元を受けて脱色する発色団を有するもので、該発色団としては、例えばアゾ基、ニトロ基、ニトロソ基、カルボニル基、エチレン基、チオカルボニル基、カルビミノ基などが挙げられる。通常の染料は、複数のベンゼン環やナフタレン環を持った多環式芳香族骨格を有しており、これらの環と環がアゾ基やエチレン基などで結ばれた構造、或いは末端の環にニトロ基、ニトロソ基、カルボニル基などが結合した構造のものは顕著な発色を示す。   Accordingly, the dye used in the present invention has a chromophore that undergoes decolorization upon hydrogen reduction, and examples of the chromophore include azo group, nitro group, nitroso group, carbonyl group, ethylene group, thiocarbonyl group, carbimino group. Group and the like. Ordinary dyes have a polycyclic aromatic skeleton having a plurality of benzene rings or naphthalene rings, and these rings and rings are connected by an azo group or an ethylene group, or the terminal ring. A structure having a nitro group, a nitroso group, a carbonyl group or the like bonded exhibits remarkable color development.

こうした分子構造を有する染料としては、フェノールレッド、フェノールフタレイン、ブロモフェノールブルー、チモルブルー、メチルイエロー、メチルオレンジ、メチルレッド、ブロモチモルブルー、チモルフタレイン、アリザリンイエロー、コンゴーレッド、ブロモクレゾールパープル、ブロモクレゾールグリーン、アミドブラック、エバンスブルーなどが例示されるが、勿論これらに限定されるものではない。またこれらの染料は、単独で使用してもよく、あるいは2種以上を任意の組合せで併用してもよい。   The dyes having such a molecular structure include phenol red, phenolphthalein, bromophenol blue, thymol blue, methyl yellow, methyl orange, methyl red, bromothymol blue, thymolphthalein, alizarin yellow, congo red, bromocresol purple, bromocresol. Examples include green, amide black, and Evans blue, but of course not limited thereto. These dyes may be used alone or in combination of two or more in any combination.

上記染料中に含まれる例えば、アゾ基(−N=N−)、ニトロ基(−NO)、エチレン基(−C=C−)などは、水素化を受けると夫々−NH−NH−,−NH,−CH−CH−に変化し、発色団としての機能を喪失して色を失う。ニトロソ基やカルボニル基も同様であり、水素化により構造が変化し発色団としての機能を失う。 For example, an azo group (—N═N—), a nitro group (—NO 2 ), an ethylene group (—C═C—), etc. contained in the dye are each —NH—NH—, when hydrogenated. It changes to —NH 2 , —CH 2 —CH 2 — to lose its function as a chromophore and lose its color. The same applies to the nitroso group and the carbonyl group, and the structure is changed by hydrogenation and the function as a chromophore is lost.

こうした水素化反応は、相当量の水素ガスが存在したとしても常温雰囲気下では進行しないが、上記染料と共に水素化触媒を共存させておくと、常温でも上記水素化反応が進行して発色団が変化し、染料独自の色を失う。ここで用いる水素化触媒としてはPd,Ni,Ru,Ptなどの金属粉末が有効であり、これらの金属は、単独で使用できることは勿論のこと、任意の組合せで2種以上を併用してもよい。これらの中でも特に好ましいのは水素化触媒作用の高いPt,Pdであり、特にPdは加温、加圧などをせずとも確実に水素化反応を進めるので好ましい。   Such a hydrogenation reaction does not proceed in a room temperature atmosphere even if a considerable amount of hydrogen gas is present. However, if a hydrogenation catalyst is allowed to coexist with the dye, the hydrogenation reaction proceeds at room temperature, and a chromophore is formed. Change and lose the dye's own color. As the hydrogenation catalyst used here, metal powders such as Pd, Ni, Ru, and Pt are effective, and these metals can be used alone or in combination of two or more in any combination. Good. Among these, Pt and Pd having a high hydrogenation catalytic action are particularly preferable, and Pd is particularly preferable because it allows the hydrogenation reaction to proceed reliably without heating or pressurization.

本発明の水素ガス検知材は、上記染料と水素化触媒を保水性担持材に担持させることによって製造される。保水性担持材としては、染料と水素化触媒粉末を均一な分布状態で分散して担持し得るものであれば特に制限されず、濾紙に代表される紙を始めとするセルロース質の天然繊維もしくは再生繊維、あるいはポリエステル系繊維、ビニロン繊維、アクリル系繊維、ポリアミド繊維など各種の合成繊維からなる不織布や織・編物、更には吸水性ポリマーからなるフィルムを使用することも可能である。   The hydrogen gas detection material of the present invention is produced by supporting the dye and the hydrogenation catalyst on a water retention material. The water-retaining material is not particularly limited as long as it can disperse and carry the dye and the hydrogenation catalyst powder in a uniform distribution state. Cellulosic natural fibers including paper typified by filter paper or Nonwoven fabrics and woven / knitted fabrics made of various synthetic fibers such as recycled fibers, polyester fibers, vinylon fibers, acrylic fibers, polyamide fibers, and films made of water-absorbing polymers can also be used.

これら担持材に染料や水素化触媒を担持させる方法としては、上記担持用素材中に染料や水素化触媒粉末を練り込んで繊維状やフィルム状などに加工する方法、繊維を不織布状、織・編物状などに加工し、若しくは保水性ポリマーをフィルム状に加工した後、塗布、含浸などの方法で染料や水素化触媒粉末を付着させる方法などを採用すればよい。なお担持材は、水素検知による脱色をより速やかに肉眼検知できるよう、水素ガス透過性で且つ白色などの淡色のものを使用するのがよい。また担持材は、水素ガス透過性の平布状(ラベル状)もしくはテープ状物とし、片面の一部に仮止め用の接着剤を付着しておけば、被検査体に付着もしくは巻付けて使用する際に便利である。   As a method of supporting a dye or a hydrogenation catalyst on these support materials, a method of kneading a dye or a hydrogenation catalyst powder into the above-mentioned support material and processing it into a fiber shape or a film shape, a fiber in a non-woven shape, woven / woven What is necessary is just to employ | adopt the method of attaching dye and hydrogenation catalyst powder by methods, such as application | coating and impregnation, after processing into a knitted form etc. or processing a water retention polymer into a film form. It is preferable to use a support material that is permeable to hydrogen gas and light in color such as white so that decolorization due to hydrogen detection can be detected more quickly with the naked eye. Also, the carrier material should be a hydrogen gas permeable flat cloth (label) or tape, and if a temporary adhesive is attached to a part of one side, it can be attached or wrapped around the object to be inspected. Convenient for use.

また、保水性ポリマーを担持用素材として使用する場合は、該ポリマーの水性液に染料と水素化触媒微粉末を分散させて水素ガス検知部位に塗料形態で刷毛塗りやスプレー塗布し、最終的に塗膜状の形態で水素ガス検知に利用することも可能である。なお保水性ポリマーとしては、ポリアクリル酸ソーダやカルボキシメチルセルロースなどが代表的なものとして例示される。   When a water-retaining polymer is used as a support material, a dye and a hydrogenation catalyst fine powder are dispersed in an aqueous liquid of the polymer, and a brush or spray is applied to the hydrogen gas detection site in the form of a paint. It can also be used for hydrogen gas detection in the form of a coating film. Typical examples of the water-retaining polymer include sodium polyacrylate and carboxymethyl cellulose.

担持材に対する染料の好ましい付着量は、染料の種類などによっても変わってくるので一律に決めることはできないが、好ましいのは検知材の検知有効表面積当り0.001〜1mg/cm、より好ましくは0.005〜0.1mg/cmの範囲である。ちなみに、染料の付着量が少な過ぎると、着色状態での色が薄くて視認性が悪く肉眼による脱色の検知が困難になり、また多過ぎると、水素化され始めてから退色乃至脱色を確認できるまでの時間が長くなって検知の迅速性が損なわれる。 The preferable amount of the dye attached to the support material varies depending on the type of the dye and cannot be determined uniformly, but is preferably 0.001 to 1 mg / cm 2 per detection effective surface area of the detection material, more preferably The range is 0.005 to 0.1 mg / cm 2 . By the way, if the amount of dye attached is too small, the color in the colored state will be thin and the visibility will be poor, making it difficult to detect decolorization with the naked eye. Thus, the detection time is deteriorated.

また、水素化触媒の担持量も、当該触媒の種類や用いる染料の種類によって変わるが、標準的な担持量は0.005〜10mg/cm、より好ましくは0.01〜1mg/cm、更に好ましくは0.01〜0.5mg/cmの範囲である。ちなみに触媒担持量が不足すると、水素化反応の進行が遅くなって検知の精度および迅速性が損なわれる。検知精度と迅速性の観点からすると触媒担持量に上限は存在しないが、多過ぎてもそれ以上に効果が高まる訳ではなくコストが無用に高くなるだけであるので経済的に無駄である。なお水素化触媒は、通常、0.1mm程度以下の粒径の微粉末として担持材に担持されるが、薄肉の担持材に担持させる場合は、当該薄肉担持材の片面側にスパッタリング法などで薄膜状に担持させることも可能である。 Further, the amount of supported hydrogenation catalysts will vary depending on the type and the kind of dye used in the catalyst, a standard amount of supported 0.005~10mg / cm 2, more preferably 0.01 to 1 mg / cm 2, More preferably, it is the range of 0.01-0.5 mg / cm < 2 >. Incidentally, if the amount of the catalyst supported is insufficient, the progress of the hydrogenation reaction is delayed, and the accuracy and speed of detection are impaired. From the viewpoint of detection accuracy and rapidity, there is no upper limit on the amount of catalyst supported. However, if it is too much, the effect is not increased any more, and the cost is unnecessarily high, which is economically wasteful. The hydrogenation catalyst is normally supported on the support material as fine powder having a particle size of about 0.1 mm or less. However, when it is supported on a thin support material, a sputtering method or the like is used on one side of the thin support material. It is also possible to carry it in the form of a thin film.

尚、水素ガスを精度よく且つ迅速に検知するには、担持材の表面のみならず担持材の内部にも触媒が入り込んで染料と立体的に接触している様態が好ましい。よって、スパッタリング法により水素化触媒を担持させる際に、水素ガスを効率よく検知するには、担持材片側の触媒を薄膜状に成膜した後に水で膨潤させ、次いで成膜していない面から吸引する方法、或は、厚さ0.1mm程度以下の薄膜状担持材の片面にスパッタリング法で触媒を薄膜状に担持させたものを数層積層するなどの工夫をすればよい。   In order to detect hydrogen gas accurately and quickly, it is preferable that the catalyst enters not only the surface of the support material but also the interior of the support material and is in three-dimensional contact with the dye. Therefore, in order to efficiently detect the hydrogen gas when the hydrogenation catalyst is supported by the sputtering method, the catalyst on one side of the support material is formed into a thin film and then swollen with water, and then from the surface where the film is not formed. A method of sucking or a method of laminating several layers of a thin film-like support material having a thickness of about 0.1 mm or less on which a catalyst is supported in a thin film form by sputtering is sufficient.

なお染料の多くは、水性液としたときのpHによって発色する色調や発色の強さが変化するので、検知すべき部位のベース色に応じて最適の色調と発色強さが得られる様にpH調整するのがよく、また水素ガスの検知部位によっては酸やアルカリで劣化することもあるので、その様な劣化を生じさせないためにも、pH調整が求められることもある。こうしたことから本発明では、染料や水素化触媒以外にもpH調整成分を担持させ、用途・目的に応じた最適の発色状態が得られる様にするのがよい。ここで用いるpH調整成分としては、通常の酸(塩酸、硫酸、蟻酸、酢酸など)やアルカリ(アルカリ金属やアルカリ土類金属の水酸化物や炭酸塩など)に加えて、リン酸塩や第一、第二燐酸塩の如き緩衝作用を有する塩を併用し、安定したpH域で安定した発色状態が得られる様にするのがよい。なお、中性域のpHを確保する際には、中性水(脱イオン水や蒸留水などを含む)もpH調整成分となり得る。   In many dyes, the color tone and intensity of color change depending on the pH of the aqueous solution, so that the optimum color tone and color intensity can be obtained according to the base color of the site to be detected. It may be adjusted, and depending on the detection site of hydrogen gas, it may be deteriorated by acid or alkali. Therefore, pH adjustment may be required in order to prevent such deterioration. For this reason, in the present invention, it is preferable to support a pH adjusting component in addition to the dye and the hydrogenation catalyst so that an optimum color development state corresponding to the application and purpose can be obtained. In addition to normal acids (hydrochloric acid, sulfuric acid, formic acid, acetic acid, etc.) and alkalis (alkali metal and alkaline earth metal hydroxides and carbonates, etc.), the pH adjusting component used here is phosphate and It is preferable to use a salt having a buffering action such as a first and second phosphate so that a stable color development state can be obtained in a stable pH range. In addition, when securing the pH in the neutral range, neutral water (including deionized water and distilled water) can also be a pH adjusting component.

なお、本発明で用いる担持材として保水性のものを選択したのは、次の様な理由による。即ち、先にも述べた様に染料の多くはpHによって発色する色や発色強さが異なり、最も観察し易い発色状態を示す至適pHが存在する。そのため、こうした染料の特性をより有効に活かし、より鮮明な発色状態と水素化による脱色を肉眼観察可能にするには、保水性の担持材を使用するのが好ましいからである。   The reason why the water retaining material is selected as the support material used in the present invention is as follows. That is, as described above, most of the dyes have different colors and strengths depending on the pH, and there is an optimum pH that shows the most easily observed color development state. For this reason, it is preferable to use a water-retaining support material in order to make more effective use of the characteristics of these dyes and enable a more vivid color development state and decolorization by hydrogenation to be observed with the naked eye.

本発明に係る水素ガス検知材の形状には特に制限がなく、水素ガス検知が行われる場所に応じてラベル状、平布状、リボン状、テープ状など任意の形状のものとすることができる。例えば、水素容器の比較的広い接合箇所での水素漏れを検知したい場合は、比較的広めの平布状とすればよく、検知すべき箇所が限られた狭い位置に限定されている場合はラベル状や狭幅の平布状とすればよい。また水素配管の如き管状部の水素ガス漏洩を検知する様な場合は長尺のリボン状またはテープ状とし、検知すべき箇所に巻付けて使用できる様にすればよい。この場合、布状やテープ状検知材の一部に粘着剤などを付着させておき、検知箇所に簡単に仮止めできる様にしておくことも有効である。   There is no restriction | limiting in particular in the shape of the hydrogen gas detection material which concerns on this invention, According to the place where hydrogen gas detection is performed, it can be set as the thing of arbitrary shapes, such as label shape, a flat cloth shape, ribbon shape, and tape shape. . For example, if you want to detect hydrogen leakage at a relatively wide joint in a hydrogen container, you can use a relatively wide flat cloth, and if the location to be detected is limited to a limited narrow position, label Or a flat cloth shape with a narrow width. When hydrogen gas leakage from a tubular part such as a hydrogen pipe is to be detected, it may be formed in a long ribbon shape or tape shape so that it can be used by being wound around a portion to be detected. In this case, it is also effective to attach an adhesive or the like to a part of the cloth-like or tape-like detection material so that it can be easily temporarily fixed to the detection location.

更には、水溶性ポリマーや保水性ポリマーを担持材として使用し、これに染料や水素化触媒などを溶解もしくは分散させて塗料タイプの検知材とし、水素ガスの漏洩が懸念される部位に刷毛塗りやスプレー塗布など任意の方法で塗布し造膜させてガス漏れを検知することも可能である。この様な使用形態であれば、水溶性ポリマーが担持材としての機能を果たすことになる。この様な塗装タイプの検知剤であれば、複雑形状の部品に対しても無理なく適用できるので好ましい。また、染料と水素化触媒および適当なバインダ等を含む液状の検知剤を、任意サイズの紙や布地の片面に塗布して使用することも可能である。   In addition, a water-soluble polymer or water-retaining polymer is used as a support material, and dyes or hydrogenation catalysts are dissolved or dispersed in it as a paint-type detection material. It is also possible to detect a gas leak by applying and forming a film by any method such as spray coating. In such a usage form, the water-soluble polymer functions as a support material. Such a coating type detection agent is preferable because it can be applied without difficulty to parts having complicated shapes. It is also possible to apply a liquid detection agent containing a dye, a hydrogenation catalyst, a suitable binder and the like to one side of paper or fabric of any size.

かくして本発明によれば、染料分子中に含まれる発色団の水素還元による脱色を水素ガスの検知に利用するという新たな発想に基づいて、特に水素ガス利用設備や水素ガス配管などにおける水素ガスの漏洩を簡単な操作で確実に肉眼検知することができ、水素ガスの漏洩で懸念される水素ガス爆発事故なども未然に防止することができる。従って、近々実用化が期待される燃料電池自動車や燃料電池発電を利用した冷暖房施設などに必要となるインフラ設備などの安全管理の一環として今後の有効活用が期待される。   Thus, according to the present invention, based on the new idea of utilizing the decolorization of the chromophores contained in the dye molecules by hydrogen reduction for detection of hydrogen gas, the hydrogen gas in particular in the hydrogen gas utilization equipment or hydrogen gas piping is used. The leak can be reliably detected with a simple operation, and a hydrogen gas explosion accident, which is a concern about the leak of hydrogen gas, can be prevented. Therefore, future effective utilization is expected as part of safety management of infrastructure equipment required for fuel cell vehicles and air conditioning facilities using fuel cell power generation that are expected to be put to practical use in the near future.

以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実験例1
厚さ0.3mmの濾紙に、下記表1に示す染料液と水素化触媒を所定量担持させて、図1に略示する水素ガス検知用実験器具(図中、1は水素ガス検知材、1aは染料含浸濾紙、1bは水素化触媒担持層、2はガラス管、3はシリコンゴム、4a,4bは水素ガス導管をそれぞれ示す)にセットし、水素導管から加湿した水素ガス(窒素ガスとの50/50体積%混合ガス)または空気を5ml/minの流速で流した。そして、表1に示す各水素ガス検知材を検知用実験器具に装着して上記条件でガスを流し、所定時間保った後の染料含浸濾紙の色の変化を肉眼観察した。
Experimental example 1
A predetermined amount of a dye solution and a hydrogenation catalyst shown in Table 1 below are supported on a filter paper having a thickness of 0.3 mm, and a hydrogen gas detection experimental instrument schematically shown in FIG. 1 (in the figure, 1 is a hydrogen gas detection material, 1a is a dye-impregnated filter paper, 1b is a hydrogenation catalyst support layer, 2 is a glass tube, 3 is silicon rubber, 4a and 4b are hydrogen gas conduits, respectively, and humidified hydrogen gas (nitrogen gas and Or 50/50 vol% mixed gas) or air was allowed to flow at a flow rate of 5 ml / min. Then, each hydrogen gas detection material shown in Table 1 was mounted on a detection experimental instrument, gas was allowed to flow under the above conditions, and the color change of the dye-impregnated filter paper after maintaining for a predetermined time was visually observed.

結果は表1に示す通りであり、適正な発色団を有する染料と水素化触媒を組み合せた符号1〜8では、水素ガスの流入によって直ちに染料の色が消失した。これに対し、水素化触媒を担持させなかった符号9,10、およびガスとして空気を流した符号11では、染料による色の変化は認められなかった。   The results are as shown in Table 1. In the case of reference numerals 1 to 8 in which a dye having an appropriate chromophore and a hydrogenation catalyst were combined, the color of the dye immediately disappeared due to the inflow of hydrogen gas. On the other hand, in the code | symbols 9 and 10 which did not carry | support a hydrogenation catalyst, and the code | symbol 11 which flowed air as gas, the color change by a dye was not recognized.

Figure 0004739959
Figure 0004739959

実験例2
図2に示す如く、直径0.5mmのピンホール6を1個穿ったステンレス鋼管5(内径30mm)の一方端をシリコンゴム栓3で封鎖すると共に、反対側には水素ガス導管4a,4bを貫通したシリコンゴム栓を配置し、該ステンレス鋼管5の外周にリボン状の濾紙7を巻き付ける。
Experimental example 2
As shown in FIG. 2, one end of a stainless steel tube 5 (inner diameter 30 mm) having one pin hole 6 having a diameter of 0.5 mm is sealed with a silicone rubber plug 3, and hydrogen gas conduits 4a and 4b are provided on the opposite side. A penetrating silicon rubber stopper is arranged, and a ribbon-shaped filter paper 7 is wound around the outer periphery of the stainless steel pipe 5.

該リボン状濾紙7には、予め片面側にPd粉末を0.5mg/cm担持させておき、その上から塩酸で酸性に調整したメチルレッド水溶液(0.5mg/ml)をスプレー塗布することにより、赤色に染色しておいた。そして、水素ガス導管4a,4bに水素ガスを100ml/minの流速で流したところ、約10分後に、ピンホール6の位置で白点状に色素の脱色が起こり、水素漏洩箇所を肉眼で検知することができた。 The ribbon-shaped filter paper 7 is preliminarily supported with 0.5 mg / cm 2 of Pd powder on one side and sprayed with an aqueous solution of methyl red (0.5 mg / ml) adjusted to be acidic with hydrochloric acid. The sample was dyed red. Then, when hydrogen gas was flowed through the hydrogen gas conduits 4a and 4b at a flow rate of 100 ml / min, after about 10 minutes, the pigment was decolorized in the form of white spots at the pinhole 6 position, and the hydrogen leaking point was detected with the naked eye. We were able to.

一方、リボン状濾紙7には何も担持させておかず、上記と同じメチルレッド水溶液にPb粉末を0.05mg/mlとなる様に分散させておき、この染料+触媒分散液を濾紙7にスプレー塗布した。そして、上記と同様に水素ガス導管4a,4bに水素ガスを100ml/minの流速で流したところ、約15分後に、ピンホール6の位置で白点状に色素の脱色が起こり、水素漏洩箇所を肉眼で検知することができた。   On the other hand, nothing is carried on the ribbon-shaped filter paper 7, and Pb powder is dispersed in the same methyl red aqueous solution as described above so as to be 0.05 mg / ml, and this dye + catalyst dispersion is sprayed on the filter paper 7. Applied. Then, when hydrogen gas was flowed through the hydrogen gas conduits 4a and 4b at a flow rate of 100 ml / min in the same manner as described above, decolorization of the pigment occurred in the form of white spots at the position of the pinhole 6 after about 15 minutes, and the hydrogen leaking portion Was detected with the naked eye.

実験例3
厚さ0.3mmの濾紙に水素化触媒(Pdブラック粉末)を吸引濾過により量を変えて担持させた後、これに赤く発色させたメチルレッド水溶液(0.5mg/ml)を含浸させ、図1に略示した実験器具にセットし、水素導管から加湿した水素ガスを5ml/minの流速で流して水素暴露させた。色差計(ミノルタ社製の商品名「CR−200」)を使用し、C光源で水素暴露前のL値、a値、b値を測定し、所定時間水素暴露させた後のL値、a値、b値を求めた。そして、該水素暴露前後の各L値、a値、b値の差(ΔL値、Δa値、Δb値)から、水素暴露前後の色の変化度合い(色差:ΔEab)を、JIS−Z−8730に記載された下記の色差計算式によって求め、水素暴露時間から単位時間当たりの色の変化速度(ΔEab/min)を求めた。
色差(ΔEab)=[(L+(Δa+(Δb1/2 (JIS-Z-8730)
Experimental example 3
A hydrogenation catalyst (Pd black powder) is supported on a 0.3 mm thick filter paper by changing the amount by suction filtration, and then impregnated with a red aqueous solution of methyl red (0.5 mg / ml). It was set in the experimental apparatus schematically shown in No. 1 and was exposed to hydrogen by flowing a humidified hydrogen gas from a hydrogen conduit at a flow rate of 5 ml / min. Using a color difference meter (trade name “CR-200” manufactured by Minolta Co., Ltd.), the L * value, a * value, and b * value before hydrogen exposure were measured with a C light source, and L was exposed to hydrogen for a predetermined time. The * value, a * value, and b * value were determined. Then, from the difference between each L * value, a * value, and b * value (ΔL * value, Δa * value, Δb * value) before and after the hydrogen exposure, the degree of color change (color difference: ΔE * ab) before and after the hydrogen exposure. ) Was determined by the following color difference calculation formula described in JIS-Z-8730, and the color change rate per unit time (ΔE * ab / min) was determined from the hydrogen exposure time.
Color difference (ΔE * ab) = [(L * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2 (JIS-Z-8730)

色差と感覚の関係は、下記表2に示す如くNBS単位(米国標準局)で評価され、色差の値が大きいほど色の変化が大きく、ΔEab/minの値が大きいほど色の変化速度が速いことを表す。 The relationship between color difference and sensation is evaluated in NBS units (US National Bureau of Standards) as shown in Table 2 below. The greater the color difference value, the greater the color change, and the greater the ΔE * ab / min value, the color change rate. Represents fast.

Figure 0004739959
Figure 0004739959

図3は、Pdブラック粉末の担持量と色の変化速度の関係を示したグラフであり、色の変化速度が5以上になると、数分の間に色の変化もしくは脱色が目視で確認できることから、水素化触媒の担持量は0.01mg/cm以上が好ましく、一方、担持量が0.5mg/cmを超えても色の変化速度(ΔEab/min)は殆ど上昇しなくなることから、コスト面も考慮すると触媒担持量は0.01〜0.5mg/cmの範囲が好ましいと判断される。 FIG. 3 is a graph showing the relationship between the amount of Pd black powder supported and the color change rate. When the color change rate is 5 or more, the color change or decoloration can be visually confirmed within a few minutes. The supported amount of the hydrogenation catalyst is preferably 0.01 mg / cm 2 or more. On the other hand, even if the supported amount exceeds 0.5 mg / cm 2 , the color change rate (ΔE * ab / min) hardly increases. Therefore, considering the cost, it is determined that the catalyst loading is preferably in the range of 0.01 to 0.5 mg / cm 2 .

実験例4
RFスパッタリング装置を使用し、厚さ0.4mm(ワットマンNo.3)と0.1mm(ワットマンNo.50)のセルロース濾紙上に、それぞれ厚さ50nmのPd薄膜を成膜した。成膜条件は、ターゲット;Pd金属、基板温度;室温、Arガス圧;1〜3mTorr、極間距離;55mm、成膜速度;20nm/min、成膜前の到達真空度;1.0×10−5Torrとし、担持量はPdの比重から約0.06mg/cmであった。
Experimental Example 4
Using an RF sputtering apparatus, Pd thin films each having a thickness of 50 nm were formed on cellulose filter paper having a thickness of 0.4 mm (Whatman No. 3) and 0.1 mm (Whatman No. 50). Deposition conditions are: target; Pd metal, substrate temperature; room temperature, Ar gas pressure; 1 to 3 mTorr, distance between electrodes; 55 mm, film formation speed; 20 nm / min, ultimate vacuum before film formation; 1.0 × 10 −5 Torr, and the loading was about 0.06 mg / cm 2 from the specific gravity of Pd.

スパッタリング法によって水素化触媒を担持させた厚さ0.4mmの濾紙(表3中の符号16)、厚さ0.4mmの濾紙に触媒を担持してから純水に膨潤させ、次いで触媒を担持させない面から吸引したもの(表3中の符号17)、厚さ0.1mmの濾紙(表3中の符号18)、および、厚さ0.1mmの濾紙を3枚積層したもの(表3中の符号19)に、赤く発色させたメチルレッド水溶液(0.5mg/ml)を含浸させ、図1に略示した実験器具にセットし、水素導管から加湿した水素ガスを5ml/minの流速で流して水素暴露させた。そして、染料含浸濾紙の色の変化を肉眼観察し、染料の色が消失するまでの時間を測定した。尚、符号14の試料では、濾紙が薄いため初期の色は赤よりも薄いピンク色を呈していた。   A 0.4 mm thick filter paper carrying a hydrogenation catalyst supported by sputtering (reference numeral 16 in Table 3), a catalyst supported on a 0.4 mm thick filter paper, then swollen in pure water, and then supported by the catalyst. What was sucked from the non-permitted surface (reference numeral 17 in Table 3), filter paper having a thickness of 0.1 mm (reference numeral 18 in Table 3), and a laminate of three filter papers having a thickness of 0.1 mm (in Table 3) 19) is impregnated with a red-colored methyl red aqueous solution (0.5 mg / ml), set in the experimental apparatus schematically shown in FIG. 1, and humidified hydrogen gas from a hydrogen conduit at a flow rate of 5 ml / min. Flowed and exposed to hydrogen. Then, the color change of the dye-impregnated filter paper was observed with the naked eye, and the time until the dye color disappeared was measured. Incidentally, in the sample of reference numeral 14, the filter paper was thin, so that the initial color was a pink color lighter than red.

結果は表3に示す通りであり、スパッタリング法により触媒を担持させるだけでも、水素暴露により色の消失がみられるが、触媒を担持材の内部にも担持させる工夫を加えることで、検知の迅速性を更に高めることができる。   The results are as shown in Table 3, and even if the catalyst is supported only by the sputtering method, the color disappears due to the hydrogen exposure. However, by adding a device for supporting the catalyst inside the supporting material, the detection can be quickly performed. The sex can be further enhanced.

Figure 0004739959
Figure 0004739959

実験で用いた水素ガス検知装置の説明図である。It is explanatory drawing of the hydrogen gas detection apparatus used in experiment. 実験で用いた他の水素ガス検知装置の説明図である。It is explanatory drawing of the other hydrogen gas detection apparatus used in experiment. Pdブラックの担持量と色の変化速度(ΔEab/min)の関係を示すグラフである。It is a graph which shows the relationship between the amount of Pd black carried and the color change rate (ΔE * ab / min).

符号の説明Explanation of symbols

1 水素ガス検知材
1a 染料含浸濾紙
1b 水素化触媒担持層
2 ガラス管
3 シリコンゴム
4a,4b 水素ガス導管
5 ステンレス鋼管
6 ピンホール
7 リボン状濾紙
DESCRIPTION OF SYMBOLS 1 Hydrogen gas detection material 1a Dye impregnated filter paper 1b Hydrogenation catalyst support layer 2 Glass tube 3 Silicon rubber 4a, 4b Hydrogen gas conduit 5 Stainless steel tube 6 Pinhole 7 Ribbon filter paper

Claims (8)

保水性担持材に、水素還元を受けて脱色する発色団を有する染料と水素化触媒が担持されており、前記発色団が、アゾ基、ニトロ基、カルボニル基よりなる群から選択される少なくとも1種を有していることを特徴とする水素ガス検知材。 The water-retaining support material carries a dye having a chromophore that undergoes hydrogen reduction and decolorization and a hydrogenation catalyst, and the chromophore is at least one selected from the group consisting of an azo group, a nitro group, and a carbonyl group. A hydrogen gas detection material characterized by having a seed . 更にpH調整成分が担持されている請求項1に記載の水素ガス検知材。   The hydrogen gas detection material according to claim 1, further comprising a pH adjusting component. 水素化触媒が、Pd,Ni,Ru,Ptよりなる群から選択される少なくとも1種である請求項1または2に記載の水素ガス検知材。 The hydrogen gas detection material according to claim 1 or 2 , wherein the hydrogenation catalyst is at least one selected from the group consisting of Pd, Ni, Ru, and Pt. 水素化触媒が、Pd,Ptよりなる群から選択される少なくとも1種である請求項1または2に記載の水素ガス検知材。The hydrogen gas detection material according to claim 1 or 2, wherein the hydrogenation catalyst is at least one selected from the group consisting of Pd and Pt. 前記担持材に対する水素化触媒の担持量が0.005〜10mg/cm2である請求項3または4に記載の水素ガス検知材。 Hydrogen gas detecting material according to claim 3 or 4 supported amount of the hydrogenation catalyst is 0.005~10mg / cm 2 with respect to the support material. 前記担持材が、水素ガス透過性の平布状もしくはテープ状物であり、片面の一部に仮止め用の接着剤が付着されている請求項1〜5のいずれかに記載の水素ガス検知材。   The hydrogen gas detection according to claim 1, wherein the support material is a hydrogen gas permeable flat cloth or tape-like material, and an adhesive for temporary fixing is attached to a part of one side. Wood. 水素ガス検知部に、前記請求項1〜6のいずれかに記載の水素ガス検知材が配置されていることを特徴とする水素ガス検知部材。   A hydrogen gas detection member, wherein the hydrogen gas detection material according to any one of claims 1 to 6 is disposed in a hydrogen gas detection unit. 水素ガスの漏洩が懸念される部位に前記請求項7に記載の検知部材を配置し、該検知部材に含まれる染料に由来する色の消失によって水素ガスが漏洩したことを確認することを特徴とする水素ガス漏洩検知法。   The detection member according to claim 7 is arranged at a site where leakage of hydrogen gas is a concern, and it is confirmed that hydrogen gas has leaked due to the disappearance of the color derived from the dye contained in the detection member. Hydrogen gas leak detection method.
JP2006005249A 2005-10-12 2006-01-12 Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method Expired - Fee Related JP4739959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005249A JP4739959B2 (en) 2005-10-12 2006-01-12 Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005298055 2005-10-12
JP2005298055 2005-10-12
JP2006005249A JP4739959B2 (en) 2005-10-12 2006-01-12 Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method

Publications (2)

Publication Number Publication Date
JP2007132916A JP2007132916A (en) 2007-05-31
JP4739959B2 true JP4739959B2 (en) 2011-08-03

Family

ID=38154687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005249A Expired - Fee Related JP4739959B2 (en) 2005-10-12 2006-01-12 Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method

Country Status (1)

Country Link
JP (1) JP4739959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288669B2 (en) * 2014-02-18 2018-03-07 独立行政法人国立高等専門学校機構 Environmental pollutant detection material, method for producing the same, and environmental pollution evaluation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121836U (en) * 1988-02-12 1989-08-18
EP1431734A1 (en) * 2002-12-16 2004-06-23 Air Products And Chemicals, Inc. Leak detection by chemical reactions at the leak site
JP2004251657A (en) * 2003-02-18 2004-09-09 Ebara Jitsugyo Co Ltd Method for detecting leakage location of fluid from piping etc. and indicator used therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121836A (en) * 1987-11-06 1989-05-15 Canon Inc Photographing device
JPH0335138A (en) * 1989-06-30 1991-02-15 Hochiki Corp Structure for detecting hydrogen leakage of piping member
JP3545292B2 (en) * 1999-11-19 2004-07-21 株式会社神戸製鋼所 Hydrogen visualizing agent, method for visualizing stored hydrogen, and material for visualizing stored hydrogen
JP4004822B2 (en) * 2002-03-07 2007-11-07 東京瓦斯株式会社 Method and apparatus for detecting leaked hydrogen
JP4475533B2 (en) * 2005-08-17 2010-06-09 株式会社神戸製鋼所 Hydrogen gas detection method and hydrogen gas detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121836U (en) * 1988-02-12 1989-08-18
EP1431734A1 (en) * 2002-12-16 2004-06-23 Air Products And Chemicals, Inc. Leak detection by chemical reactions at the leak site
JP2004251657A (en) * 2003-02-18 2004-09-09 Ebara Jitsugyo Co Ltd Method for detecting leakage location of fluid from piping etc. and indicator used therefor

Also Published As

Publication number Publication date
JP2007132916A (en) 2007-05-31

Similar Documents

Publication Publication Date Title
Shi et al. High‐performance trifunctional electrocatalysts based on FeCo/Co2P hybrid nanoparticles for zinc–air battery and self‐powered overall water splitting
Liu et al. In situ encapsulation of laccase in nanofibers by electrospinning for development of enzyme biosensors for chlorophenol monitoring
Liu et al. Enhanced electrocatalysis for energy‐efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter
Wang et al. Surface morphology-controllable magnetic covalent organic frameworks: A novel electrocatalyst for simultaneously high-performance detection of p-nitrophenol and o-nitrophenol
AU2010241865B2 (en) Single wall carbon nanotube based air cathodes
Fedorczyk et al. Kinetic studies of catalytic reduction of 4-nitrophenol with NaBH 4 by means of Au nanoparticles dispersed in a conducting polymer matrix
Mechler et al. Stabilization of iron-based fuel cell catalysts by non-catalytic platinum
Mittal et al. Is H2O2 involved in the membrane degradation mechanism in PEMFC?
Chen et al. Preparation of reduced graphite oxide loaded with cobalt (II) and nitrogen co-doped carbon polyhedrons from a metal-organic framework (type ZIF-67), and its application to electrochemical determination of metronidazole
Endoh et al. Degradation study of MEA for PEMFCs under low humidity conditions
Janicek et al. Performance and stability of different cathode base materials for use in microbial fuel cells
CA2876242A1 (en) Gas permeable electrode and method of manufacture
CN106885833B (en) A kind of microbiological fuel cell and its preparation and the application in water quality early-warning
Serrà et al. Highly efficient electrochemical and chemical hydrogenation of 4-nitrophenol using recyclable narrow mesoporous magnetic CoPt nanowires
JP2006242836A (en) Liquid electrochemical gas sensor
Zurowski et al. Activation of carbon-supported platinum nanoparticles by zeolite-type cesium salts of polyoxometallates of molybdenum and tungsten towards more efficient electrocatalytic oxidation of methanol and ethanol
US6196060B1 (en) Apparatus and method for monitoring hydrogen permeation
Riedl et al. Outstanding oxygen reduction kinetics of La0. 6Sr0. 4FeO3− δ surfaces decorated with platinum nanoparticles
JP4739959B2 (en) Hydrogen gas detection material, hydrogen gas detection member, and hydrogen gas leak detection method
Abdel-Aziz et al. A sensitive and green method for determination of catechol using multi-walled carbon nanotubes/poly (1, 5-diaminonaphthalene) composite film modified glassy carbon electrode
Liu et al. Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at nitrogen doped porous carbon nanopolyhedrons-multiwall carbon nanotubes hybrid materials modified glassy carbon electrode
Qaseem et al. Ag, Co/graphene interactions and its effect on electrocatalytic oxygen reduction in alkaline media
Rashtchi et al. Performance of a PEM fuel cell using electroplated Ni–Mo and Ni–Mo–P stainless steel bipolar plates
Bourke et al. Electrode kinetics and electrolyte stability in vanadium flow batteries
Türk et al. Oxygen electroreduction on zinc and dilithium phthalocyanine modified multiwalled carbon nanotubes in alkaline media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees