WO2014030506A1 - シールリング - Google Patents

シールリング Download PDF

Info

Publication number
WO2014030506A1
WO2014030506A1 PCT/JP2013/070577 JP2013070577W WO2014030506A1 WO 2014030506 A1 WO2014030506 A1 WO 2014030506A1 JP 2013070577 W JP2013070577 W JP 2013070577W WO 2014030506 A1 WO2014030506 A1 WO 2014030506A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral surface
ring
seal ring
outer peripheral
inner peripheral
Prior art date
Application number
PCT/JP2013/070577
Other languages
English (en)
French (fr)
Inventor
渡部光雄
濱田規寛
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2013554505A priority Critical patent/JP5545420B1/ja
Publication of WO2014030506A1 publication Critical patent/WO2014030506A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • F16J15/3208Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip provided with tension elements, e.g. elastic rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the present invention relates to a seal ring that seals an annular gap between a shaft and a shaft hole of a housing.
  • FIG. 18 is a schematic cross-sectional view showing a state in which the hydraulic pressure is not maintained in the seal ring according to the conventional example.
  • FIG. 19 is a schematic cross-sectional view showing a state in which the hydraulic pressure is maintained in the seal ring according to the conventional example.
  • the seal ring 600 is attached to the annular groove 410 provided on the outer periphery of the shaft 400, and the inner peripheral surface of the shaft hole of the housing 500 through which the shaft 400 is inserted and the side wall surface of the annular groove 410. It is comprised so that the annular clearance between the axis
  • the peripheral length of the outer peripheral surface of the seal ring 600 is configured to be shorter than the peripheral length of the inner peripheral surface of the shaft hole of the housing 500, and is configured not to have a tightening allowance. Therefore, in a state where the engine of the automobile is applied and the hydraulic pressure is high, the seal ring 600 is expanded by the hydraulic pressure, and the hydraulic pressure is sufficiently maintained by being in close contact with the inner peripheral surface of the shaft hole and the side wall surface of the annular groove 410. The function is exhibited (see FIG. 19). On the other hand, the seal ring 600 is configured to be separated from the inner peripheral surface of the shaft hole and the side wall surface of the annular groove 410 in a state where no hydraulic pressure is applied by stopping the engine (see FIG. 18).
  • JP 2011-153664 A Japanese Patent Laid-Open No. 08-121603 JP 2013-108605 A
  • An object of the present invention is to provide a seal ring that can suppress blow-through of a fluid to be sealed while reducing sliding torque.
  • the present invention employs the following means in order to solve the above problems.
  • the seal ring of the present invention is Fluid pressure in a region to be sealed is mounted in an annular groove provided on the outer periphery of the shaft and configured to seal the annular clearance between the relatively rotating shaft and the housing so that the fluid pressure changes.
  • a seal ring for holding In the seal ring that is in close contact with the side wall surface on the low pressure side in the annular groove and slides against the inner peripheral surface of the shaft hole through which the shaft in the housing is inserted,
  • On the outer surface side A recess formed in the center in the width direction and extending in the circumferential direction;
  • a first convex part formed on the low pressure side through the concave part and sliding with respect to the inner peripheral surface of the shaft hole;
  • the “high pressure side” means a side that becomes high pressure when differential pressure is generated on both sides of the seal ring
  • the “low pressure side” means that differential pressure is generated on both sides of the seal ring. It means the side that is at low pressure.
  • the second convex portion formed on the high-pressure side via the concave portion has a lower protruding amount than the first convex portion sliding with respect to the inner peripheral surface of the shaft hole.
  • a gap is formed between the second convex portion and the inner peripheral surface of the shaft hole.
  • the 2nd convex part has the protrusion amount lower than the 1st convex part, the 1st convex part can be slid more reliably with respect to the internal peripheral surface of an axial hole. That is, it can suppress that the sliding state by a 1st convex part becomes unstable because a 2nd convex part contacts the internal peripheral surface of a shaft hole.
  • the second convex portion serves as a barrier, so that the fluid to be sealed can be prevented from flowing directly into the concave portion, and the fluid is preferably applied to the inner peripheral surface side of the seal ring. It becomes possible to guide. Thereby, the blow-through of the fluid to be sealed can be suppressed.
  • FIG. 1 is a partially broken cross-sectional view of a seal ring according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the seal ring according to the first embodiment of the present invention.
  • FIG. 3 is a partially broken perspective view of the seal ring according to the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an unloaded state in the seal ring according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a state immediately after the differential pressure is generated in the seal ring according to the first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a high pressure state in the seal ring according to the first embodiment of the present invention.
  • FIG. 7 is a partially broken perspective view of a seal ring according to Embodiment 2 of the present invention.
  • FIG. 8 is a partially broken cross-sectional view of the sealing device according to Reference Example 1 of the present invention.
  • FIG. 9 is a side view of the outer peripheral ring according to Reference Example 1 of the present invention.
  • FIG. 10 is a partially broken perspective view of the outer peripheral ring according to Reference Example 1 of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing an unloaded state in the sealing device according to Reference Example 1 of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a high-pressure state in the sealing device according to Reference Example 1 of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing a high-pressure state in the sealing device according to Reference Example 1 of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing an unloaded state in the sealing device according to Reference Example 2 of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing a high-pressure state in the sealing device according to Reference Example 2 of the present invention.
  • FIG. 16 is a perspective view showing a part of the outer peripheral ring according to Reference Example 3 of the present invention.
  • FIG. 17 is a part of a side view of an outer peripheral ring according to Reference Example 3 of the present invention.
  • FIG. 18 is a schematic cross-sectional view showing a state in which the hydraulic pressure is not maintained in the seal ring according to the conventional example.
  • FIG. 19 is a schematic cross-sectional view showing a state in which the hydraulic pressure is maintained in the seal ring according to the conventional example.
  • the seal ring according to the present embodiment is used for sealing an annular gap between a relatively rotating shaft and a housing in order to maintain hydraulic pressure in a transmission such as an AT or CVT for automobiles. It is used.
  • high pressure side means a side that becomes high when differential pressure occurs on both sides of the seal ring
  • low pressure side means that differential pressure occurs on both sides of the seal ring. This means the side that is at low pressure.
  • Example 1 A seal ring according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • the seal ring 100 is mounted in an annular groove 410 provided on the outer periphery of the shaft 400, and rotates relative to the shaft 400 and the housing 500 (the inner periphery of the shaft hole through which the shaft 400 in the housing 500 is inserted. Sealing the annular gap between the surface and As a result, the seal ring 100 maintains the fluid pressure in the seal target region configured so that the fluid pressure (hydraulic pressure in the present embodiment) changes.
  • the fluid pressure in the region on the right side in FIGS. 4 to 6 is configured to change, and the seal ring 100 serves to maintain the fluid pressure in the region to be sealed on the right side in the drawing. Is responsible. When the automobile engine is stopped, the fluid pressure in the seal target area is low and no load is applied. When the engine is started, the fluid pressure in the seal target area increases.
  • the seal ring 100 is made of a resin material such as polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE). Further, the peripheral length of the outer peripheral surface of the seal ring 100 is configured to be shorter than the peripheral length of the inner peripheral surface of the shaft hole of the housing 500, and is configured not to have a tightening allowance.
  • PEEK polyetheretherketone
  • PPS polyphenylene sulfide
  • PTFE polytetrafluoroethylene
  • the seal ring 100 is provided with an abutment portion 110 at one place in the circumferential direction. Further, on the outer peripheral surface side of the seal ring 100, a recess 120 is formed at the center in the width direction and extending in the circumferential direction. The bottom surface of the recess 120 is configured as a surface concentric with the inner peripheral surface of the seal ring 100. Furthermore, on the outer peripheral surface side of the seal ring 100, a first convex portion 130 provided on the low pressure side (L) via the concave portion 120 and a second convex portion 140 provided on the high pressure side (H) via the concave portion 120. And are formed.
  • the seal ring 100 has a configuration in which the joint portion 110, the concave portion 120, the first convex portion 130, and the second convex portion 140 are formed on an annular member having a rectangular cross section.
  • this is merely an explanation of the shape, and does not necessarily mean that the annular member having a rectangular cross section is used as a raw material to perform the processing for forming these parts.
  • each part can be obtained by cutting.
  • the concave portion 120, the first convex portion 130, and the second convex portion 140 may be obtained by cutting after molding a material having the joint portion 110 in advance.
  • a manufacturing method is not specifically limited.
  • the joint portion 110 employs a so-called special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side wall surfaces. Since the special step cut is a known technique, a detailed description thereof is omitted, but it has a characteristic of maintaining a stable sealing performance even if the circumference of the seal ring 100 is changed due to thermal expansion and contraction.
  • the special step cut is shown as an example of the abutment portion 110, but the abutment portion 110 is not limited to this, and a straight cut, a bias cut, a step cut, or the like can also be adopted. Note that when a low-elasticity material (such as PTFE) is employed as the material of the seal ring 100, the end portion may be provided without providing the joint portion 110.
  • a low-elasticity material such as PTFE
  • the concave portion 120, the first convex portion 130, and the second convex portion 140 are formed over the entire circumference except for the vicinity of the joint portion 110.
  • an annular continuous seal surface on the outer peripheral surface side of the seal ring 100 is formed.
  • only the first convex portion 130 of the concave portion 120, the first convex portion 130, and the second convex portion 140 is in relation to the inner peripheral surface of the shaft hole. Slide.
  • the 1st convex part 130 is made into a cyclic
  • the width of the first convex portion 130 the torque can be reduced as the width becomes narrower, but if the width is made too narrow, the sealing performance and the durability are lowered. Therefore, it is desirable to reduce the width as much as possible to the extent that the sealing performance and durability can be maintained according to the use environment and the like.
  • the width of the first protrusion 130 may be set to about 0.3 mm or more and 0.7 mm or less.
  • the 2nd convex part 140 is constituted so that the amount of projection (height from concave part 120) may become lower than the 1st convex part 130.
  • the difference between the protrusion amount of the first protrusion 130 and the protrusion amount of the second protrusion 140 is X and the clearance in the width direction of the annular groove 410 and the seal ring 100 is Y
  • X ⁇ Y is satisfied.
  • the clearance Y is a length obtained by subtracting the width of the seal ring 100 from the groove width of the annular groove 410 (see FIG. 6).
  • FIG. 4 shows a state in which the engine is stopped and there is no differential pressure in the left and right regions (or almost no differential pressure) via the seal ring 100 and there is no load.
  • FIG. 5 shows a state immediately after the engine is started and a differential pressure is generated via the seal ring 100 (immediately after the fluid pressure in the right region becomes higher than that in the left region).
  • FIG. 6 shows a state in which a certain amount of time has elapsed after the engine is started and a differential pressure is generated via the seal ring 100 (after the fluid pressure in the right region is higher than that in the left region). Indicates the state.
  • the seal ring 100 moves to the low pressure side (L) by the fluid pressure from the high pressure side (H) as shown in FIG. .
  • the fluid to be sealed on the high-pressure side (H) flows into the recess 120 from the gap between the second protrusion 140 and the inner peripheral surface of the shaft hole, but the second protrusion 140 serves as a barrier. Therefore, most of them flow toward the inner peripheral surface of the seal ring 100 (see arrow A in the figure).
  • the seal ring 100 receives the fluid pressure from the inner peripheral surface side and immediately expands its diameter, and the outer peripheral surface of the seal ring 100 is in close contact (sliding) with the inner peripheral surface of the shaft hole.
  • the seal ring 100 is in close contact with the low-pressure side (L) side wall surface of the annular groove 410 and is in a state of sliding with respect to the inner peripheral surface of the shaft hole (see FIG. 6).
  • the second convex portion 140 formed on the high pressure side (H) via the concave portion 120 is the first convex portion that slides with respect to the inner peripheral surface of the shaft hole.
  • the amount of protrusion is lower than 130. Therefore, a gap is formed between the second convex portion 140 and the inner peripheral surface of the shaft hole. Therefore, even if the fluid pressure increases, the fluid pressure acts toward the inner peripheral surface side in the region where the concave portion 120 is provided and the region where the second convex portion 140 is provided.
  • the bottom surface of the recess 120 is configured as a surface concentric with the inner peripheral surface of the seal ring 100. Therefore, in the region where the recess 120 is provided, the direction in which the fluid pressure acts from the inner peripheral surface side and the direction in which the fluid pressure acts from the outer peripheral surface side are exactly opposite. Note that the arrows in FIG. 6 indicate how the fluid pressure acts on the seal ring 100. Thereby, in the seal ring 100 according to the present embodiment, an increase in pressure toward the outer peripheral surface by the seal ring 100 accompanying an increase in fluid pressure can be suppressed, and a sliding torque can be suppressed low.
  • the recess 120 is formed over the entire circumference except for the vicinity of the joint portion 110.
  • the concave portion 120 is provided over a wide range of the outer peripheral surface of the seal ring 100, so that the sliding area between the seal ring 100 and the inner peripheral surface of the shaft hole of the housing 500 is made possible. And the sliding torque can be greatly reduced.
  • the sliding area between the seal ring 100 and the inner peripheral surface of the shaft hole of the housing 500 is sufficiently narrower than the contact area between the seal ring 100 and the low-pressure side (L) side wall surface of the annular groove 410. In connection with this, it can suppress that the seal ring 100 slides with respect to the side wall surface of the low pressure side (L) in the annular groove 410.
  • the seal ring 100 according to the present embodiment slides on the outer peripheral surface side. Therefore, compared to the case of a seal ring that slides between the side walls of the annular groove, a lubricating film (here, an oil film) is easily formed by the fluid to be sealed, and the sliding torque can be further reduced. it can.
  • a lubricating film here, an oil film
  • the reduction of the sliding torque can be realized, so that the heat generated by the sliding can be suppressed, and the seal ring 100 according to the present embodiment can be suitably used even under high-speed and high-pressure environmental conditions.
  • the second convex portion 140 has a lower protrusion than the first convex portion 130, the first convex portion 130 can be slid more reliably with respect to the inner peripheral surface of the shaft hole. That is, when these protrusion amounts are set to be equal, the protrusion amount of the first protrusion 130 may be lower than the protrusion amount of the second protrusion 140 due to an error or the like.
  • the second convex portion 140 is in contact with the inner peripheral surface of the shaft hole, and the first convex portion 130 is (partially) not in contact with the inner peripheral surface of the shaft hole. There is a possibility that the sliding state with respect to the inner peripheral surface of the shaft hole becomes unstable.
  • the protruding amount of the second protruding portion 140 is set lower than the protruding amount of the first protruding portion 130 so that the second protruding portion 140 does not contact the inner peripheral surface of the shaft hole.
  • the second convex portion 140 serves as a barrier, so that the fluid to be sealed can be prevented from flowing directly into the concave portion 120, and the fluid is allowed to flow to the inner peripheral surface of the seal ring 100. It becomes possible to guide to the side suitably. Thereby, the blow-through of the fluid to be sealed can be suppressed.
  • FIG. 7 shows a second embodiment of the present invention.
  • the configuration in which the second convex portion is formed over the entire circumference excluding the vicinity of the joint portion 110 is shown.
  • the second convex portion is spaced apart in the circumferential direction.
  • the structure in the case of forming a plurality of empty spaces is shown. Since other configurations and operations are the same as those in the first embodiment, the same components are denoted by the same reference numerals, and the description thereof is omitted as appropriate.
  • the seal ring 100 also includes the joint portion 110, the concave portion 120, the first convex portion 130, and the second convex portion 140a as in the first embodiment. Since the joint part 110, the recessed part 120, and the 1st convex part 130 are the structures same as the seal ring which concerns on the said Example 1, the description is abbreviate
  • the first convex portion 130 is a portion that forms a seal surface on the outer peripheral surface side of the seal ring 100. And in order to exhibit a sealing function, the cyclic
  • the second convex portion suppresses the fluid to be sealed from flowing directly into the concave portion 120 when a differential pressure occurs, and positively flows the fluid toward the inner peripheral surface side of the seal ring 100. It is only necessary to exhibit a function to be guided to. Therefore, in the case of the 2nd convex part, it is not necessary to provide over the perimeter.
  • the seal ring 100 since the second convex portions 140a are provided at intervals in the circumferential direction, the fluid to be sealed flows from the gap between the adjacent second convex portions 140a. Guided into the recess 120. Therefore, the function as a barrier is inferior to that of the first embodiment.
  • the protruding amount of the first convex portion 130 and the portion where the concave portion 120 in the vicinity of the joint portion 110 is not provided decreases with time due to sliding wear. Therefore, in any case, the protrusion amount of the first protrusion 130 and the protrusion amount of the second protrusion 140 are equal.
  • the seal ring 100 shown in each of the above embodiments is configured so that the outer peripheral surface has a shorter peripheral length than the inner peripheral surface of the shaft hole of the housing 500 and does not have a tightening allowance. . Therefore, in the no-load state, the outer peripheral surface of the seal ring 100 is separated from the inner peripheral surface of the shaft hole, and the sealing function is not exhibited. Therefore, the inner surface of the seal ring 100 is made of a rubber-like elastic body that is in close contact with the inner surface of the seal ring 100 and the groove bottom surface of the annular groove 410 and presses the seal ring 100 toward the outer surface.
  • a configuration in which a buckling such as an O-ring may be employed. As a result, the sealing function can be exhibited to some extent even in a no-load state.
  • a reference example employing such a configuration in which a buckling is provided will be described.
  • An object of the technology according to this reference example is to provide a sealing device that can exhibit a sealing function even in a state where the fluid pressure is low while keeping the sliding torque low.
  • the sealing device of this reference example is Fluid pressure in a region to be sealed is mounted in an annular groove provided on the outer periphery of the shaft and configured to seal the annular clearance between the relatively rotating shaft and the housing so that the fluid pressure changes.
  • a sealing device that holds A resin-made outer ring that is in close contact with the low-pressure side wall surface of the annular groove and slides with respect to the inner circumferential surface of the shaft hole through which the shaft of the housing is inserted;
  • An inner peripheral ring made of a rubber-like elastic body that is in close contact with the inner peripheral surface of the outer peripheral ring and the groove bottom surface of the annular groove and presses the outer peripheral ring toward the outer peripheral surface side;
  • a recess provided in the center in the width direction and extending in the circumferential direction;
  • a pair of convex portions provided on both sides via the concave portion and sliding with respect to the inner peripheral surface of the shaft hole;
  • having The outer ring is provided so as to reach the bottom
  • the “high pressure side” means the side that becomes high pressure when differential pressure occurs on both sides of the sealing device
  • the “low pressure side” means that differential pressure occurs on both sides of the sealing device. This means the side that is at low pressure.
  • the outer peripheral ring is pressed toward the outer peripheral surface side by the inner peripheral ring. For this reason, even when fluid pressure is not applied (no differential pressure is generated) or fluid pressure is hardly applied (differential pressure is hardly generated), the outer ring is arranged on the inner periphery of the shaft hole of the housing. It will be in the state which contact
  • a recess is formed on the outer peripheral surface side of the outer ring, and the outer ring is provided with a through hole through which a fluid to be sealed can be introduced into the recess, so that the fluid is introduced into the recess.
  • the fluid pressure acts toward the inner peripheral surface in the region where the recess is provided. Therefore, an increase in pressure toward the outer peripheral surface by the outer peripheral ring accompanying an increase in fluid pressure can be suppressed, and the sliding torque can be suppressed low.
  • a pair of convex part provided in the both sides of the recessed part slides with respect to the internal peripheral surface of a shaft hole, the attitude
  • an inclined surface that increases in diameter toward the high pressure side on the high pressure side, and an inclined surface that increases in diameter toward the low pressure side on the low pressure side.
  • the opening on the inner peripheral surface side of the outer peripheral ring may be provided at a position between these inclined surfaces.
  • the inner ring is stably held at a position between the low pressure side inclined surface of the outer ring and the groove bottom surface of the annular groove. Therefore, it can suppress more reliably that an inner peripheral ring blocks a through-hole.
  • the sealing function can be exhibited even in a state where the fluid pressure is low, while keeping the sliding torque low.
  • the sealing device according to this reference example is used for sealing an annular gap between a relatively rotating shaft and a housing in order to maintain hydraulic pressure in a transmission such as an AT or CVT for an automobile. It is used.
  • high pressure side means a side that becomes high pressure when differential pressure occurs on both sides of the sealing device
  • low pressure side means that differential pressure occurs on both sides of the sealing device. This means the side that is at low pressure.
  • Reference Example 1 A sealing device according to Reference Example 1 of the present invention will be described with reference to FIGS.
  • the sealing device 1000 according to the present reference example is mounted in an annular groove 410 provided on the outer periphery of the shaft 400, and rotates relative to the shaft 400 and the housing 500 (the inner periphery of the shaft hole through which the shaft 400 in the housing 500 is inserted. Sealing the annular gap between the surface and As a result, the sealing device 1000 maintains the fluid pressure in the region to be sealed configured so that the fluid pressure (hydraulic pressure in the present reference example) changes.
  • the sealing device 1000 serves to maintain the fluid pressure in the region to be sealed on the right side in the diagram. Is responsible. When the automobile engine is stopped, the fluid pressure in the seal target area is low and no load is applied. When the engine is started, the fluid pressure in the seal target area increases.
  • the sealing device 1000 includes a peripheral ring 2000 made of a resin such as polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), acrylic rubber (ACM), fluorine
  • the inner ring 3000 is made of a rubber-like elastic body such as rubber (FKM) or hydrogenated nitrile rubber (HNBR).
  • the inner peripheral ring 3000 is a so-called O-ring having a circular cross-sectional shape.
  • the inner ring 3000 is not limited to the O-ring, and other seal rings such as a square ring may be employed.
  • the outer circumferential surface of the outer circumferential ring 2000 is configured to be longer than the inner circumferential surface of the shaft hole in the housing 500.
  • the outer peripheral ring 2000 alone is configured such that the outer peripheral surface is shorter than the inner peripheral surface of the shaft hole of the housing 500 and does not have a tightening margin. Therefore, if the inner peripheral ring 3000 is not attached and no external force is applied, the outer peripheral surface of the outer peripheral ring 2000 does not contact the inner peripheral surface of the shaft hole of the housing 500.
  • the outer peripheral ring 2000 is provided with an abutment portion 2100 at one place in the circumferential direction. Further, on the outer peripheral surface side of the outer peripheral ring 2000, a recess 2200 is formed at the center in the width direction and extending in the circumferential direction. Further, on the outer peripheral surface side of the outer peripheral ring 2000, a pair of convex portions 2300 and 2400 provided on both sides via the concave portion 2200 are provided. Further, the outer ring 2000 is provided with a through hole 2500 so as to reach from the inner peripheral surface side to the bottom surface of the recess 2200.
  • through holes 2500 are provided at a total of seven locations at regular intervals except for the vicinity of the joint portion 2100.
  • the number of the through holes 2500 is not particularly limited, and can be set as appropriate depending on the size of the outer peripheral ring 2000, the diameter of the through holes 2500, and the like.
  • the outer peripheral ring 2000 has a configuration in which the above-described joint portion 2100 and the like are formed with respect to an annular member having a rectangular cross section.
  • this is merely an explanation of the shape, and does not necessarily mean that the annular member having a rectangular cross section is used as a raw material to perform the processing for forming these parts.
  • each part can be obtained by cutting.
  • the concave portion 2200, the pair of convex portions 2300 and 2400, and the through hole 2500 may be obtained by cutting or the like.
  • a manufacturing method is not specifically limited.
  • the joint portion 2100 employs a so-called special step cut that is cut in a step shape when viewed from either the outer peripheral surface side or both side wall surfaces.
  • the first fitting convex part 2110a and the first fitting concave part 2120a are provided on the outer peripheral side on one side through the cutting part, and the first outer peripheral side on the other side is provided with the first.
  • a second fitting concave portion 2120b into which the fitting convex portion 2110a is fitted and a second fitting convex portion 2110b to be fitted into the first fitting concave portion 2120a are provided.
  • the special step cut is a known technique, a detailed description thereof is omitted, but it has a characteristic of maintaining a stable sealing performance even if the peripheral length of the outer ring 2000 is changed due to thermal expansion and contraction.
  • the abutment portion 2100 As an example of the abutment portion 2100, the case of the special step cut is shown, but the abutment portion 2100 is not limited to this, and a straight cut, a bias cut, or the like can be adopted. Note that when a low-elasticity material (such as PTFE) is used as the material of the outer peripheral ring 2000, the endless portion 2100 may not be provided and endless.
  • the concave portion 2200 and the pair of convex portions 2300 and 2400 on both sides thereof are formed over the entire circumference except for the vicinity of the joint portion 2100.
  • the bottom surface of the recess 2200 is configured by a surface concentric with the inner peripheral surface of the outer peripheral ring 2000.
  • part in which the recessed part 2200 of the abutment part 2100 vicinity is not provided, and the outer peripheral surface of a pair of convex part 2300, 2400 are the same surfaces. As a result, an annular continuous sealing surface on the outer peripheral surface side of the outer peripheral ring 2000 is formed.
  • the depth of the concave portion 2200 As for the depth of the concave portion 2200, the shallower the rigidity of the pair of convex portions 2300 and 2400 becomes higher. On the other hand, since the pair of convex portions 2300 and 2400 are worn by sliding, the depth of the concave portion 2200 becomes shallow with time. Therefore, if the depth of the recess 2200 becomes too shallow, it becomes impossible to introduce the fluid. Therefore, it is desirable to set the initial depth of the recess 2200 in consideration of both the rigidity and maintaining the introduction of the fluid even if wear with time progresses. For example, when the thickness of the outer peripheral ring 2000 is 1.7 mm, the depth of the recess 2200 may be set to about 0.1 mm or more and 0.3 mm or less.
  • the width of the pair of convex portions 2300 and 2400 although the torque can be reduced as the width becomes narrower, if the width is made too narrow, the sealing performance and the durability are deteriorated. Therefore, it is desirable to reduce the width as much as possible to the extent that the sealing performance and durability can be maintained according to the use environment and the like.
  • the width of the pair of convex portions 2300 and 2400 may be set to about 0.3 mm or more and 0.7 mm or less.
  • FIG. 11 shows an unloaded state in which the engine is stopped and there is no differential pressure between the left and right regions (or almost no differential pressure) via the sealing device 1000.
  • the outer peripheral ring 2000 in FIG. 11 corresponds to the AA cross section in FIG. 12 and 13 show a state in which the engine is started and the fluid pressure in the right region is higher than that in the left region through the sealing device 1000.
  • 12 corresponds to the BB cross section in FIG. 9, and the outer peripheral ring 2000 in FIG. 13 corresponds to the AA cross section in FIG.
  • the inner ring 3000 made of a rubber-like elastic body is in close contact with the inner circumferential surface of the outer ring 2000 and the groove bottom surface of the annular groove 410, and its elastic repulsion.
  • the function of pressing the outer peripheral ring 2000 toward the outer peripheral surface side by force is exhibited.
  • the outer peripheral ring 2000 In the state where the engine is started and the differential pressure is generated, the outer peripheral ring 2000 is caused to flow from the high pressure side (H) to the low pressure side (L) in the annular groove 410 by the fluid pressure from the high pressure side (H) as shown in FIGS. It will be in the state closely_contact
  • the outer peripheral ring 2000 is pressed toward the outer peripheral surface side by the inner peripheral ring 3000. Therefore, even when fluid pressure is not applied (no differential pressure is generated), or even when the fluid pressure is hardly applied (differential pressure is hardly generated), the outer peripheral ring 2000 is formed in the shaft hole of the housing 500. It will be in the state which contact
  • fluid is introduced into the recess 2200 from the high pressure side (H) through the through hole 2500 (see FIG. 12). Therefore, even if the fluid pressure increases, the fluid pressure acts toward the inner peripheral surface in the region where the recess 2200 is provided. Further, in this reference example, the bottom surface of the recess 2200 is formed by a surface concentric with the inner peripheral surface of the outer peripheral ring 2000. Therefore, in the region where the recess 2200 is provided, fluid flows from the inner peripheral surface side. The direction in which the pressure acts is opposite to the direction in which the fluid pressure acts from the outer peripheral surface side.
  • the inner peripheral ring 3000 is in close contact with the inner peripheral surface of the outer peripheral ring 2000 and the groove bottom surface of the annular groove 410 and exhibits a sealing function at these close contact portions. Accordingly, as shown in FIGS. 12 and 13, the action of the fluid pressure on the inner peripheral surface of the outer ring 2000 can be suppressed in the region on the lower pressure side (L) than the inner ring 3000. Thereby, the outer peripheral surface side can be made wider than the inner peripheral surface side in the region where the fluid pressure acts on the outer peripheral ring 2000. Therefore, even if the fluid pressure on the high pressure side (H) increases, the increase in pressure on the outer peripheral surface side by the outer peripheral ring 2000 can be effectively suppressed.
  • H high pressure side
  • the recess 2200 is formed over the entire circumference except for the vicinity of the abutment portion 2100.
  • the recess 2200 is provided over a wide range of the outer peripheral surface of the outer peripheral ring 2000, so that the sliding area between the outer peripheral ring 2000 and the inner peripheral surface of the shaft hole of the housing 500 is made possible. And the sliding torque can be greatly reduced.
  • the sliding area between the outer peripheral ring 2000 and the inner peripheral surface of the shaft hole of the housing 500 is sufficiently narrower than the contact area between the outer peripheral ring 2000 and the side wall surface on the low pressure side (L) of the annular groove 410.
  • the outer peripheral ring 2000 can suppress that the outer periphery ring 2000 slides with respect to the side wall surface by the side of the low voltage
  • a lubricating film here, an oil film
  • the sealing device 1000 according to the present reference example can be suitably used even under high-speed and high-pressure environmental conditions.
  • the pair of convex portions 2300 and 2400 provided on both sides of the concave portion 2200 slide with respect to the inner peripheral surface of the shaft hole. It can be stabilized.
  • the outer peripheral ring 2000 according to this reference example has a symmetrical shape with respect to the axial center plane. Therefore, when attaching the outer peripheral ring 2000 in the annular groove 410, it is not necessary to care about the attaching direction, and the mounting property is excellent. It can also be used in an environment where the high pressure side and the low pressure side are interchanged.
  • Reference Example 2 shows Reference Example 2 of the present invention.
  • the case where the inner peripheral surface of the outer peripheral ring is formed of a cylindrical surface has been shown.
  • the configuration in which a pair of inclined surfaces is provided on the inner peripheral surface of the outer peripheral ring. Show. Since other configurations and operations are the same as those in Reference Example 1, the same components are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 14 is a schematic cross-sectional view showing an unloaded state in the sealing device according to Reference Example 2 of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing a high-pressure state in the sealing device according to Reference Example 2 of the present invention.
  • the configuration of the sealing device according to the reference example 1 is different only in the shape of the inner peripheral surface of the outer peripheral ring 2000, and the other configurations are the same.
  • an inclined surface 2600 whose diameter increases toward the high pressure side (H) on the high pressure side (H) on the inner peripheral surface side, and a low pressure side on the low pressure side (L).
  • An inclined surface 2700 that increases in diameter toward (L) is provided.
  • the opening part of the inner peripheral surface side of the outer peripheral ring 2000 in the through-hole 2500 is provided in the position between these inclined surfaces 2600 and 2700.
  • the same effects as those of the sealing device 1000 according to the reference example 1 can be obtained. Further, in the case of the sealing device 1000 according to the reference example 1, since the inner peripheral surface of the outer peripheral ring 2000 is a cylindrical surface, the inner peripheral ring 3000 is easily moved in the axial direction. On the other hand, in the case of the sealing device 1000 according to this reference example, the pair of inclined surfaces 2600 and 2700 are provided on the inner peripheral surface of the outer peripheral ring 2000, so that the inner peripheral ring 3000 is moved in the axial direction. Can be regulated.
  • the inner peripheral ring 3000 is stably held at a position between the low pressure side (L) inclined surface 2700 and the groove bottom surface of the annular groove 410 in the outer peripheral ring 2000. Therefore, it can suppress more reliably that the inner periphery ring 3000 block
  • the inclined surfaces 2600 and 2700 are tapered surfaces, but an inclined surface that is curved when viewed in cross section may be employed.
  • Reference Example 3 shows Reference Example 3 of the present invention.
  • this reference example in the configuration shown in the above reference examples 1 and 2, a modification example of the joint portion will be shown. Since other configurations and operations are the same as those in Reference Example 1, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the joint portion 2800 in the outer ring 2000 also employs a so-called special step cut that is cut stepwise when viewed from either the outer peripheral surface side or both side wall surfaces. is doing.
  • the first fitting convex part 2810a and the first fitting concave part 2820a are provided on the outer peripheral side on one side via the cutting part, and the first outer peripheral side on the other side is provided with the first.
  • a second fitting concave portion 2820b into which the fitting convex portion 2810a is fitted and a second fitting convex portion 2810b to be fitted into the first fitting concave portion 2820a are provided.
  • FIG. 16 in the abutment part 2800, the edge part of one side is shown with the perspective view through the cutting part.
  • FIG. 17 the figure which looked at the abutment part 2800 vicinity from the side surface is shown.
  • the length from the inner peripheral end surface (the end surface of one end portion) to the tip of the first fitting convex portion (corresponding to L1 in the figure) at the cutting portion, and the end surface To the rear end of the first fitting recess (corresponding to L2 in the figure), and the length from the inner peripheral side end face (end face of the other end) to the tip of the second fitting convex part in the cutting part The length (corresponding to L1 in the figure) and the length from the end face to the rear end of the second fitting recess (corresponding to L2 in the figure) are both set to be equal.
  • the gap between the end faces on both sides becomes larger or smaller at the joint portion through the cut portion. Therefore, in a configuration in which an inner ring made of a rubber-like elastic body is provided inside the outer ring, in a state where a part of the outer ring side of the inner ring enters the gap as described above, the gap becomes smaller. There is a risk that the part will be caught and damaged.
  • the length L1 from the inner peripheral end surface (the end surface of one end portion) to the distal end of the first fitting convex portion 2810a in the cutting portion is: It is longer than the length L2 from the end surface on the inner peripheral side (end surface of one end portion) to the rear end of the first fitting recess 2820a in the cut portion, and the end surface on the inner peripheral side in the cut portion (end surface of the other end portion) )
  • To the tip of the second fitting convex portion 2810b is longer than the length L2 from the inner peripheral side end surface (end surface of the other end portion) to the rear end of the second fitting concave portion 2820b in the cut portion.
  • the length to the tip of the second fitting convex portion 2810b is the same L1.
  • the inner peripheral side end surface (end surface of one end part) in the cutting part to the rear end of the first fitting recess 2820a and the inner peripheral side end face (end surface of the other end part) of the cutting part is the same L2.
  • the same effect as in the reference example 1 can be obtained.
  • the peripheral length of the outer ring 2000 is increased due to thermal expansion, and the tip of the first fitting convex portion 2810a hits the rear end of the second fitting concave portion 2820b.
  • the front end of the second fitting convex portion 2810b hits the rear end of the first fitting concave portion 2820a, the state where the gap S is formed between the inner peripheral side end surfaces of the cutting portion is maintained. (See FIG. 17). Therefore, it is possible to prevent the inner peripheral ring 3000 from being damaged due to the sandwiching between the end surfaces on the inner peripheral side in the cut portion.
  • a gap S that does not cause damage to the inner ring 3000 is set according to the use environment, the rigidity of the inner ring 3000, and the difference between L1 and L2 is set according to the gap S. .
  • Seal ring 110 Joint part 120 Concave part 130 1st convex part 140,140a 2nd convex part 400 Axis 410 Annular groove 500 Housing 1000 Sealing device 2000 Peripheral ring 2100, 2800 Joint part 2110a, 2810a 1st fitting convex part 2110b, 2810b 2nd fitting convex part 2120a, 2820a 1st fitting recessed part 2120b, 2820b 2nd fitting recessed part 2200 recessed part 2300, 2400 convex part 2500 Through-hole 2600, 2700 Inclined surface 3000 Inner ring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Devices (AREA)

Abstract

 摺動トルクを低下させつつ、シール対象流体の吹き抜けを抑制可能とするシールリングを提供する。 環状溝410における低圧側(L)の側壁面に密着し、かつハウジング500における軸400が挿通される軸孔の内周面に対して摺動するシールリング100において、外周面側には、幅方向の中央に設けられ、周方向に伸びる凹部120と、凹部120を介して低圧側(L)に設けられ、軸孔の内周面に対して摺動する第1凸部130と、凹部120を介して高圧側(H)に設けられ、第1凸部130よりも突出量の低い第2凸部140と、を有することを特徴とする。

Description

シールリング
 本発明は、軸とハウジングの軸孔との間の環状隙間を封止するシールリングに関する。
 自動車用のAutomatic Transmission(AT)やContinuously Variable Transmission(CVT)においては、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止するシールリングが設けられている。図18及び図19を参照して、従来例に係るシールリングについて説明する。図18は従来例に係るシールリングにおける油圧を保持していない状態を示す模式的断面図である。図19は従来例に係るシールリングにおける油圧を保持している状態を示す模式的断面図である。従来例に係るシールリング600の場合、軸400の外周に設けられた環状溝410に装着され、軸400が挿通されるハウジング500の軸孔の内周面と環状溝410の側壁面のそれぞれに摺動自在に接触することで、軸400とハウジング500の軸孔との間の環状隙間を封止するように構成される。
 上記のような用途で用いられるシールリング600においては、摺動トルクを十分に低くすることが要求される。そのため、シールリング600の外周面の周長はハウジング500の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。したがって、自動車のエンジンがかかり油圧が高くなっている状態においては、シールリング600が油圧により拡径し、軸孔の内周面と環状溝410の側壁面に密着して十分に油圧を保持する機能を発揮する(図19参照)。これに対して、エンジンの停止により油圧がかからない状態においてはシールリング600が軸孔の内周面や環状溝410の側壁面から離れた状態となるように構成されている(図18参照)。
 しかしながら、上記のように構成されたシールリング600においても、シールリング600の内周面に作用する油圧が高くなると、軸孔の内周面とシールリング600との間で発生する摺動抵抗が高くなってしまう。そのため、より一層の摺動抵抗の低減化が求められている。
 そこで、シールリング600の外周面側に、シール対象流体(油)を導くことを可能とする凹部を設けることが考えられる。これにより、凹部を設けた領域では、内周面側から外周面側に向かう流体圧力と等しい流体圧力が、外周面側から内周面側に向かって作用する。そのため、シールリング600の内周面側の流体圧力の増加に伴う摺動抵抗の増加を抑制することが可能となる。また、摺動面積が狭くなることからも、摺動抵抗を低減させることが可能となる。
 しかしながら、上記のように、油圧がかからない状態では、シールリング600は軸孔の内周面に対して離れた状態にある。そのため、差圧が生じた際に、急激に油圧がかかると、シールリング600の外周面側から油が吹き抜けてしまい、シール機能が発揮されなくなるおそれもある。
 以上のことからシールリング600の外周面側に、シール対象流体(油)を導くことを可能とする凹部を設ける場合には何らかの工夫が必要と考えられる。なお、本出願人は油の吹き抜けを抑制するための技術について既に提案している(特許文献3)。しかしながら、この技術の場合には、シールリングの内周面に作用する油圧が高くなるにつれて、軸孔の内周面とシールリングとの間で発生する摺動抵抗が高くなってしまう問題については解消していない。
特開2011-153664号公報 特開平08-121603号公報 特開2013-108605号公報
 本発明の目的は、摺動トルクを低下させつつ、シール対象流体の吹き抜けを抑制可能とするシールリングを提供することにある。
 本発明は、上記課題を解決するために以下の手段を採用した。
 すなわち、本発明のシールリングは、
 軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持するシールリングであって、
 前記環状溝における低圧側の側壁面に密着し、かつ前記ハウジングにおける前記軸が挿通される軸孔の内周面に対して摺動するシールリングにおいて、
 外周面側には、
 幅方向の中央に形成され、周方向に伸びる凹部と、
 該凹部を介して低圧側に形成され、前記軸孔の内周面に対して摺動する第1凸部と、
 前記凹部を介して高圧側に形成され、第1凸部よりも突出量の低い第2凸部と、
を有することを特徴とする。
 なお、本発明において、「高圧側」とは、シールリングの両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、シールリングの両側に差圧が生じた際に低圧となる側を意味する。
 本発明のシールリングによれば、凹部を介して高圧側に形成されている第2凸部は、軸孔の内周面に対して摺動する第1凸部よりも突出量が低いため、第2凸部と軸孔の内周面との間には隙間が形成される。これにより、差圧が生じた際には、この隙間を介して、凹部内にシール対象流体が導かれる。そのため、流体圧力が高まっても、凹部が設けられた領域及び第2凸部が設けられた領域においては流体圧力が内周面側に向かって作用する。従って、流体圧力の増加に伴う、シールリングによる軸孔の内周面に対する圧力の増加を抑制でき、摺動トルクを低く抑えることができる。また、第2凸部は第1凸部よりも突出量が低いため、第1凸部を軸孔の内周面に対してより確実に摺動させることができる。つまり、第2凸部が軸孔の内周面に接してしまうことで、第1凸部による摺動状態が不安定になってしまうことを抑制できる。また、差圧が生じた際に、第2凸部が障壁となることで、シール対象流体が凹部内に直接的に流れ込むことを抑制でき、当該流体をシールリングの内周面側に好適に導くことが可能となる。これにより、シール対象流体の吹き抜けを抑制することができる。
 以上説明したように、本発明によれば、摺動トルクを低下させつつ、シール対象流体の吹き抜けを抑制することができる。
図1は本発明の実施例1に係るシールリングの一部破断断面図である。 図2は本発明の実施例1に係るシールリングの側面図である。 図3は本発明の実施例1に係るシールリングの一部破断斜視図である。 図4は本発明の実施例1に係るシールリングにおける無負荷状態を示す模式的断面図である。 図5は本発明の実施例1に係るシールリングにおける差圧が発生した直後の様子を示す模式的断面図である。 図6は本発明の実施例1に係るシールリングにおける高圧状態を示す模式的断面図である。 図7は本発明の実施例2に係るシールリングの一部破断斜視図である。 図8は本発明の参考例1に係る密封装置の一部破断断面図である。 図9は本発明の参考例1に係る外周リングの側面図である。 図10は本発明の参考例1に係る外周リングの一部破断斜視図である。 図11は本発明の参考例1に係る密封装置における無負荷状態を示す模式的断面図である。 図12は本発明の参考例1に係る密封装置における高圧状態を示す模式的断面図である。 図13は本発明の参考例1に係る密封装置における高圧状態を示す模式的断面図である。 図14は本発明の参考例2に係る密封装置における無負荷状態を示す模式的断面図である。 図15は本発明の参考例2に係る密封装置における高圧状態を示す模式的断面図である。 図16は本発明の参考例3に係る外周リングの一部を示す斜視図である。 図17は本発明の参考例3に係る外周リングの側面図の一部である。 図18は従来例に係るシールリングにおける油圧を保持していない状態を示す模式的断面図である。 図19は従来例に係るシールリングにおける油圧を保持している状態を示す模式的断面図である。
 以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。なお、本実施例に係るシールリングは、自動車用のATやCVTなどの変速機において、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止する用途に用いられるものである。また、以下の説明において、「高圧側」とは、シールリングの両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、シールリングの両側に差圧が生じた際に低圧となる側を意味する。
 (実施例1)
 図1~図6を参照して、本発明の実施例1に係るシールリングについて説明する。
 <シールリングの構成>
 本実施例に係るシールリング100は、軸400の外周に設けられた環状溝410に装着され、相対的に回転する軸400とハウジング500(ハウジング500における軸400が挿通される軸孔の内周面)との間の環状隙間を封止する。これにより、シールリング100は、流体圧力(本実施例では油圧)が変化するように構成されたシール対象領域の流体圧力を保持する。ここで、本実施例においては、図4~図6中の右側の領域の流体圧力が変化するように構成されており、シールリング100は図中右側のシール対象領域の流体圧力を保持する役割を担っている。なお、自動車のエンジンが停止した状態においては、シール対象領域の流体圧力は低く、無負荷の状態となっており、エンジンをかけるとシール対象領域の流体圧力は高くなる。
 そして、シールリング100は、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの樹脂材からなる。また、シールリング100の外周面の周長はハウジング500の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。
 このシールリング100には、周方向の1箇所に合口部110が設けられている。また、シールリング100の外周面側には、幅方向の中央に設けられ、周方向に伸びる凹部120が形成されている。この凹部120底面は、シールリング100の内周面と同心的な面で構成されている。更に、シールリング100の外周面側には、凹部120を介して低圧側(L)に設けられる第1凸部130と、凹部120を介して高圧側(H)に設けられる第2凸部140とが形成されている。
 なお、本実施例に係るシールリング100は、断面が矩形の環状部材に対して、上記の合口部110,凹部120,第1凸部130及び第2凸部140が形成された構成である。ただし、これは形状についての説明に過ぎず、必ずしも、断面が矩形の環状部材を素材として、これらの各部を形成する加工を施すことを意味するものではない。勿論、断面が矩形の環状部材を成形した後に、各部を切削加工により得ることもできる。しかしながら、例えば、予め合口部110を有したものを成形した後に、凹部120,第1凸部130及び第2凸部140を切削加工により得てもよい。このように、製法は特に限定されるものではない。
 合口部110は、外周面側及び両側壁面側のいずれから見ても階段状に切断された、いわゆる特殊ステップカットを採用している。特殊ステップカットに関しては公知技術であるので、その詳細な説明は省略するが、熱膨張収縮によりシールリング100の周長が変化しても安定したシール性能を維持する特性を有する。なお、ここでは合口部110の一例として、特殊ステップカットの場合を示したが、合口部110については、これに限らず、ストレートカットやバイアスカットやステップカットなども採用し得る。なお、シールリング100の材料として、低弾性の材料(PTFEなど)を採用した場合には、合口部110を設けずに、エンドレスとしてもよい。
 凹部120,第1凸部130及び第2凸部140は、合口部110付近を除く全周に亘って形成されている。合口部110付近の凹部120が設けられていない部位と、第1凸部130の外周面は同一面となっている。これらによって、シールリング100の外周面側における環状の連続的なシール面を形成する。つまり、シールリング100の外周面において、合口部110付近を除く領域では、凹部120,第1凸部130及び第2凸部140のうち第1凸部130のみが軸孔の内周面に対して摺動する。なお、合口部110を設けない構成を採用する場合には、第1凸部130は環状の凸部とすることで、第1凸部130のみで、環状の連続的なシール面を形成させることが可能となる。
 第1凸部130の幅については、狭いほどトルクを低減することができるものの、幅を狭くし過ぎると、シール性及び耐久性が低下してしまう。そこで、使用環境等に応じて、シール性及び耐久性を維持できる程度に、当該幅を可及的に狭くするのが望ましい。なお、例えば、シールリング100の横幅の全長が1.9mmの場合、第1凸部130の幅は、0.3mm以上0.7mm以下程度に設定するとよい。
 第2凸部140は、第1凸部130よりも突出量(凹部120からの高さ)が低くなるように構成されている。ここで、第1凸部130の突出量と第2凸部140の突出量の差をXとし、環状溝410とシールリング100の幅方向のクリアランスをYとした場合、X<Yを満たすように設定されている。なお、クリアランスYは、環状溝410の溝幅からシールリング100の幅を引いた長さである(図6参照)。
 <シールリングの使用時のメカニズム>
 特に、図4~図6を参照して、本実施例に係るシールリング100の使用時のメカニズムについて説明する。図4は、エンジンが停止して、シールリング100を介して左右の領域の差圧がなく(または、差圧が殆どなく)、無負荷の状態を示している。図5は、エンジンがかかり、シールリング100を介して、差圧が生じた直後(左側の領域に比べて右側の領域の流体圧力の方が高くなった直後)の状態を示している。図6は、エンジンがかかり、シールリング100を介して、差圧が生じてから(左側の領域に比べて右側の領域の流体圧力の方が高くなってから)、ある程度時間が経過した後の状態を示している。
 無負荷状態においては、図4に示すように、左右の領域の差圧がなく、かつ内周面側からの流体圧力も作用しないため、シールリング100は、環状溝410における図中左側の側壁面及び軸孔の内周面から離れた状態となり得る。
 そして、エンジンがかかり、差圧が生じた直後の状態においては、図5に示すように、高圧側(H)からの流体圧力によって、シールリング100は低圧側(L)へと移動していく。また、高圧側(H)のシール対象流体は、第2凸部140と軸孔の内周面との間の隙間から凹部120内へと流れていくものの、第2凸部140が障壁となるため、その多くは、シールリング100の内周面側へと流れていく(図中、矢印A参照)。これにより、シールリング100は内周面側からの流体圧力を受けて、直ちに拡径し、シールリング100の外周面は軸孔の内周面に密着(摺動)した状態となる。
 その後、シールリング100は、環状溝410の低圧側(L)の側壁面に密着した状態となり、かつ軸孔の内周面に対して摺動した状態となる(図6参照)。
 <本実施例に係るシールリングの優れた点>
 本実施例に係るシールリング100によれば、凹部120を介して高圧側(H)に形成されている第2凸部140は、軸孔の内周面に対して摺動する第1凸部130よりも突出量が低い。そのため、第2凸部140と軸孔の内周面との間には隙間が形成される。これにより、差圧が生じた際には、この隙間を介して、凹部120内にシール対象流体が導かれる。そのため、流体圧力が高まっても、凹部120が設けられた領域及び第2凸部140が設けられた領域においては流体圧力が内周面側に向かって作用する。ここで、本実施例においては、凹部120の底面は、シールリング100の内周面と同心的な面で構成されている。従って、凹部120が設けられている領域においては、内周面側から流体圧力が作用する向きと、外周面側から流体圧力が作用する向きは真逆となる。なお、図6における矢印は、流体圧力がシールリング100に対して作用する様子を示している。これにより、本実施例に係るシールリング100においては、流体圧力の増加に伴う、シールリング100による外周面側への圧力の増加を抑制でき、摺動トルクを低く抑えることができる。
 また、本実施例においては、凹部120は、合口部110付近を除く全周に亘って形成されている。このように、本実施例においては、シールリング100の外周面の広範囲に亘って凹部120を設けたことにより、シールリング100とハウジング500の軸孔の内周面との摺動面積を可及的に狭くすることができ、摺動トルクを極めて軽減することができる。なお、シールリング100とハウジング500の軸孔の内周面との摺動面積は、シールリング100と環状溝410の低圧側(L)の側壁面との密着面積よりも十分狭くなっている。これに伴い、シールリング100が環状溝410における低圧側(L)の側壁面に対して摺動してしまうことを抑制できる。従って、本実施例に係るシールリング100は外周面側が摺動する。そのため、環状溝の側壁面との間で摺動するシールリングの場合に比べて、シール対象流体による潤滑膜(ここでは油膜)が形成され易くなり、より一層、摺動トルクを低減させることができる。
 このように、摺動トルクの低減を実現できることにより、摺動による発熱を抑制することができ、高速高圧の環境条件下でも本実施例に係るシールリング100を好適に用いることが可能となる。
 また、第2凸部140は第1凸部130よりも突出量が低いため、第1凸部130を軸孔の内周面に対してより確実に摺動させることができる。つまり、これらの突出量を等しく設定した場合には、誤差などにより、第1凸部130の突出量の方が、第2凸部140の突出量よりも低くなることもあり得る。この場合、第2凸部140が軸孔の内周面に接し、第1凸部130が(部分的に)軸孔の内周面に接しない状態となってしまい、第1凸部130の軸孔内周面に対する摺動状態が不安定になってしまう虞がある。これに対して、本実施例のように、第2凸部140の突出量を第1凸部130の突出量よりも低くして、第2凸部140が軸孔内周面に接しないようにすることで、第1凸部130の軸孔内周面に対する摺動状態を安定させることができる。これにより、安定的に封止機能を発揮させることができる。
 また、差圧が生じた際には、第2凸部140が障壁となることで、シール対象流体が凹部120内に直接的に流れ込むことを抑制でき、当該流体をシールリング100の内周面側に好適に導くことが可能となる。これにより、シール対象流体の吹き抜けを抑制することができる。
 (実施例2)
 図7には、本発明の実施例2が示されている。上記実施例1では、第2凸部が、合口部110付近を除く全周に亘って形成される場合の構成を示したが、本実施例では、第2凸部が、周方向に間隔を空けて複数形成される場合の構成を示す。その他の構成および作用については実施例1と同一なので、同一の構成部分については同一の符号を付して、その説明は適宜省略する。
 本実施例に係るシールリング100においても、上記実施例1と同様に、合口部110,凹部120,第1凸部130及び第2凸部140aを備えている。合口部110,凹部120及び第1凸部130については、上記実施例1に係るシールリングと同一の構成であるので、その説明は省略する。なお、合口部110については、本実施例においても、特殊ステップカットを採用した場合を示しているが、これに限られないことは、上記実施例1で説明した通りである。
 上記実施例1で説明した通り、第1凸部130は、シールリング100における外周面側のシール面を形成する部位である。そして、封止機能を発揮させるために、シールリング100全体では、環状の連続的なシール面を形成しなければならない。従って、合口部110付近を除く領域においては、第1凸部130を全周に亘って設ける必要がある。
 これに対して、第2凸部は、差圧が生じた際にシール対象流体が凹部120内に直接的に流れ込むことを抑制して、当該流体をシールリング100の内周面側に積極的に導かせる機能を発揮すればよい。従って、第2凸部の場合には、全周に亘って設ける必要はない。
 そこで、本実施例に係るシールリング100においては、図7に示すように、第2凸部140aについては、周方向に間隔を空けて複数形成する構成を採用している。
 以上説明したように、本実施例に係るシールリング100においても、上記実施例1に係るシールリング100の場合と同様の作用効果を得ることができる。
 なお、本実施例に係るシールリング100の場合には、第2凸部140aが周方向に間隔を空けて設けられているので、隣り合う第2凸部140aの間の隙間からシール対象流体が凹部120内に導かれる。そのため、障壁としての機能は、実施例1の場合に比べて劣ってしまう。しかしながら、第1凸部130や合口部110付近の凹部120が設けられていない部位は、摺動摩耗によって経時的に突出量が低くなっていく。そのため、いずれは第1凸部130の突出量と第2凸部140の突出量は等しくなる。この場合、上記実施例1の構成を採用した場合には、凹部120内にシール対象流体が導かれなくなってしまう虞があるのに対して、本実施例の構成を採用した場合には、凹部120内にシール対象流体を導くことができる。従って、摺動トルクの低減効果に関しては、上記実施例1の場合よりも長期に亘って発揮させることが可能となる。
 (その他)
 上記各実施例で示したシールリング100は、その外周面の周長がハウジング500の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。従って、無負荷状態においては、シールリング100の外周面は、軸孔の内周面から離れた状態となり、封止機能が発揮されない。そこで、シールリング100の内周面側に、シールリング100の内周面と環状溝410の溝底面にそれぞれ密着して、シールリング100を外周面側に向かって押圧するゴム状弾性体製のOリングなどのバックリングを設ける構成を採用してもよい。これにより、無負荷状態においても、ある程度封止機能を発揮させることが可能となる。以下、このように、バックリングを設ける構成を採用した参考例について説明する。
 (参考例)
 この参考例に係る技術の目的は、摺動トルクを低く抑えつつ、流体圧力が低い状態においても封止機能を発揮させることのできる密封装置を提供することにある。
 本参考例は、この課題を解決するために以下の手段を採用した。
 すなわち、本参考例の密封装置は、
 軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持する密封装置において、
 前記環状溝における低圧側の側壁面に密着し、かつ前記ハウジングにおける前記軸が挿通される軸孔の内周面に対して摺動する樹脂製の外周リングと、
 該外周リングにおける内周面と前記環状溝の溝底面にそれぞれ密着して、前記外周リングを外周面側に向かって押圧するゴム状弾性体製の内周リングと、
 を備えると共に、
 前記外周リングの外周面側には、
 幅方向の中央に設けられ、周方向に伸びる凹部と、
 該凹部を介して両側に設けられ、前記軸孔の内周面に対して摺動する一対の凸部と、
 を有すると共に、
 前記外周リングは、その内周面側から前記凹部の底面に至るように設けられ、かつ内周面側からシール対象流体を前記凹部内に導入可能に設けられた貫通孔を有し、
 前記内周リングが前記環状溝における低圧側の側壁面に密着した状態では、該内周リングは前記貫通孔を塞がない位置まで移動するように構成されていることを特徴とする。
 なお、本参考例において、「高圧側」とは、密封装置の両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、密封装置の両側に差圧が生じた際に低圧となる側を意味する。
 本参考例の密封装置によれば、外周リングは内周リングによって外周面側に向かって押圧される。そのため、流体圧力が作用してない(差圧が生じていない)、または流体圧力が殆ど作用していない(差圧が殆ど生じていない)状態においても、外周リングはハウジングの軸孔の内周面に接した状態となり、封止機能が発揮される。従って、シール対象領域の流体圧力が高まりだした直後から流体圧力を保持させることができる。また、外周リングの外周面側には凹部が形成されており、かつ外周リングにはシール対象流体を凹部内に導入可能な貫通孔が設けられていることから、凹部内には流体が導入される。そのため、流体圧力が高まっても、凹部が設けられた領域においては流体圧力が内周面側に向かって作用する。従って、流体圧力の増加に伴う、外周リングによる外周面側への圧力の増加を抑制でき、摺動トルクを低く抑えることができる。更に、凹部の両側に設けられた一対の凸部が、軸孔の内周面に対して摺動するため、外周リングの姿勢を安定させることができる。
 前記外周リングの内周面側には、高圧側において高圧側に向かうにつれて拡径する傾斜面と、低圧側において低圧側に向かうにつれて拡径する傾斜面とが設けられており、前記貫通孔における前記外周リングの内周面側の開口部は、これらの傾斜面の間の位置に設けられているとよい。
 これにより、内周リングは、外周リングにおける低圧側の傾斜面と環状溝の溝底面との間の位置に安定的に保持される。従って、内周リングが貫通孔を塞いでしまうことをより確実に抑制できる。
 以上説明したように、本参考例の密封装置によれば、摺動トルクを低く抑えつつ、流体圧力が低い状態においても封止機能を発揮させることができる。
 以下、より具体的に本参考例に係る密封装置について説明する。なお、本参考例に係る密封装置は、自動車用のATやCVTなどの変速機において、油圧を保持させるために、相対的に回転する軸とハウジングとの間の環状隙間を封止する用途に用いられるものである。また、以下の説明において、「高圧側」とは、密封装置の両側に差圧が生じた際に高圧となる側を意味し、「低圧側」とは、密封装置の両側に差圧が生じた際に低圧となる側を意味する。
 (参考例1)
 図8~図13を参照して、本発明の参考例1に係る密封装置について説明する。
 <密封装置の構成>
 特に、図8、図11~図13を参照して、本発明の参考例1に係る密封装置の構成について説明する。本参考例に係る密封装置1000は、軸400の外周に設けられた環状溝410に装着され、相対的に回転する軸400とハウジング500(ハウジング500における軸400が挿通される軸孔の内周面)との間の環状隙間を封止する。これにより、密封装置1000は、流体圧力(本参考例では油圧)が変化するように構成されたシール対象領域の流体圧力を保持する。ここで、本参考例においては、図11~図13中の右側の領域の流体圧力が変化するように構成されており、密封装置1000は図中右側のシール対象領域の流体圧力を保持する役割を担っている。なお、自動車のエンジンが停止した状態においては、シール対象領域の流体圧力は低く、無負荷の状態となっており、エンジンをかけるとシール対象領域の流体圧力は高くなる。
 そして、本参考例に係る密封装置1000は、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリテトラフルオロエチレン(PTFE)などの樹脂製の外周リング2000と、アクリルゴム(ACM)、フッ素ゴム(FKM)、水素化ニトリルゴム(HNBR)などのゴム状弾性体製の内周リング3000とから構成される。内周リング3000は、断面形状が円形のいわゆるOリングである。ただし、内周リング3000については、Oリングに限らず、角リングなどのその他のシールリングを採用することもできる。
 また、外周リング2000と内周リング3000が組み合わされた状態においては、外周リング2000の外周面の周長は、ハウジング500における軸孔の内周面の周長よりも長くなるように構成されている。なお、外周リング2000単体については、その外周面の周長はハウジング500の軸孔の内周面の周長よりも短く構成されており、締め代を持たないように構成されている。従って、仮に内周リング3000を装着しない状態で、かつ外力が作用しない状態にすると、外周リング2000の外周面はハウジング500の軸孔の内周面には接しない。
 <外周リング>
 特に、図8~図10を参照して、本発明の参考例1に係る外周リング2000について、より詳細に説明する。外周リング2000には、周方向の1箇所に合口部2100が設けられている。また、外周リング2000の外周面側には、幅方向の中央に設けられ、周方向に伸びる凹部2200が形成されている。更に、外周リング2000の外周面側には、凹部2200を介して両側に設けられる一対の凸部2300,2400が設けられている。また、外周リング2000には、その内周面側から凹部2200の底面に至るように貫通孔2500が設けられている。本参考例においては、合口部2100付近を除き、等間隔に合計7か所に貫通孔2500が設けられている。ただし、貫通孔2500の個数については特に限定されるものではなく、外周リング2000の大きさや貫通孔2500の径等によって、適宜、設定することができ、少なくとも1つあればよい。
 なお、本参考例に係る外周リング2000は、断面が矩形の環状部材に対して、上記の合口部2100等が形成された構成である。ただし、これは形状についての説明に過ぎず、必ずしも、断面が矩形の環状部材を素材として、これらの各部を形成する加工を施すことを意味するものではない。勿論、断面が矩形の環状部材を成形した後に、各部を切削加工により得ることもできる。しかしながら、例えば、予め合口部2100を有したものを成形した後に、凹部2200,一対の凸部2300,2400及び貫通孔2500を切削加工等により得てもよい。このように、製法は特に限定されるものではない。
 合口部2100は、外周面側及び両側壁面側のいずれから見ても階段状に切断された、いわゆる特殊ステップカットを採用している。これにより、外周リング2000においては、切断部を介して一方の側の外周側には第1嵌合凸部2110a及び第1嵌合凹部2120aが設けられ、他方の側の外周側には第1嵌合凸部2110aが嵌る第2嵌合凹部2120bと第1嵌合凹部2120aに嵌る第2嵌合凸部2110bが設けられている。特殊ステップカットに関しては公知技術であるので、その詳細な説明は省略するが、熱膨張収縮により外周リング2000の周長が変化しても安定したシール性能を維持する特性を有する。なお、ここでは合口部2100の一例として、特殊ステップカットの場合を示したが、合口部2100については、これに限らず、ストレートカットやバイアスカットなども採用し得る。なお、外周リング2000の材料として、低弾性の材料(PTFEなど)を採用した場合には、合口部2100を設けずに、エンドレスとしてもよい。
 凹部2200とその両側の一対の凸部2300,2400は、合口部2100付近を除く全周に亘って形成されている。ここで、凹部2200の底面は、外周リング2000の内周面と同心的な面で構成されている。そして、合口部2100付近の凹部2200が設けられていない部位と、一対の凸部2300,2400の外周面は同一面となっている。これらによって、外周リング2000の外周面側における環状の連続的なシール面を形成する。なお、合口部2100を設けない構成を採用する場合には、一対の凸部2300,2400を環状の凸部とすることにより、これらによって、環状の連続的なシール面を形成させることが可能となる。
 凹部2200の深さについては、浅い方が、一対の凸部2300,2400の剛性が高くなる。一方、これら一対の凸部2300,2400は摺動により摩耗するため、凹部2200の深さは経時的に浅くなっていく。そのため、凹部2200の深さが浅くなり過ぎると流体を導入することができなくなってしまう。そこで、上記剛性と経時的な摩耗が進んでも流体の導入を維持することの両者を考慮して、初期の凹部2200の深さを設定するのが望ましい。例えば、外周リング2000の肉厚が1.7mmの場合、凹部2200の深さを0.1mm以上0.3mm以下程度に設定するとよい。
 一対の凸部2300,2400の幅については、狭いほどトルクを低減することができるものの、幅を狭くし過ぎると、シール性及び耐久性が低下してしまう。そこで、使用環境等に応じて、シール性及び耐久性を維持できる程度に、当該幅を可及的に狭くするのが望ましい。なお、例えば、外周リング2000の横幅の全長が1.9mmの場合、一対の凸部2300,2400の幅は、0.3mm以上0.7mm以下程度に設定するとよい。
 <密封装置の使用時のメカニズム>
 特に、図11~図13を参照して、本参考例に係る密封装置1000の使用時のメカニズムについて説明する。図11は、エンジンが停止して、密封装置1000を介して左右の領域の差圧がなく(または、差圧が殆どなく)、無負荷の状態を示している。なお、図11中の外周リング2000は図9中のAA断面に相当する。図12及び図13は、エンジンがかかり、密封装置1000を介して、左側の領域に比べて右側の領域の流体圧力の方が高くなった状態を示している。なお、図12中の外周リング2000は図9中のBB断面に相当し、図13中の外周リング2000は図9中のAA断面に相当する。
 密封装置1000が環状溝410に装着された状態においては、ゴム状弾性体製の内周リング3000は、外周リング2000における内周面と環状溝410の溝底面にそれぞれ密着して、その弾性反発力によって、外周リング2000を外周面側に向かって押圧する機能を発揮する。
 ここで、無負荷状態においては、図11に示すように、左右の領域の差圧がないため、外周リング2000及び内周リング3000はいずれも環状溝410における図中左側の側壁面から離れた状態となり得る。しかしながら、上記の通り、外周リング2000は内周リング3000によって、外周面側に向かって押圧される。従って、外周リング2000の外周面(一対の凸部2300,2400の外周面と、合口部2100付近の凹部2200が形成されていない部分の外周面)は、ハウジング500の軸孔の内周面に接した状態を維持する。
 そして、エンジンがかかり、差圧が生じた状態においては、図12及び図13に示すように、高圧側(H)からの流体圧力によって、外周リング2000は、環状溝410における低圧側(L)の側壁面に密着した状態となる。なお、外周リング2000は、ハウジング500における軸孔の内周面に対して接した(摺動した)状態を維持していることは言うまでもない。また、内周リング3000についても、環状溝410における低圧側(L)の側壁面に密着した状態となる。このとき、内周リング3000は貫通孔2500を塞がない位置まで移動するように構成されている。これにより、貫通孔2500を介して、外周リング2000の内周面側からシール対象流体が凹部2200内に導かれる。
 <本参考例に係る密封装置の優れた点>
 本参考例に係る密封装置1000によれば、外周リング2000は内周リング3000によって外周面側に向かって押圧される。そのため、流体圧力が作用してない(差圧が生じていない)、または流体圧力が殆ど作用していない(差圧が殆ど生じていない)状態においても、外周リング2000はハウジング500の軸孔の内周面に接した状態となり、封止機能が発揮される。従って、シール対象領域の流体圧力が高まりだした直後から流体圧力を保持させることができる。つまり、アイドリングストップ機能を有するエンジンにおいては、エンジン停止状態から、ブレーキペダルが解除されたり、アクセルが踏み込まれたりすることでエンジンが始動することによって、シール対象領域側の油圧が高まりだした直後から油圧を保持させることができる。ここで、一般的には、樹脂製のシールリングの場合、流体の漏れを抑制する機能はあまり発揮されない。しかしながら、本参考例においては、外周リング2000が内周リング3000により外周面側に向かって押圧されることによって、ある程度流体の漏れを抑制する機能が発揮される。そのため、エンジンが停止することでポンプなどによる作用が停止した後も、しばらくの間差圧が生じた状態を維持させることが可能となる。従って、アイドリングストップ機能を有するエンジンにおいて、エンジンの停止状態がそれほど長くない場合には、差圧が生じた状態を維持できる。従って、エンジンを再始動させた際に、その直後から好適に流体圧力を保持させることができる。
 また、貫通孔2500を介して、凹部2200内には高圧側(H)から流体が導入される(図12参照)。そのため、流体圧力が高まっても、凹部2200が設けられた領域においては流体圧力が内周面側に向かって作用する。また、本参考例においては、凹部2200の底面は、外周リング2000の内周面と同心的な面で構成されているので、凹部2200が設けられている領域においては、内周面側から流体圧力が作用する向きと、外周面側から流体圧力が作用する向きは真逆となる。更に、内周面側と外周面側の双方から圧力を受けている領域において、内径よりも外径の方が、径が大きなことは言うまでもなく、流体圧力が作用する面積も外周面側の方が広くなる。なお、図12及び図13における矢印は、流体圧力が外周リング2000に対して作用する様子を示している。以上のことから、本参考例に係る密封装置1000においては、流体圧力の増加に伴う、外周リング2000による外周面側への圧力の増加を抑制でき、摺動トルクを低く抑えることができる。
 また、本参考例においては、内周リング3000は外周リング2000の内周面と環状溝410の溝底面に密着しており、これらの密着部位にて封止機能を発揮している。従って、図12及び図13に示すように、内周リング3000よりも低圧側(L)の領域においては、外周リング2000の内周面に対して流体圧力の作用を抑制できる。これにより、外周リング2000に対して、流体圧力が作用する領域について、内周面側よりも外周面側の方をより広くすることができる。従って、高圧側(H)の流体圧力が増加しても、外周リング2000による外周面側への圧力の増加を効果的に抑制できる。
 更に、本参考例においては、凹部2200は、合口部2100付近を除く全周に亘って形成されている。このように、本参考例においては、外周リング2000の外周面の広範囲に亘って凹部2200を設けたことにより、外周リング2000とハウジング500の軸孔の内周面との摺動面積を可及的に狭くすることができ、摺動トルクを極めて軽減することができる。なお、外周リング2000とハウジング500の軸孔の内周面との摺動面積は、外周リング2000と環状溝410の低圧側(L)の側壁面との密着面積よりも十分狭くなっている。これに伴い、外周リング2000が環状溝410における低圧側(L)の側壁面に対して摺動してしまうことを抑制できる。従って、本参考例に係る外周リング2000は外周面側が摺動するため、環状溝の側壁面との間で摺動するシールリングの場合に比べて、密封対象流体による潤滑膜(ここでは油膜)が形成され易くなり、より一層、摺動トルクを低減させることができる。
 このように、摺動トルクの低減を実現できることにより、摺動による発熱を抑制することができ、高速高圧の環境条件下でも本参考例に係る密封装置1000を好適に用いることが可能となる。
 また、本参考例に係る外周リング2000においては、凹部2200の両側に設けられた一対の凸部2300,2400が、軸孔の内周面に対して摺動するため、外周リング2000の姿勢を安定させることができる。
 更に、本参考例に係る外周リング2000は、軸方向の中心面に対して対称的な形状をなしている。従って、環状溝410内に外周リング2000を取り付ける際に、取付方向を気にする必要がなく、装着性に優れている。また、高圧側と低圧側が入れ替わるような環境下でも用いることができる。
 (参考例2)
 図14及び図15には、本発明の参考例2が示されている。上記参考例1においては、外周リングの内周面が円柱面で構成される場合を示したが、本参考例においては、外周リングの内周面に一対の傾斜面が設けられる場合の構成を示す。その他の構成および作用については参考例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 図14は本発明の参考例2に係る密封装置における無負荷状態を示す模式的断面図である。図15は本発明の参考例2に係る密封装置における高圧状態を示す模式的断面図である。
 本参考例においては、上記参考例1に係る密封装置の構成に対して、外周リング2000の内周面の形状についてのみ異なっており、その他の構成については同一である。本参考例に係る外周リング2000の場合には、その内周面側に、高圧側(H)において高圧側(H)に向かうにつれて拡径する傾斜面2600と、低圧側(L)において低圧側(L)に向かうにつれて拡径する傾斜面2700とが設けられている。そして、貫通孔2500における外周リング2000の内周面側の開口部は、これらの傾斜面2600,2700の間の位置に設けられている。
 以上のように構成された密封装置1000においても、上記参考例1に係る密封装置1000の場合と同様の効果を得ることができる。また、上記参考例1に係る密封装置1000の場合には、外周リング2000の内周面が円柱面で構成されていることから、内周リング3000は軸方向に移動し易い。これに対して、本参考例に係る密封装置1000の場合には、外周リング2000の内周面に一対の傾斜面2600,2700を設けたことにより、内周リング3000の軸方向への移動を規制することができる。より具体的には、内周リング3000は、外周リング2000における低圧側(L)の傾斜面2700と環状溝410の溝底面との間の位置に安定的に保持される。従って、内周リング3000が貫通孔2500を塞いでしまうことをより確実に抑制できる。なお、図示の例では、傾斜面2600,2700がテーパ面の場合を示しているが、断面で見た場合に湾曲した傾斜面を採用してもよい。
 (参考例3)
 図16及び図17には、本発明の参考例3が示されている。本参考例においては、上記参考例1及び2に示す構成において、合口部についての変形例を示す。その他の構成および作用については参考例1と同一なので、同一の構成部分については同一の符号を付して、その説明は省略する。
 本参考例に係る外周リング2000における合口部2800も、上記参考例1の場合と同様に、外周面側及び両側壁面側のいずれから見ても階段状に切断された、いわゆる特殊ステップカットを採用している。これにより、外周リング2000においては、切断部を介して一方の側の外周側には第1嵌合凸部2810a及び第1嵌合凹部2820aが設けられ、他方の側の外周側には第1嵌合凸部2810aが嵌る第2嵌合凹部2820bと第1嵌合凹部2820aに嵌る第2嵌合凸部2810bが設けられている。
 なお、図16においては、合口部2800において、切断部を介して一方の側の端部を斜視図にて示している。また、図17においては、合口部2800付近を側面から見た図を示している。
 一般的に、特殊ステップカットの場合、切断部における内周側の端面(一方の端部の端面)から第1嵌合凸部の先端までの長さ(図中L1に相当)と、当該端面から第1嵌合凹部の後端までの長さ(図中L2に相当)と、切断部における内周側の端面(他方の端部の端面)から第2嵌合凸部の先端までの長さ(図中L1に相当)と、当該端面から第2嵌合凹部の後端までの長さ(図中L2に相当)はいずれも等しくなるように設定されている。従って、熱膨張により外周リングの周長が長くなっていくと、ある時点で、第1嵌合凸部の先端と第2嵌合凹部の後端、第2嵌合凸部の先端と第1嵌合凹部の後端、及び内周側の端面同士は同時に突き当たる。つまり、切断部を介して両側の端面同士の間には隙間がなくなった状態となる。
 従って、外周リングの熱膨張収縮に伴って、合口部においては、切断部を介して両側の端面同士の隙間が大きくなったり小さくなったりする。そのため、外周リングの内側にゴム状弾性体製の内周リングが備えられる構成においては、上記のような隙間に内周リングの外周側の一部が入り込んだ状態で、当該隙間が小さくなると、当該一部が挟み込まれて破損してしまう虞がある。
 そこで、本参考例に係る外周リング2000の合口部2800においては、切断部における内周側の端面(一方の端部の端面)から第1嵌合凸部2810aの先端までの長さL1は、切断部における内周側の端面(一方の端部の端面)から第1嵌合凹部2820aの後端までの長さL2よりも長く、切断部における内周側の端面(他方の端部の端面)から第2嵌合凸部2810bの先端までの長さL1は、切断部における内周側の端面(他方の端部の端面)から第2嵌合凹部2820bの後端までの長さL2よりも長くなるように設定している。なお、切断部における内周側の端面(一方の端部の端面)から第1嵌合凸部2810aの先端までの長さと、切断部における内周側の端面(他方の端部の端面)から第2嵌合凸部2810bの先端までの長さはいずれも同じL1である。また、切断部における内周側の端面(一方の端部の端面)から第1嵌合凹部2820aの後端までの長さと、切断部における内周側の端面(他方の端部の端面)から第2嵌合凹部2820bの後端までの長さはいずれも同じL2である。
 なお、内周リング3000や外周リング2000の外周面に設けられた凹部2200等については、上記参考例1で説明した通りであるので、その説明は省略する。
 以上のように、本参考例に係る密封装置においても、上記参考例1と同様の効果を得ることができる。また、本参考例に係る密封装置の場合には、熱膨張により外周リング2000の周長が長くなって、第1嵌合凸部2810aの先端が第2嵌合凹部2820bの後端に突き当たり、第2嵌合凸部2810bの先端が第1嵌合凹部2820aの後端に突き当たった状態となっても、切断部における内周側の端面同士の間には隙間Sが形成された状態が維持される(図17参照)。従って、切断部における内周側の端面同士の挟み込みによって、内周リング3000が破損してしまうことを抑制できる。なお、使用環境や内周リング3000の剛性等に応じて、内周リング3000に破損が生じないような隙間Sを設定し、当該隙間Sに応じて、L1とL2の差を設定すればよい。
 100 シールリング
 110 合口部
 120 凹部
 130 第1凸部
 140,140a 第2凸部
 400 軸
 410 環状溝
 500 ハウジング
 1000 密封装置
 2000 外周リング
 2100,2800 合口部
 2110a,2810a 第1嵌合凸部
 2110b,2810b 第2嵌合凸部
 2120a,2820a 第1嵌合凹部
 2120b,2820b 第2嵌合凹部
 2200 凹部
 2300,2400 凸部
 2500 貫通孔
 2600,2700 傾斜面
 3000 内周リング

Claims (1)

  1.  軸の外周に設けられた環状溝に装着され、相対的に回転する前記軸とハウジングとの間の環状隙間を封止して、流体圧力が変化するように構成されたシール対象領域の流体圧力を保持するシールリングであって、
     前記環状溝における低圧側の側壁面に密着し、かつ前記ハウジングにおける前記軸が挿通される軸孔の内周面に対して摺動するシールリングにおいて、
     外周面側には、
     幅方向の中央に設けられ、周方向に伸びる凹部と、
     該凹部を介して低圧側に設けられ、前記軸孔の内周面に対して摺動する第1凸部と、
     前記凹部を介して高圧側に設けられ、第1凸部よりも突出量の低い第2凸部と、
    を有することを特徴とするシールリング。
PCT/JP2013/070577 2012-08-21 2013-07-30 シールリング WO2014030506A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013554505A JP5545420B1 (ja) 2012-08-21 2013-07-30 シールリング

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012182650 2012-08-21
JP2012-182650 2012-08-21
JP2012239095 2012-10-30
JP2012-239095 2012-10-30

Publications (1)

Publication Number Publication Date
WO2014030506A1 true WO2014030506A1 (ja) 2014-02-27

Family

ID=50149816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070577 WO2014030506A1 (ja) 2012-08-21 2013-07-30 シールリング

Country Status (2)

Country Link
JP (1) JP5545420B1 (ja)
WO (1) WO2014030506A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196403A1 (ja) * 2013-06-03 2014-12-11 Nok株式会社 シールリング
EP3121490A1 (en) * 2015-07-20 2017-01-25 Trelleborg Sealing Solutions Helsingør A/S Sealing arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6170271B2 (ja) * 2015-03-03 2017-07-26 Nok株式会社 シールリング

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203766A (ja) * 1987-12-23 1989-08-16 Busak & Luyken Gmbh & Co シールリング構造物
JPH10196796A (ja) * 1997-01-14 1998-07-31 Smc Corp パッキン
JPH10318375A (ja) * 1997-05-15 1998-12-04 Ntn Corp 回転体用シールリング
JPH11336900A (ja) * 1998-05-27 1999-12-07 Toyota Motor Corp ピストンリング

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295689A (ja) * 2001-03-28 2002-10-09 Nok Corp 密封装置
JP5616981B2 (ja) * 2011-01-14 2014-10-29 株式会社リケン 無段変速機用シールリング

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203766A (ja) * 1987-12-23 1989-08-16 Busak & Luyken Gmbh & Co シールリング構造物
JPH10196796A (ja) * 1997-01-14 1998-07-31 Smc Corp パッキン
JPH10318375A (ja) * 1997-05-15 1998-12-04 Ntn Corp 回転体用シールリング
JPH11336900A (ja) * 1998-05-27 1999-12-07 Toyota Motor Corp ピストンリング

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196403A1 (ja) * 2013-06-03 2014-12-11 Nok株式会社 シールリング
US10634254B2 (en) 2013-06-03 2020-04-28 Nok Corporation Seal ring
EP3121490A1 (en) * 2015-07-20 2017-01-25 Trelleborg Sealing Solutions Helsingør A/S Sealing arrangement
WO2017012726A1 (en) * 2015-07-20 2017-01-26 Trelleborg Sealing Solutions Helsingor A/S Sealing arrangement

Also Published As

Publication number Publication date
JPWO2014030506A1 (ja) 2016-07-28
JP5545420B1 (ja) 2014-07-09

Similar Documents

Publication Publication Date Title
US10359114B2 (en) Sealing device
US9309973B2 (en) Sealing device and sealing structure
JP6615833B2 (ja) シールリング
US20100295253A1 (en) Packing and sealing system
KR102362482B1 (ko) 실 링
JP5545420B1 (ja) シールリング
WO2014045838A1 (ja) 密封装置
JP6432670B2 (ja) 密封装置及び密封構造
WO2015020075A1 (ja) シールリング
JP6458905B2 (ja) シールリング
JP2017133571A (ja) 密封装置
KR20180050397A (ko) 실 링
JP2014109347A (ja) 密封構造
JP2017122474A (ja) 密封構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013554505

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830561

Country of ref document: EP

Kind code of ref document: A1