WO2014030438A1 - コークス炉の温度制御装置およびコークス炉の温度制御方法 - Google Patents

コークス炉の温度制御装置およびコークス炉の温度制御方法 Download PDF

Info

Publication number
WO2014030438A1
WO2014030438A1 PCT/JP2013/068053 JP2013068053W WO2014030438A1 WO 2014030438 A1 WO2014030438 A1 WO 2014030438A1 JP 2013068053 W JP2013068053 W JP 2013068053W WO 2014030438 A1 WO2014030438 A1 WO 2014030438A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
furnace group
furnace
coke oven
fuel gas
Prior art date
Application number
PCT/JP2013/068053
Other languages
English (en)
French (fr)
Inventor
隆 野島
Original Assignee
関西熱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西熱化学株式会社 filed Critical 関西熱化学株式会社
Priority to CN201380044239.2A priority Critical patent/CN104583367A/zh
Publication of WO2014030438A1 publication Critical patent/WO2014030438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B21/00Heating of coke ovens with combustible gases
    • C10B21/10Regulating and controlling the combustion

Definitions

  • the present invention relates to a coke oven temperature control device and a coke oven temperature control method.
  • a plurality of combustion chambers for burning fuel gas and carbonization chambers for containing coal for dry distillation are alternately arranged in the direction of the furnace group.
  • a plurality of (for example, 30 to 100) kilns formed of a combustion chamber and a carbonization chamber are arranged to constitute one furnace group.
  • a heat storage chamber is provided for supplying fuel gas and air to the combustion chamber for combustion.
  • fire-off time which is the time from when coal is charged into the carbonization chamber to the time when coal dry distillation is completed (hereinafter referred to as fire-down), naturally changes depending on the amount of heat supplied. For this reason, it is necessary to control the supply amounts of the fuel gas and air so that the target burn-out time suitable for the production plan is reached.
  • the supply of fuel gas and air is usually controlled by the entire furnace group.
  • the temperature of each kiln is measured, the temperature of the entire furnace group is estimated from the measured temperatures at a plurality of locations, and the target fire drop time is calculated.
  • the supply amount of fuel gas and air supplied to the entire furnace group is controlled on the basis of a target furnace group temperature predetermined corresponding to the above and a furnace group actual temperature based on actual measurement.
  • the method for measuring the temperature for each kiln in the above is unknown, for example, it is considered to manually measure the temperature of the furnace wall in the combustion chamber using a temperature detection device through a peephole formed in the upper portion of the combustion chamber. It is done.
  • An object of the present invention is to provide a temperature control device and a temperature control method for a coke oven that solve the above-mentioned problems.
  • the temperature control device for a coke oven of the present invention a plurality of combustion chambers for burning fuel gas and carbonization chambers for containing coal to be carbonized are alternately arranged, and the combustion chamber and the carbonization chamber A device for controlling the temperature of a coke oven in which a plurality of formed kilns are arranged to form one furnace group, A furnace group temperature detection unit for detecting the furnace group temperature, a fuel gas valve for changing the flow rate of the fuel gas supplied to the entire furnace group, the actual temperature of the furnace group detected by the furnace group temperature detection unit, and a predetermined target furnace A furnace group temperature control unit that controls the supply amount with the fuel gas valve so that there is no difference with the group temperature,
  • the furnace group temperature detection unit is disposed in at least one combustion chamber and detects a temperature sensor in the combustion chamber separated from the furnace wall, and derives the actual temperature of the furnace group according to the detection result of the temperature sensor. And a furnace group temperature deriving section.
  • the temperature sensors are arranged in at least two combustion chambers, respectively, and the furnace group temperature is derived. It is preferable that the unit derives an average value of each temperature detected by each temperature sensor as the furnace group actual temperature.
  • the temperature sensors are respectively disposed in all the combustion chambers constituting the furnace group.
  • the present invention can also be specified as a method. That is, in the temperature control method for a coke oven of the present invention, a plurality of combustion chambers for burning fuel gas and carbonization chambers for containing coal to be carbonized are alternately arranged.
  • the step of detecting the temperature of the furnace group includes a step of detecting an atmosphere temperature in the combustion chamber separated from the furnace wall for at least one combustion chamber using a temperature sensor, and the furnace group performance according to a detection result of the temperature sensor. Deriving the temperature.
  • the step of detecting the temperature of the raw gas generated from each carbonization chamber, and the burning state for each carbonization chamber based on the detected temperature According to the step of determining whether or not, the step of calculating the fire-down time required from the input of coal to the fire-down state when it is determined that it is in a fire-down state, and the fire-down time of each carbonization chamber It is desirable to further include the step of changing the target furnace group temperature.
  • the distribution ratio of the fuel gas to each combustion chamber is changed according to the burn-out time so that the burn-out temperature of each carbonization chamber becomes uniform. It is preferable.
  • the perspective view which shows typically the coke oven which is a control object of the temperature control apparatus of one Embodiment of this invention in a partial cross section.
  • the cross-sectional view which shows a coke oven typically.
  • the figure which shows typically the temperature control apparatus of a coke oven and a coke oven.
  • the block diagram which shows a temperature control apparatus. Explanatory drawing regarding the general temperature change of the raw gas discharged
  • the coke oven is composed of refractory bricks, and a plurality of combustion chambers 1 for burning fuel gas and carbonization chambers 2 for storing coal to be carbonized are alternately arranged in the furnace group direction WD. Yes.
  • the combustion chamber 1 and the carbonization chamber 2 have a predetermined height in the furnace height direction HD and a predetermined length in the furnace length direction DD.
  • a plurality of (for example, 30 to 100) kilns formed by the combustion chamber 1 and the carbonization chamber 2 are arranged to constitute one furnace group.
  • the inside of the combustion chamber 1 is visible through a viewing hole 10 provided in the upper part.
  • the carbonization chamber 2 is charged with coal from a charging hole 20 provided in the upper portion by a charcoal vehicle.
  • the carbonization chamber 2 is heated from the adjacent combustion chamber (1100 to 1350 ° C.) through the furnace wall, and coal is carbonized at a temperature of about 1000 ° C. to produce coke. As shown in FIG. 2, the manufactured coke is pushed out of the carbonization chamber 2 by an unillustrated extruder by opening the furnace lid 21 provided in front of the carbonization chamber 2.
  • the combustion chamber 1 is divided into a plurality of chambers 1a along a furnace length direction DD orthogonal to the furnace group direction WD, and fuel gas is jetted to the bottom of each chamber 1a.
  • Gas holes and air holes (not shown) for ejecting or sucking air are provided.
  • the gas hole of each chamber 1 a is connected to the fuel sub-pipe 11, and the fuel sub-pipe 11 is connected to the fuel main pipe 12, and the fuel gas supplied to the fuel main pipe 12 is The fuel is supplied to each branched fuel sub pipe 11 and is supplied from each fuel sub pipe 11 to each chamber 1a.
  • the fuel main pipe 12 is supplied with fuel gas via a fuel gas flow meter 13 and a fuel gas valve 14.
  • a first distribution adjusting unit 15 is provided between the fuel main pipe 12 and each fuel sub pipe 11.
  • a second distribution adjusting unit 16 is provided between the fuel sub pipe 11 and each room 1a.
  • the first distribution adjusting unit 15 uses a valve or an orifice, for example, and is used to adjust the ratio of distributing the fuel gas supplied to the fuel main pipe 12 to each fuel sub pipe 11.
  • the second distribution adjustment unit 16 is similar to the first distribution adjustment unit 15 and is used to adjust the ratio of distributing the fuel gas supplied to the fuel sub-pipe 11 to each room 1a.
  • an air supply amount adjustment unit 17 for adjusting the air supply amount supplied from the air hole is provided.
  • the air supply amount adjusting unit 17 and the fuel gas valve 14 are driven by a furnace group temperature control unit 5 described later.
  • a heat storage chamber (not shown) as a heat exchanger is provided below the combustion chamber 1.
  • the heat storage chamber takes heat from the exhaust gas discharged from the combustion chamber and goes to the chimney 22 to store heat, and preheats the fuel gas and air supplied to the combustion chamber 1.
  • the carbonizing chamber 2 is connected to an ascending pipe 23 for discharging a gas (raw gas) generated by dry distillation of coal.
  • a raw gas temperature detection unit 30 that detects the temperature of the raw gas generated during dry distillation is provided at the top of the ascending pipe 23.
  • the temperature control device for the coke oven includes a furnace group temperature detection unit 4 that detects the furnace group temperature, a fuel gas valve 14 that changes the flow rate of the fuel gas supplied to the entire furnace group, A furnace group temperature control unit 5 that controls the supply amount by the fuel gas valve 14 so that the difference between the furnace group actual temperature T 2 detected by the furnace group temperature detection unit 4 and the predetermined target furnace group temperature T 0 is eliminated. I have.
  • the furnace group temperature detection unit 4 is arranged in at least one combustion chamber 1 and detects a temperature sensor 40 that detects an atmospheric temperature in the combustion chamber separated from the furnace wall. And a furnace group temperature deriving unit 41 for deriving the actual furnace group temperature according to the detection result of the temperature sensor 40.
  • the temperature sensor 40 uses a thermocouple, and is arranged so that the detection portion at the tip is at a certain height position (for example, about 1.5 m) from the combustion chamber ceiling.
  • the temperature sensors 40 are provided in association with all the combustion chambers 1, respectively.
  • the detection result of the temperature sensor 40 is transmitted to a computer CP provided in an operation room for controlling the coke oven.
  • the furnace group temperature deriving unit 41 and the furnace group temperature control unit 5 are realized in cooperation with hardware resources by executing a predetermined program. As shown in FIG.
  • the furnace group temperature detection unit 4 averages the temperature sensor 40 that detects the atmospheric temperature of each combustion chamber 1 as the combustion chamber actual temperature T 1 and averages all the combustion chamber actual temperatures T 1. and a furnace group temperature deriving unit 41 for calculating the Dan actual temperature T 2.
  • the furnace group temperature calculated by the furnace group temperature deriving unit 41 is used in the furnace group temperature control unit 5 described above.
  • the furnace group temperature control unit 5 determines the amount of fuel gas based on the difference between the heat quantity (gas parameter) of the unit amount of fuel gas and the target furnace group temperature T 0 and the actual furnace group temperature T 2 . Calculate the amount to be supplied. Then, the fuel gas valve 14 is driven via the gas flow rate control unit 51 so that the flow rate of the fuel gas supplied to the fuel main pipe 12 becomes the amount to be supplied.
  • the furnace group temperature controller 5 calculates the actual temperature of the furnace group from the temperature (atmosphere temperature) of the combustion chambers 1 of all the furnace groups as well as a part of the temperature as in the furnace wall of the combustion chambers.
  • the amount of heat (fuel gas supply amount) to be input is controlled according to the difference between the actual temperature and the target furnace group temperature.
  • the coke oven temperature control device includes an air flow rate control unit 52 that adjusts the ratio of air to fuel gas.
  • an oxygen concentration detection sensor 53 that detects the oxygen concentration contained in the exhaust gas discharged from each combustion chamber 1 and directed to the chimney 22 is provided.
  • the detection result of the oxygen concentration detection sensor 53 is input to the computer CP.
  • the computer CP implements the air flow rate control unit 52 in cooperation with hardware resources by executing a predetermined program.
  • the air flow rate control unit 52 drives the air supply amount adjustment unit 17 so that the supply amount is such that there is no difference between the target oxygen concentration preset as a parameter and the oxygen concentration detected by the oxygen concentration detection sensor 53. .
  • the target furnace group temperature T 0 set in the temperature control device of the coke oven is calculated by the target furnace group temperature calculation device 6.
  • the target furnace group temperature calculation device 6 is mounted on the computer CP and is a device that supports the scheduling of workers.
  • the target furnace group temperature calculation device 6 includes a kiln target fire-down time calculation unit 60 that calculates a target fire-down time of the kiln so as to meet the operation schedule when operation schedule information including a production amount or the like is input. Furthermore, when coal information (properties, moisture content, etc.) regarding raw coal is input, the target temperature of the kiln to achieve the burn-off time is calculated based on the coal information and the target burn-out time of the kiln.
  • a kiln target temperature calculation unit 61 is provided. Further, a combustion chamber target temperature calculation unit 62 for calculating the target temperature of the combustion chamber is provided so as to meet the predetermined target temperature of the kiln, and the target furnace group temperature calculation for calculating the target furnace group temperature T 0 is provided. A portion 63 is provided. This target furnace group temperature T 0 is set manually or automatically by the operator in the temperature controller of the coke oven.
  • combustion chamber target temperature calculated by the combustion chamber target temperature calculation unit 62 is sequentially recorded in a storage unit (not shown) such as a memory or a database.
  • the atmospheric temperature in the combustion chamber 1 detected by the temperature sensor 40 is sequentially recorded in a storage unit (not shown) such as a memory or a database.
  • the heating management guidance part 7 which presents the information regarding the heating management with respect to an operator on a display (not shown) based on the target temperature of the combustion chamber and the measured actual temperature is provided.
  • the burn-off determination device 3 includes a raw gas temperature detection unit 30 that detects the temperature of the raw gas generated from each of the carbonization chambers 2, and a carbonization chamber based on the detection result of the raw gas temperature detection unit 30. 2 for determining whether or not the coal in 2 is in a fire-down state, and stores the fire-down time for each carbonization chamber 2 when the fire-down determination unit 31 determines that the coal is in a fire-down state. Or it has the fire-down time alerting part 32 which displays a fire-down time through a display.
  • the burn-out determination unit 31 and the burn-out time notification unit 32 are realized by a predetermined program being executed by the computer CP.
  • the temperature of the raw gas changes as shown in FIG. 5 from the charging of the coal to the time when the fire is burned out (completion of dry distillation). This is because when coal dry distillation is progressing toward the center, an almost constant amount of gas is generated, but when dry distillation reaches the center, a large amount of volatile components condensing in the center are blown at once. Gasification increases temperature. When the large amount of volatile components condensed in the central portion is reduced, the temperature of the raw gas is lowered.
  • the present invention utilizes this, and the burn-off determination unit 31 measures the temperature every predetermined time (for example, 1 minute), records the temperature history, and stores the temperature from the stored maximum temperature Tmax to the predetermined temperature (for example, 50). C) Measure the time x until the point of decrease.
  • the coefficient a and the coefficient b are parameters set in advance according to the characteristics of the coke oven.
  • the burn-off determination unit 31 does not perform the determination by the above-described determination formula until the predetermined minimum elapsed time P elapses after the coal is charged, and starts the determination after the predetermined minimum elapsed time P elapses. This determination is based on the premise that the following conditions (1) to (4) are satisfied.
  • the burn-out determination unit 31 is calculated by the burn-out determination unit 31, and stores this in a storage unit (not shown) such as a memory or a database and a display (not shown). Display). Moreover, it displays in the form compared with the last burning time. This makes it possible to see the history of the fire-down time, so that it is possible to know the problem of the furnace. For example, it can be seen that when the fire-off time is shorter than the previous fire-off time, the amount of heat given to the coke oven may be greater than the appropriate amount of heat.
  • ⁇ Method to equalize the burning time> For smooth operation, it is preferable to sequentially extrude a plurality of kilns at regular intervals. However, there may be a case where the fire-out time for each kiln does not become uniform due to temperature variation in the entire combustion chamber. For example, the burning time of one kiln is short, but the burning time of another kiln is long. In this case, since it is necessary to sequentially start the kiln at regular intervals according to the kiln having the longest fire-down time, extra heating is performed on the kiln with the short fire-off time, which wastes energy. .
  • the burning time In order to control the burning time, if the temperature of the entire furnace group is set high to match the kiln with the long burning time so that coke can be produced even in the kiln with the longest burning time, the burning time is short. Excessive heating is performed on the kiln, and energy is wasted.
  • the burning time of each kiln is made uniform by executing the following steps.
  • the distribution ratio of the fuel gas supplied to each chamber 1a is optimized. This is performed by adjusting the second distribution adjusting unit 16 provided in the supply line from the fuel sub pipe 11 to each room 1a.
  • the fuel main pipe 12 to each fuel sub pipe 11 Adjust the fuel gas supply amount. This is performed by adjusting the first distribution adjusting unit 15 provided in the supply line from the fuel main pipe 12 to each fuel sub pipe 11. That is, the step of changing the distribution ratio of the fuel gas to each combustion chamber 1 is executed in accordance with the burn-out time so that the burn-out time of each carbonization chamber 2 is made uniform.
  • ⁇ Energy-saving method by equalizing the burning time> By executing the temperature control by appropriate heating management including the first to third steps, it is possible to equalize the burn-out time of all the kilns. By equalizing the burning time, the quality of coke produced in each kiln can be made uniform. If the burn-off time falls within a certain range and is made uniform, a step of lowering (changing) the target furnace group temperature T 0 according to the burn-out time of each of the carbonization chambers 2 can be executed. Therefore, in the present invention, the target furnace group temperature T 0 that has been set high with a margin can be lowered in the present invention because of the kiln that takes time until the fire burns down, and energy saving and CO 2 reduction can be achieved. It can be realized.
  • the coke oven temperature control apparatus has a plurality of combustion chambers 1 for burning fuel gas and carbonization chambers 2 for containing coal to be carbonized alternately. And a device for controlling the temperature of the coke oven in which a plurality of kilns formed by the carbonizing chamber 2 are arranged to form one furnace group, A furnace group temperature detection unit 4 for detecting the furnace group temperature, a fuel gas valve 14 for changing the flow rate of the fuel gas supplied to the entire furnace group, and a furnace group actual temperature T 2 detected by the furnace group temperature detection unit 4 are determined in advance.
  • a furnace group temperature control unit 5 that controls the supply amount by the fuel gas valve 14 so that the difference from the target furnace group temperature T 0 is eliminated,
  • the furnace group temperature detection unit 4 is disposed in at least one combustion chamber 1 and detects the ambient temperature in the combustion chamber separated from the furnace wall, and the furnace group actual temperature T according to the detection result of the temperature sensor 40.
  • a furnace group temperature deriving unit 41 for deriving 2 is disposed in at least one combustion chamber 1 and detects the ambient temperature in the combustion chamber separated from the furnace wall, and the furnace group actual temperature T according to the detection result of the temperature sensor 40.
  • a furnace group temperature deriving unit 41 for deriving 2 for deriving 2 .
  • the temperature control apparatus of this embodiment performs the following method. That is, in the temperature control method of the coke oven according to the present embodiment, a plurality of combustion chambers 1 for burning fuel gas and carbonization chambers 2 for containing coal to be dry-distilled are alternately arranged.
  • the step of detecting the temperature of the furnace group includes a step of detecting the atmospheric temperature in the combustion chamber 1 separated from the furnace wall with respect to at least one combustion chamber 1 using the temperature sensor 40 and a detection result of the temperature sensor 40. to derive the furnace Orchestra track record temperature T 2 Te and a step.
  • the temperature sensors 40 are respectively disposed in at least two combustion chambers 1, and the furnace group temperature deriving unit 41 calculates the average values of the temperatures detected by the temperature sensors 40 and 40 as the furnace group results. It is derived as the temperature T 2. According to this structure, since the temperature of the whole furnace group can be grasped more appropriately as compared with the case where the temperature sensors are arranged at one place, appropriate temperature control of the entire furnace group can be performed.
  • the temperature sensors 40 are respectively disposed in all the combustion chambers 1 constituting the furnace group, more appropriate temperature control of the entire furnace group is possible.
  • the target furnace group temperature T 0 can be changed to an appropriate temperature according to the fire-off time, and is set higher with a margin as in the conventional case.
  • the target furnace group temperature T 0 can be lowered, and it may be possible to realize energy saving and CO 2 reduction.
  • the step of changing the distribution ratio of the fuel gas to each combustion chamber is executed according to the fire burn time so that the fire burn temperature of each carbonization chamber becomes uniform. More appropriate temperature management becomes possible.
  • a temperature sensor is provided for each combustion chamber 1, but the present invention is not limited to this as long as the atmosphere temperature in the combustion chamber 1 is detected.
  • a heat storage chamber is provided as a heat exchanger for cooling the exhaust gas, exhaust gas from all combustion chambers is passed through the heat storage chamber, and exhaust gas flowing into the heat storage chamber
  • a sensor for detecting temperature may be provided.
  • the temperature of the raw gas discharged from the carbonization chamber 2 is detected for the measurement of the burn-off time.
  • the composition of the raw gas is measured and the change in the composition is detected.
  • the transparency of the raw gas may be measured visually or using a measuring instrument, and it may be determined whether or not the fire has fallen according to the change in transparency.
  • the color of the raw gas may be confirmed visually or with a camera, and it may be determined whether or not the fire has fallen according to the color change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Coke Industry (AREA)

Abstract

炉団温度検出を自動化して、コークス炉の適切な温度制御を提供する。コークス炉の温度制御装置は、燃焼室1と炭化室2とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する装置である。温度制御装置は、炉団温度を検出する炉団温度検出部4と、炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブ14と、炉団温度検出部4で検出した炉団実績温度Tと予め定めた目標炉団温度Tとの差が無くなるように、燃料ガスバルブ14で供給量を制御する炉団温度制御部5とを有する。炉団温度検出部4は、少なくとも一つの燃焼室1に配置され且つ炉壁から離間した燃焼室1内の雰囲気温度を検出する温度センサ40と、温度センサ40の検出結果に応じて炉団実績温度Tを導出する炉団温度導出部41とを有する。

Description

コークス炉の温度制御装置およびコークス炉の温度制御方法
 本発明は、コークス炉の温度制御装置およびコークス炉の温度制御方法に関する。
 一般的にコークス炉は、燃料ガスを燃焼させるための燃焼室と、乾留させる石炭を入れるための炭化室とが炉団方向に交互に複数配置されている。燃焼室と炭化室とで形成される窯が複数(例えば30~100門)配列されて一つの炉団を構成している。各々の燃焼室の下部には、燃焼室に燃料ガスと空気とを供給して燃焼させるための蓄熱室が設けられている。燃焼室において燃料ガスと空気とが燃焼することによって、燃焼室に隣接する炭化室にある石炭に炉壁を通じて熱が供給され、石炭の乾留が行われて、コークスが生成される。
 炭化室へ石炭を装入する時点から石炭の乾留が完了する時点(以下火落ちという)までの時間であるいわゆる火落ち時間は、当然ながら供給する熱量に応じて変化する。そのため、生産計画に合った目標火落ち時間になるように、燃料ガス及び空気の供給量を制御する必要がある。
 コークス炉では、燃料ガス及び空気の供給量を炉団全体で制御するのが通例である。例えば、特許文献1の段落0003では、燃料ガス及び空気の供給量を制御するために、窯毎の温度を計測し、複数箇所の計測温度から炉団全体の温度を推定し、目標火落ち時間に対応して予め定めた目標炉団温度と、実測に基づく炉団実績温度とに基づいて、炉団全体に供給する燃料ガス及び空気の供給量を制御することが開示されている。上記における窯毎の温度の計測方法は不明であるが、例えば燃焼室内の炉壁の温度を、燃焼室上部に形成されたのぞき穴を介して温度検出装置を用いて人手で計測することが考えられる。
特開平10-140161号公報
 しかしながら、上記のように炉の温度を人手で測定するのは、常時計測するのが難しいうえ、人為的なミスを生じさせるおそれがあるため、自動化が求められる。自動化にあたり、温度センサを燃焼室内の炉壁に接触させて炉壁の温度を検出するように配置することが考えられる。ところが、燃焼室内の炉壁は、石炭の投入やコークスの押出しに伴う隣接する炭化室から受ける熱の影響が大きく、炉壁の温度低下が大きいため、燃料ガス及び空気の供給量を制御する際に過昇温となり、耐火煉瓦が溶融するおそれがある。
 本発明の目的は、上記課題を解決するコークス炉の温度制御装置および温度制御方法を提供することである。
 本発明は、かかる目的を達成するために、次のような手段を講じたものである。
 すなわち、本発明のコークス炉の温度制御装置は、燃料ガスを燃焼させるための燃焼室と、乾留させる石炭を入れるための炭化室とが交互に複数配列され、前記燃焼室と前記炭化室とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する装置であって、
 炉団温度を検出する炉団温度検出部と、前記炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブと、前記炉団温度検出部で検出した炉団実績温度と予め定めた目標炉団温度との差が無くなるように、前記燃料ガスバルブで供給量を制御する炉団温度制御部とを備え、
 前記炉団温度検出部は、少なくとも一つの燃焼室に配置され且つ炉壁から離間した燃焼室内の雰囲気温度を検出する温度センサと、前記温度センサの検出結果に応じて前記炉団実績温度を導出する炉団温度導出部とを有することを特徴とする。
 このように、炉壁から離間した燃焼室内の雰囲気温度を検出するので、隣接する炭化室からの熱影響を低減した適切な温度検出を実現できる。よって、適切な温度検出によりコークス炉の適切な温度制御が可能となる。
 温度センサを一箇所に配置している場合に比して炉団全体の温度をより適切に把握するためには、前記温度センサは、少なくとも2つの燃焼室にそれぞれ配置され、前記炉団温度導出部は、各々の温度センサが検出した各温度の平均値を前記炉団実績温度として導出することが好ましい。
 炉団全体でのより適切な温度制御を可能にするためには、前記温度センサは、炉団を構成する全ての燃焼室にそれぞれ配置されていることがより好ましい。
 本発明は、方法としても特定できる。すなわち、本発明のコークス炉の温度制御方法は、燃料ガスを燃焼させるための燃焼室と、乾留させる石炭を入れるための炭化室とが交互に複数配列され、前記燃焼室と前記炭化室とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する方法であって、
 炉団温度を検出するステップと、
 前記ステップで検出した炉団実績温度と予め定めた目標炉団温度との差が無くなるように、前記炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブを制御するステップとを有し、
 前記炉団温度を検出するステップは、少なくとも一つの燃焼室について炉壁から離間した燃焼室内の雰囲気温度を温度センサを用いて検出するステップと、前記温度センサの検出結果に応じて前記炉団実績温度を導出するステップとを含むことを特徴とする。
 この方法を実行することによっても、上記温度制御装置と同様の効果を発揮することが可能である。
 窯の火落ち状態を考慮した適切な温度制御を行うためには、各々の炭化室から発生する生ガスの温度を検出するステップと、検出した温度に基づき各々の炭化室について火落ち状態であるかを判定するステップと、火落ち状態であると判定した場合に石炭の投入から火落ち状態になるまでに要した火落ち時間を算出するステップと、各々の炭化室の火落ち時間に応じて前記目標炉団温度を変更するステップと、を更に含むことが望ましい。
 より適切な温度管理を可能にするには、各々の炭化室の火落ち温度が均一化するように、火落ち時間に応じて各々の燃焼室への燃料ガスの配分割合を変更するステップを有することが好ましい。
本発明の一実施形態の温度制御装置の制御対象であるコークス炉を一部断面で模試的に示す斜視図。 コークス炉を模式的に示す横断面図。 コークス炉及びコークス炉の温度制御装置を模式的に示す図。 温度制御装置を示すブロック図。 炭化室から排出される生ガスの一般的な温度変化に関する説明図。
 以下、本発明の実施形態について図面を参照しながら説明する。
<コークス炉の構造>
 まず、本実施形態の温度制御装置が温度を制御する対象であるコークス炉の構成について説明する。
 図1に示すように、コークス炉は、耐火煉瓦により構成され、燃料ガスを燃焼させるための燃焼室1と、乾留させる石炭を入れる炭化室2とが炉団方向WDに交互に複数配置されている。燃焼室1及び炭化室2は、炉高方向HDに所定高さを有し、炉長方向DDに所定長さを有する。燃焼室1と炭化室2とで形成される窯が複数(例えば30~100門)配列されて一つの炉団を構成している。燃焼室1の内部は、上部に設けられたのぞき穴10を介して視認可能である。炭化室2には、上部に設けられた装入孔20から装炭車により石炭が装入される。炭化室2は、隣接する燃焼室(1100~1350℃)から炉壁を介して加熱され、石炭が1000℃位の温度で乾留され、コークスが製造される。製造されたコークスは、図2に示すように、炭化室2の前方に設けられた炉蓋21を開き、図示しない押出機により炭化室2から押し出される。
 燃焼室1は、図2に示すように、炉団方向WDに直交する炉長方向DDに沿って複数の部屋1aに区画されており、各々の部屋1aの底部には、燃料ガスを噴出するガス孔と、空気を噴出又は吸気するためのエア孔(図示せず)とが設けられている。図3に示すように、各々の部屋1aのガス孔は燃料副管11に接続されており、燃料副管11は、燃料主管12に接続されており、燃料主管12に供給された燃料ガスが分岐した各々の燃料副管11に供給され、各々の燃料副管11から各々の部屋1aに供給される。燃料主管12は、燃料ガス流量計13及び燃料ガスバルブ14を介して燃料ガスが供給される。燃料ガスバルブ14の開度を変更することにより、炉団全体へ供給される燃料ガスの流量を変更することができる。燃料主管12と各々の燃料副管11との間には、第一の配分調整部15が設けられている。燃料副管11と各々の部屋1aとの間には、第二の配分調整部16がそれぞれ設けられている。第一の配分調整部15は、例えばバルブやオリフィスを用いたもので、燃料主管12に供給された燃料ガスを各々の燃料副管11に配分する割合を調整するために用いられる。第二の配分調整部16は、第一の配分調整部15と同様で、燃料副管11に供給された燃料ガスを各々の部屋1aに配分する割合を調整するために用いられる。また、エア孔から供給するエア供給量を調整するためのエア供給量調整部17が設けられている。エア供給量調整部17および燃料ガスバルブ14は、後述する炉団温度制御部5により駆動する。燃焼室1の下方には、熱交換器としての蓄熱室(図示せず)が設けられている。蓄熱室は、燃焼室から排出され煙突22に向かう排気ガスから熱を奪い蓄熱するとともに、燃焼室1に供給される燃料ガス及び空気を予熱する。
 図3に示すように、炭化室2には、石炭の乾留により発生するガス(生ガス)を排出する上昇管23が接続されている。上昇管23の頂部には、乾留中に発生する生ガスの温度を検出する生ガス温度検出部30が設けられている。
<温度制御装置>
 コークス炉の温度制御装置は、図3及び図4に示すように、炉団温度を検出する炉団温度検出部4と、炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブ14と、炉団温度検出部4で検出した炉団実績温度Tと予め定めた目標炉団温度Tとの差が無くなるように、燃料ガスバルブ14で供給量を制御する炉団温度制御部5とを備えている。
 炉団温度を検出する手段として、パイロメータや放射温度計等の温度センサを用いて人手で燃焼室内の炉壁表面温度を検出する方法が考えられるが、常時計測するのが難しいうえ、人為的なミスを生じるおそれがある。そこで、本発明では、炉団温度の検出を自動化している。具体的には、炉団温度を自動で検出するために、炉団温度検出部4は、少なくとも一つの燃焼室1に配置され且つ炉壁から離間した燃焼室内の雰囲気温度を検出する温度センサ40と、温度センサ40の検出結果に応じて炉団実績温度を導出する炉団温度導出部41とを有する。温度センサ40は、熱電対を用いたもので、先端にある検出部が燃焼室天井から一定の高さ位置(例えば、約1.5m)になるように配置されている。本実施形態では、全ての燃焼室1内の雰囲気温度を個別に検出するために、温度センサ40を全ての燃焼室1に対応付けてそれぞれ設けている。温度センサ40の検出結果は、コークス炉を制御するための操作室に設けられたコンピュータCPに送信される。このコンピュータCPでは、所定のプログラムが実行されることによりハードウェア資源と協働して上記炉団温度導出部41及び炉団温度制御部5が実現される。図4に示すように、炉団温度検出部4は、各燃焼室1の雰囲気温度を燃焼室実績温度Tとして検出する温度センサ40と、全ての燃焼室実績温度Tを平均して炉団実績温度Tを算出する炉団温度導出部41とを有する。炉団温度導出部41が算出した炉団温度は、上記の炉団温度制御部5で用いられる。
 図4に示すように、炉団温度制御部5は、単位量の燃料ガスの熱量(ガスパラメータ)と、目標炉団温度Tと炉団実績温度Tとの差に基づき、燃料ガスの供給すべき量を算出する。そして、燃料主管12へ供給される燃料ガスの流量が上記供給すべき量となるように、ガス流量制御部51を介して燃料ガスバルブ14を駆動する。
 ここで、石炭の乾留に影響する燃焼室の温度は、時間の経過に応じて変化するとともに、両側に隣接する炭化室の乾留状態に影響を受ける。このため、炉団温度制御部5は、燃焼室の炉壁のように一部分の温度だけではなく、炉団すべての燃焼室1の温度(雰囲気温度)から炉団実績温度を計算し、炉団実績温度と目標炉団温度との差に応じて投入すべき熱量(燃料ガスの供給量)を制御している。
<空気流量制御>
 また、燃料ガスの適切な燃焼を実現するために、コークス炉の温度制御装置は、燃料ガスに対する空気の比率を調整する空気流量制御部52を有する。具体的には、図3及び図4に示すように、各々の燃焼室1から排出され煙突22に向かう排気ガスに含まれる酸素濃度を検出する酸素濃度検出センサ53を設けている。酸素濃度検出センサ53の検出結果は、上記コンピュータCPに入力される。コンピュータCPは、所定のプログラムを実行することによりハードウェア資源と協働して空気流量制御部52を実現する。空気流量制御部52は、予めパラメータとして設定された目標酸素濃度と、上記酸素濃度検出センサ53で検出した酸素濃度との差が無くなる供給量になるように、エア供給量調整部17を駆動する。
<目標炉団温度の決定>
 コークス炉の温度制御装置に設定される目標炉団温度Tは、目標炉団温度算出装置6により算出される。目標炉団温度算出装置6は、コンピュータCPに実装されており、作業者のスケジューリングを支援する装置である。目標炉団温度算出装置6は、生産量などを含む操業スケジュール情報が入力されると、操業スケジュールに合うように窯の目標火落ち時間を算出する窯目標火落ち時間算出部60を有する。さらに、原料の石炭に関する石炭情報(性状、水分含有量など)が入力されると、石炭情報と窯の目標火落ち時間とに基づき、火落ち時間を達成するための窯の目標温度を算出する窯目標温度算出部61が設けられている。さらに、窯の予め定めた目標温度に合うように、燃焼室の目標温度を算出する燃焼室目標温度算出部62が設けられているとともに、目標炉団温度Tを算出する目標炉団温度算出部63が設けられている。この目標炉団温度Tは、作業者により手動で又は自動でコークス炉の温度制御装置に設定される。
 なお、燃焼室目標温度算出部62により算出された燃焼室の目標温度は、メモリやデータベースなどの記憶部(図示せず)に逐次記録されている。同様に、温度センサ40で検出した燃焼室1内の雰囲気温度は、メモリやデータベースなどの記憶部(図示せず)に逐次記録されている。さらに、燃焼室の目標温度と、計測した実績温度とに基づいて作業者に対する加熱管理に関する情報をディスプレイ(図示せず)に提示する加熱管理ガイダンス部7が設けられている。
<火落ち時間の判定>
 さらに、石炭の装入から乾留の完了までの時間である火落ち時間を計測するために、図3に示すように、火落ち判定装置3が設けられている。火落ち判定装置3は、図3に示すように、各々の炭化室2から発生する生ガスの温度を検出する生ガス温度検出部30と、生ガス温度検出部30の検出結果に基づき炭化室2にある石炭が火落ち状態であるか否かを判定する火落ち判定部31と、火落ち判定部31において火落ち状態であると判定されたときに炭化室2毎に火落ち時間を記憶又はディスプレイを通じて火落ち時間を表示する火落ち時間報知部32とを有する。火落ち判定部31及び火落ち時間報知部32は、上記コンピュータCPにより所定プログラムが実行されることにより実現される。
 生ガスの温度は、石炭の装入から火落ち(乾留完了)するまでの間に、図5に示すように変化する。これは、石炭の乾留が中央部に向けて進行しているときは、ほぼ一定量のガスが発生するが、乾留が中心部に到達すると、中心部に凝縮していた大量の揮発成分が一気にガス化して温度が上昇する。中央部の凝縮していた大量の揮発成分が少なくとなると、生ガスの温度が低下する。本発明は、これを利用したもので、火落ち判定部31は、所定時間(例えば1分)毎に温度を計測し、温度の履歴を記録し、記憶した最高温度Tmaxから所定温度(例えば50℃)低下した時点までの時間xを計測する。そして、時間xを特定した時点で判定式:y=ax+b により火落ち時間yを算出する。係数a及び係数bは、コークス炉の特性により予め設定されたパラメータである。火落ち判定部31は、石炭の装入後、所定の最低経過時間Pを経過するまでは上記判定式による判定を行わず、所定の最低経過時間Pを経過したあとに判定を開始する。その判定では、次の条件(1)~(4)を満たすことが前提となる。条件(1):装入から判定時点までの時間≧最低経過時間P条件(2):生ガス温度≦温度上限値R条件(3):生ガス温度≧温度下限値Q条件(4):火落ち時間(y)≧最低火落ち時間T
 図3に示す火落ち時間報知部32は、火落ち判定部31により火落ち時間が算出されると、これをメモリやデータベースなどの記憶部(図示せず)に記憶するとともに、ディスプレイ(図示せず)に表示する。また、前回の火落ち時間と比較する形で表示する。これにより、火落ち時間の履歴を見ることができるので、炉の問題点を知ることが可能となる。例えば、前回の火落ち時間に比して火落ち時間が短いときは、コークス炉に与える熱量が適正熱量よりも大きいおそれがあることが分かる。
<火落ち時間を均一化する方法>
 円滑な操業のためには、複数の窯を一定の間隔毎に順次押出しすることが好ましい。ところが、燃焼室全体での温度のバラツキなどの原因により窯毎の火落ち時間が均一にならない場合がある。例えば、或る窯の火落ち時間は短いものの、他の或る窯の火落ち時間が長くなることが挙げられる。この場合、最も火落ち時間が長い窯に合わせた一定の間隔で順次窯出ししなければならないので、火落ち時間が短い窯に対しては余分な加熱を行うことになり、エネルギーの無駄になる。また、火落ち時間のコントロールのために、最も火落ち時間が長い窯でもコークスが製造できるように、炉団全体の温度を火落ち時間が長い窯に合わせて高く設定すると、火落ち時間が短い窯に対しては余分な加熱を行うことになり、エネルギーの無駄となる。
 そこで、本発明では、次の工程を実行することで、各々の窯の火落ち時間を均一化している。まず、第1に、一つの燃焼室における炉高方向HDの熱分布を適切化するために、燃焼室1を構成する部屋1a毎に、燃料ガスに対する空気比率を適正化するステップを実行する。
 第2に、複数の部屋1aで構成される一つの燃焼室1全体での温度を炉長方向DDで均一化するために、各々の部屋1aに供給する燃料ガスの配分割合を適正化する。これは、燃料副管11から各々の部屋1aに至る供給ラインに設けられた第二の配分調整部16を調整することで行う。
 第3に、各々の窯(炭化室2)の火落ち時間を上記火落ち判定装置3により計測し、火落ち時間のバラツキを均一化するために、燃料主管12から各々の燃料副管11への燃料ガス供給量の調整を行う。これは、燃料主管12から各々の燃料副管11に至る供給ラインに設けられた第一の配分調整部15を調整することで行う。すなわち、各々の炭化室2の火落ち時間が均一化するように、火落ち時間に応じて各々の燃焼室1への燃料ガスの配分割合を変更するステップを実行している。
<火落ち時間の均一化による省エネ方法>
 上記第1~第3のステップを含む適切な加熱管理による温度制御を実行することにより、全ての窯の火落ち時間を均一化できる。火落ち時間が均一化することで、各々の窯で生産されるコークスの品質が均一化できる。火落ち時間がある範囲内に収まり均一化されれば、各々の炭化室2の火落ち時間に応じて目標炉団温度Tを下げる(変更する)ステップを実行できる。したがって、従来は火落ちまで時間のかかる窯のために、余裕を見て高めに設定していた目標炉団温度Tを、本発明においては下げることができ、省エネルギーとCOの削減とを実現することが可能となる。
 以上のように、本実施形態のコークス炉の温度制御装置は、燃料ガスを燃焼させるための燃焼室1と、乾留させる石炭を入れるための炭化室2とが交互に複数配列され、燃焼室1と炭化室2とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する装置であって、
 炉団温度を検出する炉団温度検出部4と、炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブ14と、炉団温度検出部4で検出した炉団実績温度Tと予め定めた目標炉団温度Tとの差が無くなるように、燃料ガスバルブ14で供給量を制御する炉団温度制御部5とを備え、
 炉団温度検出部4は、少なくとも一つの燃焼室1に配置され且つ炉壁から離間した燃焼室内の雰囲気温度を検出する温度センサ40と、温度センサ40の検出結果に応じて炉団実績温度Tを導出する炉団温度導出部41とを有する。
 本実施形態の温度制御装置は、次の方法を実行する。すなわち、本実施形態のコークス炉の温度制御方法は、燃料ガスを燃焼させるための燃焼室1と、乾留させる石炭を入れるための炭化室2とが交互に複数配列され、燃焼室1と炭化室2とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する方法であって、
 炉団温度を検出するステップと、
 前記ステップで検出した炉団実績温度Tと予め定めた目標炉団温度Tとの差が無くなるように、炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブ14を制御するステップとを有し、
 前記炉団の温度を検出するステップは、少なくとも一つの燃焼室1について炉壁から離間した燃焼室1内の雰囲気温度を温度センサ40を用いて検出するステップと、温度センサ40の検出結果に応じて炉団実績温度Tを導出するステップとを含む。
 このように、炉壁から離間した燃焼室1内の雰囲気温度を検出するので、隣接する炭化室からの熱影響が低減され適切な温度検出を実現できる。よって、適切な温度検出によりコークス炉の適切な温度制御が可能となる。
 特に、本実施形態では、温度センサ40は、少なくとも2つの燃焼室1にそれぞれ配置され、炉団温度導出部41は、各々の温度センサ40・40が検出した各温度の平均値を炉団実績温度Tとして導出する。この構成によれば、温度センサを一箇所に配置している場合に比して炉団全体の温度をより適切に把握できるので、炉団全体の適切な温度制御が可能となる。
 さらに、本実施形態では、温度センサ40は、炉団を構成する全ての燃焼室1にそれぞれ配置されているので、より適切な炉団全体の温度制御が可能となる。
 さらに、本実施形態では、各々の炭化室2から発生する生ガスの温度を生ガス温度検出部30を用いて検出するステップと、
 検出した温度に基づき各々の炭化室2について火落ち状態であるかを火落ち判定部31が判定するステップと、
 火落ち判定部31が火落ち状態であると判定した場合に石炭の投入から火落ち状態になるまでに要した火落ち時間を算出するステップと、
 各々の炭化室2の火落ち時間に応じて目標炉団温度Tを変更するステップと、を実行している。この方法によれば、火落ち時間が均一化されれば、火落ち時間に応じた適切な温度に目標炉団温度Tを変更でき、従来のように余裕を見て高めに設定していた目標炉団温度Tを下げることができ、省エネルギーとCOの削減とを実現することが可能となる場合がある。
 さらに、本実施形態では、各々の炭化室の火落ち温度が均一化するように、火落ち時間に応じて各々の燃焼室への燃料ガスの配分割合を変更するステップを実行しているので、より適切な温度管理が可能となる。
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではない。本発明の範囲は、上記した実施形態の説明だけではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 <他の実施形態>
 例えば、本実施形態では、燃焼室1毎に温度センサを設けているが、燃焼室1内の雰囲気温度を検出する構成であれば、これに限定されない。また、温度検出の他の方法としては、例えば、排気ガスを冷却する熱交換器としての蓄熱室を設け、全ての燃焼室からの排気ガスを蓄熱室に通し、蓄熱室に流入する排気ガスの温度を検出するセンサを設けることが挙げられる。
 本実施形態では、火落ち時間の測定のために、炭化室2から排出される生ガスの温度を検出しているが、例えば、生ガスの組成物を計測し、組成物の変化に応じて火落ちであるか否かを判定してもよい。また、生ガスの透明度を目視又は計測器を用いて計測し、透明度の変化に応じて火落ちであるか否かを判定してもよい。また、生ガスの色を目視又はカメラで確認し、色の変化に応じて火落ちであるか否かを判定してもよい。生ガスの流量を測定し、流量の変化に応じて火落ちであるか否かを判定してもよい。
 上記の各実施形態で採用している構造を他の任意の実施形態に採用することは可能である。各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 1  燃焼室
 14 燃料ガスバルブ
 2  炭化室
 4  炉団温度検出部
 40 温度センサ
 41 炉団温度導出部
 5  炉団温度制御部

Claims (6)

  1.  燃料ガスを燃焼させるための燃焼室と、乾留させる石炭を入れるための炭化室とが交互に複数配列され、前記燃焼室と前記炭化室とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する装置であって、
     炉団温度を検出する炉団温度検出部と、前記炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブと、前記炉団温度検出部で検出した炉団実績温度と予め定めた目標炉団温度との差が無くなるように、前記燃料ガスバルブで供給量を制御する炉団温度制御部とを備え、
     前記炉団温度検出部は、少なくとも一つの燃焼室に配置され且つ炉壁から離間した燃焼室内の雰囲気温度を検出する温度センサと、前記温度センサの検出結果に応じて前記炉団実績温度を導出する炉団温度導出部とを有することを特徴とするコークス炉の温度制御装置。
  2.  前記温度センサは、少なくとも2つの燃焼室にそれぞれ配置され、前記炉団温度導出部は、各々の温度センサが検出した各温度の平均値を前記炉団実績温度として導出する請求項1に記載のコークス炉の温度制御装置。
  3.  前記温度センサは、炉団を構成する全ての燃焼室にそれぞれ配置されている請求項2に記載のコークス炉の温度制御装置。
  4.  燃料ガスを燃焼させるための燃焼室と、乾留させる石炭を入れるための炭化室とが交互に複数配列され、前記燃焼室と前記炭化室とで形成される窯が複数配列されて一つの炉団が構成されるコークス炉の温度を制御する方法であって、
     炉団温度を検出するステップと、
     前記ステップで検出した炉団実績温度と予め定めた目標炉団温度との差が無くなるように、前記炉団全体へ供給する燃料ガスの流量を変更する燃料ガスバルブを制御するステップとを有し、
     前記炉団温度を検出するステップは、少なくとも一つの燃焼室について炉壁から離間した燃焼室内の雰囲気温度を温度センサを用いて検出するステップと、前記温度センサの検出結果に応じて前記炉団実績温度を導出するステップとを含むことを特徴とするコークス炉の温度制御方法。
  5.  各々の炭化室から発生する生ガスの温度を検出するステップと、
     検出した温度に基づき各々の炭化室について火落ち状態であるかを判定するステップと、
     火落ち状態であると判定した場合に石炭の投入から火落ち状態になるまでに要した火落ち時間を算出するステップと、
     各々の炭化室の火落ち時間に応じて前記目標炉団温度を変更するステップと、を更に含む請求項4に記載のコークス炉の温度制御方法。
  6.  各々の炭化室の火落ち温度が均一化するように、火落ち時間に応じて各々の燃焼室への燃料ガスの配分割合を変更するステップを有する請求項5に記載のコークス炉の温度制御方法。
PCT/JP2013/068053 2012-08-23 2013-07-01 コークス炉の温度制御装置およびコークス炉の温度制御方法 WO2014030438A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380044239.2A CN104583367A (zh) 2012-08-23 2013-07-01 炼焦炉的温度控制装置和炼焦炉的温度控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-184501 2012-08-23
JP2012184501A JP2014040546A (ja) 2012-08-23 2012-08-23 コークス炉の温度制御装置およびコークス炉の温度制御方法

Publications (1)

Publication Number Publication Date
WO2014030438A1 true WO2014030438A1 (ja) 2014-02-27

Family

ID=50149753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068053 WO2014030438A1 (ja) 2012-08-23 2013-07-01 コークス炉の温度制御装置およびコークス炉の温度制御方法

Country Status (3)

Country Link
JP (1) JP2014040546A (ja)
CN (1) CN104583367A (ja)
WO (1) WO2014030438A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028823A (zh) * 2021-03-16 2021-06-25 清远市天域陶瓷有限公司 一种烧制陶瓷的加热系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105938378A (zh) * 2016-05-20 2016-09-14 江苏盈丰智能工程科技有限公司 一种用于煤干馏工艺过程的控制装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212201A (en) * 1975-07-21 1977-01-29 Nippon Kokan Kk <Nkk> Method for controlling burning of fuel gas in coke furnace
JPS55129484A (en) * 1979-03-28 1980-10-07 Sumitomo Metal Ind Ltd Method for measuring temperature of coke oven
JPS6035082A (ja) * 1983-08-05 1985-02-22 Nippon Steel Corp コ−クス炉の燃焼制御方法
JPH10153488A (ja) * 1996-11-21 1998-06-09 Sumitomo Metal Ind Ltd コークス炉燃焼室の温度測定装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372622B (zh) * 2007-08-20 2011-12-28 尚文彬 焦炉加热自动控制方法
CN102408899A (zh) * 2011-09-19 2012-04-11 山西平遥峰岩煤焦集团有限公司 立式热回收焦炉助燃空气自动控制系统
CN102517043A (zh) * 2011-11-12 2012-06-27 太原煤气化股份有限公司 焦炉加热温控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212201A (en) * 1975-07-21 1977-01-29 Nippon Kokan Kk <Nkk> Method for controlling burning of fuel gas in coke furnace
JPS55129484A (en) * 1979-03-28 1980-10-07 Sumitomo Metal Ind Ltd Method for measuring temperature of coke oven
JPS6035082A (ja) * 1983-08-05 1985-02-22 Nippon Steel Corp コ−クス炉の燃焼制御方法
JPH10153488A (ja) * 1996-11-21 1998-06-09 Sumitomo Metal Ind Ltd コークス炉燃焼室の温度測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113028823A (zh) * 2021-03-16 2021-06-25 清远市天域陶瓷有限公司 一种烧制陶瓷的加热系统
CN113028823B (zh) * 2021-03-16 2021-11-16 清远市天域陶瓷有限公司 一种烧制陶瓷的加热系统

Also Published As

Publication number Publication date
CN104583367A (zh) 2015-04-29
JP2014040546A (ja) 2014-03-06

Similar Documents

Publication Publication Date Title
CN102517043A (zh) 焦炉加热温控方法
JPS63503560A (ja) 炭素質ブロック焼成用チャンバ炉内での燃焼を最適化する装置及び方法
RU2527929C2 (ru) Способ регулирования печи для обжига анодов и печь, адаптированная для осуществления этого способа
CN109385285A (zh) 一种焦炉自动加热优化系统
WO2014030438A1 (ja) コークス炉の温度制御装置およびコークス炉の温度制御方法
US6436335B1 (en) Method for controlling a carbon baking furnace
CN109251751A (zh) 一种焦炉火落监控系统
CA2850254C (en) Monitoring method
AU2009352124A1 (en) Method for characterizing the combustion in lines of partitions of a furnace having rotary firing chamber(s)
JPS5835636B2 (ja) コ−クス炉の炉温測定方法
KR101159284B1 (ko) 코크스 오븐의 연소실 로온 관리 방법
JP4770215B2 (ja) コークス炉の補修方法
JP5919815B2 (ja) ガスコック開度算出方法、コークス炉の操業方法及びコークスの製造方法
JP3603741B2 (ja) コークス炉の炉壁管理方法
CN110377938A (zh) 一种焦炉立火道温度场分析方法
JP5892131B2 (ja) ガスコック開度算出方法、コークス炉の操業方法、およびコークスの製造方法
KR101536386B1 (ko) 코크스(cokes) 온도 제어 시스템 및 방법
JPS6032665B2 (ja) コ−クス炉の燃焼制御方法
JP5822069B2 (ja) コークス炉炉長方向の燃料ガス流量分布測定方法
CN209783280U (zh) 唇砖烘烤炉
JPS6121509B2 (ja)
JPH1135944A (ja) コークス炉の炉壁温度テーパー制御方法
JP3752062B2 (ja) コークス炉の炉内圧制御方法
JPS62177090A (ja) コ−クス炉における燃焼制御方法
KR0147786B1 (ko) 석탄의 건류중 발생하는 가스의 온도 분포식으로 건류상태를 판정하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13830338

Country of ref document: EP

Kind code of ref document: A1