WO2014157449A1 - 充放電装置、充放電制御方法、及びプログラム - Google Patents
充放電装置、充放電制御方法、及びプログラム Download PDFInfo
- Publication number
- WO2014157449A1 WO2014157449A1 PCT/JP2014/058738 JP2014058738W WO2014157449A1 WO 2014157449 A1 WO2014157449 A1 WO 2014157449A1 JP 2014058738 W JP2014058738 W JP 2014058738W WO 2014157449 A1 WO2014157449 A1 WO 2014157449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- battery
- batteries
- voltage
- cell balance
- Prior art date
Links
- 238000007599 discharging Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title claims description 24
- 239000003990 capacitor Substances 0.000 claims description 33
- 238000012937 correction Methods 0.000 claims description 18
- 230000007423 decrease Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/441—Methods for charging or discharging for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0019—Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/345—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a charge / discharge device, a charge / discharge control method, and a program for aligning voltages (capacities) of a plurality of storage batteries connected in series.
- the voltage (capacity) varies depending on the characteristics of each battery and the usage environment. This voltage variation can cause overcharge and overdischarge. Also, when using multiple batteries connected in series, stop charging at a voltage that prevents the battery with the highest voltage from being overcharged during charging, and prevent the battery with the lowest voltage from being overdischarged during discharging. Stop discharging with voltage. Therefore, the use range of all the series voltages becomes narrow, and the usable capacity of the battery decreases.
- the battery pack state-of-charge control device described in Patent Document 1 includes a plurality of group batteries composed of a plurality of single cells connected in series, a plurality of capacitors, a plurality of voltmeters, and a plurality of each. A plurality of switching circuits composed of switches and a control circuit are provided, and a part of the unit cell belongs to both adjacent two group batteries. With this configuration, the charge state control device described in Patent Literature 1 simultaneously performs uniformization of the charge state in the group battery and equalization of the charge state between the group batteries.
- the cells belonging to both of the two group batteries exhibit the minimum voltage, and therefore the range of voltage variation in one group battery can be V + ⁇ V d to V.
- the single cell belonging to both of the two groups batteries for indicating the maximum voltage the range of variation of the voltage in the other group the battery can range from V ⁇ V- ⁇ V d. Therefore, when the equalization is completed in both group batteries, a voltage difference of 2 ⁇ ⁇ V d can be generated in the whole cell.
- An object of the present invention is to provide a charge / discharge device, a charge / discharge control method, and a program for accurately aligning voltages of a plurality of batteries connected in series.
- M batteries (m is an integer of 3 or more) connected in series are grouped by a plurality of groups composed of successive n batteries (n is an integer of 2 or more and less than m), A battery unit in which a part of the batteries belonging to the group is shared with other groups; A discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery;
- a control unit for controlling the operation of each of the cell balance units,
- the controller is In any given group, the voltage difference of the batteries belonging to the group falls within the predetermined value, and the overall average voltage in the whole battery and the partial average voltage that is the average voltage of the batteries belonging to the group are specified. If the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped, A charge / discharge device is provided.
- M batteries (m is an integer of 3 or more) connected in series are grouped into a plurality of groups each constituted by n consecutive batteries (n is an integer of 2 or more and less than m).
- a part of the batteries belonging to the group is shared with other groups,
- a discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery A control method executed by a control device for controlling the operation of The control device is In any one of the groups, a voltage difference between the batteries belonging to the group is within the predetermined value, and a total average voltage in the whole battery and a partial average voltage that is an average voltage of the batteries belonging to the group are specified. When the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped. A control method is provided.
- M batteries (m is an integer of 3 or more) connected in series are grouped into a plurality of groups each constituted by n consecutive batteries (n is an integer of 2 or more and less than m).
- a part of the batteries belonging to the group is shared with other groups,
- a discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery;
- a voltage difference between the batteries belonging to the group is within the predetermined value, and a total average voltage in the whole battery and a partial average voltage that is an average voltage of the batteries belonging to the group are specified.
- a program for realizing the above is provided.
- the voltages of a plurality of batteries connected in series can be accurately aligned.
- FIG. 1 is a diagram illustrating a processing configuration example of the charge / discharge device 10 according to the first embodiment.
- the charging / discharging device 10 includes a battery unit 110, a cell balance unit 120, and a control unit 130.
- the battery unit 110 includes m (m is an integer of 3 or more) batteries 112 connected in series.
- the m batteries 112 are grouped into a plurality of groups 114 (114a to 114c in FIG. 1) composed of n consecutive batteries (n is an integer of 2 or more and less than m). Further, as shown in FIG. 1, a part of the batteries 112 belonging to a certain group 114 is shared with other groups 114.
- the common battery 112 is referred to as a common battery 116.
- the number and position of the common batteries 116 are not limited to those shown in FIG.
- the battery unit 110 is, for example, a lithium ion battery. As shown in FIG. 1, the battery unit 110 is connected to the external negative terminal 200 and the external positive terminal 300.
- the battery unit 110 When the external negative terminal 200 and the external positive terminal 300 are connected to a power source (not shown), the battery unit 110 is charged by the power of the power source. Further, when the external negative terminal 200 and the external positive terminal 300 are connected to a load (not shown), the battery unit 110 discharges power to the connected load.
- the cell balance unit 120 is provided for each group 114 as shown as 120a to 120c in FIG. In addition, the cell balance unit 120 selects a discharge battery and a rechargeable battery from the batteries 112 belonging to the corresponding group 114, and moves the charge between the discharge battery and the rechargeable battery. The cell balance unit 120 suppresses variations in the voltage of the batteries 112 belonging to the group 114 within a predetermined value by repeating the movement of charges between the discharge battery and the charge battery.
- the operation executed by the cell balance unit 120 is referred to as a cell balance operation.
- the cell balance operation is controlled by the control unit 130 described later.
- the cell balance unit 120 includes a plurality of switch elements 122, buses 124 and 126, and a capacitor 128, as shown in FIG.
- the switch element 122 is, for example, a field effect transistor (FET) or a photocoupler.
- the capacitor 128 is, for example, a capacitor, an electric double layer capacitor, or a lithium ion capacitor.
- one ends of the plurality of switch elements 122 are connected to the batteries 112 belonging to the corresponding group 114.
- the other ends of the plurality of switch elements 122 are alternately connected to the buses 124 and 126 alternately.
- the bus 124 is connected to the positive terminal of the capacitor 128.
- the bus 126 is connected to the negative terminal of the capacitor 128.
- the switch element 122 connected to the bus 124 and the switch element 122 connected to the bus 126 are turned on one by one, whereby the battery 112 and the capacitor 128 are connected in parallel. . As a result, charge is exchanged between the battery 112 and the capacitor 128.
- a battery 112 (discharge battery) selected by a combination of two switch elements 122 is connected to the capacitor 128. As a result, charges move from the battery 112 (discharge battery) to the capacitor 128.
- another battery 112 (charged battery) selected by a different combination of the two switch elements 122 is connected to the capacitor 128. As a result, charges move from the capacitor 128 to the battery 112 (charged battery). As described above, charges can be transferred from one battery 112 to another battery 112, and the voltages in the group 114 can be made uniform.
- the cell balance unit 120 discharges the combination having the highest total voltage among the combinations of the batteries 112 in series n ′ (n ′ is an integer of 1 or more and less than n) including the batteries 112 having the maximum voltage in the group 114
- the battery 112 having the lowest voltage among the batteries 112 belonging to the group 114 may be selected as the rechargeable battery. By doing so, the charge charged in the capacitor 128 can be increased, and the time for the cell balance operation can be shortened.
- the structure of the cell balance part 120 is not limited to this.
- the cell balance unit 120 may be configured to align the voltages of the batteries 112 using a DC-DC converter. Further, the cell balance unit 120 may be configured to align the voltages of the batteries 112 using an inductor. Further, the cell balance unit 120 may be configured to include a DC-DC converter, a capacitor, and an inductor.
- the configuration adopted as the cell balance unit 120 may be appropriately determined in view of charge transfer efficiency, product scale, manufacturing cost, and the like. A known configuration can be used for the configuration of the cell balance unit 120 using a DC-DC converter or an inductor.
- the control unit 130 controls the operation of the cell balance unit 120. Specifically, first, the control unit 130 measures the voltages of all the batteries 112 included in the battery unit 110.
- the control unit 130 has a voltage measurement unit (not shown) and measures the voltage of each battery 112.
- the voltage measurement unit may be located outside the control unit 130. In this case, the control unit 130 acquires and uses the voltage for each battery 112 measured by the voltage measurement unit. Then, the control unit 130 determines, based on the measured voltage, the average voltage (overall average voltage V all ) of all the batteries 112 included in the battery unit 110 and the average voltage (partial average voltage V all ) of the batteries 112 belonging to each group 114. gr ).
- control unit 130 identifies the battery 112 having the maximum voltage and the battery 112 having the minimum voltage for each group based on the measured voltage for each battery 112. Then, the control unit 130 determines whether the difference between the maximum voltage and the minimum voltage is within the predetermined value ⁇ V d and whether the total average voltage V all and the partial average voltage V gr satisfy a specific condition. Judge every time. Then, the control unit 130 determines whether to stop the cell balance operation of each group 114 based on the result of the determination.
- the predetermined value ⁇ V d is set in the control unit 130 in advance. Further, the predetermined value ⁇ V d is held in a storage unit (not shown), and the control unit 130 may read and use the predetermined value ⁇ V d from the storage unit.
- the control unit 130 terminates the cell balance operation being executed in each cell balance unit.
- the “end condition” is, for example, “the difference between the maximum voltage and the minimum voltage of the battery 112 belonging to the battery unit 110 is within a predetermined value” or “a certain time has elapsed since the start of the cell balance operation”. be able to.
- the battery unit 110 the cell balance operation is being performed, partial average voltage and high group 114 than V gr overall average voltage V all, partial average voltage V gr is lower group than the overall average voltage V all 114 And exist.
- the "specific conditions" the overall average voltage V all as a boundary, partial average voltage V gr overall average voltage V is higher than the all group 114, and than partial average voltage V gr overall average voltage V all
- the condition is such that the cell balance operation is stopped for any one of the low groups 114.
- the “specific condition” is “partial average voltage V gr ⁇ total average voltage V all ” or “partial average voltage V gr ⁇ total average voltage V all ”.
- the “specific condition” is preferably “partial average voltage V gr ⁇ total average voltage V all ”.
- control unit 130 illustrated in FIG. 1 is not a hardware unit configuration but a functional unit block.
- the control unit 130 includes a CPU and memory of an arbitrary computer, a program for realizing the components shown in the figure loaded in the memory, a storage medium such as a hard disk for storing the program, and a hardware and software mainly for a network connection interface. Realized by any combination of wear. There are various modifications of the implementation method and apparatus.
- FIG. 2 is a flowchart showing a process flow of the charge / discharge device 10 of the first embodiment.
- the control unit 130 measures and acquires the voltages of all the batteries 112 belonging to the battery unit 110 (S102). Note that when the cell balance unit 120 is performing the cell balance operation, the battery 112 is connected to the capacitor 128 and a current flows, and the voltage shifts compared to the capacitor 128 and the unconnected battery 112. For this reason, when the voltage of the battery 112 being connected to the capacitor 128 and moving the charge is measured, the control unit 130 applies a moving average filter to the measured voltage of the battery 112, etc. Perform the correction process and use the corrected voltage value. And the control part 130 calculates the whole average voltage Vall from the voltage of all the batteries 112 acquired by S102 (S104).
- control part 130 determines whether the completion
- the control unit 130 terminates the cell balance operation for the battery unit 110.
- the termination condition is not satisfied (S106: NO)
- the control unit 130 performs a cell balance operation on the battery unit 110.
- the control unit 130 first uses the voltage of each battery 112 acquired in S102 to obtain a partial average voltage V gr that is an average voltage of the plurality of batteries 112 connected to each cell balance unit 120. And for each group 114 (S108). Then, the control unit 130 identifies the cell 112 of the maximum voltage and minimum voltage from the battery 112 connected to the cell balance unit 120 (S110), and calculates the difference voltage [Delta] V d. At this time, the control unit 130 holds information for identifying the maximum voltage battery 112 and the minimum voltage battery 112 in the group 114 such as a cell number.
- the control unit 130 determines for each group 114 whether the operation stop condition of the cell balance unit 120 is satisfied (S112).
- the “operation stop condition” is “maximum voltage ⁇ minimum voltage ⁇ predetermined value ⁇ V d and partial average voltage V gr ⁇ total average voltage V all ”.
- the control unit 130 stops the cell balance operation of the group 114.
- the control unit 130 causes the cell balance unit 120 corresponding to the group 114 to execute the cell balance operation.
- the control part 130 specifies a discharge battery and a charge battery first (S114).
- the control unit 130 transmits to the cell balance unit 120 an instruction to connect the discharge battery and the rechargeable battery specified in S114 and the capacitor 128 to move the charge.
- the cell balance unit 120 first switches the ON / OFF state of the switch element 122 to connect the discharge battery and the capacitor 128 (S116). By connecting the discharge battery and the capacitor 128 for a certain period of time, charge is transferred from the discharge battery to the capacitor 128.
- the cell balance unit 120 switches the ON / OFF state of the switch element 122 according to the instruction, and connects the rechargeable battery and the capacitor 128 (S118). Thereby, the electric charge stored in the capacitor 128 in S116 moves to the rechargeable battery.
- the processing of S108 to S118 is performed independently for each cell balance unit 120. Each time the cell balance operation is executed in the cell balance unit 120, the overall average voltage V all calculated in S102 to S104 is updated.
- control unit 130 repeats the processes of S102 to S118 until the end condition of S106 is satisfied.
- FIG. 3 shows an example of the result of executing the cell balance operation according to the prior art.
- the number of all batteries (battery cells) included in the battery unit 110 is 40 cells, and 16 cell cells are connected to each cell balance unit 120, and 4 cells out of the 16 cells are connected.
- ⁇ V d 0.01 [V]
- the entire battery unit 110 has a variation of about 0.03 [V]
- ⁇ V d 0.01. It did not fall within [V].
- FIG. 4 shows an example of the result of executing the cell balance operation according to the present invention.
- the cell balance operation is executed under the same conditions as in the prior art.
- the maximum voltage of the battery 112 in a certain group 114 is determined according to whether or not the partial average voltage V gr for each group 114 and the overall average voltage V all of the battery unit 110 satisfy a specific condition.
- V d a predetermined value
- the cell balance operation is continued.
- variation in the voltage between the groups 114 can be suppressed, and the voltage of the some battery connected in series can be arrange
- FIG. 5 is a diagram illustrating a configuration of the control unit 130 in the second embodiment.
- the control unit 130 of this embodiment further includes a correction unit 132.
- the correction unit 132 corrects the numerical value of the overall average voltage V all calculated by the control unit 130 using the correction value ⁇ . And the control part 130 determines the specific conditions demonstrated in 1st Embodiment using the numerical value of the whole average voltage Vall correct
- FIG. The correction value ⁇ will be described below. In the following, it is assumed that the voltage of the battery 112 increases or decreases in proportion to the capacity of the battery 112.
- V m the overall average voltage V all (expected) after the balance operation is performed m times.
- ⁇ V down represents the voltage drop amount (> 0) of the discharge battery due to the balance operation.
- ⁇ V up represents a voltage increase amount (> 0) of the rechargeable battery due to the balance operation.
- N represents the number of all batteries.
- S represents the number of discharge batteries.
- T represents the number of rechargeable batteries.
- the second term on the right side corresponds to the correction value ⁇ .
- the correction value ⁇ is set to a value satisfying “the minimum voltage of all the batteries 112 ⁇ (the overall average voltage V all + ⁇ ) ⁇ the maximum voltage of all the batteries 112”.
- the operation stop condition (described in paragraph 0029) is “maximum voltage ⁇ minimum voltage ⁇ predetermined value ⁇ V d and partial average voltage V gr ⁇ total average voltage V all + ⁇ ”
- the correction value ⁇ increases, the cell balance unit 120 that continues the cell balance operation decreases even if “maximum voltage ⁇ minimum voltage ⁇ predetermined value ⁇ V d ” is satisfied.
- the correction value ⁇ is As the value increases, the cell balance unit 120 that continues the cell balance operation increases even when “maximum voltage ⁇ minimum voltage ⁇ predetermined value ⁇ V d ” is satisfied. Conversely, as the correction value ⁇ is smaller, the cell balance unit 120 that continues the cell balance operation decreases even if “maximum voltage ⁇ minimum voltage ⁇ predetermined value ⁇ V d ” is satisfied.
- the number of the cell balance units 120 that continue the cell balance operation is controlled by the correction unit 132 correcting the overall average voltage V all using the correction value ⁇ .
- movement can be adjusted to an appropriate value, and the cell balance operation
- M batteries (m is an integer of 3 or more) connected in series are grouped by a plurality of groups composed of successive n batteries (n is an integer of 2 or more and less than m), A battery unit in which a part of the batteries belonging to the group is shared with other groups; A discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery;
- a control unit for controlling the operation of each of the cell balance units,
- the controller is In any given group, the voltage difference of the batteries belonging to the group falls within the predetermined value, and the overall average voltage in the whole battery and the partial average voltage that is the average voltage of the batteries belonging to the group are specified. If the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped, Charge / discharge device. 2.
- the control unit has the specific condition that the partial average voltage is equal to or lower than the overall average voltage. 1.
- the charge / discharge device according to 1. 3.
- the control unit corrects the numerical value of the overall average voltage based on a correction value, and determines the specific condition using the corrected numerical value of the overall average voltage. 1. Or 2.
- the charge / discharge device according to 1. 4).
- the controller is In the cell balance unit, among the combinations of n ′ batteries (n ′ is an integer of 1 or more and less than n) in series including the batteries having the maximum voltage in the group, n ′ cells in series having the highest total voltage.
- the battery is selected as the discharge battery, and the battery having the lowest voltage in the group is selected as the rechargeable battery. 1.
- the charge / discharge device according to any one of the above. 5.
- the cell balance unit has a capacitor, and moves the discharge and charge of the rechargeable battery using the capacitor. 1.
- the charge / discharge device according to any one of the above. 6).
- the cell balance unit has a DC-DC converter, and moves the discharge and charge of the rechargeable battery using the DC-DC converter. 1.
- M batteries (m is an integer of 3 or more) connected in series are grouped into a plurality of groups each constituted by n consecutive batteries (n is an integer of 2 or more and less than m).
- a part of the batteries belonging to the group is shared with other groups,
- a discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery A control method executed by a control device for controlling the operation of The control device is In any one of the groups, a voltage difference between the batteries belonging to the group is within the predetermined value, and a total average voltage in the whole battery and a partial average voltage that is an average voltage of the batteries belonging to the group are specified. When the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped.
- a control method comprising: 8).
- M batteries (m is an integer of 3 or more) connected in series are grouped into a plurality of groups each constituted by n consecutive batteries (n is an integer of 2 or more and less than m).
- a part of the batteries belonging to the group is shared with other groups, A discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery; In the control device that controls the operation of In any one of the groups, a voltage difference between the batteries belonging to the group is within the predetermined value, and a total average voltage in the whole battery and a partial average voltage that is an average voltage of the batteries belonging to the group are specified.
- the control device has the specific condition that the partial average voltage is equal to or lower than the overall average voltage.
- the control device corrects the numerical value of the overall average voltage based on a correction value, and determines the specific condition using the numerical value of the corrected overall average voltage, Including Or 9.
- the control method described in 1. 11 The control device is In the cell balance unit, among the combinations of n ′ batteries (n ′ is an integer of 1 or more and less than n) in series including the batteries having the maximum voltage in the group, n ′ cells in series having the highest total voltage.
- the battery is selected as the discharge battery, and the battery having the lowest voltage in the group is selected as the rechargeable battery. Including 9. And 10.
- the cell balance unit has a capacitor, and moves the discharge and charge of the rechargeable battery using the capacitor. Including And 9.
- the control method as described in any one of these. 13 The cell balance unit has a DC-DC converter, and moves the discharge and charge of the rechargeable battery using the DC-DC converter. Including And 9. To 11.
- the control method as described in any one of these. 14 A function of causing the control device to determine that the partial average voltage is equal to or lower than the overall average voltage as the specific condition; To achieve the above.
- the program described in. 15. A function of correcting the numerical value of the overall average voltage on the control device based on a correction value, and determining the specific condition using the corrected overall average voltage value, To achieve the above. Or 14.
- n ′ batteries (n ′ is an integer of 1 or more and less than n) in series including the batteries having the maximum voltage in the group, n ′ cells in series having the highest total voltage.
- M batteries (m is an integer of 3 or more) connected in series are grouped by a plurality of groups composed of successive n batteries (n is an integer of 2 or more and less than m),
- a discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery;
- a control unit for controlling the operation of each of the cell balance units,
- the controller is In any given group, the voltage difference of the batteries belonging to the group falls within the predetermined value, and the overall average voltage in the whole battery and the partial average voltage that is the average voltage of the batteries belonging to the group are specified. If the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped, Cell balance device. 18.
- the control unit has the specific condition that the partial average voltage is equal to or lower than the overall average voltage. 17.
- the cell balance apparatus as described in. 19.
- M batteries (m is an integer of 3 or more) connected in series are grouped by a plurality of groups composed of successive n batteries (n is an integer of 2 or more and less than m),
- a discharge battery and a rechargeable battery are selected from the batteries belonging to the group so that a voltage difference between the batteries belonging to the group and within the corresponding group is within a predetermined value.
- a cell balance unit for transferring charge to and from the battery;
- a control unit for controlling the operation of each of the cell balance units;
- the cell balance device comprising: In any given group, the voltage difference of the batteries belonging to the group falls within the predetermined value, and the overall average voltage in the whole battery and the partial average voltage that is the average voltage of the batteries belonging to the group are specified. If the condition is satisfied, the operation of the cell balance unit corresponding to the group is stopped, A cell balance control method. 20.
- the control unit has the specific condition that the partial average voltage is equal to or lower than the overall average voltage. Including.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池で構成される複数のグループによってグループ分けされており、前記グループに属する前記電池の一部が他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
各々の前記セルバランス部の動作を制御する制御部と、を有し、
前記制御部は、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧と当該グループに属する前記電池の平均電圧である部分平均電圧とが特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
充放電装置が提供される。
直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置によって実行される制御方法であって、
前記制御装置が、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
ことを含む制御方法が提供される。
直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置に、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる機能、
を実現させるためのプログラムが提供される。
図1は、第1実施形態における充放電装置10の処理構成例を示す図である。図1において、充放電装置10は、電池部110、セルバランス部120、及び制御部130を有する。
本実施形態は、以下の点を除いて第1実施形態と同様である。
1.直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池で構成される複数のグループによってグループ分けされており、前記グループに属する前記電池の一部が他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
各々の前記セルバランス部の動作を制御する制御部と、を有し、
前記制御部は、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧と当該グループに属する前記電池の平均電圧である部分平均電圧とが特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
充放電装置。
2.前記制御部は、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件とする、
1.に記載の充放電装置。
3.前記制御部は、前記全体平均電圧の数値を補正値に基づいて補正し、当該補正後の全体平均電圧の数値を用いて前記特定の条件を判定する、
1.又は2.に記載の充放電装置。
4.前記制御部は、
前記セルバランス部に、前記グループの中で最大電圧の前記電池を含む直列n'個(n'は1以上n未満の整数)の前記電池の組み合わせのうち、合計電圧が最も高い直列n'個の前記電池を前記放電電池として選択させ、前記グループの中で最小電圧の前記電池を前記充電電池として選択させる、
1.乃至3.のいずれか1つに記載の充放電装置。
5.前記セルバランス部は、キャパシタを有しており、当該キャパシタを用いて前記放電及び充電電池の電荷を移動させる、
1.乃至4.のいずれか1つに記載の充放電装置。
6.前記セルバランス部は、DC-DCコンバータを有しており、当該DC-DCコンバータを用いて前記放電及び充電電池の電荷を移動させる、
1.乃至4.のいずれか1つに記載の充放電装置。
7.直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置によって実行される制御方法であって、
前記制御装置が、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
ことを含む制御方法。
8.直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置に、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる機能、
を実現させるためのプログラム。
9.前記制御装置が、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件とする、
ことを含む7.に記載の制御方法。
10.前記制御装置が、前記全体平均電圧の数値を補正値に基づいて補正し、当該補正後の全体平均電圧の数値を用いて前記特定の条件を判定する、
ことを含む7.又は9.に記載の制御方法。
11.前記制御装置が、
前記セルバランス部に、前記グループの中で最大電圧の前記電池を含む直列n'個(n'は1以上n未満の整数)の前記電池の組み合わせのうち、合計電圧が最も高い直列n'個の前記電池を前記放電電池として選択させ、前記グループの中で最小電圧の前記電池を前記充電電池として選択させる、
ことを含む7.、9.、及び10.のいずれか1つに記載の制御方法。
12.前記セルバランス部は、キャパシタを有しており、当該キャパシタを用いて前記放電及び充電電池の電荷を移動させる、
ことを含む7.、及び9.乃至11.のいずれか1つに記載の制御方法。
13.前記セルバランス部は、DC-DCコンバータを有しており、当該DC-DCコンバータを用いて前記放電及び充電電池の電荷を移動させる、
ことを含む7.、及び9.乃至11.のいずれか1つに記載の制御方法。
14.前記制御装置に、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件として判定させる機能、
を実現させるための8.に記載のプログラム。
15.前記制御装置に、前記全体平均電圧の数値を補正値に基づいて補正し、当該補正後の全体平均電圧の数値を用いて前記特定の条件を判定する機能、
を実現させるための8.又は14.に記載のプログラム。
16.前記制御装置に、
前記セルバランス部に、前記グループの中で最大電圧の前記電池を含む直列n'個(n'は1以上n未満の整数)の前記電池の組み合わせのうち、合計電圧が最も高い直列n'個の前記電池を前記放電電池として選択させ、前記グループの中で最小電圧の前記電池を前記充電電池として選択させる機能、
を実現させるための8.、14.、及び15.のいずれか1つに記載のプログラム。
17.直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池で構成される複数のグループによってグループ分けされており、前記グループに属する前記電池の一部が他のグループと共通化されている電池部の電圧を揃えるセルバランス装置であって、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
各々の前記セルバランス部の動作を制御する制御部と、を有し、
前記制御部は、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧と当該グループに属する前記電池の平均電圧である部分平均電圧とが特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
セルバランス装置。
18.前記制御部は、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件とする、
17.に記載のセルバランス装置。
19.直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池で構成される複数のグループによってグループ分けされており、前記グループに属する前記電池の一部が他のグループと共通化されている電池部の電圧を揃えるセルバランス装置であって、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
各々の前記セルバランス部の動作を制御する制御部と、
を有する前記セルバランス装置が、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧と当該グループに属する前記電池の平均電圧である部分平均電圧とが特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
ことを含むセルバランス制御方法。
20.前記制御部が、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件とする、
ことを含む19.に記載のセルバランス制御方法。
Claims (8)
- 直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池で構成される複数のグループによってグループ分けされており、前記グループに属する前記電池の一部が他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
各々の前記セルバランス部の動作を制御する制御部と、を有し、
前記制御部は、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧と当該グループに属する前記電池の平均電圧である部分平均電圧とが特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
充放電装置。 - 前記制御部は、前記部分平均電圧が前記全体平均電圧以下であることを、前記特定の条件とする、
請求項1に記載の充放電装置。 - 前記制御部は、前記全体平均電圧の数値を補正値に基づいて補正し、当該補正後の全体平均電圧の数値を用いて前記特定の条件を判定する、
請求項1又は2に記載の充放電装置。 - 前記制御部は、
前記セルバランス部に、前記グループの中で最大電圧の前記電池を含む直列n'個(n'は1以上n未満の整数)の前記電池の組み合わせのうち、合計電圧が最も高い直列n'個の前記電池を前記放電電池として選択させ、前記グループの中で最小電圧の前記電池を前記充電電池として選択させる、
請求項1乃至3のいずれか1項に記載の充放電装置。 - 前記セルバランス部は、キャパシタを有しており、当該キャパシタを用いて前記放電及び充電電池の電荷を移動させる、
請求項1乃至4のいずれか1項に記載の充放電装置。 - 前記セルバランス部は、DC-DCコンバータを有しており、当該DC-DCコンバータを用いて前記放電及び充電電池の電荷を移動させる、
請求項1乃至4のいずれか1項に記載の充放電装置。 - 直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置によって実行される制御方法であって、
前記制御装置が、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる、
ことを含む制御方法。 - 直列に接続されたm個(mは3以上の整数)の電池が、連続するn個(nは2以上m未満の整数)の前記電池によりそれぞれ構成される複数のグループでグループ分けされており、前記グループに属する前記電池の一部は他のグループと共通化されている電池部と、
前記グループ毎に設けられ、対応する前記グループに属する前記電池の電圧差が所定値以内となるように、当該グループに属する前記電池の中から放電電池と充電電池を選択し、当該放電電池と充電電池との間で電荷を移動させるセルバランス部と、
の動作を制御する制御装置に、
任意の前記グループにおいて、当該グループに属する前記電池の電圧差が前記所定値以内になり、かつ、前記電池全体における全体平均電圧及び当該グループに属する前記電池の平均電圧である部分平均電圧が特定の条件を満たしている場合に、当該グループに対応する前記セルバランス部の動作を停止させる機能、
を実現させるためのプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/780,930 US10263434B2 (en) | 2013-03-29 | 2014-03-27 | Charge and discharge device, charge and discharge control method, and program |
JP2015508653A JP5975169B2 (ja) | 2013-03-29 | 2014-03-27 | 充放電装置、充放電制御方法、及びプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-071046 | 2013-03-29 | ||
JP2013071046 | 2013-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157449A1 true WO2014157449A1 (ja) | 2014-10-02 |
Family
ID=51624411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058738 WO2014157449A1 (ja) | 2013-03-29 | 2014-03-27 | 充放電装置、充放電制御方法、及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10263434B2 (ja) |
JP (1) | JP5975169B2 (ja) |
WO (1) | WO2014157449A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104882642A (zh) * | 2015-05-22 | 2015-09-02 | 武汉巨能集群科技有限公司 | 有利于实现非能耗式电量均衡的车用锂电池模块 |
CN106026243A (zh) * | 2016-06-08 | 2016-10-12 | 胡浩 | 多通道储能单元组配置电路及储能单元管理系统 |
CN106356908A (zh) * | 2015-07-17 | 2017-01-25 | 联创汽车电子有限公司 | 动力电池组及其构成的控制系统和控制方法 |
CN108899975A (zh) * | 2018-08-10 | 2018-11-27 | 肇庆市高新区甜慕新能源技术有限公司 | 一种蓄电池系统 |
JP2020509723A (ja) * | 2017-01-25 | 2020-03-26 | マックスウェル テクノロジーズ インコーポレイテッド | キャパシタモジュールバランシング及びメンテナンスのためのシステム及び方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015002152B3 (de) * | 2015-02-18 | 2016-05-12 | Audi Ag | Batterie für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betreiben einer Batterie |
CN107251363B (zh) * | 2015-12-31 | 2020-09-29 | 深圳市大疆创新科技有限公司 | 用于使电池组件平衡的方法和系统 |
WO2018134827A1 (en) * | 2017-01-23 | 2018-07-26 | B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University | System for balancing a series of cells |
CN106887086B (zh) * | 2017-04-07 | 2022-10-21 | 上海蔚来汽车有限公司 | 移动充电设备、移动充电系统及移动充电方法 |
KR102202613B1 (ko) * | 2017-09-27 | 2021-01-12 | 주식회사 엘지화학 | 배터리 모듈 균등화 장치, 이를 포함하는 배터리 팩 및 자동차 |
US10444295B2 (en) * | 2017-12-20 | 2019-10-15 | National Chung Shan Institute Of Science And Technology | Battery balance management circuit |
US12051921B2 (en) * | 2019-05-24 | 2024-07-30 | Panasonic Intellectual Property Management Co., Ltd. | Energy transfer circuit and power storage system |
TWI715367B (zh) * | 2019-12-23 | 2021-01-01 | 台達電子工業股份有限公司 | 電池控制器與其電池電量量測方法 |
WO2023021269A1 (en) * | 2021-08-20 | 2023-02-23 | Cirrus Logic International Semiconductor Limited | Cell balancing |
WO2023021268A1 (en) * | 2021-08-20 | 2023-02-23 | Cirrus Logic International Semiconductor Limited | Cells balancing |
CN115347258B (zh) * | 2022-10-20 | 2023-03-28 | 北京国电光宇机电设备有限公司 | 一种铅酸蓄电池组的修护系统及其均衡方法和除硫方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000270483A (ja) * | 1999-03-17 | 2000-09-29 | Toyota Central Res & Dev Lab Inc | 組電池の充電状態制御装置 |
JP2005312161A (ja) * | 2004-04-20 | 2005-11-04 | Denso Corp | 組み電池の電圧均等化回路 |
JP2007330021A (ja) * | 2006-06-07 | 2007-12-20 | Nissan Motor Co Ltd | 組電池の容量調整装置 |
JP2009278709A (ja) * | 2008-05-12 | 2009-11-26 | Denso Corp | 組電池の調整装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59703150D1 (de) * | 1997-11-20 | 2001-04-19 | Siemens Ag | Verfahren und Vorrichtung zum Überwachen einer ausgewählten Gruppe von Brennstoffzellen eines Hochtemperatur-Brennstoff-zellenstapels |
JP4133019B2 (ja) * | 2002-06-21 | 2008-08-13 | 日産ディーゼル工業株式会社 | 車両の蓄電制御装置 |
FR2852149B1 (fr) * | 2003-03-04 | 2005-04-08 | Cit Alcatel | Dispositif et procede perfectionnes de controle de tension de generateurs electrochimiques de batterie rechargeable |
JP4283615B2 (ja) * | 2003-08-14 | 2009-06-24 | パナソニックEvエナジー株式会社 | 二次電池の電圧補正方法および装置、並びに二次電池の残存容量推定方法および装置 |
KR100991084B1 (ko) * | 2005-12-15 | 2010-10-29 | 주식회사 엘지화학 | 멀티 전지 팩 시스템 및 그 제어방법, 및 이를 이용한 전지팩 |
KR101164629B1 (ko) * | 2007-10-16 | 2012-07-11 | 한국과학기술원 | 직렬 연결 배터리 스트링을 위한 2단 전하 균일 방법 및장치 |
US8519670B2 (en) * | 2009-03-23 | 2013-08-27 | Motiv Power Systems, Inc. | System and method for balancing charge within a battery pack |
JP5562617B2 (ja) * | 2009-11-30 | 2014-07-30 | 三洋電機株式会社 | 均等化装置、バッテリシステムおよび電動車両 |
CN102110997B (zh) * | 2009-12-28 | 2013-07-10 | 光宝电子(广州)有限公司 | 电池组平衡方法 |
US8598840B2 (en) * | 2010-04-15 | 2013-12-03 | Launchpoint Energy And Power Llc | Fault-tolerant battery management system, circuits and methods |
US8436582B2 (en) * | 2010-07-09 | 2013-05-07 | Freescale Semiconductor, Inc. | Battery cell equalizer system |
US8089249B2 (en) * | 2010-11-08 | 2012-01-03 | O2Micro, Inc. | Battery management systems and methods |
-
2014
- 2014-03-27 JP JP2015508653A patent/JP5975169B2/ja not_active Expired - Fee Related
- 2014-03-27 WO PCT/JP2014/058738 patent/WO2014157449A1/ja active Application Filing
- 2014-03-27 US US14/780,930 patent/US10263434B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000270483A (ja) * | 1999-03-17 | 2000-09-29 | Toyota Central Res & Dev Lab Inc | 組電池の充電状態制御装置 |
JP2005312161A (ja) * | 2004-04-20 | 2005-11-04 | Denso Corp | 組み電池の電圧均等化回路 |
JP2007330021A (ja) * | 2006-06-07 | 2007-12-20 | Nissan Motor Co Ltd | 組電池の容量調整装置 |
JP2009278709A (ja) * | 2008-05-12 | 2009-11-26 | Denso Corp | 組電池の調整装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104882642A (zh) * | 2015-05-22 | 2015-09-02 | 武汉巨能集群科技有限公司 | 有利于实现非能耗式电量均衡的车用锂电池模块 |
CN106356908A (zh) * | 2015-07-17 | 2017-01-25 | 联创汽车电子有限公司 | 动力电池组及其构成的控制系统和控制方法 |
CN106356908B (zh) * | 2015-07-17 | 2019-08-13 | 联创汽车电子有限公司 | 动力电池组及其构成的控制系统和控制方法 |
CN106026243A (zh) * | 2016-06-08 | 2016-10-12 | 胡浩 | 多通道储能单元组配置电路及储能单元管理系统 |
JP2020509723A (ja) * | 2017-01-25 | 2020-03-26 | マックスウェル テクノロジーズ インコーポレイテッド | キャパシタモジュールバランシング及びメンテナンスのためのシステム及び方法 |
JP7116068B2 (ja) | 2017-01-25 | 2022-08-09 | ユーキャップ パワー インコーポレイテッド | キャパシタモジュールバランシング及びメンテナンスのためのシステム及び方法 |
CN108899975A (zh) * | 2018-08-10 | 2018-11-27 | 肇庆市高新区甜慕新能源技术有限公司 | 一种蓄电池系统 |
Also Published As
Publication number | Publication date |
---|---|
US10263434B2 (en) | 2019-04-16 |
US20160043578A1 (en) | 2016-02-11 |
JPWO2014157449A1 (ja) | 2017-02-16 |
JP5975169B2 (ja) | 2016-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5975169B2 (ja) | 充放電装置、充放電制御方法、及びプログラム | |
KR102305583B1 (ko) | 배터리 충방전 장치 | |
EP3185388B1 (en) | Battery control method and apparatus, and battery pack | |
US9831689B2 (en) | Battery cell balancing method | |
JP6332924B2 (ja) | セルバランシング回路およびこれを用いたセルバランシング方法 | |
JP7100002B2 (ja) | 電池制御ユニットおよび電池システム | |
JP5461482B2 (ja) | 電池システム | |
US20170310120A1 (en) | Electrical energy storage device | |
JP5859341B2 (ja) | 電圧均等化装置及び方法並びにプログラム、それを備えた電力貯蔵システム | |
JP6102746B2 (ja) | 蓄電池装置および充電制御方法 | |
JP2009081981A (ja) | 充電状態最適化装置及びこれを具えた組電池システム | |
JP2011083182A (ja) | 複数の電池セル間のエネルギー均衡を用いる電池管理システム | |
WO2012157747A1 (ja) | 組電池の制御方法及び制御装置 | |
WO2013114696A1 (ja) | 均等化装置 | |
JP2023526829A (ja) | バッテリー制御装置、バッテリーシステム、電源供給システム及びバッテリー制御方法 | |
JP5314626B2 (ja) | 電源システム、放電制御方法および放電制御プログラム | |
KR20110117992A (ko) | 배터리 충전 시스템 및 그것의 충전 방법 | |
WO2012126139A1 (zh) | 一种平衡蓄电池组中各电池放电的方法和装置 | |
JP2013094033A (ja) | 蓄電装置及び電力供給システム | |
CN112234266B (zh) | 一种均衡电池组系统的电池单体电压的装置 | |
CN108432085B (zh) | 平衡电池充电系统 | |
JP2002135989A (ja) | 蓄電池の充放電制御方法 | |
KR101915183B1 (ko) | 공통 버스를 이용한 액티브 셀 밸런싱의 기준 soc 설정 및 동작 장치 및 방법 | |
CN114204648A (zh) | 并联电池簇状态管理方法及系统 | |
KR101567423B1 (ko) | 소형 다중 권선 변압기를 이용한 ess용 액티브 배터리 관리 시스템용 균등 제어장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14774225 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015508653 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14780930 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14774225 Country of ref document: EP Kind code of ref document: A1 |