WO2014030472A1 - 電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム - Google Patents

電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム Download PDF

Info

Publication number
WO2014030472A1
WO2014030472A1 PCT/JP2013/069591 JP2013069591W WO2014030472A1 WO 2014030472 A1 WO2014030472 A1 WO 2014030472A1 JP 2013069591 W JP2013069591 W JP 2013069591W WO 2014030472 A1 WO2014030472 A1 WO 2014030472A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
battery cells
voltages
value
storage device
Prior art date
Application number
PCT/JP2013/069591
Other languages
English (en)
French (fr)
Inventor
高橋 真吾
高治 松永
吉田 信秀
宣幸 板橋
園 駱
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2014531550A priority Critical patent/JP6172148B2/ja
Priority to US14/422,269 priority patent/US20150229142A1/en
Publication of WO2014030472A1 publication Critical patent/WO2014030472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery control device, a power storage device, an operation method of the power storage device, and a program for controlling charging of a battery in which a plurality of secondary battery cells are connected in series.
  • Secondary batteries such as lithium ion batteries have been used in various places to reduce the burden on the environment.
  • Secondary batteries are often used in a state where a plurality of secondary batteries are connected in series in order to obtain a target voltage (for example, a commercial voltage).
  • a target voltage for example, a commercial voltage
  • the degree of deterioration of the secondary battery differs due to individual differences of the secondary batteries.
  • processing for aligning the charge amounts of the plurality of secondary batteries is performed.
  • the balance control is generally performed when fully charged.
  • Patent Document 1 describes that balance control is performed immediately before the start of charging.
  • secondary batteries are often used in a state where a plurality of secondary batteries are connected in series.
  • secondary batteries used in such a state are controlled so that the degree of deterioration is aligned with each other.
  • the present inventor has considered that it is advantageous in terms of cost to intentionally change the degree of deterioration among a plurality of secondary batteries and to replace the deteriorated secondary batteries in order.
  • the present inventor has considered that the degree of deterioration can be made different among the plurality of secondary batteries if the voltages are arranged among the plurality of secondary batteries at the start of charging.
  • balance control is performed immediately before the start of charging as in Patent Document 1, it is considered that it takes time to start charging.
  • An object of the present invention is to provide a battery control device, a power storage device, an operation method of the power storage device, and a program capable of suppressing the deterioration of the secondary battery of the power storage device and shortening the time to start charging. is there.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells;
  • a power storage device comprising: The absolute value of the differential value of the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is not more than a first reference value and the charging rate is a variable.
  • a battery control device is provided that operates the balancing means when becomes less than or equal to a second reference value.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells;
  • a power storage device comprising: A battery control device that operates the balance means when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; Control means for controlling the balancing means; With The control means calculates the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is a first reference value or less and the charging rate is a variable.
  • a power storage device that operates the balancing means when the differential value of the graph shown is equal to or less than the second reference value.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; Control means for controlling the balancing means; With The control means includes the balancing means when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged. There is provided a power storage device that operates.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A power storage device having A differential value of a graph indicating the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is a first reference value or less and the charging rate is a variable An operation method of the power storage device is provided that operates the balancing means when becomes less than or equal to a second reference value.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A power storage device having A power storage device that operates the balancing means when a total value of the voltages of the plurality of secondary battery cells becomes equal to or less than a first reference value while at least the plurality of secondary battery cells are discharged or charged.
  • a method of operation is provided.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A program for controlling a power storage device having A graph showing a total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or a total value of the voltages is a first reference value or less and the charging rate is a variable.
  • a program is provided that has a function of operating the balancing means when the differential value of becomes less than or equal to a second reference value.
  • a plurality of secondary battery cells connected in series Measuring means for measuring a total value of voltages of a plurality of secondary battery cells connected in series; Balancing means for aligning voltages of the plurality of secondary battery cells;
  • a program for controlling a power storage device having The balance unit is operated when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged in the computer.
  • a program is provided which has a function to allow
  • the present invention it is possible to suppress the deterioration of the secondary battery of the power storage device and shorten the time until the start of charging.
  • FIG. 1 is a diagram illustrating a configuration of a power storage device 10 according to the first embodiment.
  • the power storage device 10 includes a control unit 160 (power storage control device).
  • the power storage device 10 includes a plurality of secondary battery cells 100, a measurement unit 120, and a balance circuit 140 (balance means). Secondary battery cells 100 are connected to each other in series.
  • the measuring unit 120 measures the total value of the voltages of the plurality of secondary battery cells 100.
  • the balance circuit 140 aligns the voltages of the plurality of secondary battery cells 100. Then, the control unit 160 controls the balance circuit 140.
  • control unit 160 sets the charging rate of the plurality of secondary battery cells 100 to 50% or less, or the total value of the voltages of the secondary battery cells 100 is the first reference value or less, and the charging rate is a variable.
  • the balance circuit 140 is operated when the absolute value of the differential value of the graph indicating the total value of the voltages becomes equal to or greater than the second reference value.
  • the balance circuit 140 since the balance circuit 140 is operated under the above-described conditions, the voltages of the plurality of secondary battery cells 100 can be made uniform before the start of charging. Then, after the charging is completed, the balance circuit 140 is not operated. In this way, when the charging of the plurality of secondary battery cells 100 is completed, the charge rate (charge amount / full charge capacity) of the secondary battery cell 100 that has not progressed deterioration is deteriorated. It becomes lower than the charging rate of the cell 100. For this reason, the progress of the deterioration of the secondary battery cell 100 that has not deteriorated is further delayed. As a result, deterioration of the secondary battery cell 100 can be suppressed.
  • the degree of deterioration can be intentionally varied among the plurality of secondary battery cells 100.
  • balance control is performed also during discharge, it is possible to suppress an increase in the time from when the charging start voltage is reached to when charging is started due to balance control. Therefore, the time until the start of charging can be shortened. Details will be described below.
  • the secondary battery cell 100 is obtained by connecting a plurality of secondary batteries 101 in parallel.
  • the secondary battery 101 is, for example, a lithium ion battery.
  • the measuring unit 120 measures a voltage between the positive electrode terminal of the secondary battery cell 100 positioned closest to the positive electrode side and the negative electrode terminal of the secondary battery cell 100 positioned closest to the negative electrode side, thereby a plurality of secondary batteries.
  • the total voltage of the cell 100 is measured.
  • the measurement unit 120 may calculate the sum of the voltages of the plurality of secondary battery cells 100 by individually measuring the voltages of the plurality of secondary battery cells 100 and adding these measurement results. good.
  • the measurement unit 120 may measure the current flowing through the secondary battery cell 100.
  • the measurement unit 120 outputs the measurement result to the control unit 160.
  • the balance circuit 140 is a passive method such as a resistance method, and aligns the voltages of the plurality of secondary battery cells 100 to the same value.
  • the passive method the voltages of the plurality of secondary battery cells 100 are set to the same value by discharging power from the secondary battery cells 100 having a relatively high voltage.
  • the balance circuit 140 may align the voltages of the plurality of secondary battery cells 100 to the same value by an active method such as a transformer method or a capacitor method. In the active method, the power of the secondary battery cell 100 having a relatively high voltage is moved to the secondary battery cell 100 having a relatively low voltage, so that the voltages of the plurality of secondary battery cells 100 are set to the same value. .
  • the positive electrode terminal of the power storage device 10 (that is, the positive electrode terminal of the secondary battery cell 100 located closest to the positive electrode side) is connected to the positive electrode terminal of the charge control device 40.
  • the negative electrode terminal of the power storage device 10 (the negative electrode terminal of the secondary battery cell 100 located closest to the negative electrode side) is connected to the negative electrode terminal of the charge control device 40.
  • the charging control device 40 connects the system power supply 20 and the plurality of loads 30 to the power storage device 10. That is, the charge control device 40 supplies the power supplied from the system power supply 20 to the power storage device 10 as necessary, and charges the plurality of secondary battery cells 100. Moreover, the charge control apparatus 40 supplies the electric power of the some secondary battery cell 100 to the load 30 as needed. Note that the charging control device 40 receives the measurement result of the measurement unit 120 from the control unit 160.
  • FIG. 2 is a flowchart for explaining a first example of control performed by the control unit 160.
  • the measurement unit 120 measures (or calculates) the total voltage of the plurality of secondary battery cells 100 and outputs the measurement result to the control unit 160.
  • the control unit 160 determines whether or not the charging rate of the plurality of secondary battery cells 100 is 50% or less (step S10).
  • the charging rate of the plurality of secondary battery cells 100 is calculated based on, for example, the sum of the voltages of the plurality of secondary battery cells 100.
  • the control unit 160 stores data indicating the relationship between the charging rate and the voltage, and calculates the charging rate based on this data.
  • step S10 When the charging rates of the plurality of secondary battery cells 100 are equal to or lower than the first reference value (step S10: Yes), the control unit 160 is the total value of the voltages of the plurality of secondary battery cells 100 when the charging rate is a variable. Is calculated, and it is determined whether or not the absolute value of the calculated value is greater than or equal to the second reference value (step S20). This process is performed using the data being actually measured. If the calculated absolute value is equal to or greater than the second reference value (step S20: Yes), the control unit 160 operates the balance circuit 140 (step S30).
  • FIG. 3 is a graph of the total voltage value of the secondary battery cell 100 when the charging rate is a variable.
  • the balance circuit 140 is operated when the charging rate is 50% or less and the absolute value of the differential value of the charging rate in the graph shown in FIG.
  • the operation of the balance circuit 140 can be easily converged by setting the second reference value to a value in an appropriate range.
  • the second reference value is, for example, not less than 0.015 and not more than 0.019.
  • FIG. 4 is a flowchart for explaining a second example of control performed by the control unit 160. Also during the following flow, the measurement unit 120 measures the sum of the voltages of the plurality of secondary battery cells 100 and outputs the measurement result to the control unit 160.
  • the control unit 160 determines whether or not the total value of the voltages of the plurality of secondary battery cells 100 is equal to or less than the first reference value (step S12).
  • the charging rate of the plurality of secondary battery cells 100 is equal to or less than a reference value (for example, 50%).
  • a reference value for example, 50%
  • the first reference value is, for example, not less than 3.4V and not more than 3.6V.
  • step S12 When the voltages of the plurality of secondary battery cells 100 are equal to or lower than the first reference value (step S12: Yes), the control unit 160 determines the total value of the voltages of the plurality of secondary battery cells 100 when the charging rate is a variable. A differential value is calculated, and it is determined whether or not the absolute value of the calculated value is greater than or equal to the second reference value (step S20). If the calculated absolute value is equal to or greater than the second reference value (step S20: Yes), the control unit 160 operates the balance circuit 140 (step S30). Steps S20 and S30 are the same as in the first example shown in FIG.
  • balance circuit 140 operates at least while the power storage device 10 is discharged or charged.
  • FIG. 5 is a flowchart showing operations of the power storage device 10 and the charge control device 40.
  • the charging control device 40 supplies power from the power storage device 10 to the load 30 as necessary.
  • the control unit 160 of the power storage device 10 operates the balance circuit 140 as necessary (step S110). Details of this processing are as described with reference to FIGS.
  • step S120 Yes
  • the charging control device 40 charges the plurality of secondary battery cells 100 using the constant current method. Start (step S130).
  • step S140 the control unit 160 of the power storage device 10 operates the balance circuit 140 according to the process shown in FIG. 2 or FIG. 4 (step S140).
  • step S150: Yes the charging control device 40 changes the charging method for the secondary battery cell 100 from the constant current method to the constant voltage. Switching to the method (step S160). Then, for example, after the reference time has elapsed or when the current flowing through the secondary battery cell 100 becomes equal to or less than the reference value, the charge control device 40 ends the charging of the plurality of secondary battery cells 100.
  • the voltage difference of the cell 100 is 0.1 V to 0.5 V, for example, 0.3 V to 0.5 V.
  • FIG. 6 is a diagram for explaining the relationship between the voltage of the secondary battery cell 100 and the timing at which the balance process is performed.
  • the control unit 160 is configured such that the charging rate of the plurality of secondary battery cells 100 is 50% or less, or the total value of the voltages is the first reference value or less, and the charging rate is a variable.
  • the balance circuit 140 is operated.
  • FIG. 6 when the voltage of the secondary battery cell 100 is equal to or lower than the reference value, the balance circuit 140 is in any timing regardless of whether it is being charged or discharged. Operate.
  • FIG. 7 is a diagram for schematically explaining how the secondary battery cell 100 is charged.
  • the secondary battery cell 100 has a difference in the progress of deterioration due to individual differences. For this reason, as shown in FIG. 7A, when charging is performed by a constant current method, the secondary battery cell 100 (unit A) that is relatively deteriorated is a secondary battery that is not relatively deteriorated. Compared with the battery cell 100 (unit B), the voltage rises faster. Then, when the total value of the voltages reaches the fourth reference voltage, the charging method is switched to the constant voltage method.
  • the charging rate of the relatively degraded secondary battery cell 100 (unit A) is not relatively degraded. It becomes high compared with the charging rate.
  • the secondary battery 101 constituting the secondary battery cell 100 is deteriorated faster as the charging rate is higher. For this reason, the progress of the deterioration of the secondary battery cell 100 (unit B) that has not deteriorated is further delayed. Therefore, the degree of deterioration can be intentionally varied among the plurality of secondary battery cells 100. As a result, it is possible to replace the deteriorated secondary battery cell 100 in order. Thereby, the maintenance cost of the electrical storage apparatus 10 can be lowered.
  • FIG. 8 is a diagram for explaining a method of charging a plurality of secondary battery cells 100 by a method according to a comparative example.
  • the charging control device 40 performs charging by the constant current method until each of the plurality of secondary battery cells 100 reaches the full charge voltage, and thereafter performs charging by the constant voltage method.
  • the balance circuit 140 aligns the voltages of the plurality of secondary battery cells 100 to the same value after the plurality of secondary battery cells 100 are charged.
  • the charging rates of both the secondary battery cell 100 (unit A) that is relatively deteriorated and the secondary battery cell 100 (unit B) that is not relatively deteriorated are 100%.
  • the secondary battery cell 100 (unit B) that has not deteriorated is also deteriorated.
  • the control unit 160 has the charging rate of the plurality of secondary battery cells 100 of 50% or less, or the total value of the voltages of the secondary battery cells 100 is not more than the first reference value, and
  • the balance circuit 140 is operated when the absolute value of the differential value of the graph indicating the total value of the voltages when the charging rate is a variable becomes equal to or greater than the second reference value. For this reason, the voltage of the some secondary battery cell 100 can be arrange
  • balance control is performed also during discharge, it is possible to suppress an increase in the time from when the charging start voltage is reached to when charging is started due to balance control. Therefore, the time until the start of charging can be shortened.
  • FIG. 9 is a flowchart showing the operation of the control unit 160 according to the second embodiment.
  • the power storage device 10 according to the present embodiment has the same configuration as that of the power storage device 10 according to the first embodiment except for the operation of the control unit 160.
  • control part 160 operates the balance circuit 140, when the total value of the voltage of the some secondary battery cell 100 is below a 1st reference value (step S12: Yes) (step S30).
  • the determination shown in FIG. 9 is performed both during discharging and during charging as shown in FIG. 5 in the first embodiment.
  • the first reference value is 3.4 V or more and 3.6 V or less.
  • a power storage device comprising: The absolute value of the differential value of the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is not more than a first reference value and the charging rate is a variable.
  • (Appendix 2) In the battery control device according to attachment 1, A battery control device that operates the balancing means while at least the plurality of secondary battery cells are discharged or charged.
  • (Appendix 3) In the battery control device according to appendix 1 or 2, The plurality of secondary battery cells are lithium ion batteries, The battery control apparatus, wherein the second reference value is 0.015 or more and 0.019 or less.
  • (Appendix 4) In the battery control device according to appendix 1 or 2, The plurality of secondary battery cells are lithium ion batteries, Operating the balancing means when the total value of the voltages is less than or equal to the first reference value; The battery control apparatus wherein the first reference value is 3.4V or more and 3.6V or less.
  • a plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells;
  • a power storage device comprising: A battery control device that operates the balance means when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged. .
  • the plurality of secondary battery cells are lithium ion batteries, The battery control apparatus wherein the first reference value is 3.4V or more and 3.6V or less.
  • (Appendix 7) A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; Control means for controlling the balancing means; With The control means calculates the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is a first reference value or less and the charging rate is a variable.
  • the electrical storage apparatus which operates the said balance means, when the differential value of the graph shown becomes below a 2nd reference value.
  • the control unit is a power storage device that operates the balance unit while at least the plurality of secondary battery cells are discharged or charged.
  • the plurality of secondary battery cells are lithium ion batteries, The power storage device in which the second reference value is 0.015 or more and 0.019 or less.
  • the plurality of secondary battery cells are lithium ion batteries,
  • the control means operates the balance means when the total value of the voltages is less than or equal to the first reference value, The power storage device in which the first reference value is 3.4 V or more and 3.6 V or less.
  • (Appendix 11) A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; Control means for controlling the balancing means; With The control means includes the balancing means when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged.
  • (Appendix 14) A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A power storage device having A differential value of a graph indicating the total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or the total value of the voltages is a first reference value or less and the charging rate is a variable An operation method of the power storage device that operates the balancing means when becomes less than or equal to a second reference value.
  • the plurality of secondary battery cells are lithium ion batteries, Operating the balancing means when the total value of the voltages is less than or equal to the first reference value; The operation method of the power storage device, wherein the first reference value is 3.4 V or more and 3.6 V or less.
  • (Appendix 18) A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A power storage device having A power storage device that operates the balancing means when a total value of the voltages of the plurality of secondary battery cells becomes equal to or less than a first reference value while at least the plurality of secondary battery cells are discharged or charged. How it works. (Appendix 19) In the operation method of the power storage device according to attachment 18, The plurality of secondary battery cells are lithium ion batteries, The operation method of the power storage device, wherein the first reference value is 3.4 V or more and 3.6 V or less.
  • Appendix 20 In any one of appendixes 14 to 19, in the operation method of the power storage device, The difference between the voltage of the secondary battery cell having the highest voltage and the voltage of the secondary battery cell having the lowest voltage in the plurality of secondary battery cells when charging is completed is 0.1V or more and 0.5V.
  • the operation method of the power storage device as follows.
  • (Appendix 21) A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of the plurality of secondary battery cells; Balancing means for aligning voltages of the plurality of secondary battery cells; A program for controlling a power storage device having A graph showing a total value of the voltages when the charging rate of the plurality of secondary battery cells is 50% or less or a total value of the voltages is a first reference value or less and the charging rate is a variable. A program that has a function of operating the balancing means when the differential value of the value becomes equal to or less than a second reference value.
  • Appendix 22 In the program described in Appendix 21, A program for operating the balancing means while at least the plurality of secondary battery cells are discharged or charged.
  • Appendix 23 In the program described in Appendix 21 or 22, The plurality of secondary battery cells are lithium ion batteries,
  • the second reference value is a program that is not less than 0.015 and not more than 0.019.
  • Appendix 24 In the program described in Appendix 21 or 22, The plurality of secondary battery cells are lithium ion batteries, Operating the balancing means when the total value of the voltages is less than or equal to the first reference value;
  • the first reference value is a program that is 3.4V to 3.6V.
  • Appendix 25 A plurality of secondary battery cells connected in series; Measuring means for measuring a total value of voltages of a plurality of secondary battery cells connected in series; Balancing means for aligning voltages of the plurality of secondary battery cells; A program for controlling a power storage device having The balance unit is operated when a total value of the voltages of the plurality of secondary battery cells is equal to or lower than a first reference value while at least the plurality of secondary battery cells are discharged or charged in the computer.
  • a program that has a function to make (Appendix 26) In the program described in Appendix 25, The plurality of secondary battery cells are lithium ion batteries,
  • the first reference value is a program that is 3.4V to 3.6V.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 2次電池セル(100)は、互いに直列に接続されている。測定部(120)は、複数の2次電池セル(100)の電圧の合計値を測定する。バランス回路(140)は、複数の2次電池セル(100)の電圧を揃える。そして制御部(160)は、バランス回路(140)を制御する。具体的には、制御部(160)は、複数の2次電池セル(100)の充電率が50%以下、又は2次電池セル(100)の電圧の合計値が第1基準値以下であり、かつ充電率を変数としたときの電圧の合計値を示すグラフの微分値の絶対値が第2基準値以上になったときに、バランス回路(140)を動作させる。

Description

電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム
 本発明は、複数の2次電池セルを直列に接続した電池の充電を制御する電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラムに関する。
 近年は環境に対する負荷を小さくするため、様々なところでリチウムイオン電池などの2次電池が使用されている。2次電池は、目的とする電圧(例えば商用電圧)を得るために、複数直列に接続された状態で使用されることが多い。一方、直列に接続された複数の2次電池を使用していくと、2次電池の個体差に起因して、2次電池の劣化度合いが異なってくる。2次電池の劣化度合いが異なると、各2次電池の満充電量が異なってくる。そこで、これら複数の2次電池の充電量を揃える処理(バランス制御)が行われる。バランス制御は、一般的には満充電時に行われる。
 一方、特許文献1には、充電開始直前にバランス制御を行うことが記載されている。
特開2010-57249号公報
 上記したように、2次電池は複数直列に接続された状態で使用されることが多い。このような状態で使用される2次電池は、劣化度合いが互いに揃うように制御される場合が多い。しかし本発明者は、複数の2次電池の相互間で劣化度合いを意図的に異ならせ、劣化した2次電池から順に交換していくことがコスト的に有利である、と考えた。
 本発明者は、充電開始時に複数の2次電池の間で電圧をそろえておくと、複数の2次電池の相互間で劣化度合いを異ならせることができる、と考えた。しかし、特許文献1のように充電開始直前にバランス制御を行うと、充電開始までに時間を要してしまう、と考えた。
 本発明の目的は、蓄電装置の2次電池の劣化を抑制し、かつ充電開始までの時間を短くすることができる電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラムを提供することにある。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を備える蓄電装置を制御し、
 前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値の微分値の絶対値が第2基準値以下になったときに、前記バランス手段を動作させる電池制御装置が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を備える蓄電装置を制御し、
 少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに前記バランス手段を動作させる電池制御装置が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
 前記バランス手段を制御する制御手段と、
を備え、
 前記制御手段は、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
 前記バランス手段を制御する制御手段と、
を備え、
 前記制御手段は、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を準備し、
 前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を準備し、
 少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法が提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を制御するためのプログラムであって、
 コンピュータに、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラムが提供される。
 本発明によれば、直列に接続された複数の2次電池セルと、
 直列に接続された複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を制御するためのプログラムであって、
 コンピュータに、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラムが提供される。
 本発明によれば、蓄電装置の2次電池の劣化を抑制し、かつ充電開始までの時間を短くすることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
第1の実施形態に係る蓄電装置の構成を示す図である。 制御部が行う制御の第1例を説明するためのフローチャートである。 充電率を変数としたときの2次電池セルの電圧の合計値のグラフである。 制御部が行う制御の第2例を説明するためのフローチャートである。 蓄電装置及び充電制御装置の動作を示すフローチャートである。 2次電池セルの電圧と、バランス処理が行われるタイミングの関係を説明するための図である。 2次電池セルがどのように充電されるかを模式的に説明するための図である。 比較例に係る方法で複数の2次電池セルを充電する方法を説明するための図である。 第2の実施形態に係る制御部の動作を示すフローチャートである。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る蓄電装置10の構成を示す図である。蓄電装置10は、制御部160(蓄電制御装置)を有している。蓄電装置10は、制御部160のほかに、複数の2次電池セル100、測定部120、及びバランス回路140(バランス手段)を有している。2次電池セル100は、互いに直列に接続されている。測定部120は、複数の2次電池セル100の電圧の合計値を測定する。バランス回路140は、複数の2次電池セル100の電圧を揃える。そして制御部160は、バランス回路140を制御する。具体的には、制御部160は、複数の2次電池セル100の充電率が50%以下、又は2次電池セル100の電圧の合計値が第1基準値以下であり、かつ充電率を変数としたときの電圧の合計値を示すグラフの微分値の絶対値が第2基準値以上になったときに、バランス回路140を動作させる。
 本実施形態では、上記した条件でバランス回路140を動作させるため、充電開始前に複数の2次電池セル100の電圧を揃えることができる。そして、充電が完了した後は、バランス回路140を動作させない。このようにすると、複数の2次電池セル100の充電が完了したとき、劣化が進んでいない2次電池セル100の充電率(充電量/満充電容量)は、劣化が進んでいる2次電池セル100の充電率よりも低くなる。このため、劣化が進んでいない2次電池セル100の劣化の進み方はさらに遅くなる。その結果、2次電池セル100の劣化を抑制できる。そして、複数の2次電池セル100の相互間で劣化度合いを意図的に異ならせることができる。また、放電中にもバランス制御が行われるため、バランス制御に起因して充電開始電圧に達してから充電を開始するまでの時間が長くなることを抑制できる。従って、充電開始までの時間を短くすることができる。以下、詳細に説明する。
 本実施形態において、2次電池セル100は、複数の2次電池101を並列に接続したものである。2次電池101は、例えばリチウムイオン電池である。
 測定部120は、最も正極側に位置する2次電池セル100の正極端子と、最も負極側に位置する2次電池セル100の負極端子の間の電圧を測定することにより、複数の2次電池セル100の電圧の総和を測定する。ただし、測定部120は、複数の2次電池セル100の電圧を個別に測定した上で、これらの測定結果を加算することにより、複数の2次電池セル100の電圧の総和を算出しても良い。なお測定部120は、2次電池セル100を流れる電流を測定しても良い。測定部120は、測定した結果を制御部160に出力する。
 バランス回路140は、例えば抵抗方式などのパッシブ方式で、複数の2次電池セル100の電圧を同じ値に揃える。パッシブ方式では、相対的に電圧が高い2次電池セル100から電力を放出することにより、複数の2次電池セル100の電圧を同じ値に揃える。ただしバランス回路140は、トランス方式やキャパシタ方式などのアクティブ方式により、複数の2次電池セル100の電圧を同じ値に揃えてもよい。アクティブ方式では、相対的に電圧が高い2次電池セル100の電力を、相対的に電圧が低い2次電池セル100に移動させることにより、複数の2次電池セル100の電圧を同じ値に揃える。
 蓄電装置10の正極端子(すなわち最も正極側に位置する2次電池セル100の正極端子)は、充電制御装置40の正極端子に接続している。また蓄電装置10の負極端子(最も負極側に位置する2次電池セル100の負極端子)は、充電制御装置40の負極端子に接続している。充電制御装置40は、系統電源20及び複数の負荷30を、蓄電装置10に接続している。すなわち充電制御装置40は、必要に応じて系統電源20から供給される電力を蓄電装置10に供給し、複数2次電池セル100を充電する。また充電制御装置40は、必要に応じて、複数の2次電池セル100の電力を負荷30に供給する。なお、充電制御装置40は、制御部160から測定部120の測定結果を受信する。
 図2は、制御部160が行う制御の第1例を説明するためのフローチャートである。下記フローの間、測定部120は、複数の2次電池セル100の電圧の総和を測定(又は算出)し、測定した結果を制御部160に出力している。
 まず制御部160は、複数の2次電池セル100の充電率が50%以下であるか否かを判断する(ステップS10)。なお、複数の2次電池セル100の充電率は、例えば複数の2次電池セル100の電圧の総和に基づいて算出される。例えば制御部160は、充電率と電圧の関係を示すデータを保持しておき、このデータに基づいて充電率を算出する。
 複数の2次電池セル100の充電率が第1基準値以下である場合(ステップS10:Yes)、制御部160は、充電率を変数としたときの複数の2次電池セル100電圧の合計値の微分値を算出し、算出した値の絶対値が第2基準値以上であるか否かを判断する(ステップS20)。この処理は、実測中のデータを用いて行われる。そして算出した値の絶対値が第2基準値以上である場合(ステップS20:Yes)、制御部160はバランス回路140を動作させる(ステップS30)。
 図3は、充電率を変数としたときの2次電池セル100の電圧の合計値のグラフである。本図に示すように、電圧は、充電率が100%の近傍では、充電率が下がるにつれて電圧が急激に変化する。その後は、充電率が50%未満になっても、電圧はそれほど大きくは変化しない。しかし、充電率が0%の近傍では、充電率が下がるにつれて電圧が急激に変化する。このため、充電率が0%に近い領域でバランス回路140を動作させても、バランス回路140の動作はなかなか収束しない。これに対して本実施形態では、充電率が50%以下であり、かつ図3に示すグラフにおける充電率の微分値の絶対値が第2基準値以下になったときに、バランス回路140を動作させる。このため、第2基準値を適切な範囲の値に設定することによって、バランス回路140の動作を収束させやすくできる。なお、2次電池セル100がリチウムイオン電池である場合、第2基準値は、例えば0.015以上0.019以下である。
 図4は、制御部160が行う制御の第2例を説明するためのフローチャートである。下記フローの間においても、測定部120は、複数の2次電池セル100の電圧の総和を測定し、測定した結果を制御部160に出力している。
 まず制御部160は、複数の2次電池セル100の電圧の合計値が第1基準値以下であるか否かを判断する(ステップS12)。複数の2次電池セル100の電圧の合計値が第1基準値以下である場合、複数の2次電池セル100の充電率は、基準値(例えば50%)以下であることになる。2次電池セル100がリチウムイオン電池である場合、第1基準値は、例えば3.4V以上3.6V以下である。
 複数の2次電池セル100の電圧が第1基準値以下である場合(ステップS12:Yes)、制御部160は、充電率を変数としたときの複数の2次電池セル100電圧の合計値の微分値を算出し、算出した値の絶対値が第2基準値以上であるか否かを判断する(ステップS20)。そして算出した値の絶対値が第2基準値以上である場合(ステップS20:Yes)、制御部160はバランス回路140を動作させる(ステップS30)。ステップS20及びステップS30は、図2に示した第1例と同様である。
 なお、上記したバランス回路140の動作は、少なくとも蓄電装置10が放電している間又は充電している間に動作する。
 図5は、蓄電装置10及び充電制御装置40の動作を示すフローチャートである。まず充電制御装置40は、必要に応じて、蓄電装置10から負荷30に電力を供給する。そして放電が進むと、蓄電装置10の制御部160は、必要に応じてバランス回路140を動作させる(ステップS110)。この処理の詳細は、図2~図4を用いて説明した通りである。
 そして充電制御装置40は、2次電池セル100の電圧が第3基準電圧(充電開始電圧)まで下がったとき(ステップS120:Yes)、定電流方式で複数の2次電池セル100への充電を開始する(ステップS130)。
 充電を行っている間も、蓄電装置10の制御部160は、図2又は図4に示した処理に従って、バランス回路140を動作させる(ステップS140)。そして充電制御装置40は、いずれかの2次電池セル100の電圧が第4基準値に達したとき(ステップS150:Yes)、2次電池セル100への充電方式を、定電流方式から定電圧方式に切り替える(ステップS160)。そして、充電制御装置40は、例えば基準時間が経過した後、又は2次電池セル100を流れる電流が基準値以下になったとき、複数の2次電池セル100への充電を終了する。
 なお、2次電池セル100がリチウムイオン電池である場合、充電が完了したときの複数の2次電池セル100において、最も電圧が高い2次電池セル100の電圧と、最も電圧が低い2次電池セル100の電圧の差は、0.1V以上0.5V以下、例えば0.3V以上0.5V以下である。
 図6は、2次電池セル100の電圧と、バランス処理が行われるタイミングの関係を説明するための図である。制御部160は、上記したように、複数の2次電池セル100の充電率が50%以下又は電圧の合計値が第1基準値以下であり、かつ充電率を変数としたときの電圧の合計値の微分値の絶対値が第2基準値以下になったときに、バランス回路140を動作させる。これを模式的に示すと、図6に示すように、2次電池セル100の電圧が基準値以下の場合には、充電中及び放電中を問わず、どのようなタイミングにおいてもバランス回路140は動作する。
 図7は、2次電池セル100がどのように充電されるかを模式的に説明するための図である。2次電池セル100は、個体差に起因して劣化の進行に差が生じている。このため、図7(a)に示すように、定電流方式で充電を行った場合、相対的に劣化している2次電池セル100(ユニットA)は、相対的に劣化していない2次電池セル100(ユニットB)と比較して、電圧が速く上昇する。そして、電圧の合計値が第4基準電圧に達したとき、充電方式は定電圧方式に切り替わる。
 その結果、図7(b)に示すように、相対的に劣化している2次電池セル100(ユニットA)の充電率は、相対的に劣化していない2次電池セル100(ユニットB)の充電率と比較して高くなる。2次電池セル100を構成する2次電池101は、充電率が高いほど劣化が早くなる。このため、劣化が進んでいない2次電池セル100(ユニットB)の劣化の進み方はさらに遅くなる。従って、複数の2次電池セル100の相互間で劣化度合いを意図的に異ならせることができる。その結果、劣化した2次電池セル100から順に交換していくことができる。これにより、蓄電装置10の維持コストを低くすることができる。
 図8は、比較例に係る方法で複数の2次電池セル100を充電する方法を説明するための図である。比較例では、充電制御装置40は、複数の2次電池セル100のそれぞれが満充電電圧に達するまで定電流方式で充電を行い、その後、定電圧方式で充電を行うものである。この方法では、バランス回路140は、複数の2次電池セル100に対して充電が行われた後、複数の2次電池セル100の電圧を同じ値に揃える。
 この方法では、相対的に劣化している2次電池セル100(ユニットA)と、相対的に劣化していない2次電池セル100(ユニットB)の双方の充電率が100%になる。この場合、劣化が進んでいない2次電池セル100(ユニットB)も劣化が進む。
 以上、本実施形態によれば、制御部160は、複数の2次電池セル100の充電率が50%以下、又は2次電池セル100の電圧の合計値が第1基準値以下であり、かつ充電率を変数としたときの電圧の合計値を示すグラフの微分値の絶対値が第2基準値以上になったときに、バランス回路140を動作させる。このため、充電開始前に、複数の2次電池セル100の電圧を揃えることができる。その結果、複数の2次電池セル100の相互間で劣化度合いを意図的に異ならせることができる。また、放電中にもバランス制御が行われるため、バランス制御に起因して充電開始電圧に達してから充電を開始するまでの時間が長くなることを抑制できる。従って、充電開始までの時間を短くすることができる。
(第2の実施形態)
 図9は、第2の実施形態に係る制御部160の動作を示すフローチャートである。本実施形態に係る蓄電装置10は、制御部160の動作を除いて、第1の実施形態に係る蓄電装置10と同様の構成である。
 本実施形態において、制御部160は、複数の2次電池セル100の電圧の合計値が、第1基準値以下である場合(ステップS12:Yes)、バランス回路140を動作させる(ステップS30)。そして図9に示した判断は、第1の実施形態において図5に示したように、放電中及び充電中のいずれにおいても行われる。なお、2次電池セル100がリチウムイオン電池である場合、第1基準値は、3.4V以上3.6V以下である。
 本実施形態によっても、第1の実施形態と同様の効果を得ることができる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 なお、上記した実施形態によれば、以下の発明が開示されている。
(付記1)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を備える蓄電装置を制御し、
 前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値の微分値の絶対値が第2基準値以下になったときに、前記バランス手段を動作させる電池制御装置。
(付記2)
 付記1に記載の電池制御装置において、
 少なくとも前記複数の2次電池セルが放電又は充電している間に前記バランス手段を動作させる電池制御装置。
(付記3)
 付記1又は2に記載の電池制御装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第2基準値は、0.015以上0.019以下である電池制御装置。
(付記4)
 付記1又は2に記載の電池制御装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記電圧の合計値が前記第1基準値以下のときに前記バランス手段を動作させ、
 前記第1基準値は、3.4V以上3.6V以下である電池制御装置。
(付記5)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を備える蓄電装置を制御し、
 少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに前記バランス手段を動作させる電池制御装置。
(付記6)
 付記5に記載の電池制御装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第1基準値は、3.4V以上3.6V以下である電池制御装置。
(付記7)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
 前記バランス手段を制御する制御手段と、
を備え、
 前記制御手段は、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置。
(付記8)
 付記7に記載の蓄電装置において、
 前記制御手段は、少なくとも前記複数の2次電池セルが放電又は充電している間に前記バランス手段を動作させる蓄電装置。
(付記9)
 付記7又は8に記載の蓄電装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第2基準値は、0.015以上0.019以下である蓄電装置。
(付記10)
 付記7又は8に記載の蓄電装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記制御手段は前記電圧の合計値が前記第1基準値以下のときに前記バランス手段を動作させ、
 前記第1基準値は、3.4V以上3.6V以下である蓄電装置。
(付記11)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
 前記バランス手段を制御する制御手段と、
を備え、
 前記制御手段は、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置。
(付記12)
 付記11に記載の蓄電装置において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第1基準値は、3.4V以上3.6V以下である蓄電装置。
(付記13)
 付記7~12のいずれか一つに記載の蓄電装置において、
 充電が完了したときの前記複数の2次電池セルにおいて、最も電圧が高い前記2次電池セルの電圧と、最も電圧が低い前記2次電池セルの電圧の差は、0.1V以上0.5V以下である蓄電装置。
(付記14)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を準備し、
 前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法。
(付記15)
 付記14に記載の蓄電装置の動作方法において、
 少なくとも前記複数の2次電池セルが放電又は充電している間に前記バランス手段を動作させる蓄電装置の動作方法。
(付記16)
 付記14又は15に記載の蓄電装置の動作方法において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第2基準値は、0.015以上0.019以下である蓄電装置の動作方法。
(付記17)
 付記14又は15に記載の蓄電装置の動作方法において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記電圧の合計値が前記第1基準値以下のときに前記バランス手段を動作させ、
 前記第1基準値は、3.4V以上3.6V以下である蓄電装置の動作方法。
(付記18)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を準備し、
 少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法。
(付記19)
 付記18に記載の蓄電装置の動作方法において、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第1基準値は、3.4V以上3.6V以下である蓄電装置の動作方法。
(付記20)
 付記14~19のいずれか一つに蓄電装置の動作方法において、
 充電が完了したときの前記複数の2次電池セルにおいて、最も電圧が高い前記2次電池セルの電圧と、最も電圧が低い前記2次電池セルの電圧の差は、0.1V以上0.5V以下である蓄電装置の動作方法。
(付記21)
 直列に接続された複数の2次電池セルと、
 前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を制御するためのプログラムであって、
 コンピュータに、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラム。
(付記22)
 付記21に記載のプログラムにおいて、
 少なくとも前記複数の2次電池セルが放電又は充電している間に前記バランス手段を動作させるプログラム。
(付記23)
 付記21又は22に記載のプログラムにおいて、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第2基準値は、0.015以上0.019以下であるプログラム。
(付記24)
 付記21又は22に記載のプログラムにおいて、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記電圧の合計値が前記第1基準値以下のときに前記バランス手段を動作させ、
 前記第1基準値は、3.4V以上3.6V以下であるプログラム。
(付記25)
 直列に接続された複数の2次電池セルと、
 直列に接続された複数の2次電池セルの電圧の合計値を測定する測定手段と、
 前記複数の2次電池セルの電圧を揃えるバランス手段と、
を有する蓄電装置を制御するためのプログラムであって、
 コンピュータに、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラム。
(付記26)
 付記25に記載のプログラムにおいて、
 前記複数の2次電池セルはリチウムイオン電池であり、
 前記第1基準値は、3.4V以上3.6V以下であるプログラム。
 この出願は、2012年8月22日に出願された日本出願特願2012-182930を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (13)

  1.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を備える蓄電装置を制御し、
     前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値の微分値の絶対値が第2基準値以下になったときに、前記バランス手段を動作させる電池制御装置。
  2.  請求項1に記載の電池制御装置において、
     少なくとも前記複数の2次電池セルが放電又は充電している間に前記バランス手段を動作させる電池制御装置。
  3.  請求項1又は2に記載の電池制御装置において、
     前記複数の2次電池セルはリチウムイオン電池であり、
     前記第2基準値は、0.015以上0.019以下である電池制御装置。
  4.  請求項1又は2に記載の電池制御装置において、
     前記複数の2次電池セルはリチウムイオン電池であり、
     前記電圧の合計値が前記第1基準値以下のときに前記バランス手段を動作させ、
     前記第1基準値は、3.4V以上3.6V以下である電池制御装置。
  5.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を備える蓄電装置を制御し、
     少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに前記バランス手段を動作させる電池制御装置。
  6.  請求項5に記載の電池制御装置において、
     前記複数の2次電池セルはリチウムイオン電池であり、
     前記第1基準値は、3.4V以上3.6V以下である電池制御装置。
  7.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
     前記バランス手段を制御する制御手段と、
    を備え、
     前記制御手段は、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置。
  8.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
     前記バランス手段を制御する制御手段と、
    を備え、
     前記制御手段は、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置。
  9.  請求項7又は8に蓄電装置において、
     前記複数の2次電池セルはリチウムイオン電池であり、
     充電が完了したときの前記複数の2次電池セルにおいて、最も電圧が高い前記2次電池セルの電圧と、最も電圧が低い前記2次電池セルの電圧の差は、0.1V以上0.5V以下である蓄電装置。
  10.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を有する蓄電装置を準備し、
     前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法。
  11.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を有する蓄電装置を準備し、
     少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる蓄電装置の動作方法。
  12.  直列に接続された複数の2次電池セルと、
     前記複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を有する蓄電装置を制御するためのプログラムであって、
     コンピュータに、前記複数の2次電池セルの充電率が50%以下又は前記電圧の合計値が第1基準値以下であり、かつ前記充電率を変数としたときの前記電圧の合計値を示すグラフの微分値が第2基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラム。
  13.  直列に接続された複数の2次電池セルと、
     直列に接続された複数の2次電池セルの電圧の合計値を測定する測定手段と、
     前記複数の2次電池セルの電圧を揃えるバランス手段と、
    を有する蓄電装置を制御するためのプログラムであって、
     コンピュータに、少なくとも前記複数の2次電池セルが放電又は充電している間、前記複数の2次電池セルの前記電圧の合計値が第1基準値以下になったときに、前記バランス手段を動作させる機能を持たせるプログラム。
PCT/JP2013/069591 2012-08-22 2013-07-19 電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム WO2014030472A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014531550A JP6172148B2 (ja) 2012-08-22 2013-07-19 電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム
US14/422,269 US20150229142A1 (en) 2012-08-22 2013-07-19 Battery control device, electric storage device, method for operating electric storage device, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-182930 2012-08-22
JP2012182930 2012-08-22

Publications (1)

Publication Number Publication Date
WO2014030472A1 true WO2014030472A1 (ja) 2014-02-27

Family

ID=50149784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/069591 WO2014030472A1 (ja) 2012-08-22 2013-07-19 電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム

Country Status (3)

Country Link
US (1) US20150229142A1 (ja)
JP (1) JP6172148B2 (ja)
WO (1) WO2014030472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050416A (ja) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 バッテリシステム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI757673B (zh) * 2019-12-25 2022-03-11 宏碁股份有限公司 平衡充電方法與充電裝置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088194A (ja) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd 組電池の容量調整装置及び方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071936A (ja) * 2007-09-11 2009-04-02 Fuji Heavy Ind Ltd 組電池の電圧均等化システム
JPWO2009110221A1 (ja) * 2008-03-03 2011-07-14 パナソニック株式会社 充電方法および充電装置
US8350528B2 (en) * 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
KR101084211B1 (ko) * 2009-11-20 2011-11-17 삼성에스디아이 주식회사 배터리 팩, 및 배터리 팩의 충전 제어 방법
CN102222941B (zh) * 2010-04-13 2013-09-18 登丰微电子股份有限公司 电池电压平衡装置及电池充电装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088194A (ja) * 2008-09-30 2010-04-15 Nissan Motor Co Ltd 組電池の容量調整装置及び方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050416A (ja) * 2016-09-23 2018-03-29 トヨタ自動車株式会社 バッテリシステム

Also Published As

Publication number Publication date
US20150229142A1 (en) 2015-08-13
JP6172148B2 (ja) 2017-08-02
JPWO2014030472A1 (ja) 2016-07-28

Similar Documents

Publication Publication Date Title
JP4967162B2 (ja) 二次電池パック
US9287727B1 (en) Temporal voltage adaptive lithium battery charger
KR101956088B1 (ko) 상태 관리 장치, 축전 소자의 균등화 방법
JP5737207B2 (ja) 電圧バランス制御装置
US8680814B2 (en) Battery charger and battery charging method
JP5366194B2 (ja) 二次電池パック
US9252620B2 (en) Battery energy storage system
US20140021925A1 (en) Battery power supply apparatus and battery power supply system
JP7337061B2 (ja) 電池管理
JP6145712B2 (ja) 二次電池の充電システム及び方法並びに電池パック
KR20150106912A (ko) 복수 전지를 갖는 이차 전지 시스템 및 충방전 전력 등의 배분 방법
WO2014157449A1 (ja) 充放電装置、充放電制御方法、及びプログラム
US9472960B2 (en) Regulating device, battery assembly device and regulating method
US20160049809A1 (en) Storage battery and operation method of storage battery
US20130221903A1 (en) Battery charging device and method
US20130176001A1 (en) Method for charging a battery of a motor vehicle
US9035614B2 (en) Assembled battery charging method, charging control circuit, and power supply system
JP6172148B2 (ja) 電池制御装置、蓄電装置、蓄電装置の動作方法、及びプログラム
JP5644691B2 (ja) セルバランス制御装置およびセルバランス制御方法
JP5317245B2 (ja) 二次電池パック
KR101954285B1 (ko) 상태 관리 장치, 축전 소자의 균등화 방법
CN105489954B (zh) 补偿电池单元的充电状态的方法和执行该方法的电池系统
JP6221697B2 (ja) 電圧差補正装置、電圧差補正プログラムならびに方法
JP5489779B2 (ja) リチウムイオン組電池の充電システムおよび充電方法
JP2014121134A (ja) 電圧バランス制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13831367

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014531550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14422269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13831367

Country of ref document: EP

Kind code of ref document: A1