WO2014032725A1 - Rotor d'une machine électrique à aimants permanents - Google Patents

Rotor d'une machine électrique à aimants permanents Download PDF

Info

Publication number
WO2014032725A1
WO2014032725A1 PCT/EP2012/066958 EP2012066958W WO2014032725A1 WO 2014032725 A1 WO2014032725 A1 WO 2014032725A1 EP 2012066958 W EP2012066958 W EP 2012066958W WO 2014032725 A1 WO2014032725 A1 WO 2014032725A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
permanent magnet
flux
electrical machine
drop compensating
Prior art date
Application number
PCT/EP2012/066958
Other languages
English (en)
Inventor
Jussi Puranen
Original Assignee
The Switch Drive Systems Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Switch Drive Systems Oy filed Critical The Switch Drive Systems Oy
Priority to KR1020157008124A priority Critical patent/KR101706607B1/ko
Priority to CN201280075399.9A priority patent/CN104782027B/zh
Priority to EP12758432.4A priority patent/EP2896113A1/fr
Priority to PCT/EP2012/066958 priority patent/WO2014032725A1/fr
Publication of WO2014032725A1 publication Critical patent/WO2014032725A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the invention relates generally to rotating electrical machines. More particularly, the in- vention relates to a rotor of a permanent magnet electrical machine that comprises two or more magnetic poles.
  • a surface magnet construction is the best due to the fact that it has a lower leakage flux from the magnets.
  • a rotor construction with em- bedded magnets wastes useful flux from the magnets due to the iron bridges between the magnets.
  • each rotor pole is constructed from several magnets that are tangentially in parallel.
  • the problem with sev- eral tangentially parallel surface magnets is the large areas between the permanent magnets, where there is almost zero flux. This flux drop will substantially increase the core losses in the stator.
  • the objective of the present invention is to create a rotor and an electrical machine that ef- ficiently use the flux from the surface mounted magnets in a rotor and reduce the core losses in a stator.
  • a new rotor of a permanent magnet electrical machine comprises two or more magnetic poles.
  • the rotor according to the invention comprises: - two or more magnetic poles, and the magnetic pole comprises at least two permanent magnets attached to a surface of the rotor facing an air gap, - the magnetic pole further comprises a flux-drop compensating permanent magnet between two adjacent permanent magnets, and the flux-drop compensating permanent magnet is attached to the surface of the rotor with attaching means, and the attaching means comprises ferromagnetic material.
  • an electrical machine comprising a stator and a rotor.
  • the electrical machine according to the invention comprises:
  • a rotor of a permanent magnet electrical machine comprising two or more magnetic poles, and the magnetic pole comprises at least two permanent magnets attached to a surface of the rotor facing an air gap,
  • the magnetic pole further comprises a flux-drop compensating permanent magnet between two adjacent permanent magnets, and the flux-drop compensating permanent magnet is attached to the surface of the rotor with attaching means, and the attaching means comprises ferromagnetic material.
  • the attaching means comprises steel wedges.
  • the steel wedges extend axially.
  • the axial wedge length can be smaller, equal to or longer than the adjoining permanent magnet length.
  • the steel wedges can be shaped to lock the adjoining permanent magnets against the rotor surface.
  • the shape of the axial wedge is, for instance, trapezoidal with at least one pair of parallel sides.
  • the flux-drop compensating permanent magnet has a lower remanence flux than the adjacent permanent magnet.
  • the flux-drop compensating permanent magnet has a higher remanence flux than the adjacent permanent magnet.
  • the invention allows the use of different grades of permanent magnets as flux-drop compensating permanent magnets and permanent magnets.
  • the height of the flux-drop compensating magnet is preferably 30% - 70% of the height of the adjacent permanent magnet, depending on the grade.
  • the magnetization direction of the permanent magnets in one pole is non-radial. This further improves the magnetic flux waveform and magnetic flux density distribution.
  • the magnetization direction of the flux-drop compensating permanent magnets in one pole is radial.
  • the rotor comprises 4, 6 or 8 poles.
  • the invention is advantageous for high-speed electrical machines with a small number of poles where the width of a magnet pole is large.
  • the rotor comprises the in-axial direction, consecutive flux-drop compensating permanent magnets on the rotor surface that are skewed relative to each other by a skewing angle and the skewing angle a range is from 1 to 5 degrees.
  • the invention is applicable to different types of rotors, for example, a solid rotor, a laminated rotor or a cylindrical hollow rotor.
  • a cylindrical hollow rotor comprises a cast iron steel tube, for instance.
  • FIG. 1 shows a magnetic pole of a rotor
  • FIG. 2 shows a flux-drop compensating permanent magnet with an attaching means
  • FIG. 3 shows another flux-drop compensating permanent magnet with an attaching means
  • - Figure 4 shows a magnetic flux in a magnetic pole of a rotor
  • FIG. 5 shows the magnetization directions in a magnetic pole of a rotor
  • FIG. 8 shows a flux-drop compensating permanent magnet arrangement of the ro- tor from Figure 7;
  • FIG. 9 shows the end view of a permanent magnet electrical machine.
  • Figure 1 shows a magnetic pole 4 of a rotor 1.
  • Two permanent magnets 5 are attached to a surface 6 of the rotor 1 facing the air gap 7 in a pole 4.
  • the air gap 7 is between the rotor 1 and stator 3.
  • the magnetic pole 4 further comprises a flux-drop compensating permanent magnet 8 between two adjacent permanent magnets 5.
  • the flux-drop compensating permanent magnet 8 compensates the drop of the magnetic flux from permanent magnets 5 in slots between the permanent magnets 5.
  • the flux-drop compensating permanent magnet 8 is attached to the surface 6 of the rotor with an attaching means 9, and the attaching means 9 comprises ferromagnetic material.
  • the attaching means 9 is fastened to the rotor 1 by means of fasteners 10.
  • the fastener 10 is a bolt or a screw, for instance.
  • the attaching means 9 is above the flux-drop compensating permanent magnet 8 in a radial direction r facing the air gap 7, and it presses the flux-drop compensating permanent mag- net 8 against the surface 6 of the rotor 1.
  • other means for retaining the permanent magnets 5 may be used, for example, a retaining ring or a sleeve or resin.
  • Figures 2 and 3 show a flux-drop compensating permanent magnet 8', 8" with attaching means 9', 9". It is advantageous that a flux-drop compensating permanent magnet 8', 8" and the attaching means 9', 9" fill the slot between two in-tangential direction consecutive permanent magnets 5.
  • the attaching means 9', 9" is a steel wedge, for instance.
  • Figure 2 shows a flux-drop compensating permanent magnet 8' with an attaching means 9'.
  • the height of the slot h s to be filled with a flux-drop compensating permanent magnet 8' and the attaching means 9' is substantially equal to the height of the adjacent permanent magnet h.
  • the flux-drop compensating permanent magnet 8' has a lower remanence flux than the adjacent permanent magnet 5.
  • the height of the flux-drop compensating perma- nent magnet h m i is 70% of the height of the adjacent permanent magnet h.
  • Figure 3 shows another flux-drop compensating permanent magnet 8" with an attaching means 9".
  • the height of the slot h s to be filled with a flux-drop compensating permanent magnet 8" and an attaching means 9" is substantially equal to the height of the permanent magnet h.
  • the flux-drop compensating permanent magnet 8" has a higher remanence flux than the adjacent permanent magnet 5.
  • the height of the flux-drop compensating permanent magnet h ⁇ is 30% of the height of the adjacent permanent magnet h.
  • the shape of the attaching means 9, 9', 9" creates a form lock with the adjacent permanent magnets 5 on the surface 6 of the rotor 1.
  • the shape of the attaching means 9 is trapezoidal with at least one pair of parallel sides.
  • Figure 4 shows a magnetic flux in a magnetic pole of a rotor.
  • Figure 5 shows the magnetization directions in a magnetic pole of a rotor shown in Figure 4.
  • the magnetization direction of the permanent magnets 5 in the pole 4 is non-radial.
  • the magnetization direction of the flux-drop compensating permanent magnets 8 in the pole is radial r. These magnetization directions further improve the magnetic flux waveform and magnetic flux density distribution in the rotor and the air gap.
  • Figure 6 shows a rotor 1 with surface mounted permanent magnets 5.
  • the permanent magnets 5 are arranged at regular intervals around the rotor surface 6.
  • the in-axial direction x consecutive flux-drop compensating permanent magnet 8 has the same position on the rotor surface 6 in the tangential direction t.
  • the attaching means length Li is longer than the adjoining permanent magnet length L 2 .
  • the axial flux-drop compensating permanent magnet length is substantially equal to the adjoining permanent magnet length L 2 .
  • FIG. 7 shows another rotor 1 ' with surface mounted permanent magnets 5', 5".
  • the rotor 1 ' comprises a plurality of rings 1 1 formed from tangentially t alternating permanent magnets and flux-drop compensating permanent magnets.
  • the rings 11 are adjacent in the axial direction x.
  • the in-axial direction x consecutive permanent magnets 5', 5" on the rotor surface are skewed relative to each other. The aim of the skewing is to reduce cogging torque.
  • Figure 8 shows a flux-drop compensating permanent magnet 8"', 8"" arrangement of the rotor 1 ' from Figure 7. From three in-axial direction x adjacent rings 11 shown in Figure 7, two permanent magnets 5', 5" and a flux-drop compensating permanent magnet 8"', 8"" between them are shown from each ring 11. In the first ring, a flux-drop compensating permanent magnet 8"' is attached between two adjacent permanent magnets 5'. The in- axial direction x consecutive flux-drop compensating permanent magnet in the second ring 8"" is skewed relative to the flux-drop compensating permanent magnet 8"' in the previous first ring.
  • the in-axial direction x consecutive flux-drop compensating permanent magnet in the third ring 8"' is skewed relative to the flux-drop compensating permanent magnet 8"" in the previous second ring. Every second in-axial direction x consecutive flux- drop compensating permanent magnet 8"' has the same position on the rotor surface 6 in the tangential direction t.
  • the skewing angle a range is preferably from 1 to 5 degrees.
  • the length Li of the attaching means 9"', 9"" is substantially equal to the adjoining perma- nent magnet 5' length L 2 .
  • the attaching means 9"', 9"" is a steel wedge, for instance.
  • the axial flux-drop compensating permanent magnet length L 3 is substantially equal to the adjoining permanent magnet 5' length L 2 .
  • the attaching means 9"', 9"" is fastened to the rotor 1 by means of fasteners 10.
  • the fastener 10 is a bolt or a screw, for instance.
  • Rotor 1, 1 ' in Figures 6 and 7 is a solid rotor.
  • Solid rotors are advantageous compared with laminated rotors in their higher mechanical robustness and lower manufacturing cost.
  • the solid rotor's advantages are integrity, rigidity, and durability.
  • the magnetic pole arrangement described in Figures 6 and 7 is applicable also to laminated rotors or cylindrical hollow rotors.
  • Figure 9 shows a schematic illustration of a permanent magnet electrical machine 2 comprising a rotor 1 and a stator 3. Between the rotor 1 and the stator 3 is an air gap 7.
  • the ro- tor comprises six poles 4.
  • Two permanent magnets 5 are attached to the surface 6 of the rotor 1 facing the air gap 7 in each pole 4.
  • the magnetic poles 4 further comprise flux-drop compensating permanent magnets 8 between two adjacent permanent magnets 5.
  • the flux- drop compensating permanent magnet 8 is attached to the surface 6 of the rotor with attaching means 9, and the attaching means 9 comprises ferromagnetic material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

La présente invention concerne un rotor (1) d'une machine électrique à aimants permanents (2). Ledit rotor comprend deux, ou plus, pôles magnétiques (4). Le pôle magnétique comprend au moins deux aimants permanents (5) fixés à une surface (6) du rotor (1) qui fait face à un entrefer (7). Le pôle magnétique (4) comprend en outre un aimant permanent compensateur de chute de flux (8) entre deux aimants permanents adjacents (5). L'aimant permanent compensateur de chute de flux (8) est fixé à la surface (6) du rotor (1) en utilisant un moyen de fixation (9), et le moyen de fixation (9) comprend un matériau ferromagnétique.
PCT/EP2012/066958 2012-08-31 2012-08-31 Rotor d'une machine électrique à aimants permanents WO2014032725A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157008124A KR101706607B1 (ko) 2012-08-31 2012-08-31 영구 자석 전기 기계의 로터
CN201280075399.9A CN104782027B (zh) 2012-08-31 2012-08-31 永磁电机的转子
EP12758432.4A EP2896113A1 (fr) 2012-08-31 2012-08-31 Rotor d'une machine électrique à aimants permanents
PCT/EP2012/066958 WO2014032725A1 (fr) 2012-08-31 2012-08-31 Rotor d'une machine électrique à aimants permanents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/066958 WO2014032725A1 (fr) 2012-08-31 2012-08-31 Rotor d'une machine électrique à aimants permanents

Publications (1)

Publication Number Publication Date
WO2014032725A1 true WO2014032725A1 (fr) 2014-03-06

Family

ID=46832360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/066958 WO2014032725A1 (fr) 2012-08-31 2012-08-31 Rotor d'une machine électrique à aimants permanents

Country Status (4)

Country Link
EP (1) EP2896113A1 (fr)
KR (1) KR101706607B1 (fr)
CN (1) CN104782027B (fr)
WO (1) WO2014032725A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580931C1 (ru) * 2015-02-10 2016-04-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Ротор электромашины

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110951A (ja) * 1984-06-25 1986-01-18 Matsushita Electric Ind Co Ltd マグネツト型電動機
JPH03106852U (fr) * 1990-02-19 1991-11-05
DE10348401A1 (de) * 2002-10-18 2004-05-19 Mitsubishi Denki K.K. Umlaufende Maschine mit Dauermagneten
US20060061226A1 (en) * 2004-09-17 2006-03-23 Lg Electronics Inc. Permanent magnet-type motor
WO2008050420A1 (fr) * 2006-10-25 2008-05-02 Nsk Ltd. Moteur
WO2009142005A1 (fr) * 2008-05-23 2009-11-26 パナソニック株式会社 Procédé de fabrication d’un aimant annulaire fer-terres rares avec une anisotropie commandée par une orientation continue
US20110043065A1 (en) * 2009-08-18 2011-02-24 Northern Power Systems, Inc. Method and Apparatus For Permanent Magnet Attachment In An Electromechanical Machine
US20110204739A1 (en) * 2010-02-24 2011-08-25 Adolfo Rebollo Gomez Assembly and method for mounting magnets on a steel sheet rotor pack

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19737391A1 (de) * 1997-08-27 1999-03-04 Magnet Motor Gmbh Elektrische Maschine, deren Rotor aus Dauermagneten und Magnetfluß-Leitstücken aufgebaut ist
JP2004180491A (ja) * 2002-11-11 2004-06-24 Mitsubishi Electric Corp 永久磁石式回転電機
FR2935206B1 (fr) * 2008-08-20 2010-10-08 Michelin Soc Tech Rotor interieur pour machine electrique a cales d'aimants en forme de "t"
CN102237735B (zh) * 2010-03-09 2014-04-16 中山大洋电机制造有限公司 一种永磁转子结构及其应用的电机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110951A (ja) * 1984-06-25 1986-01-18 Matsushita Electric Ind Co Ltd マグネツト型電動機
JPH03106852U (fr) * 1990-02-19 1991-11-05
DE10348401A1 (de) * 2002-10-18 2004-05-19 Mitsubishi Denki K.K. Umlaufende Maschine mit Dauermagneten
US20060061226A1 (en) * 2004-09-17 2006-03-23 Lg Electronics Inc. Permanent magnet-type motor
WO2008050420A1 (fr) * 2006-10-25 2008-05-02 Nsk Ltd. Moteur
WO2009142005A1 (fr) * 2008-05-23 2009-11-26 パナソニック株式会社 Procédé de fabrication d’un aimant annulaire fer-terres rares avec une anisotropie commandée par une orientation continue
US20110043065A1 (en) * 2009-08-18 2011-02-24 Northern Power Systems, Inc. Method and Apparatus For Permanent Magnet Attachment In An Electromechanical Machine
US20110204739A1 (en) * 2010-02-24 2011-08-25 Adolfo Rebollo Gomez Assembly and method for mounting magnets on a steel sheet rotor pack

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2896113A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2580931C1 (ru) * 2015-02-10 2016-04-10 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) Ротор электромашины

Also Published As

Publication number Publication date
KR20150048863A (ko) 2015-05-07
KR101706607B1 (ko) 2017-02-15
CN104782027B (zh) 2017-10-27
CN104782027A (zh) 2015-07-15
EP2896113A1 (fr) 2015-07-22

Similar Documents

Publication Publication Date Title
US9893580B2 (en) Rotor for rotary electric machine
JP5752272B2 (ja) 回転子およびモータ
CN101895180B (zh) 三相交流永磁电动机
EP2515417B1 (fr) Machine à aimant permanent synchrone
CN102185458B (zh) 高精度无槽永磁电机
CN103312066A (zh) 具有永磁激励的电枢的电机和附属的永磁激励的电枢
CN101552535B (zh) 圆筒型磁通反向直线电机
WO2010070196A1 (fr) Module à aimant permanent pour machine électrique
CN106533103A (zh) 永磁辅助式无轴承同步磁阻电机
CN103166349A (zh) 用于移动作业机械的永磁电机的转子
JP6157340B2 (ja) 永久磁石式回転電機
US9692266B2 (en) Spoke-type PM machine with bridge
CN105281459A (zh) 电机转子结构及永磁电机和压缩机
US10014737B2 (en) Rotor for an electric machine
CN104659940A (zh) 一种旋转电机转子
CN102158042A (zh) 高动态圆筒形直线磁阻电机
CN102545434B (zh) 一种径向式永磁同步电机转子结构
RU2515998C1 (ru) Магнитоэлектрический генератор
WO2012101083A3 (fr) Machine synchrone à aimants permanents munie d'un rotor
CN102290960A (zh) 永磁偏置结构圆筒型直线磁阻电机
CN106451855A (zh) 一种交替极永磁电机
US9735634B2 (en) Split pole spoke type PM machine with enclosed magnets
KR101048055B1 (ko) 코어에 슬릿을 형성한 횡자속 전기기기
WO2014032725A1 (fr) Rotor d'une machine électrique à aimants permanents
CN103199669B (zh) 多相大行程圆筒型磁通切换式直线电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157008124

Country of ref document: KR

Kind code of ref document: A